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Current attempts at methodological reform in sciences
come in response to an overall lack of rigor in
methodological and scientific practices in experimental
sciences. However, most methodological reform
attempts suffer from similar mistakes and over-
generalizations to the ones they aim to address. We
argue that this can be attributed in part to lack of
formalism and first principles. Considering the costs
of allowing false claims to become canonized, we
argue for formal statistical rigor and scientific nuance
in methodological reform. To attain this rigor and
nuance, we propose a five-step formal approach for
solving methodological problems. To illustrate the
use and benefits of such formalism, we present a
formal statistical analysis of three popular claims in
the metascientific literature: (a) that reproducibility is
the cornerstone of science; (b) that data must not be
used twice in any analysis; and (c) that exploratory
projects imply poor statistical practice. We show how
our formal approach can inform and shape debates
about such methodological claims.

1. Introduction

Widespread concerns about unsound research practices,
lack of transparency in science, and low reproducibility
of empirical claims have led to calls for methodological
reform across scientific disciplines [1; 2; 3; 4].
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The literature on this topic has been termed “meta-research” [5] or “metascience” [6] and has
had policy impact on science agencies, institutions, and practitioners [7]. Perhaps surprisingly,
proper evaluation of methodological claims in meta-research —understood as statements about
scientific methodology that are either based on statistical arguments or affect statistical practice-
has received little formal scrutiny itself. Policies are proposed with little evidentiary backing
and based on methods which are suggested with no framework for assessing their validity or
evaluating their efficacy [e.g., see policy and methods proposals in 8; 9; 10; 11; 12; 13].

For example, reform methodologists have criticized empirical scientists for: (a) prematurely
presenting unverified research results as facts [14]; (b) overgeneralizing results to populations
beyond the studied population [15]; (c) misusing or abusing statistics [16; 17]; and (d) lacking
rigor in the research endeavor that is exacerbated by incentives to publish fast, early, and
often [11; 12]. However, the methodological reform literature seems to us to be afflicted with
similar issues: We see premature claims that untested methodological innovations will solve
replicability /reproducibility problems; conditionally true statements about methodological tools
presented as unconditional, bold claims about scientific practice; vague or misleading statistical
statements touted as evidence for the validity of reforms; and we are concerned about an overall
lack of rigor in method development that is exacerbated by incentives to find immediate solutions
to the replication crisis [see also 7, for an overall critique of the dominant epistemology of
metascience]. This is a reason for concern. We expect methodological reforms to be held to
standards that are at least as rigorous as those we expect of empirical scientists. Should we fail to
do so, we run the risk of repeating the mistakes of the past and creating new scientific processes
that are no better than those they replace. There is an uncomfortable symmetry to this, but also
an opportunity: Reformers are in an opportune position to take criticism and self-correct before
allowing false claims to be canonized as methodological facts [18].

In this paper, we advocate for the necessity of statistically rigorous and nuanced arguments
to make proper methodological claims in the reform literature. Because methodological claims
are either based on statistical arguments or affect statistical practice, they need to be statistically
correct. Statistics is a formal science whose methods follow from probability calculus to be
valid, and this validity is established either by mathematical proofs or by simulation proofs
before being advanced for the use of scientists. Formalization allows us to subject our verbal
intuitions to scrutiny, revealing holes, inconsistencies, and undeclared assumptions and to
make precise, transparent claims that hold under well-specified assumptions [19]. As such, by
statistical rigor, we mean doing and showing the necessary formal work to establish how we
know a methodological claim is valid, in a way that does not leave room for idle speculation.
Scientific and statistical nuance, on the other hand, is about clearly specifying when (i.e., under
what assumptions and conditions) a claim should apply, which should result in measured and
contextual statements while preventing over-generalizations.

The emphasis and novelty of our current work is in demonstrating by example how formal
rigor can be achieved when proposing methods in metascience: by motivating them from first
principles, and using fundamental mathematical statistics machinery to provide their proofs.
Herfeld and Ivanova [20] talk about first principles in science as fundamental building blocks
and define them as follows: “Depending on the case, they can be formal axioms, theoretical
postulations, basic propositions, or general principles that have a special status and role to play
in the theory in which they are embedded.” Methodological reform and metascience currently
lack a theoretical foundation [7], are ambiguous about their first principles, and may benefit from
formalism in establishing these building blocks. A formal approach to solving methodological
problems can be summarized as follows.

Formal approach to solving methodological problems:
0. Conception. An informal problem statement and a proposed solution to that problem,
often expressed non-technically.
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1. Definitions. Identification of variables, population parameters, and constants involved in
the problem, and statistical model building using these quantities, with explicitly stated
model assumptions.

2. Formal problem statement. Mathematical propositions or algorithms positing
methodological claims.

3. Formal result. Mathematical or simulation-based proofs that interrogate the validity of
the statements in step 2.

4a. Demonstrations. If the statements are valid, examples showing their relevance in
application.

4b. Extensions and limitations. Assessing methodological claims’ computational feasibility,
robustness, and theoretical boundaries in domain-specific applications.

5. Policy making. Recommendations on how methods newly established through steps 2-4
can be useful in practice.

Regardless of which claims they support or oppose to, most popular methodological proposals
in the reform literature start with step 0, and jump to step 5 without formal results or much
evidence of work on intermediate steps. This is in stark contrast with proper formal approach
in statistical method development. Practical value of a method established by steps 4b and 5
may require domain-specific knowledge and might not be tackled well until after a method is
introduced. However, in proper method development these steps are undertaken only if steps
1-4a can actually provide justifications for or against a methodological proposal at the onset.

To show why formalism is essential in establishing the validity of methodological proposals
and how informal approaches making the jump from step 0 to 5 might misinform scientific
practice, we evaluate three specific examples of methodological claims from the reform literature:

* Reproducibility is the cornerstone of, or a demarcation criterion for, science.
¢ Using data more than once invalidates statistical inference.
* Exploratory research uses “wonky” statistics.

We focus on these claims as case studies to illustrate our approach because all three are
methodological claims with statistical implications that have been impactful' in the metascience
literature as well as on post-replication crisis practices of empirical scientists while also receiving
considerable but informal criticism. In an attempt to demonstrate how to formally resolve
such disagreements, we evaluate each of these claims using statistical theory, against a broad
philosophical and scientific background.

The results from our call for formal statistical rigor and nuance can reach further: A formal
statistical approach establishes a framework for broader understanding of a methodological
problem by a careful mathematical statement and consideration of model assumptions under
which it is valid. Most valid methodological advances are incremental, because they can only
be shown formally to be valid under a strong set of assumptions. These advances rarely ever
provide simple prescriptions to complex inference problems. Norms issued on the basis of bold
claims about new methods might be quickly adopted by empirical scientists as heuristics and
might alter scientific practices. However, advancing such reforms in the absence of formal proofs
is sacrificing rigor for boldness and can lead to unforeseeable scientific consequences. We believe
that hasty revolution may hold science back more than it helps move it forward. We hope that
our approach may facilitate scientific progress that stands on firm ground—supported by theory
or evidence.

! As an indication of impact on scientific literature, we looked up Google Scholar citation counts for some of the key articles
from which these claims originate, the oldest of which was published 8 years ago. By the time the current manuscript was
last revised, [1] had 686; [12] had 1045; [21] had 473; [22] had 574; [23] had 529; [4] had 4807; [24] had 1182; [13] had 704; and
[25] had 244 citations.
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2. Claim 1: Reproducibility is the cornerstone of, or a
demarcation criterion for, science.

A common assertion in the methodological reform literature is that reproducibility” is a core
scientific virtue and should be used as a standard to evaluate the value of research findings [1;
4; 23; 25; 27; 28; 29; 30]. This assertion is typically presented without explicit justification, but
implicitly relies on two assumptions: first, that science aims to discover regularities about nature
and, second, that reproducible empirical findings are indicators of true regularities. This view
implies that if we cannot reproduce findings, we are failing to discover these regularities and
hence, we are not practicing science.

The focus on reproducibility of empirical findings has been traced back to the influence
of falsificationism and the hypothetico-deductive model of science [31]. Philosophical critiques
highlight limitations of this model [32; 33]. For example, there can be true results that are by
definition not reproducible. Some fields aim to obtain contextually situated results that are subject
to multiple interpretations. Examples include clinical case reports and participant observation
studies in hermeneutical social sciences and humanities [33]. Other fields perform inference on
random populations resulting from path-dependent stochastic processes, where it is often not
possible to obtain two statistically independent samples from the population of interest. Examples
are inference on parameters in evolutionary systems or event studies in economics. There are also
cases where observing or measuring a variable’s value changes its probability distribution—a
phenomenon akin to the observer effect. True replication may not be possible in these cases. In
short, science does—rather often, in fact—make claims about non-reproducible phenomena and
deems such claims to be true in spite of the non-reproducibility. In these instances what scientists
do is to define and implement appropriate criteria for assessing the rigor and the validity of the
results [32], without making a reference to replication or reproduction of an experimental result.
Indeed, many scientific fields have developed their own qualitative and quantitative methods
such as ethnography or event study methodology to study non-reproducible phenomena.

