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A B S T R A C T   

Topological constraint theory has been extensively used to describe how the composition and structure of glasses 
and glass-forming melts control their properties. This approach relies on an accurate enumeration of the topo
logical constraints acting in the atomic network. Such direct enumeration is challenging since constraints can be 
active or thermally-broken depending on temperature. Here, based on molecular dynamics simulations, we 
present a generic method aiming to predict the onset temperature below which constraints become active. We 
illustrate this method by considering the example of a series of binary calcium silicate glasses. We find that inter- 
polytope angular bond-bending constraints are associated with a lower onset temperature than intra-polytope 
angular constraints. Based on this, we show that the differing values of these two onset temperatures largely 
govern the glasses’ fictive temperature.   

1. Introduction 

Topological constraint theory (TCT, or rigidity theory) [1–4] offers 
an elegant framework to predict the properties of glasses as a function of 
their composition and structure [5–9]. TCT consists of reducing the 
complex atomic structure of glasses to a mechanical truss, wherein some 
nodes (the atoms) are connected to each other via some topological 
constraints (the chemical bonds) [5]. This level of simplification makes 
it possible to “separate the wheat from the chaff,” that is, to isolate the 
important role of the connectivity of the atomic network while filtering 
out other less relevant structural details, which, in many cases, only 
have a second-order effect on macroscopic properties [6]. In molecular 
glasses, the relative positions of the atoms are constrained by (i) radial 
bond-stretching (BS) constraints, which keep the interatomic bonds 
fixed around the average bond length, and (ii) angular bond-bending 
(BB) constraints, which define the angular environment around each 
atom. The state of rigidity of a given glass can then be determined by 

enumerating the number of BS and BB constraints acting in the atomic 
network. Based on Maxwell’s stability criterion [10], a glass network is 
defined as flexible (underconstrained), stressed-rigid (overconstrained), 
or isostatic (optimally constrained) if the number of constraints is lower, 
higher, or equal to the number of atomic degrees of freedom (i.e., 3 per 
atom), respectively. 

In the original formulation of TCT introduced by Phillips, Gupta, and 
Thorpe [1,3,4], the constraints enumeration was conducted at zero 
temperature, wherein all BS and BB constraints are active. Mauro and 
Gupta subsequently extended TCT to account for finite temperature ef
fects by introducing temperature-dependent constraint theory [11,12]. 
In this framework, each constraint is associated with a given activation 
energy for its breakage (ΔF) and, thereby, can be active (at low tem
perature) or thermally-broken (at high temperature). Based on this idea, 
the fraction q(T) of a particular type of constraints that is active at a 
given temperature T can be expressed as: 
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q(T) =

[

1 − exp
(

−
ΔF
kT

)]νtobs

(1)  

where k is the Boltzmann constant, ν is the vibrational attempt fre
quency for breaking a constraint, and tobs is the observation time [11]. 
The temperature-dependence of constraints and the form of Eq. 1 were 
later confirmed by molecular dynamics simulations [13]. Further, if 
νtobs≫1, the fraction of intact constraints can be approximated by a 
Heaviside step function H(): 

q(T) = H
(
Tq − T

)
(2)  

where Tq is the onset temperature below which a given constraint be
comes active. 

Importantly, depending on their strength, different types of con
straints are associated with varying onset temperature (or varying 
activation energy for breaking). For instance, inter-polytope angular 
constraints (e.g., Si–O–Si bonds) have been assumed to break at a lower 
temperature than intra-polytope constraints (e.g., O–Si–O bonds) [8,11, 
14], which echoes the fact that, although network-forming polytopes 
remain fairly rigid themselves, inter-polytope angles exhibit some flex
ibility [13,15–17]. However, the onset temperatures associated with 
each particular type of constraint remain fundamentally unknown and 
are usually considered solely as fitting parameters. 

Here, we present a generic approach aiming to predict the onset 
temperature of topological constraints by means of molecular dynamics 
(MD) simulations. We illustrate this approach by taking the example of a 
series of archetypical binary calcium silicate glasses with varying 
compositions—a family of glass that has important applications as 
bioactive material or cementing phase [18]. As expected, we find that 
inter-polytope Si–O–Si BB constraints are associated with a lower onset 
temperature than intra-polytope O–Si–O BB constraints. The onset 
temperatures determined by the analysis allow us to describe the 
compositional dependence of the fictive temperature of the glasses 
simulated herein. 