We argue that even in scientific fields that possess the ability to reproduce their findings in
principle, reproducibility cannot be reliably used as a demarcation criterion for science because
it is not necessarily a good proxy for the discovery of true regularities. This counterpoint has
informally been brought up in metascience literature before [26; 34; 35; 36; 37; 38; 39]. Our goal
is to further advance this argument by providing a formal, quantitative evaluation of statistical
reproducibility of results as a demarcation criterion for science. We consider the following two
unconditional propositions: (1) reproducible results are true results and (2) non-reproducible
results are false results. If reproducibility serves as a demarcation criterion for science, we
expect these propositions to be true: we should be able to reproduce all true results and fail
to reproduce all false results with reasonable regularity. In this section, we provide statistical
arguments to probe the unconditional veracity of these propositions and we challenge the role
of reproducibility as a key epistemic value in science. We also list some necessary statistical
conditions for true results to be reproducible and false results to be non-reproducible. We
conclude that methodological reform first needs a mature theory of reproducibility to be able to
identify whether sufficient conditions exist that may justify labeling reproducibility as a measure
of true regularities.

“Here we use reproducibility as in: “the extent to which consistent results are observed when scientific studies are repeated”
[23, p.657]. In Appendix A we provide a technical definition of reproducibility which we use in obtaining our results. We limit
our discussion to statistical reproducibility of results only [similar to results reproducibility in 26], and exclude other types such
as computational or methods reproducibility —whether the materials, methods, procedures, algorithms, analyses used in an
original study are reported in a sufficiently detailed and transparent way that enables others to carry it out again.
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Box 1. Some necessary conditions to obtain true results that are reproducible and false
results that are non-reproducible.

e True values of the unknown and unobservable quantities for which inference is
desired must be in the decision space (Appendix B).

Examples: (i) In model selection, selecting the true model depends on
having an M-closed model space, which means the true model must be
in the candidate set [40]. (ii) In Bayesian inference, converging on the true
parameter value depends on the true parameter value being included in the
prior distribution, as stated by Cromwell’s rule [41, p.90].

e If inference is performed under one assumed model, that model should correctly
specify the true mechanism generating the data.

Example: A simple linear regression model with measurement error
misspecified as a simple linear regression model yields biased estimates
of regression coefficients, which will affect reproducibility of true and false
results (Figure 1, Figure 2).

e The quantities that methods use to perform inference on unknown and
unobservable components of the model must contain enough information about
those components: If they are statistics, they cannot be only ancillary. If they are
pivots that are a function of nuisance parameters, then the true value of those
nuisance parameters should permit reproducibility of results (Appendix B).

Example: In a one sample z-test where the population mean is not equal to
the hypothesized value under the null hypothesis, the test incorrectly fails
to reject with large probability due to large population variance.

e If inference is about parameters, observables must carry enough discernible
information about these parameters. That is, model parameters should be
identifiable structurally and informationally. Even weak unidentifiability will
reduce the reproducibility of true results.

Example: The requirement that the Fisher information [42, p.115]
about unknown parameters should be sufficiently large in likelihoodist
frameworks.

¢ Free parameters of methods should be compatible with our research goals.

Example: A hypothesis test in Neyman-Pearson framework with Type I
error rate o & 1 is a valid statistical procedure that rejects the null hypothesis
almost always when it is true.

¢ Methods should be free of unknown bias.

Example: Heisenbug is a special case of observer effect —where mere
observation changes the system we study, potentially leading to false results
that are reproducible- found in computer programming, that refers to a
software bug that alters its behavior or even disappears during debugging.

* The sample on which inference is performed is representative of the population
from which it is drawn.

Example: Statistical methods assume probabilistic sampling and do not
make any claims in a non-probabilistic sampling framework [43].
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(a) Reproducibility rate is a parameter of the population of studies.

To examine the suitability of reproducibility as a demarcation criterion, a precise definition of
reproducibility of results is necessary. While many definitions have been offered for replication
and results reproducibility [see 44, for a partial list], most are informal and not sufficiently
precise or general for our purposes3. In this paper, we use our own definitions based on first
principles to facilitate the derivation of our theoretical results. In assessing the reproducibility
of research results, literature refers to “independent replications” of a given study. Therefore, it
is necessary to define the notion of a study mathematically, before referring to replications of
that study. We provide a precise mathematical definition of an idealized study in Appendix A.
Briefly, its components involve an assumed probability model generating the data involving the
random variable and parameters of interest, a data set of fixed sample size, the statistical method
employed in analyzing the data, the background knowledge about the variable of interest, and
a decision rule to deliver the result of the analysis. We note that it is not sufficient to lay
out the higher-level assumptions to provide formal results. Lower-level assumptions such as
mathematical regularity conditions about variables must also be specified as outlined in step 1
of our formal approach. We also note that the definition given in Appendix A is sufficiently broad
to investigate reproducibility of results for any mode of statistical inference including estimation,
model selection, and prediction, and not just hypothesis testing.

Strictly, we cannot speak of statistical independence between an original study and its
replications. If study B is a replication of study A, then many aspects of study B depend on study
A. Rather, sequential replication studies should be assumed statistically exchangeable, conditional
on the results and the assumptions of the original study, in the sense that the group of results
obtained from a sequence of replication studies are probabilistically equivalent to each other
irrespective of the order in which these studies are performed. Assuming that exchangeability
holds, probability theory shows that the results from replication studies become independent
of each other, but only conditional on the background information about the system under
investigation, model assumed, methods employed, and the decision process used in obtaining the
result. The commonly used phrase “independent replications” thus has little value in developing
a theory of reproducibility unless one takes sufficient care to consider all these conditionals.

This conditional independence of sequence of results immediately implies that irrespective of
whether a result is true or false, there is a true reproducibility rate of any given result, conditional
on the properties of the study. This true reproducibility rate is determined by three components:
The true model generating the data, the assumed model under which the inference is performed,
and the methods with which the inference is performed. In this sense, the true reproducibility rate
is a parameter of the population of studies and we have the following result which satisfies step
2 of our formal approach.

Proposition 1.1 Let R, be a result and R be the result in ith attempted replication of
the idealized study from which R, is obtained. If I (RO =R,|R,} =1 We say that R, is

reproduced by R, Else, we say that R, failed to reproduce by R®. Conditional on Ro,
the relative frequency of reproduced results ¢y — ¢ € [0, 1], as N — co. Further, ¢ =1
only in highly specific problems. Proof is provided in Appendix B, per step 3 of our formal
approach.)

3Some exceptions are as follows: Patil et al. [38] use the overlap in prediction intervals from original and replication studies
to define a statistical measure of reproducibility. Gorroochurn et al. [45] investigates the relationship between reproducibility
and p-values and in the context of association between variables. Pauli [46] develops a Bayesian model to evaluate the results
of replication studies and estimate a reproducibility rate. Hedges and Schauer [47] offer a principled way of evaluating
replication studies within a meta-analytic framework. Different from purely statistical approaches, Fanelli [48] takes a meta-
analytic approach to study reproducibility and uses an information theoretical framework to quantify it. We acknowledge
and endorse the formal approach undertaken by these articles to address practical problems of evaluating and quantifying
the results of replication experiments.
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To show the value of the formal approach, we now briefly interpret what Proposition 1.1
establishes and contributes to our understanding about reproducibility of results. Just like a
statistic (e.g., sample mean) has a sampling distribution, and it converges to its population
counterpart (i.e., the population mean) as the sample size increases, the sample reproducibility
rate of a sequence of idealized studies has a sampling distribution, and it will converge to its
population counterpart as the number of studies increases. Therefore, the true reproducibility
rate for an idealized study must be a fixed population quantity and it is independent of our efforts
given the idealized study. Further, this rate of reproducibility can take any value between 0 and 1.
The actual value depends on the properties of the idealized study but it can be high or low, so that
we should not expect it to be high all the time. Finally, we note that this holds for any result, true
or false. Stepping back, now we see the advantage of the formal approach as follows. Given the
definitions in Appendix A, if the proof in Appendix B is correct, then our result is a mathematical
fact and it must be correct. Therefore, a formal statement like Proposition 1.1 has taken us one step
further to understand the properties of reproducibility of results.

(b) True results are not necessarily reproducible.

Much of the reform literature claims non-reproducible results are necessarily false. For example,
Wagenmakers et al. [13, p.633] assert that “Research findings that do not replicate are worse than
fairy tales; with fairy tales the reader is at least aware that the work is fictional.” It is implied
that true results must necessarily be reproducible, and therefore non-reproducible results must
be “fictional.” More mildly, Zwaan et al. [25, p.13] state: “A finding is arguably not scientifically
meaningful until it can be replicated with the same procedures that produced it in the first place.”
Others have taken issue with this claim [e.g., 36; 38; 45], pointing to reasons why replication
attempts may fail to reproduce the original result other than its truth value. We now take our
formal approach again and find that an evaluation of the claim provides support for this criticism.

The fact that the true reproducibility rate is a parameter of the population of studies matters:
this parameter is a probability and therefore, it takes values on the interval [0, 1]. This implies
that for finite sample studies involving uncertainty, the true reproducibility rate must necessarily
be smaller than one for any result and in fact, we have the following result (step 2 of our formal
approach).

Proposition 1.2. There exists true results R, = R7, whose true reproducibility rate ¢ is
arbitrarily close to 0. (Per step 3 of our formal approach, proof is provided in Appendix B).

Before looking into some examples for Proposition 1.2, we discuss it to make an important
point about the formal approach: Proposition 1.2 may seem perplexing because intuitively we
might expect that if a result is true, we should be able to reproduce it. If this is in fact our
(wrong) intuition, we should revisit and re-hone it studying the proof of Proposition 1.2. The
reason is that, in a formal approach as long as the proof is correct, the result must be correct, and
therefore our intuition must be wrong. Most importantly, all this evaluation is made possible by
motivating the issue of reproducibility from the first principles and proceeding formally from
that point into a next by stating and proving the results that help us to build knowledge on
the subject. We already argued that first principles on evaluating the reproducibility of results
required a definition of idealized study, together with all its assumptions and mathematical
regularity conditions (Appendix A). Given these, we were able to show that reproducibility rate
is a parameter of the population of studies (Proposition 1.1). Given this, we showed that the
relationship between true results and their reproducibility rate might be complex (Proposition
1.2). Therefore, moving in this formal way builds a solid body of knowledge, mathematically
supported under well-defined and delineated models.

As an example of step 4a of formal approach to solving methodological problems, we discuss
two statistical scenarios to illustrate the counterintuitive result provided by Proposition 1.2. A
well-known example is a data generating model where the sampling error (the uncertainty) is
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large with respect to the model expectation (the signal). This is rather an informal statement of
the kind we make in step O (i.e., no statistical model is specified) of the formal approach to solving
methodological problems. If we want to check whether the statement is true, it should and can be
precisely formulated mathematically starting from our definition of idealized study.

In contrast to statements ubiquitous in metascience literature [e.g., 25; 37], large sampling
error is not the only reason why true results might not be reproducible. Falling back to the
definition of an idealized study given in Appendix B, we see that its components are the assumed
model and its parameters, data, method, background knowledge of the system, and the decision
function to obtain a result. Because the reproducibility rate is a parameter of population of studies,
components of an idealized study other than large sampling error can affect the reproducibility
of a true result. For example, the model might be misspecified. Or the model might be correctly
specified and sampling error small, but the method might have large error. Or the decision
function might not be optimal. Again, having defined an idealized study formally helps us to
investigate and prove any one of these cases if we wish so.

We can also evaluate the opposite of the large sampling error case: Small sampling error is not a
guarantee that true results will be highly reproducible. It turns out that there are mathematically
necessary conditions other than the truth value of a result, that need to be met for true results
to be highly reproducible. Some of these conditions which are related to the components of
idealized study are listed in Box 1 informally. Thus, the formal approach has also the advantage of
motivating and evaluating other cases such as complements, reverses, or counters, and therefore
it enriches our understanding of reproducibility of results.

Another well-known statistical scenario illustrating Proposition 1.2 is when the data are
analyzed under a misspecified model (per step 4a). Here, we take a simple linear regression
measurement error model in which the measurement error is unaccounted for (Figure 1). We are
interested in the effect of measurement error on the reproducibility rate of a true effect. As the
ratio of the measurement error variability in predictor to sampling error variability increases, the
probability that an interval estimator of the regression coefficient (i.e., the effect size) at a fixed
nominal coverage contains the true effect decreases. This is not simply an artifact of small sample
sizes or small effects: the same pattern obtains for large sample sizes and large true effects. In fact,
for large sample sizes, the reproducibility rate drops to zero at lower measurement error variability
than for small sample sizes [also see 49, for a similarly counter-intuitive effect of measurement
error]. Furthermore, the negative effect of measurement error on reproducibility rate of a true
result actually grows with effect size, as Figure 1A illustrates. Even in this relatively simple setting
it is by no means a given that a true result will be reproducible. Measurement error is only one
type of model misspecification. Other sources of misspecification and types of human error (e.g.,
questionable research practices) might further impair the reproducibility of true results.

When true reproducibility rate of a true result is low, the proportion of studies that fail to
reproduce a true result will be high, even when methods being used have excellent statistical
properties and the model is correctly specified. However, a true low reproducibility rate does not
necessarily indicate a problem in the scientific process. As Heesen [50] notes, low reproducibility
in a given field or literature may be the result of there being few discoveries to be made in a given
scientific system. When that is the case, a reasonable path to making scientific progress is to learn
from non-reproducible results. Indeed, the history of science is full of examples of fields going
through arduous sequence of experiments yielding failures such as non-reproducible results to
eventually arrive at scientific regularities [51; 52; 53].

In an article that makes practical recommendations to improve the methodology of
psychological science, Lakens and Evers [54] argue that “One of the goals of psychological science
is to differentiate among all possible truths” and suggest that one way to achieve this goal is
to improve the statistical tools employed by scientists. Some care is needed when interpreting
this claim. Statistical methods might indeed help us get close to the true data generating
mechanism, if their modeling assumptions are met (thereby removing some of the reasons why
true results can be non-reproducible). However, statistics” ability to quantify uncertainty and
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A. Reproducibility rate of a true result

B. An example of measurement error model
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Figure 1. (A) Reproducibility rate of a true result decreases with measurement error in a misspecified simple linear
regression model. Reproducibility rate is estimated by the proportion of times the 95% confidence interval captures the
true effect. Sample sizes are 50 (small) and 500 (large). The true regression coefficient of the predictor variable is 2
(small effect) and 20 (large effect). Model details are given in Appendix D. (B) Example data (black points) generated
under simple linear regression model E(Y) =2 + 20X . Measurement and sampling error are normally distributed with
standard deviations equal 3. Regression lines are fit under measurement error model (magenta line) and the correct
model (blue line) with a sample size of 100. 95% confidence interval for the regression coefficient obtained under the
measurement error model is (7.94, 12.37), which does not include the true value 20. In contrast, 95% confidence interval
for the regression coefficient obtained under the correct model, (19.86, 20.21), includes the true value.

inform decision making does not guarantee that we will be able to correctly specify our scientific
model. Irrespective of reproducibility rates of results obtained with statistical methods, scientists
attempting to model truth use theories developed based on their domain knowledge. Some of the
problems raised in Box 1, including model misspecification and decision spaces that exclude the
true value of the unknown components, can only be addressed using a theoretical understanding
of the phenomenon of interest. Without this understanding, there is no theoretical reason to
believe that reproducibility rates will inform us about our proximity to truth.

It would be beneficial for reform narratives to steer clear of overly generalized sloganeering
regarding reproducibility as a proxy for truth (e.g., reproducibility is a demarcation criterion
or non-reproducible results are fairy tales). A nuanced view of reproducibility might help us
understand why and when it is or is not desirable, and what its limitations are as a performance
criterion.

(c) False results might be reproducible.
Contrary to Proposition 1.2, the next proposition considers false results and the respects in which

these can sometimes be highly reproducible (per step 2 of our formal approach).

Proposition 1.3. There exists false results R, = R, whose true reproducibility rate ¢ is
arbitrarily close to 1. (Per step 3 of our formal approach, proof is provided in Appendix B).
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In well-cited articles in methodological reform literature, high reproducibility of a result is
often interpreted as evidence that the result is true [4; 12; 24; 25]. A milder version of this claim
is also invoked, such as “Replication is a means of increasing the confidence in the truth value
of a claim.” [12, p.617]. The rationale is that if a result is independently reproduced many times,
it must be a true result.* This claim is not always true [36; 57]. To formally establish this, it is
sufficient to note that the true reproducibility rate of any result depends on the true model and
the methods used to investigate the claim. We follow with two examples (step 4a).

First, consider a valid hypothesis test in which the researcher unreasonably chooses to set
a = 1. Then, a true null hypothesis will be rejected with probability 1 and this decision will be
100% reproducible, assuming that replication studies also set the significance criterion () to 1.
While we know better than to set our significance criterion so high, this example shows how
reproducibility rate is not only a function of the truth but also our methods. Second, consider
estimators that exploit the bias-variance trade-off by introducing a bias in the estimator to reduce
its variance. These estimators have a higher reproducibility rate but for a false result by design.
In this case, researchers deliberately choose false results that are reproducible when they prefer a
biased estimator over a noisy one for usefulness. Next, we give a realistic example, in which we
describe a mechanism for why reproducibility cannot serve as a demarcation criterion for truth.

We consider model misspecification under a measurement error model in simple linear
regression. Simple linear regression involves one predictor and one response variable, where the
predictor variable values are assumed to be fixed and known. The measurement error model
incorporates unobservable random error on predictor values. The blue belt in Figure 2 shows
that as measurement error variability grows with respect to sampling error variability, effects
farther away from the true effect size become perfectly reproducible. At point F in Figure 2, the
measurement error variability is ten times as large as the sampling error variability, and we have
perfect reproducibility of a null effect when the true underlying effect size is in fact large.

Now consider a scientist who takes reproducibility rate as a demarcation criterion. Assume she
starts at point A and she performs a study which lands her at point B—which might happen by
knowingly or unknowingly choosing noisier measures or by reducing sampling error variability.
The reproducibility of her results has increased (from white to inside the blue belt) and to increase
it further, she performs another study by further tweaking the design, which then lands her at
point C. If she were to move horizontally to the right with her future studies, the reproducibility
of results will decrease, and she will turn back to C, which ultimately will be a stable equilibrium
of maximal reproducibility. Further, this is just one of the possible paths that she could take to
achieve maximal reproducibility. When at point B, she might perform a study that follows the
purple path, always increasing the reproducibility of her results ending up at point D, which is
another stable equilibrium point of maximal reproducibility. In fact, any sequence of studies that
increases reproducibility will end at one of the points that corresponds to the darkest blue color in
the belt. At this point, however, we note that going from point A to point C, our researcher started
with a false result where the estimated slope was some = 13 units off the true value (y axis, point
A) and arrived at the same false result (y axis, point C), even though she has maximized the
reproducibility of her results. Worse, when she arrived at point D, the estimated slope is now
some = 15 (y axis, point D) units away from the true value, even though she still maximized the
reproducibility of her results.