2. Methods 

2.1. Simulation of the glasses 

To establish our conclusions, we simulate by classical MD simula
tions a series of binary (CaO)x(SiO2)1–x glasses with varying molar 
fractions of CaO (x) ranging from 0-to-80%. Each glass is comprised of 
about 3000 atoms, which are initially randomly placed in a cubic 
simulation box while ensuring the absence of any unrealistic overlap. 
Each system is then melted at 3000 K in the canonical (NVT) ensemble 
for 100 ps and, subsequently, in the isothermal-isobaric (NPT) ensemble 
under zero pressure for another 100 ps—which ensures that the simu
lated melts lose the memory of their initial structure. The equilibrated 
melts are then cooled down to 300 K in the NPT ensemble under zero 
pressure with a cooling rate of 1 K/ps, before a final equilibration of 100 
ps at 300 K [19]. Six independent melt-quench simulations are con
ducted for each glass composition to estimate statistical uncertainties. 
For all simulations, we use the Buckingham interatomic forcefield 
developed by Jakse et al. [20,21], which has been shown to offer an 
improved description of the structure, dynamics, and mechanics of 
calcium aluminosilicate glasses as compared to alternative forcefields 
[22–25]. Coulombic interactions are computed with the Ewald sum
mation method, with a convergence criterion of 10−5. Cutoffs of 8 and 
12 Å are used for the short-range and Coulombic interactions, respec
tively. All simulations are conducted with the LAMMPS package [26], 
with an integration timestep of 1 fs, and using the Nosé–Hoover ther
mostat [27,28]. More details on the simulations and on the validation of 
the interatomic forcefield can be found in Ref. [22]. 

2.2. Fictive temperature 

The fictive temperature of each glass is determined based on the 
method introduced in Ref. [29], which is detailed in the following. The 
method is based on tracking the evolution of the potential energy of the 
inherent structure of the simulated systems as a function of temperature 
during their quenching. In detail, following Section 2.1, we first quench 
the system from 3000 K down to 300 K with a cooling rate of 1 K/ps in 
the NPT ensemble (under zero pressure). Every 100 ps, we then extract a 
configuration for further analysis. For each configuration (i.e., at each 
temperature), we conduct a subsequent run of 80 ps in the NPT ensemble 
while keeping constant the temperature. A total of 16 independent 
configurations are then extracted from each run (every 5 ps). Each of 
these configurations is then subjected to a constant-volume energy 
minimization (using the conjugate gradient algorithm) to compute the 
potential energy U of its inherent configuration (i.e., the local minimum 
of energy that is accessible to the system) [19,30]. For illustration pur
poses, the potential energy of a simulated glass (SiO2) before and after 
energy minimization is shown in Fig. 1a. For each initial temperature, 
we then calculate the average inherent structure energy by averaging 
over the 16 independent configurations (see Fig. 1b). The fictive tem
perature of the glass (which is associated with its structural arrest as the 
temperature decreases) then manifests itself as a break in slope in the U 
vs. T curve (see Fig. 1c). Specifically, the fictive temperature of each 
glass is determined by performing two linear regressions of the U vs. T 
plot in the low- and high-temperature domains—and the fictive tem
perature Tf is here defined as the temperature at which these two linear 
functions intersect with each other. By focusing on the inherent struc
ture energy rather than on the instantaneous energy (i.e., at finite 
temperature) during quenching, this analysis filters out thermal effects 
and yields a clearer signature of the glass transition (see Refs. [20,29, 
31–33]). Note that the fictive temperature is not strictly a glass property 
as it depends on the cooling rate—so that fictive temperatures deter
mined by MD simulations typically far exceed the associated experi
mental values [19]. 

2.3. Structural analysis 

As a prerequisite for the enumeration of the topological constraints 
acting in the atomic network of the simulated glasses, we compute the 
coordination number of each atom. To this end, we first determine the 
extent of the first coordination shell of each type of atom—which is here 
defined as the position of the first minimum after the first peak in the 
partial pair distribution function associated with each element. We then 
directly enumerate the number of neighbors that are present in the first 
coordination shell of each atom. This allows us to distinguish the 
different types of O species that are present in the glass, namely, 
bridging oxygen (BO, which are connected to two Si atoms), non- 
bridging oxygen (NBO, which are connected to only one Si atom), and 
free oxygen (FO, which are not connected to any Si atom). Based on this 
analysis, we then decompose the total coordination of Ca atoms into the 
contributions of BO, NBO, and FO. 

3. Results 

3.1. Coordination numbers 

We first focus on the evolution of the coordination number of each 
atomic species in the atomic network as a function of the glass compo
sition. We note that Si atoms systematically remain 4-fold coordinated, 
irrespectively of the composition of the glass. Therefore, we focus our 
attention on O and Ca species. 

Fig. 2a shows the fraction of BO, NBO, and FO species as a function of 
composition. As expected, we find that pure SiO2 is only comprised of 
BO atoms. The addition of CaO in the glass then results in the formation 
of NBO atoms at the expense of BO atoms—which is not surprising since, 
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in this regime, each Ca atom is indeed expected to form two NBO atoms 
[34]. However, we note that, in Ca-rich glasses, the addition of CaO 
eventually results in the formation of FO atoms. Although such Ca-rich 
calcium silicate glasses have not been experimentally studied due to 
their low glass-forming ability, the existence of such FO species has been 
suggested in other silicate glasses [35–37]. Here, we find that the frac
tion of FO atoms starts to notably increase for [CaO] > 60%, which 
corresponds to the range of compositions wherein the fraction of BO 
atoms becomes nearly zero. Starting from a fully polymerized network 
in pure SiO2 (wherein all O atoms act as BO) and assuming that each Ca 
atom creates two NBO atoms, one would indeed expect all BO atoms to 
be consumed at [CaO] = 2/3 (66.7%). At this threshold, the glass 
network would be solely composed of isolated SiO4 tetrahedral units, 
which are connected to each other via some weak O–Ca–O ionic bonds. 
Starting from this initial structure, any further addition of CaO would 
indeed result in the formation of FO atoms (i.e., Ca–O–Ca bonds). 

Next, we focus on Ca atoms. We first note that the total coordination 
number of Ca atoms only exhibits a slight increase upon increasing CaO 
content (Fig. 2b) and, as expected, remains close to 6, irrespectively of 
the glass composition [38–40]. We then track the contribution of each 
type of O species to the coordination of Ca atoms. Qualitatively, the 
evolution of the BO, NBO, and FO partial coordination numbers of Ca 
atoms follows the trends observed in Fig. 2a—since the addition of CaO 
in the glass initially tends to increase the average number of NBO atoms 
that are present in the first coordination shell of Ca atoms, while the 
contribution of FO atoms eventually increases in Ca-rich glasses. How
ever, we note that the distribution of the partial Ca–O coordination 
numbers does not fully mimic the populations of the different O species. 
Specifically, we observe that Ca atoms are preferentially connected to 
NBO and FO atoms (at the expense of BO atoms). This is not surprising 
since, in contrast to NBO and FO atoms, the charge of BO atoms is 
already fully compensated by their two nearest Si neighbors. 

3.2. Topological constraints in the glassy state 

The structural analysis presented in Section 3.1 allows us to infer the 
types of topological constraints that are at play in the atomic network of 
calcium silicate glasses (i.e., at 300 K). We first focus on the 2-body 
radial BS constraints. Note that each BS constraint is necessarily 
shared by a cation (i.e., Si or Ca) and an O atom. Here, for simplicity, we 
fully attribute all BS constraints to the associated cation. As expected, 
since they have a fixed coordination number of 4, Si atoms create 4 BS 
constraints with their 4 O neighbors [13]. In contrast, Ca atoms exhibit 
more variability in their coordination number. On average, Ca atoms 
tend to create 5-to-6 BS constraints with their O neighbors [41,42]. 
Next, we focus on the 3-body angular BB constraints. As expected, Si 
atoms create 5 BB constraints, which keep the O–Si–O angles fixed 
around their average value of 109◦ [17]. Note that, although the Si 
tetrahedron exhibits 6 distinct O–Si–O angles, only 5 of the angles are 
mutually independent and, hence, are counted as active BB constraints. 
In addition, BO atoms create 1 BB constraint, which fixes the value of the 
Si–BO–Si intertetrahedral angle [13]. In contrast to the strong and 
directional ionic-covalent Si–O bonds, ionic Ca–O bonds are weaker and 
virtually non-directional. The ionicity of these bonds manifests itself by 
very broad Si–NBO–Ca and O–Ca–O partial bond angle distributions, 
even at room temperature [41]. As such, no BB constraint is associated 
with NBO and Ca atoms. 

3.3. Effect of temperature on angular bond-bending constraints 

Next, we focus on the effect of temperature on the state of the to
pological constraints. We first note that Si and Ca atoms maintain their 
coordination number up to high temperatures (3000 K). This indicates 
that their associated BS constraints are strong enough to remain intact, 
even in the supercooled liquid state. Hence, in the following, we focus on 

Fig. 1. (a) Instantaneous potential energy (at 
finite temperature) and potential energy of the 
inherent structure after energy minimization, 
(b) potential energy of the inherent structure 
(zoomed in), and (c) averaged potential energy 
of the inherent structure (averaged over 16 in
dependent configurations per initial tempera
ture) as a function of the initial temperature for 
a simulated SiO2 glass-forming system. The 
solid lines are some linear fits at low and high 
temperature. The intersection of these lines 
yields the glass fictive temperature.   

Fig. 2. (a) Fractions of bridging oxygen (BO), 
non-bridging oxygen (NBO), and free oxygen 
(FO) in binary calcium silicate glasses as a 
function of composition. (b) Average BO, NBO, 
and FO partial coordination numbers of the Ca 
atoms in calcium silicate glasses as a function of 
composition. The dashed line indicates the total 
coordination number of the Ca atoms (i.e., the 
sum of the partials). In both panels, the solid 
lines are to guide the eye. In both panels, error 
bars are smaller than the symbol size.   
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the state of the weaker angular constraints as a function of temperature 
[43]. 