Taking a step back, we note that to approach the true result, one needs to move to the origin
in this plot. However, that approach is controlled by the vertical axis, and not the horizontal.
Unless we know that we are committing a model misspecification error, we get no feedback
when we perform studies that move us randomly on the vertical axis (yellow arrows). For
example, points C and D have similar reproducibility of results but at C we are closer to truth
then D. In fact, consider points E and F: we get high reproducibility of results at both points,
but estimates obtained at point E are much closer to the true value than estimates obtained
4An epistemic claim that well-confirmed scientific theories and models capture (approximate) truths about the world is an

example of scientific realism. The arguments for and against scientific realism (e.g., positivism) are beyond the scope of this
paper. Interested readers may follow up on discussions in the philosophical literature [e.g., 55; 56].
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Figure 2. An example of almost perfectly reproducible false results in a misspecified simple linear regression model with
measurement error. Color map shows reproducibility rate (RR). Darkest blue cells indicate perfect reproducibility rate
(almost 100%) of false results at appropriate measurement error for each false effect size, shown by its distance from
the true effect size on the vertical axis. The true regression coefficient of predictor variable (effect size) is 20. Details are
given in Appendix D. For description of letters and arrows, refer to the text.

at point F. The mechanistic explanation of this process is that reproducibility-as-a-criterion can
be optimized by the researcher independently of the underlying truth of their hypothesis. That is,
optimizing reproducibility can be achieved without getting any closer to the true result. This
is not to say that reproducibility is not useful, but it means that it cannot be used as a demarcation
criterion for science.

While we advance a statistical argument for the reproducibility of false results, the truth
value of reproducible results from laboratory experiments has also been challenged for non-
statistical reasons [58, p.30]. Hacking notes that mature laboratory sciences sometimes construct
an irrefutable system by developing theories and methods that are “mutually adjusted to each
other”. As a result, these sciences become what Hacking calls “self-vindicating”. That is:

“The theories of the laboratory sciences are not directly compared to ‘the world’; they
persist because they are true to phenomena produced or even created by apparatus in the
laboratory and are measured by instruments we have engineered.”

ury
-
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Hacking concludes that “[h]igh level theories are not ‘true’ at all.” They can be viewed as a
summary of the collection of laboratory operations to which they are adapted, but if that set of
operations is selected to match a particular theory, its evidentiary value may be limited. Hacking’s
description of what makes mature laboratory sciences highly reproducible is consistent with our
definition of reproducibility rate as a function of true model, assumed model, and methods.

An example of a theory from laboratory sciences that is not directly compared to "the world’
comes from cognitive science. One high level theory that has become prominent in this field over
the last two decades is the “probabilistic” or “Bayesian” approach to describing human learning
and reasoning [59; 60]. As the paradigm rose to prominence, questions were raised as to whether
claims of the Bayesian theory of the mind held any truth value at all, in either a theoretical or
empirical sense [61].

Within a specific framework, a particular experimental result may have value in connection
to a theoretical claim without being tied to the world. For instance, Hayes et al. [62] presented
several experiments that appear to elicit the “same” phenomenon in different contexts, and
an accompanying Bayesian cognitive model that renders these results interpretable within that
framework. On the other hand, rational Bayesian models of cognition have been criticized for not
taking into account process-level data and making unrealistic environmental assumptions [63].
These models function at the computational rather than algorithmic level [per Marr’s levels of
analysis, 64] and do not aim to explain the true mechanisms underpinning human reasoning [65].
Hence these robust empirical results from experiments that were designed from and adapted
to the Bayesian framework do not necessarily imply normative claims about mechanisms
underlying human cognition [see the discussion in 62, pp.40-44].

As this example illustrates, Hacking’s observations about the “mutual tuning” between
theoretical claims and laboratory manipulations are observed in practice, in cognitive science
and potentially in other disciplines. Our measurement error example shown in Figure 2 provides
just one possible realization for Hacking’s conjecture [see also 66, for a detailed discussion on
measurement practices that might exacerbate measurement error]. Other forms of inference under
model misspecification might present different scenarios under which this mutual tuning may
take place—for example, the inadvertent introduction of an experimental confound or an error in
a statistical computation have the potential to create and reinforce perfectly reproducible phantom
effects. The possibility of such tuning renders suspect the idea that reproducibility is a good proxy
for assessing the truth potential of a result.

The reform movement began as a response to the proliferation of false results in scientific
literature. Our formal analysis suggests that if we were to treat observed reproducibility of a
given result as a heuristic to establish its truth value, we might incentivize research that achieves
high levels of reproducibility for the wrong reasons (per Goodhart’s law) and end up canonizing
a subset of false results that satisfy specific criteria without facilitating any true discoveries.
Hence we believe that turning reproducibility into a new false idol goes against the essence of
the ongoing efforts to reform scientific practice.

3. Claim 2: Using data more than once invalidates statistical
inference.

A well-known claim in the methodological reform literature regards the (in)validity of using data
more than once, which is sometimes colloquially referred to as double-dipping or data peeking.
For instance, Wagenmakers et al. [13, p.633] decry this practice with the following rationale:
“Whenever a researcher uses double-dipping strategies, Type I error rates will be inflated and
p values can no longer be trusted.” The authors further argue that “At the heart of the problem
lies the statistical law that, for the purpose of hypothesis testing, the data may be used only
once.” Similarly, Kriegeskorte et al. [67, p.535] define double-dipping as “the use of the same data
for selection and selective analysis” and add the qualification that it would invalidate statistical
inference “whenever the test statistics are not inherently independent of the selection criteria
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under the null hypothesis.” This rationale has been used in reform literature to establish the
necessity of preregistration for “confirmatory” statistical inference [13; 22].

In this section, we provide examples to show that it is incorrect to make these claims in overly
general terms. The reform literature is not very clear on the distinction between “exploratory”
and “confirmatory” inference. We will revisit these concepts in the next claim but for now, we
evaluate the claim that using data multiple times invalidates statistical inference. For that, we will
steer away from the exploratory-confirmatory dichotomy and focus on the validity of statistical
inference specifically.

The phrases double-dipping, data peeking, and using data more than once do not have formal
definitions and thus they cannot be the basis of any statistical law. These verbally stated terms
are ambiguous and create a confusion that is non-existent in statistical theory.

A correct probability theory approach to establish the effect of using the data —in any way-
is to derive the distributions of interest that will make the procedure valid under that usage. In
fact, many well-known valid statistical procedures use data more than once [see 68, for a detailed
analysis in the context of data dependent priors]. In these procedures, the conditioning is already
taken into account while deriving the correct probability distribution of the quantity of interest.
The consumers of statistical procedures are often not exposed to steps involved in derivations
and it might be surprising to find that some of the well-known statistical procedures actually use
the data more than once. Colloquially, phrases such as double-dipping, data peeking, and using
data more than once might be associated with practices such as model selection followed by
inference and sequential testing. However, here, we pick a somewhat unusual example to make
our point clear. Our main message is that one has to think carefully and formally what these
phrases actually might mean.

We consider testing whether the population mean p, of a Normally distributed random
variable X is equal to a fixed value p,. We assume that we have a simple random sample of
size n from X ~ Nor(u, o) where o is the population standard deviation.

If we start to develop a test using the sample mean X, a reasonable development toward
obtaining a test statistic would be as follows: Under H, we have X ~ Nor(io, o), and thus X ~
Nor(po,0/+/n), and so we must have

(X = o) / (/) ~Nox(0,1). (3.1)

The test statistic in equation 3.1 is distributed as standard normal and therefore the test is a z-test.
This is all good, however, the test requires knowing o, which we often do not. To surpass this
issue, we now think of extracting the sample standard deviation from the data (using the data
once more) and substitute it as an estimate of o in equation 3.1 so that we can perform the test.
But because we use the sample quantity s, the distribution of the new statistic is not standard
normal anymore. What we can do, however, is to derive the correct probability distribution of the
new statistic and still have a valid test. Indeed the quantity

(X — o) / (s/v/n), (3.2)

is t-distributed and results in t-test. Technically, the quantity in equation 3.2 uses the data at least
three times, specifically to obtain n, X, and s. Although this example is simplistic, its main point
is instructive: Irrespective of how many times the data is used or whether it is used in a single-step
or a multi-step fashion, if the correct distribution of a test statistic can be derived via appropriate
conditioning or from scratch, then it must yield a valid statistical procedure.

The principle of deriving the correct distribution of statistics to obtain a valid statistical
procedure also applies when we perform a variety of statistical activities on the data prior to an
inferential procedure of specific interest. These activities can be of any type, including exploration
of the data by graphical or tabular summaries, performing other formal procedures such as tests
for assumption checks [see 69, for a formal approach for testing model assumptions]. In fact, one
can even build a valid statistical test by using the data to obtain almost all aspects of a hypothesis
test that are not specifically user defined, including the hypotheses themselves. The key to validity is
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not how many times the data are used and for which type of activity, but appropriate application
of the correct conditioning as dictated by probability calculus as information from the data is
extracted with these activities [70]. When deriving valid statistical procedures, these rules must
invariably hold for all cases of manipulations of random variables, whether it is a t-pivot, or a
multi-step analysis.This is a mathematical fact and the validity of statistical procedures depend
only on mathematical facts. Furthermore, under many cases, the conditioning does not affect the
validity of the test of interest, and therefore can be dropped, freeing the data from its prison for
use prior to test of interest [71].