To characterize whether a given BB constraint is active or not at a 
given temperature, we follow the approach introduced in Ref. [13]. This 
approach is based on the idea that, rather than directly attempting to 
identify constraints, it is more convenient to indirectly infer their exis
tence by analyzing the interatomic motion (or absence thereof)—in the 
same fashion as one can calculate the gravitational force acting on a 
projectile by analyzing its parabolic trajectory. In the case of atomic 
networks, the absence of any substantial relative motion between atoms 
suggests the existence of an underlying constraint, whereas large 
interatomic motion is indicative of the absence of any underlying 
constraint. 

In detail, for each central atom (i.e., Si or BO), we first identify the N 
nearest neighbors (here, we use N = 6 to ensure that all potential nearest 
neighbors are accounted for). These N nearest neighbors form N(N – 1)/ 
2 distinct angles around the central atom 0 (i.e., angles 102, 103, 104, 
105, 106, 203, etc.). Note that the N nearest neighbors can change over 
time and are redefined at each step based on their distance from the 
central atom. We then track the value of each individual angle over time. 
This allows us to compute the (i) average θ and (ii) standard deviation σθ 
of each angle. The value of σθ corresponds to the angular excursion (in ◦) 
of each angle formed around the central atom. Based on these values, we 
then calculate the relative angular excursion of each angle as σθ/θ (in 
%). This analysis allows us to indirectly infer the existence of individual 
BB constraints. Indeed, low relative angular excursion values indicate 
the existence of an underlying BB constraint (which is maintaining the 
angle fixed around its average value), whereas, in contrast, large relative 
angular excursion values denote the absence of any underlying BB 
constraint. 

To assess the effect of temperature on the state of the BB constraints, 
we repeat this analysis at different temperatures. In detail, starting from 
the glass configurations relaxed at 300 K, we gradually increase the 
temperature by increments of 100 K. At each temperature step, the 
system is first subjected to a linear increase in temperature (with a total 
increase of 100 K) over a duration of 10 ps in the NPT ensemble. After 
heating, the system is then further subjected to a 100 ps run at constant 
temperature in the NVT ensemble. During this phase, 100 configurations 
are extracted (every 1 ps) and used to calculate the relative angular 
excursion σθ/θ of each interatomic angle in the atomic network. 

In the following, we illustrate this method by focusing on the case of 
the (CaO)50(SiO2)50 glass, noting that similar relative angular excursions 
are obtained for the other glass compositions. Fig. 3 shows the distri
butions of the relative angular excursions σθ/θ associated with Si and 
bridging O (BO) atoms (i.e., 4 O–Si–O angles around each Si atom and 1 
Si–BO–Si angle around each BO). In general, we find that the relative 

angular excursions around Si atoms are lower than those around BO 
atoms—in agreement with the fact that intra-polytope (inside the SiO4 
polytopes) BB constraints are expected to be stronger than inter- 
polytope (in between the SiO4 polytopes) BB constraints [11,13]. We 
then note that both of these distributions gradually shift toward larger 
relative angular excursions as temperature increases. This signals the 
fact that, upon increasing temperature, BB constraints become less 
active since their ability to maintain the angles fixed around their 
average value decreases. 

We observe some notable differences in the behaviors of Si and BO 
angular BB constraints upon increasing temperature. First, in the case of 
the O–Si–O BB constraints (Fig. 3a), we find that the maximum position 
of the distribution only shows a moderate shift toward larger relative 
angular excursion upon increasing temperature. However, a long tail 
expanding toward very large angular excursions gradually forms upon 
increasing temperature. This signals that, as temperature increases, a 
large number of angular BB constraints remain fairly unaffected, while, 
in turn, a fraction of the BB constraints break in a dramatic fashion (as 
evidenced by a very large angular excursion). Indeed, it has previously 
been shown that, around each Si atom, the BB constraints involving the 
fourth O neighbor (i.e., angles 104, 204, and 304) are the first to break, 
while the other BB constraints (i.e., angles 102, 103, and 203) remain 
active even until very high temperature [13]. In contrast, Si–BO–Si BB 
constraints (Fig. 3b) exhibit a different behavior upon increasing tem
perature—as the relative angular excursion distributions gradually shift 
“in-block” toward larger values upon increasing temperature. This 
suggests that these constraints collectively break as temperature 
increases. 