When conditioning on prior activity on the data is indeed needed to make a test valid,
overlooking that a procedure should be modified to accommodate this prior activity might lead
to an erroneous test. However, this situation only arises if we disregard the elementary principles
of statistical inference such as correct conditioning, sufficiency, completeness, and ancillarity.
Conditional inferences are statistically valid when their interpretation is properly conditioned
on the information extracted from the observed data, which are sufficient for model parameters.
Therefore, unconditionally stating that double-dipping, data peeking, or using data more than once
invalidates inference does not make statistical sense. In contrast with common reform narratives,
one can use the data many times in a valid statistical procedure. Below, we describe the conditions
under which this validity is satisfied. We also discuss why preregistration cannot be a prerequisite
for valid statistical inference, confirmatory or otherwise.

10000000 “10s usdo 905 Y Bio"BuiysigNdAIsIo0s|eAos SOSI



479

480

481

482

483

484

Box 2. Valid inference using data multiple times.

The effect of the information gathered prior to
the test of interest on the test of interest

Unbiased test statistic Unbiased test statistic
i i q Contains partial
Optimal antalns pgrtlal Optimal . p: .
information informatoin
© § conpiTioning | | CONDITIONING © 5 CONDITIONING | | CONDITIONING
o2& UNNECESSARY O NECESSARY
IS, UNNECESSARY £ NECESSARY
S E BUT ALWAYS s E AND MIGHT
€ 5 FOR VALID € 9 FOR VALID
S = IMPROVES G E IMPROVE
o £ INFERENCE o £ INFERENCE
INFERENCE User adds input to INFERENCE
2 decide aspects of @
3 = SELEITELNE the test of interest 2 -
& '(*E‘x 5 CONDITIONING UNNECESSARY based on prior g 'E s CONDITIONING CONDITIONING
& a 2 UNNECESSARY BUT NEVER analysis 5 =g NECESSARY NECESSARY
s 2E FOR VALID e —_ > 5§ 2E FOR VALID FOR VALID
E T8 T S
g .g 2 INFERENCE INFERENCE g .c:: = INFERENCE INFERENCE
e O 5 @
2 i
o =
@® 2 5 | CONDITIONING | | CONDITIONING 8 25 Coug;?gém CO“';I'IDG'L'TOQI'ENG
o = o S
£ © UNNECESSARY UNNECESSARY £ ® NECESSARY NECESSARY
sE FOR VALID FOR VALID 2 E FOR VALID FOR VALID
Q ‘g INFERENCE INFERENCE S 2
o £ o £ INFERENCE INFERENCE

We assume a test based on an unbiased test statistic generates valid inference, in the
sense of achieving its nominal Type I error probability, under its assumptions within the
Neyman-Pearson hypothesis testing paradigm. Information extracted from the data prior
to the test of interest is represented by a statistic from prior analysis. Cells describe the
necessity and/or the outcome of conditioning the test of interest on this statistic from
prior analysis, for varying levels of information captured. Some technical clarifications
for special cases are discussed in Appendix C.

Left: The statistic from prior analysis is not used in decision making, for example, by
combining it with a user defined criterion which might affect aspects of the test of interest.
Many commonly used linear models fall in the first column where procedures are based
on an optimal test statistic and therefore, using the information from prior analysis does
not affect the validity of the test of interest. However, even if the statistic for the test
of interest is not optimal, conditioning on statistic from prior analysis is not necessary
for validity of inference. Further, conditioning never hurts the validity of inference and
improves the performance in most cases. Details of the conditional analyses in this block
are provided in Propositions 2.1 and 2.2.

Right: The statistic from prior analysis is combined with a user defined criterion to
affect aspects of the test of interest through a decision. An example is using the data to
determine which subsamples to compare. The validity of the test of interest is maintained
when inference is conditioned on this decision if the statistic from prior analysis contains
at least some information about the parameter to be tested.

The change in corresponding cells between left block and right block shows the effect of
using this user defined criterion on conditional statistical inference.
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(a) Valid conditional inference is well-established.

Imagine we aim to confirm a scientific hypothesis of interest which can be formulated as a
statistical hypothesis and be tested using a chosen a test of interest. We suppose that we perform
some statistical activity on the data as described in the previous section, until we begin the test
of interest. We aim to assess the effect of information gained by this activity on the validity of the
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test of interest to be performed. To be useful in establishing results, it is necessary to assume that
such information can be summarized by a statistic, as in a statistic obtained from prior analyses.

First, we categorize the amount of information contained in the test statistic of interest.
This statistic may contain anywhere from no information to all information in the data about the
parameter of interest. Further, it can satisfy some statistical optimality criterion, in which case it
is identified as the best statistic with respect to this criterion. The case of no information is trivial
and not interesting. The case of all information is well known.? For many commonly used models,
an optimal statistic is also well known® (first column in left and right blocks, Box 2. Other cases
include partial information (second column in left and right blocks, Box 2).

Second, the statistic that summarizes the analyses performed on the same data prior to the test
of interest may also contain anywhere from no information to all information in the data (rows in
left and right blocks, Box 2). However, here the case of no information is also of interest’.

If the statistic summarizing the prior analysis is used in a subsequent analysis for the test of
interest, the validity of the test is guaranteed by conditioning the subsequent analysis on this
statistic, using probability calculus. A relatively simple case may involve only conditioning on
the statistic obtained from prior analysis (left block, Box 2). In this case, no quantity exogenous
to the model generating the data is introduced into the test of interest. If the test of interest
uses an optimal statistic (which is the case for many well-known models), the conditioning is
irrelevant because the validity of the test is not affected by the prior information (left block first
column in Box 2). The same result with the same validity is obtained as if we did not perform
any activity on the data, previous to the test of interest. Hence, one can freely use information
prior to performing the test of interest without any modification in the test of interest. If the
test of interest does not use an optimal statistic, then conditioning will maintain the validity
and often improve the performance of the test (left block second column in Box 2). This is a
manifestation of Rao-Blackwellization of the test statistic to reduce its variance. We reproduce
an example by Mukhopadhyay [72] of estimating the parameter of a normal distribution whose
mean and standard deviation are equal using a randomly sampled single observation in Figure 3.
Therefore, Claim 2 is false for this case. Further, results showing this falsity can be generalized
beyond hypothesis testing into other modes of inference such as estimation. Formally, we have
the following definition and results (per step 1 and 2 of our formal approach respectively).

Definition. Let Sy, ~ P(Sn|0) be a test statistic such that it is: 1) a function of an unbiased
estimator of 6, and 2) fixed prior to seeing the data. Let U ~ P(U|0) be a statistic obtained
from the data, after seeing the data. If U is complete sufficient for 0, it is denoted by Us,
and if U is ancillary for 0, it is denoted by Us,.

Proposition 2.1. Let Sn’ = E(Sa|Us). For an upper tail test, define aw = P(Sn > sa|Ho) =
P(Sn’ > si|Ho). Then, sqa > sp and P(Sn’ > sa|Ho) < a. Parallel arguments hold for
lower and two tail tests.

Proposition 2.2. Let H, : 6 € O, such that ©, = g(Ua), where g is a known function and
U, is a function of the data. Then, the upper tail test P(Sn > s|Ho) < o is a valid level o
test. Parallel arguments hold for lower and two-tailed tests.

(See Appendix C for proofs per step 3 of our formal approach).

An intuitive interpretation of these formal statements is as follows. Assume a hypothesis test
where a statistical procedure is pre-planned in the sense that its elements are determined before
seeing the data. We then imagine using the data to obtain other statistics (necessarily after seeing
the data). The propositions consider two scenarios regarding these statistics: In the first scenario,
we consider a statistic that captures all the information in the data about the parameter being
tested in a most efficient manner. Then, conditioning on this statistic results not only in a valid
procedure, but also an equally good or improved one with respect to the pre-planned procedure.
Ssufficient statistic

Scomplete sufficient statistic
7ancillary statistic
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Figure 3. For a normally distributed variable with equal mean and variance, we randomly sample a single observation
from the population. We plan to use this observation as a test statistic for the common parameter. However, prior to this
test we observe the absolute value of the sample and we decide to perform the test using the information in both the
observation and its absolute value, therefore, using the unsigned part twice. The plot compares power of the test based
on the single observation and on the single observation conditioned on its absolute value. Conditioning improves inference
by reducing the variance of the test statistic. This case corresponds to left block, first row, second column in Box 2. Lighter
shades represent larger true parameter values. Technical details are given in Appendix D.

In the second scenario, we consider a statistic that contains no information about the parameter
being tested. The null hypothesis is built using this statistic obtained from the data, and the test
based on the pre-planned procedure still remains valid.

A more complicated case occurs when one not only obtains a statistic from prior analysis,
but also makes a decision to redefine the test of interest based on the observed value of that
statistic—a decision that depends on an exogenous criterion and alters the set of values the test
statistic of interest is allowed to take (right block, Box 2). For example, an exogenous criterion
might be fo perform the test only if the statistic from prior analysis satisfies some condition. Subgroup
analyses or determining new hypotheses based on the results of prior analysis (HARKing) are
other examples [73]. Conditional quantities which make the test of interest valid are now altered
because conditioning on a statistic and conditioning on whether a statistic obeys an exogenous
criterion have different statistical consequences. If this criterion affects the distribution of the
test statistic of interest, then conditioning is necessary. The correct conditioning will modify
the test in such a way that the distribution of the test statistic under the null hypothesis is
derived, critical values for the test are re-adjusted, and desired nominal error rates are achieved.
A general algorithm to perform statistically valid conditional analysis in this sense is provided in
Appendix E. Adhering to correct conditioning, then, guarantees the validity of the test, making
Claim 2 false again.

Figure 4 provides an example of how conditioning can be used to ensure that nominal error
rates are achieved (step 4a). We aim to test whether the mean of Population 1 is greater than the
mean of Population 2, where both populations are normally distributed with known variances.
An appropriate test is an upper-tail two-sample z-test. For a desired level of test, we fix the critical
value at z, and the test is performed without performing any prior analysis on the data. The sum
of black and dark orange areas under the black curve is the nominal Type I error rate for this
test. Now, imagine that we perform some prior analysis on the data and use it only if it obeys an
exogenous criterion: We do not perform our test unless “the mean of the sample from Population 1
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Figure 4. For a two sample z-test, we display rejection regions for an unconditional test and a conditional test, setting the
alternative hypothesis in the direction of the observed effect. The black curve shows the distribution of the unconditional
test statistic, with the critical value given by z. The orange curve shows the distribution of the conditional test statistic, with
the adjusted critical value given by z*.

is larger than the mean of the sample from Population 2.” This is an example of us deriving our
alternative hypothesis from the data. The test can still be made valid, but proper conditioning is
required. If we do not condition on the information given within double quotes and we still use
z as the critical value, we have inflated the observed Type I error rate by the sum of the light gray
and light orange areas because the distribution of the test statistic is now given by the orange
curve. We can, however, adjust the critical value from z to z* such that the sum of the light and
dark orange areas is equal to the nominal Type I error rate, and the conditional test will be valid.
This case corresponds to the right block, first row, first column in Box 2. Technical details are
provided in Appendix D.

Caution with regard to double-dipping might sometimes be justified. However, the claim that
it invariably invalidates statistical inference is unsupported. In fact, the opposite is true since
all cells in Box 2 yield valid tests. Following steps 1-4a of our formal approach, we established
some foundations for claims regarding double-dipping. These are summarized in Box 2. Further,
we provide a fairly generic algorithm (Appendix E) to obtain the sampling distribution of any
statistic conditional on using some information in the data. Statistically and computationally
nimble readers should find it straightforward to apply this algorithm to specific double-dipping
problems they encounter. On the other hand, extending theoretical results from steps 1-4a of
the formal approach to its applied part of steps 4b and 5 typically takes intensive work. This,
for example, involves developing user friendly and well-tested tools of analysis, ready for mass
consumption to perform conditional inference in a specific class of statistical models.

Clearly, proper conditioning solves a statistical problem. However, the garden of forking paths
applies to problems of scientific importance as well, since our conclusions become dependent on
decisions we make in our analysis. Statistical rigor is the prerequisite of a successful solution, but
we should ask: Solution to which problem? Statistical validity does not necessarily imply scientific
validity [74]. The connection between statistical and scientific models might be weak—a problem
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that cannot be fixed by statistical rigor®. Further, valid inference by proper conditioning entails
maintaining the same conditioning for correct interpretation of scientific inference.

Conditioning is not the only statistically viable way to address double-dipping related
problems. Alternatives to conditioning include but are not limited to multilevel modeling [16; 85],
multiverse analysis [86], simultaneous inference for valid data-driven variable selection [87],
sequential or stepwise model selection procedures for optimal post-selection inference [88; 89],
and iterative Bayesian workflow [90]. The key to successfully implement these solutions is a good
understanding of statistical theory and a careful interpretation of results under clearly stated
assumptions.

(b) Preregistration is not necessary for valid statistical inference.

Nosek et al. [22] claim that “Standard tools of statistical inference assume prediction”g‘ Nosek et
al. [22] intend to convey that in hypothesis testing, the analytical plan needs to be determined
(i.e., preregistered) prior to data collection or observing the data for statistical inference to have
diagnostic value, that is, to be valid. Wagenmakers et al. [13] suggest that preregistration would
allow for confirmatory conclusions by clearly separating exploratory analyses from confirmatory
ones and preventing researchers from fooling themselves or their readers. According to the
methodological reform, any inferential procedure that is not preplanned or preregistered should
better be categorized as postdiction or exploratory analysis, and should not be used to arrive at
confirmatory conclusions [21; 91].

In this section, we first clarify the statistical problem which preregistration aims to address.
Then we assess what preregistration cannot statistically achieve under its strict and flexible
interpretation. We argue how preregistration can harm statistical inference while trying to solve
its intended problem. After showing that preregistration is not necessary for valid statistical
inference, we describe what it can achieve statistically.

What is the statistical problem that preregistration aims to address? Statistically, preregistration
is offered as a solution to the problem of using data more than once and issues of validity of
statistical procedures resulting from this usage [13; 22; 92; 93]. Once a hypothesis and an analytical
plan is preregistered, the idea is that researchers would be prevented from performing analyses
that were not preregistered and subsequently, from presenting them as “confirmatory”. We have
shown that using data multiple times per se does not present a statistical problem. The problem
arises if proper conditioning on prior information or decisions is skipped. The reform literature
misdiagnoses the problem as an ordinal issue regarding the order of: hypothesis setting, decisions
on statistical procedures, data collection, and performing inference. Preregistration locks this
order down for an analysis to be called “confirmatory”. Our examples of valid tests in Box 3 ( per
step 4a of our formal approach) show that the problem is not ordinal but one of statistical rigor.
Prediction and postdiction—as proposed by Nosek et al. [22]—do not have technical definitions in
their intended meaning that reflects on statistical procedures. Further, the reform literature does
not present any theoretical results to show the effects of this dichotomy on statistical inference. All
well-established statistical procedures deliver their claims when their assumptions are satisfied.
Other non-mathematical considerations are irrelevant for the validity of a statistical procedure. A
valid statistical procedure can be built either before or after observing the data, in fact, even after

8Testing hypotheses with no theory to motivate them is a fishing expedition regardless of methodological rigor. See [44; 75;
76;77,78;79; 80; 81; 82; 83; 84] for discussions on scientific theory.

Prediction here is not used in statistical sense but refers to “the acquisition of data to test ideas about what will
occur” [22, p.2600]. To clarify, statistics uses sample quantities (observables) to perform inference on population quantities
(unobservables). Inference, therefore, is about unobservables. Statistical prediction, on the other hand, is defined as predicting
a yet unobserved value of an observable and therefore, is about observables. The quote refers to a procedure about
unobservables and hence “prediction” is not used in a statistical sense. Instead it is used to demarcate the timing of hypothesis
setting and analytical planning with regard to data collection or observation. The authors also specifically refer to null
hypothesis significance testing procedure as the standard tool for statistical inference referenced in this quote. While the statement
itself can be misleading because of these local definitions and assumptions, our aim is to critique the intended meaning not
the idiosyncratic use of statistical terminology.
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using the data if proper conditioning is followed. Therefore, the validity of statistical inference
procedures cannot depend on whether they were preregistered.

How can preregistration (strict or flexible) harm statistical inference? Preregistration may interfere
with valid inference because nothing prevents a researcher from preregistering a poor analytical
plan. Preregistering invalid statistical procedures does not on its own ensure the validity of
inference [see also 73], while it does add a superficial veneer of rigor.

Assume hypotheses, study design, and an analysis plan are preregistered, and the researchers
follow their preregistration to a T. Many hypothesis tests make parametric assumptions and not
all are robust to model misspecification. Dennis et al. [94] show that under model misspecification,
the Neyman-Pearson hypothesis testing paradigm might lead to Type I error probabilities
approaching 1 asymptotically with increasing sample sizes. Model misspecification is suspected
to be common in scientific practice [74; 81; 95]. Since the validity of a statistical inference
procedure depends on the validity of its assumptions, performing assumption checks —where
it is possible and sensible to do so— to choose and proceed with the model and method whose
assumptions hold is sound practice. Assumption checks are performed after data collection and on
the data, but before specifying a model and a method for analysis. To accommodate assumption checks
under preregistration philosophy, an exception would need to be made to the core principle
because they necessitate using data multiple times. Indeed such exceptions are often made [22; 92]
and it has been suggested that assumption checks and contingency plans should be preregistered.
However, no statistical reasoning is provided to define the boundaries of such deviations from
preregistration.

A common reform slogan states that “preregistration is a plan, not a prisonlo,” offering an
escape route from undesirable consequences of rigidity. Nosek et al. [22, p.2602] suggest that
compared to a researcher who did not preregister their hypotheses or analyses, “preregistration
with reported deviations provides substantially greater confidence in the resulting statistical
inferences.” This statement has no support from statistical theory. On the other hand, the claim
may make researchers feel justified in changing their preregistered analyses as a result of
practical problems in data collection or analysis, without accounting for the conditionality in their
decisions, leading to invalid statistical inference.

A study of 16 Psychological Science papers with open preregistrations shows that research
often deviated from preregistration plans [96]. Hence, in practice, preregistration fails to lock
researchers in an analytical plan. Deviating from a preregistered plan might prevent a statistically
flawed procedure from being implemented, and hence, might improve statistical validity of
conclusions. On the other hand, it is possible to deviate from a plan by introducing more
sequential decisions and contingency to data analysis, which if not accounted for, would
invalidate the statistical inference. A strict interpretation of preregistration may also lead to
invalid inference by locking researchers in a faulty plan. As such, preregistration or deviations
from preregistration have little say over the diagnosticity of p-values or error control. Statistical
rigor can neither be ensured by preregistration nor would be compromised by not preregistering
a plan.