3.4. Onset temperature of angular bond-bending constraints 

We then estimate the onset temperature associated with these BB 
constraints by plotting the average relative angular excursion associated 
with Si and BO atoms as a function of temperature (see Fig. 4). Overall, 
we note that the average relative angular excursions of Si and BO atoms 
exhibit a rough bilinear behavior, that is, they are fairly constant at low 
temperature, and then tend to increase linearly with increasing tem
perature. We do not observe any discontinuity in the average relative 
angular excursions that would clearly signal that the onset temperature 
has been reached. Rather, here, we use 7% as the critical relative angular 
excursion that discriminates active from thermally-broken BB con
straints. This value is based on previous studies that suggested that this 
threshold properly separates intact from broken constraints [13,41]. The 
threshold value is also fairly close to the Lindemann criterion, which 
provides as estimation of the magnitude of atomic vibrations that is 
required to induce melting [44]. Based on this, we estimate the onset 

Fig. 3. Distributions of the relative angular excursions of the angles forming around (a) Si atoms (i.e., 4 O–Si–O angles) and (b) bridging oxygen (BO) atoms (i.e., 1 
Si–BO–Si angle) at several increasing temperatures in a (CaO)50(SiO2)50 glass. 
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temperature of each type of constraint as the temperature at which the 
average relative angular excursion crosses the threshold value of 7%. 
This analysis yields notably different onset temperature values for 
Si–BO–Si and O–Si–O BB constraints, namely, T1 = 1350 K and T2 =

2250 K—although there is some uncertainty in the exact values of these 
onset temperature (especially in T1), considering the fluctuations in the 
σθ/θ vs. T curves (see Fig. 4). Nevertheless, these values clearly echo the 
fact that O–Si–O BB constraints are stronger than Si–BO–Si constraints 
(namely, they are associated with higher activation energy) and, hence, 
can sustain higher temperatures before breaking. 

It is worth noting that, at this point, this analysis yields the onset 
temperature that is associated with the observation timescale of the MD 
simulations (i.e., 100 ps at each step of temperature), which is vastly 
different from the observation timescale of experimentally produced 
glasses (i.e., around 100 s). As such, the onset temperatures offered by 
this analysis are not expected to be directly comparable to experiments 
(see Discussion Section). 

3.5. Effect of the onset temperatures on fictive temperature 

We then assess how the two onset temperatures T1 and T2 deter
mined in Fig. 4 control the fictive temperature of the simulated glasses. 
To this end, we adopt the temperature-dependent constraint approach 
introduced by Mauro and Gupta [11,12], which establishes that the 
fictive temperature Tf of a given glass composition x can be expressed as: 

Tf(x)

Tf
(
xref

) =
f
(
Tf

(
xref

)
, xref

)

f
(
Tf(x), x

) =
3 − nc

(
Tf

(
xref

)
, xref

)

3 − nc
(
Tf(x), x

) (3)  

where 3 is the initial number of degrees of freedom per atom (in three- 
dimensional networks), xref is an arbitrary reference composition asso
ciated with a known fictive temperature Tf(xref), nc(T, x) is the total 
number of constraints per atom that are active at the temperature T for 
the glass composition x, and f(T, x) = 3 – nc(T, x) is the number of floppy 
modes per atom (i.e., the remaining number of degrees of freedom that 
are not balanced by a topological constraint) [5]. As such, Eq. 3 can be 
used to predict the compositional evolution of the fictive temperature Tf 
based on the knowledge of (i) the number of constraints per atom that 
are active at a given temperature and (ii) the fictive temperature of a 

reference glass composition. Note that Eq. 3 was initially derived to 
predict the glass transition temperature Tg (that is, the temperature at 
which the viscosity is equal to 1012 Pa•s, corresponding to a relaxation 
time of about 100 s) [11]. However, the same equation can be used to 
predict the fictive temperature, which, here, is the temperature at which 
the glass relaxation time becomes equivalent to the simulation obser
vation time. 

It is worth noting that Eq. 3 is recursive, since predicting Tf requires 
the knowledge of nc at this temperature, which itself depends on Tf 
(since some constraints can form or break depending on the tempera
ture). As such, Eq. 3 can be solved by (i) determining which constraints 
are active at the temperature Tf(xref), i.e., the fictive temperature of the 
reference glass composition, (ii) determining the number of constraints 
per atom nc(x) for the other glass compositions x while assuming that the 
same types of constraints remain active, (iii) calculating Tf based on Eq. 
3, and, finally, (iv) ensuring that the calculated value of Tf does not 
deviate from Tf(xref) enough to break (if Tf increases too much) or form 
(if Tf decreases too much) another type of constraint. 

Interestingly, if the fictive temperature Tf becomes equal to (or is 
about to exceed) one of the onset temperatures (below which a given 
type of constraint forms), Tf tends to exhibit a local plateau as a function 
of the composition x and becomes equal to the onset temperature. For 
instance, in the present case of calcium silicate glasses, the number of 
constraints per atom tends to increase with decreasing x (since the 
connectivity of the glass increases). Upon decreasing x, if the number of 
constraints increases so much that Tf exceeds the onset temperature of a 
given type of constraint, this constraint will break. As a result, the 
breaking of these constraints will reduce the number of constraints, 
which, in turn, will decrease Tf. This would cause Tf to become lower 
that the onset temperature, so that the associated constraints would 
form again. Overall, due to this retroactive mechanism, the fictive 
temperature Tf will remain equal to the constraint onset temperature 
over a window of glass compositions x. In this case, Tf will remain equal 
to the onset temperature until the composition x decreases enough for 
the number of constraints to become so high (even though certain 
constraints are thermally-broken) that the value of Tf calculated by Eq. 3 
becomes higher than the onset temperature. Similarly, Tf is also ex
pected to exhibit a plateau if, as x increases, the number of constraints 
decreases so much that Tf becomes lower than the onset temperature of a 
given type of constraint (so that, at this temperature, some new con
straints would form). This interesting behavior is all the more important 
herein as it allows us to a posteriori confirm the values of the onset 
temperatures identified in Fig. 4 based on the evolution of Tf(x). 

Based on this approach, we attempt to predict the compositional 
dependence of fictive temperature in the present calcium silicate glasses 
based on their topology. To this end, we first calculate the number of 
constraints per atom nc as a function of composition within three 
different ranges of temperature, namely, (i) T < T1, wherein all con
straints are active, (ii) T1 < T < T2, wherein Si–O–Si BB constraints are 
broken, and (iii) T > T2, wherein both Si–O–Si and O–Si–O BB con
straints are broken (Fig. 5a). As expected, we find that the number of 
constraints tends to decrease upon increasing temperature (since 
increasing temperature results in the breaking of constraints). At low 
temperature (T < T1, i.e., in the glassy state), the number of constraints 
per atom notably decreases upon increasing [CaO]. This results from the 
fact that the addition of Ca cations greatly reduces the number of 
angular BB constraints (since Ca cations consume BOs and replace 
directional Si–O bonds by non-directional Ca–O bonds). However, this 
trend is reversed at elevated temperature (T > T2, i.e., in the liquid 
state). Indeed, in this range of temperature, all BB constraints are 
broken, so that the addition of Ca cations actually results in an increase 
in the number of BS constraints (since 4-fold coordinated Si are replaced 
by 6-fold coordinated Ca atoms). This illustrates that compositional 
trends in the topology of liquids (wherein radial BS constraints are 
predominant) may not always follow those observed in the glassy state 
(wherein both radial BS and angular BB constraints are at play). 

Fig. 4. Average relative angular excursions associated with the bond-bending 
(BB) constraints created around Si and bridging oxygen (BO) atoms, respec
tively (i.e., O–Si-O and Si–BO–Si) in a (CaO)50(SiO2)50 glass, as a function of 
temperature. The horizontal line indicates the relative angular excursion 
threshold (7%), separating intact (< 7%) from thermally-broken (> 7%) 
constraints. 
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Based on the number of constraints per atoms nc presented in Fig. 5a, 
we then attempt to predict the evolution of the fictive temperature Tf of 
the calcium silicate glasses using Eq. 3. To this end, we adopt as refer
ence composition xref = 20%. The choice of this reference is motivated 
by the fact that, for this composition, the fictive temperature is Tf(xref) ≈
1800 K, which is conveniently located in between the onset tempera
tures T1 and T2 identified in Fig. 4 (so that, at this temperature, O–Si–O 
constraints are active but Si–O–Si constraints are thermally-broken). As 
such, this composition offers an ideal reference point to determine the 
onset temperatures T1 (which is likely to result in a plateau in Tf upon 
decreasing nc) and T2 (which is likely to result in a plateau in Tf upon 
increasing nc). 

Fig. 5b shows the fictive temperature that is predicted by Eq. 3 as a 
function of composition. As expected, we find that the predicted fictive 
temperature decreases upon increasing [CaO], which echoes the fact 
that, in the considered initial range of temperature (T1 < T < T2), the 
number of constraints per atom decreases upon increasing [CaO]. 
Importantly, we find that, on the one hand, the predicted fictive tem
perature quickly increases toward infinity in Ca-poor glasses (see the 
dashed line on the left in Fig. 5b). This is a consequence of the fact that, 
in the considered initial range of temperature (T1 < T < T2), the number 
of constraints per atom nc converges toward 3 for [CaO] = 0 (in 
agreement with the fact that pure silica is associated with an isostatic 
network [5]). Indeed, following Eq. 3, nc = 3 would result in an infinite 
value for Tf. At [CaO] = 17%, the predicted fictive temperature even
tually reaches T2, so that, at this point, angular O–Si–O BB constraints 
break. As mentioned above, this results in a plateau in Tf for [CaO] <
17%. On the other hand, we find that the predicted fictive temperature 
eventually drops toward low values in Ca-rich glasses (see right dashed 
line in Fig. 5b). This is a result of the fact that, in the considered initial 
range of temperature (T1 < T < T2), the number of constraints per atom 
nc tends to quickly decrease in Ca-rich glasses (eventually becoming 
lower than 2.5). At [CaO] = 61%, the predicted fictive temperature 
reaches T1, so that, at this point, angular Si–O–Si BB constraints become 
active. This results in a plateau in Tf for [CaO] > 61%. 