OWhile not part of our core argument this particular slogan is underspecified. It is not clear how the argument for
the necessity of preregistration for statistically valid inference should be reconciled with the proposed flexibility of
preregistrations. In any case, this line of thinking is moot from our perspective since the underlying premise itself does
not hold.
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Box 3. Validity of statistical analyses under strict, flexible, and no preregistration. We
show how a strict interpretation of preregistration and a failure to use proper statistical
conditioning may hinder valid statistical inference with a simulation example. Our
simulations consist of 10° replications of hypothesis tests for the difference in the location
parameter between two populations. We build the distribution of p-values under the
null hypothesis of no difference for three cases and four true data generating models.
In addition to the Normal distribution with exponentially bounded tail, we use Cauchy
and T distributions for heavy tail, and Gumbel distribution for light tail. By a well-known
result, the distribution of p-value under the null hypothesis is standard uniform for a
valid statistical test.

density

Distribution of p—value for test of location parameter under valid and invalid tests

. Normal
o - o T
o - o Cauchy

. Gumbel

Group 1
v _| - Group 2
Aal Group 3
o _| I — -
S — —
v
(=)
<
[S)
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

p-value

Hypothesis tests in Group 1 (solid lines) were performed using the following
procedure:

(i) Collect data with no specification of hypothesis, model, or method (no
preregistration).

(ii) Calculate the sample medians. Set the alternative hypothesis so that the
median of the population corresponding to the larger sample median is
larger than the median of the other population (using the data to determine
the hypotheses).

(iii) Build the conditional reference distribution of the test statistic by permuting
the data (reusing the data to determine the method).

(iv) Calculate the test statistic from the data to compare with the reference
distribution (reusing the data to calculate observed value of the test statistic).

The tests in Group 1 derive almost all their components from the data by reusing
them multiple times. The distribution of the p-values show that these tests are
valid since they follow the standard uniform distribution (solid lines).
Hypothesis tests in Group 2 (dashed lines) demonstrate a situation that may
arise under either flexible preregistration (assumption checks allowed) or no
preregistration, when proper statistical conditioning is not performed in step 3.
This is akin to HARKing without statistical controls. In this case, the distribution
of p-values is uniform on (0, 0.5). These tests are not valid, since P(p < a|Hp) =
2a for some significance thresholds a.

Hypothesis tests in Group 3 (dotted lines) demonstrate a situation that may
arise under a strict preregistration protocol (altering the preregistered model or
methods not allowed) when there is model misspecification. The preregistered
model is Normal, but the data are generated under other models. These tests are
not valid, since P(p < a|Hp) > « for some significance thresholds c.
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What can preregistration achieve statistically? Strict preregistration might work as a behavioral
sanction that prevents researchers from doing any statistical analysis that involves conditioning
on data, valid or invalid. This way, preregistration can prevent using data multiple times without
proper conditioning by preventing proper conditioning procedures along with it. Nevertheless,
as we show in Box 2, conditioning on data may improve inference. On the other hand, a flexible
interpretation of preregistration that allows for deviations in the plan so long as they are labeled
as “exploratory” rather than “confirmatory” has no bearing on statistical outcomes. If proper
conditioning is performed, analyses that are referred to as “exploratory” in the reform literature
might observe strict error control and if it is not, analyses currently being labeled “confirmatory”
might be statistically uninterpretable.

There exist other social advantages to preregistration of empirical studies, such as the
creation of a reference database for systematic reviews and meta-analysis that is relatively
free from publication bias. While these represent genuine advantages and good reasons to
practice preregistration, they do not affect the interpretation or validity of the statistical tests
in a particular study. We demonstrate some of the points discussed in this section with
examples in Box 3. Our exposition and illustration in this section have policy implications,
primarily suggesting caution when proceeding to step 5 of our formal approach in this context.
The statistical theory behind these examples show that the benefits of preregistration —in
promoting systematic documentation and transparent reporting of hypotheses, research design,
and analytical procedures— should not be mistaken for a technical capacity for ensuring statistical
validity. If and only if a statistically appropriate analytical plan has been preregistered and
performed, would preregistration have a chance of ensuring the meaningfulness of statistical
results. Yet a well-established statistical procedure always returns valid inference, preregistered
or not.

4. Claim 3: Exploratory Research Uses “Wonky” Statistics

A large body of reform literature advances the exploratory-confirmatory research dichotomy
from an exclusively statistical perspective. Wagenmakers et al. [13] argue that purely exploratory
research is one that finds hypotheses in the data by post-hoc theorizing and using inferential
statistics in a “wonky” manner (borrowing Wagenmakers et al.’s [13] terminology) where p-
values and error rates lose their meaning: “In the grey area of exploration, data are tortured to
some extent, and the corresponding statistics is somewhat wonky.” The reform movement seems
to have embraced Wagenmakers et al. [13]’s distinction and definitions, and this dichotomy has
been emphasized in required documentation for preregistrations [97], registered reports [21], and
exploratory reports [98].

We start by discussing why the exploratory-confirmatory dichotomy is not tenable from
a purely statistical perspective. The reform literature does not provide an unambiguous
definition for what is considered “confirmatory” or “exploratory”. There are many possible
interpretations including: (1) Formal statistical procedures such as null hypothesis significance
testing are confirmatory, informal ones are exploratory. (2) Only preregistered hypothesis tests are
confirmatory, non-preregistered ones are exploratory. (3) Only statistical procedures that deliver
their theoretical claims (e.g., error control) are confirmatory, invalid ones are exploratory. These
three dichotomies are not consistent with each other and lead to confusing uses of terminology.
One can speak of formal statistical procedures such as significance tests, and informal procedures
such as data visualization, or valid and invalid statistical inference, but there is no mathematical
mapping from these to exploratory or confirmatory research, especially when clear technical
definitions for the latter are not provided, in clear violation of step 1 of our formal approach.
Moreover, the general usefulness and relevance of this dichotomy has also been challenged for
theoretical reasons [79; 80]. In this section, we sidestep issues with the dichotomy but argue
against the core claim presented by [13] regarding the nature of exploratory research specifically,
advancing the following points:
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* Exploratory research aims to facilitate scientific discovery, which requires a broader
approach than statistical analysis alone and cannot be evaluated formally to derive
meaningful methodological claims.

¢ Exploratory data analysis (EDA) is a tool for performing exploratory research and uses
methods that only answer to their assumptions to be valid. When making claims about
EDA specifically, we should follow the steps of our formal approach.

* Using “wonky” inferential statistics does not facilitate and probably hinders exploration,
because statistical theory only provides guarantees for statistical inference when its
assumptions are met.

* Exploratory research needs rigor to serve its intended aim to facilitate scientific discovery.

Scientific exploration is the process of attempting to discover new phenomena [99]. Outside
of the methodological reform literature, exploratory research is typically associated with
hypothesis generation and is contrasted with hypothesis testing—sometimes referred to as
confirmatory research. Exploratory research may lead to serendipitous discoveries. However, it
is not synonymous with serendipity but is a deliberate and systematic attempt at discovering
generalizations that help us describe and understand an area about which we have little or
no knowledge [100]. In this sense, it is analogous to topographically mapping an unknown
geographical region. The purpose is to create a complete map until we are convinced that there
is no element within the region being explored that remains undiscovered. This process may
take many forms from exploration of theoretical spaces [i.e., theory development; 82; 83] and
exploration of model spaces [77; 101] to conducting qualitative exploratory studies [102] and
designing exploratory experiments [103; 104], and finally to exploratory data analysis [105; 106;
107; 108].

This process of hypothesis generation is notoriously hard to formalize, as Russel [109, p.544]
so clearly laid out:

As a rule, the framing of hypotheses is the most difficult part of scientific work, and the part
where great ability is indispensable. So far, no method has been found which would make it
possible to invent hypotheses by rule. Usually some hypothesis is a necessary preliminary
to the collection of facts, since the selection of facts demands some way of determining
relevance. Without something of this kind, the mere multiplicity of facts is baffling.

Therefore, without further work on formal approaches it is not easy to implement a formal
approach to make methodological claims about exploration, since we will fail at step 1. At least
in our current knowledge state, we are not able to formally define exploration as a research
activity. Informally, hypothesis generation requires creativity, flexibility, and open-mindedness
to allow for ideas to emerge [99; 100]. The inferential approach employed during exploration
cannot be described as deduction or induction since it requires adding something new to known
facts. This process of generating explanatory hypotheses is known as abduction proper'! and
the process of generating that set of hypotheses. The latter process, which is of interest to our
discussion, is specifically known as abduction proper [83; 111]. Abduction proper is then a way
to meaningfully reduce the search space for possible hypotheses. Blokpoel et al. [111] show that
abduction proper is uncomputable when unconstrained and remains computationally intractable
even when constrained. This seems to render attempts at efficiently capturing this process with
rules and formalism somewhat futile. [112], which involves studying the facts and generating a
theory to explain them [112, p.90]. Abduction proper requires scientists to absorb and digest all
known facts about a phenomenon, mull them over, use introspection and common sense [113],
evaluate them against their background knowledge [83], and add something as of yet unknown,
with the intention of providing new insight or understanding that would not have been possible
without abduction [112]. Hypothesis generation, therefore, cannot be reduced down to formal

" Abductive inference involves both the process of making inference to the best explanation based on a set of candidate
hypotheses [110]
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statistical inference, whose methods are deductively derived and used inductively in application.
In fact, meticulous exploration via abduction proper would improve our statistical inference by
facilitating the first two conditions mentioned in Box 1 by constraining our search space in a
theoretically meaningful fashion.