Overall, we find that the fictive temperature that is predicted by the 
present model exhibits a fairly good match with the simulated data over 
the entire range of glass compositions (see Fig. 5b). Notably, the pla
teaus observed in the compositional dependence of the predicted fictive 
temperature are well supported by the MD data, both in Ca-poor glasses 
(wherein Tf plateaus at T2) and Ca-rich glasses (wherein Tf plateaus at 
T1). Note that, since MD simulations are associated with very high 
cooling rates, they offer largely overestimated values of Tf as compared 
to experimental data [19]. For instance, experimental fictive tempera
ture values for [CaO] = 50% are found to be around 1050-to-1060 K [45, 
46], which is notably lower than the simulated value obtained herein 
(1406 K). The effect of the cooling rate is further discussed in the 

Discussion section. Nevertheless, the overall harmony between pre
dicted and simulated Tf values demonstrated in Fig. 5b a posteriori 
supports the validity of the onset temperatures T1 and T2 identified in 
Fig. 4. 

4. Discussion 

In this section, we discuss how the present simulation results can be 
translated to experimental glasses. Indeed, no matter how accurate the 
interatomic forcefield used in simulations may be, MD simulations can 
only access very short timescales (e.g., a few nanoseconds) as compared 
to experimental timescales (e.g., hundreds of seconds). Due to this dif
ference in timescale, the cooling rate used in MD simulations (typically 1 
K/ps) is orders of magnitude larger than typical experimental conditions 
of glass formation (typically 1 K/s) [19]. As a result, since the obser
vation time accessible to MD simulations is notably smaller than that 
accessible to experiments, simulated melts typically exhibit a dynamical 
arrest (i.e., when their relaxation time equal the observation time) at 
more elevated temperature than their experimental counterparts [47, 
48]—so that simulated glasses typically exhibit larger fictive tempera
ture than experimental glasses. This limited timescale is also likely to 
affect the onset temperature of topological constraints, since, at a given 
temperature, a constraint that appears to be active when observed 
during a short time may appear to be broken when observed for a longer 
duration. 

In the framework of temperature-dependent topological constraint 
theory, the influence of timescale is encoded in the νtobs term in Eq. 1. 
Unfortunately, this term has thus far mostly been treated as a fitting 
parameter, and its dependence on the cooling rate remains unclear [8]. 
Here, as an attempt to convert the onset temperatures obtained herein (i. 
e., associated with the limited timescale of MD simulations) into onset 
temperatures that are applicable to experimental timescales, we adopt 
the following approach. First, we track the fraction of active BB con
straints as a function of temperature q(T), wherein active constraints are 
defined as those that are associated with a relative angular excursion 
that is lower than 7% (based on the distributions shown in Fig. 3). Then, 
we fit these data with Eq. 1, which yields the parameters ΔF and νtobs. 
Based on the value of ΔF identified by MD, we finally estimate the onset 
temperature associated with the experimental timescale by adjusting 
(increasing) the value of tobs (see below). 

The obtained q(T) data are shown in Fig. 6, both for Si- and BO- 
centered BB constraints. We find that the data can be well fitted by 
Eq. 1 (see Fig. 6), which offers confidence in the temperature-dependent 
topological constraint framework. By fitting, we first find ΔF = 0.83 and 
0.38 eV for Si- and BO-centered BB constraints, respectively. These 
values match (in terms of order of magnitude) previous values that were 
obtained in the case of a simulated sodium silicate glass (0.89 eV) [13]. 

Fig. 5. (a) Number of constraints per atom 
within different ranges of temperatures as a 
function of composition. (b) Fictive tempera
ture Tf as a function of composition. The error 
bars are smaller than the symbol size. The solid 
line shows the predicted Tf values using Eq. 3, 
while the square symbols correspond to the Tf 
values computed by MD simulations. The 
dashed lines indicate the predicted evolution of 
Tf if O–Si–O constraints did not break at the 
onset temperature T2 = 2250 K and if Si–O–Si 
constraints did not form at the onset tempera
ture T1 = 1350 K.   
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These values also echo the fact that intra-polytope O–Si–O BB con
straints are expected to be stronger than inter-polytope Si–BO–Si BB 
constraints [15]. Then, by fitting, we find νtobs = 18.0 and 18.6 for Si- 
and BO-centered BB constraints, respectively. The fact that these two 
values are comparable to each other is consistent with the fact that (i) 
the vibrational attempt frequencies ν associated with both constraints 
are expected to be fairly similar and (ii) the observation time tobs solely 
depends on the timescale of the MD simulation (here, the heating rate). 
Moreover, these values are fairly comparable with that obtained in the 
case of a sodium silicate glass (34.3, as obtained for the Si–O–Si BB 
constraint) [13]. 

By using the MD-derived activation energy ΔF associated with each 
constraint, it now becomes possible to estimate the fraction of active 
constraints q(T) as a function of the parameter νtobs based on Eq. 1. Since 
the relationship between cooling rate and νtobs is unclear, we simply 
explore the effect of increasing νtobs (i.e., increasing the observation 
time). To this end, we consider the range of values νtobs = 200-to-1000, 
which was previously determined based on experimental fragility data 
for phosphate and borate glasses [11,49]. Onset temperatures associated 
with experimental timescales are then defined as the temperature at 
which q(T) = 0.5. Fig. 6 shows the predicted q(T) functions, as calcu
lated by assuming νtobs = 200-to-1000. It is worth noting that, as νtobs 
increases, the q(T) function gradually converges toward a step function 
[11]. As a result, the influence of the νtobs term on the onset temperature 
continuously reduces upon increasing tobs. Indeed, we find that, despite 
the large range of νtobs values considered herein (i.e., 200-to-1000), the 
calculated q(T) temperatures exhibit a fairly limited dependence on νtobs 
(see the gray areas in Fig. 6). Based on this analysis, we find that the 
onset temperature associated with Si–BO–Si constraints is within 
610-to-780 K. This range of values exhibits a very good match with 
experimental onset temperatures observed in silica (810 K [50,51]) and 
silicate glasses (720-to-770 K [14]). Similarly, we find that the onset 
temperature associated with stronger O–Si–O constraints is within 
1320-to-1700 K. Although this range of temperature prevents us from 
being fully conclusive, these values are in agreement with onset tem
peratures observed in silica (1600 K [50,51]) and silicate glasses (1425 K 
[52,53]). 

5. Conclusions 

Overall, the results presented herein offer a generic approach to es
timate the onset temperature associated with different topological 
constraints based on molecular dynamics simulations. Although onset 
temperatures are timescale-dependent (and, hence, cooling-rate- 
dependent), the onset temperature values derived by molecular dy
namics can be rescaled so as to be consistent with experimental time
scales. Importantly, we find that the onset temperatures associated with 
inter- and intra-polytope angular constraints play a critical role in 
governing the glass fictive temperature (or glass transition temperature 
if the observation time is large enough). Indeed, we find that the onset 
temperatures associated with Si–BO–Si and O–Si–O constraints impose a 
lower- and upper-bound plateau on the fictive temperature, respec
tively. This suggests that the existence of such plateaus (wherein the 
glass transition remains constant upon varying composition) is indica
tive of the thermal breaking of a topological constraint. 

The knowledge of the onset temperature associated with each type of 
constraint is key to predict the glass transition temperature of glass- 
forming systems as a function of their composition [11]. More gener
ally, in addition to providing the onset temperature, the present 
approach also offers a direct estimation of the fraction q(T) of active 
constraints as a function of temperature. Indeed, although, for the sake 
of simplicity, analytical topological models are often based on the 
assumption that all the constraints of a given type instantly break when 
their onset temperature is reached, the knowledge of the fraction q(T) of 
active constraints as a function of temperature is important to determine 
the rate at which constraints break upon increasing temperature, which 
must otherwise be treated as a fitting parameter. In turn, the rate at 
which constraints break upon heating is key to predict melt fragility or 
the temperature dependence of glass stiffness (wherein treating q(T) as a 
step function is insufficient) [11,51]. We envision that the 
temperature-dependence of topological constraints offers a promising 
pathway to decipher how the properties of glasses are encoded in those 
of their supercooled liquids parents, and vice versa [54–56]. 
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Fig. 6. Fraction of active bond-bending (BB) constraints around Si and bridging 
oxygen (BO) atoms in a (CaO)50(SiO2)50 glass as a function of temperature. The 
symbols show the values computed by molecular dynamics (MD) simulations. 
MD data are fitted with Eq. 1 (solid lines) to get the activation energy ΔF for 
breaking a constraint. MD data are then extrapolated toward experimental 
(Exp.) timescales based on Eq. 1 (grey area surrounded by dashed lines). The 
extrapolation is conducted by using the same ΔF value (determined by MD), but 
extended observation time (using νtobs = 200-to-1000). 
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