That said, exploratory data analysis (EDA) can be instrumental in hypothesis generation.
Tukey [108] suggests that EDA is not a bundle of formal inferential techniques and that
it requires extensive use of data visualization with a flexible approach. EDA is usually an
iterative process of model specification, residual analysis, examination of assumptions, and model
respecification [77; 105] to find patterns and reveal data structure. If inferential statistics are
employed for the purposes of data exploration, we can prioritize minimizing the probability of
failing to reject a false null hypothesis [114; 115] as opposed to minimizing false positives because
priority is given to not missing true discoveries. Nonetheless, other methods than hypothesis
testing are often more closely associated with EDA due to their flexibility in revealing patterns,
such as graphical evaluation of data [105; 108], exploratory factor analysis [105; 107], principal
components regression [116], and Bayesian methods to generate EDA graphs [106; 117; 118].

Whichever method is selected for EDA; however, it needs to be implemented rigorously to
maximize the probability of true discoveries while minimizing the probability of false discoveries.
As Behrens [105, p.134] observes:

A researcher may conduct an exploratory factor analysis without examining the data for
possible rogue values, outliers, or anomalies; fail to plot the multivariate data to ensure the
data avoid pathological patterns; and leave all decision making up to the default computer
settings. Such activity would not be considered EDA because the researcher may be easily
misled by many aspects of the data or the computer package. Any description that would
come from the factor analysis itself would rest on too many unassessed assumptions to
leave the exploratory data analyst comfortable.

The implication is that using “wonky” statistics cannot be a recommended practice for data
exploration. The reason is that by repeatedly misusing statistical methods, it is possible to
generate an infinite number of patterns from the same data set but most of them will be what
Good [113, p.290] calls a kinkus—"a pattern that has an extremely small prior probability of
being potentially explicable, given the particular context”. If the process of hypothesis generation
yields too many such kinkera (plural of kinkus), it can neither be considered a proper application
of abduction principle nor would serve the ultimate goal of exploratory research: making true
discoveries. Relying on statistical abuse in the name of scientific discovery will easily lead to well-
known statistical problems such as increasing false positives by multiple hypothesis testing [119],
specifically by multiple tests of the same hypothesis [120; 121], or by failing to use proper
conditioning as we outlined in the previous section.

If exploratory research needs to satisfy a certain level of rigor to be effective but we are
not able to formalize it, what criteria should we use to assess its quality? Since the process of
exploration is elusive and informal, it may not be possible to derive some minimum standards
all exploratory studies need to meet. Nonetheless some desirable qualities can be inferred from
successful implementation of exploratory approaches in different fields. (1) As suggested by
Russell’s quote, exploration needs to start with subject matter expertise or theoretical background,
and hence, cannot be decontextualized, free of theory, or completely dictated by the data [83;
102; 104; 105; 111; 113]. (2) The key for running successful exploratory studies is the richness of
data [122]. Random data sets that are uninformative about the area to be explored will likely
not yield important discoveries. (3) Exploration requires robust methods that are insensitive to
underlying assumptions [105]. As such, rather than misusing or abusing standard procedures for
inferential statistics, using robust approaches such as multiverse analysis [86] or metastudies [123]
could be more appropriate for exploration purposes. (4) Exploratory work needs to be done in a
structured, systematic, honest, and transparent manner using a deliberately chosen methodology
appropriate for the task [10; 122].
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The above discussion should make two points clear, regarding Claim 3: First, exploratory
research cannot be reduced to exploratory data analysis and cannot be formalized, rendering
broad methodological claims about exploration unwarranted. Second, when exploratory data
analysis is pursued as a preferred method for scientific exploration, it needs rigor and formal
justifications. Describing exploratory research as though it were synonymous with or accepting
of “wonky” procedures that misuse or abuse statistical inference not only undermines the
importance of systematic exploration in the scientific process but also severely handicaps the
process of discovery.

5. Conclusion

Our call for statistical rigor and scientific nuance encompasses all claims regarding scientific
practice and policy changes. Rigor requires attention to detail, precision, clarity in statements and
methods, and transparency. Nuance necessarily means moving away from speculative, sweeping
claims and not losing sight of the context of inference. Simple fixes to complex scientific problems
rarely exist. Simple fixes motivated by speculative arguments, lacking rigor and proper scientific
support might appear to be legitimate and satisfactory in the short run, but may prove to be
counter-productive in the long run. It is instructive to remember how taking p < 0.05 as a sign of
scientific relevance or even truth has proved to be detrimental to scientific progress.

Recent developments in methodological reform have already been impactful in inducing
behavioral and institutional changes. However, as Niiniluoto [124] suggests, impact of research
“only shows that it has successfully ‘moved’ the scientific community in some direction. If science
is goal-directed, then we must acknowledge that movement in the wrong direction does not
constitute progress.” Unfortunately, the reform literature has largely overlooked the necessity of
first principles and formalism in advancing methodological tools. That is: Providing mathematical
definitions of fundamental concepts the methods rely on, making claims about these tools with
transparency and under clearly stated assumptions, supporting these claims by and mathematical
or simulation proofs, and documenting the limitations of these tools. Such a formal approach
aids us in making positive contributions to scientific progress. The five-step formal approach we
illustrated in this article is just an example of this formalism, showing how to encapsulate the
necessary standard for methodological rigor and nuance. With this example, and its application
to three proposed reform policies, we hope to contribute to laying the groundwork of a formal
methodology in scientific reform.
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A. Appendix

Regularity conditions and notation. We assume some regularity conditions which are sufficient
for our purposes here for all random variables:

e Distribution functions F = F(w)=P(W <w), are absolutely continuous and non-
degenerate, endowed with the density function f(w) = dF(w)/dw.

o {E(|W|™) < 00,¥n}, E(W?) >0, where E(W)=[*_ f(w)dw, and V(W)=EW?) -
[EW)].

* We make frequent use of the indicator function: Iy 4y =1if A, and 0 otherwise.

Assumptions of idealized study. We build on the notion of idealized study [101], obeying the
following assumptions:

A1. There exists a true probability model Mr, completely specified by Fr of random variable
X, which is the observable for a phenomenon of interest.

A2. Some known background knowledge K partially specifies Mr up to property 6 € ©,
which denotes unknown and unobservable components of M. For notational economy,
K is often dropped, with the understanding that all statements are conditional on K.

A3. A statement that is in principle testable via statistical inference using a simple random
and finite sample Xn = (X1, X2, -+, Xn), where X; ~ Fr is made about 6.

A4. Candidate mechanisms M;, inducing distribution functions F; are formulated.

A5. A fixed and known function S is used to extract the information in Xn pertinent to M;.
S evaluated at Xp, returns Sy, with non-degenerate distribution function P(Sn < s).
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A6. Formal statistical inference returns a result {R=d(Sn,c), RC @}, where c is a user-
defined known quantity, and d(-, -) is a fixed and known non-constant decision function
which formalizes the statistical inference (by inducing a frequency assessment for a
result).

Definitions.

. 5; (M;,0,Xn, S, K, d) is an idealized study. ,
o ¢() which differs from & only in K and Xp® generated independently from Xy, is a
replication experiment.

B. Appendix

(a) Relationship between true results and reproducible results

Proofs of Propositions 1.1, 1.2, and 1.3. R™ are {0,1} exchangeable random variables since
13 () are invariant under permutation of labels. By De Finetti’s representation theorem for {0,1}
variables, there exists a ¢ such that R are conditionally independent given ¢. For a finite
subsequence RMW R? ... R and the relative frequency of reproduced results defined by
dny=N"1 Zf\;l I{R<i>=Ro|Ro}» we have limy_, o, ¢ = ¢, almost surely by the Strong Law of
Large Numbers.

By definition ¢ > 0, since it is a probability. It follows by contradiction that ¢ = 1 only in highly
specific cases: Assume ¢ =1. We have ¢ =E(I{r—g,|g,}) = P(R= Ro|Ro) = 1, which implies
that It pi)_p | gy = 1 foralli. Therefore, d(Sn, c) in A6 must return a singleton (R,) for all values
of Sn. This can happen in three ways: Xy, is non-stochastic, which contradicts A1, or Sy is non-
stochastic, which contradicts A5, or R, is not a proper subset of ©, which contradicts A6.

The truth of 1.2 implies 1.3 and vice versa: if a result is not true, then it is false because ¢ +
¢r =1. To see that ¢ can be arbitrarily close to zero (and ¢p arbitrarily close to 1), fix Ryp.
Choose S such that d(Sn, c) does not return Ry with probability 1 — ¢. A simple example is
a biased estimator of a parameter in a probability distribution. We also note that by Proposition
1.1, ¢7 must have positive probability for every point on its support for some £, which includes
values arbitrarily close to 0.

Remark. ¢ should not be misinterpreted as an estimator with less than ideal properties. Quite
the opposite: By Central Limit Theorem, (¢ — ¢)/[¢(1 — ¢)] converges to the standard normal
distribution and ¢ has excellent statistical properties as an estimator of ¢ [125; 126; 127].

(b) Remarks for some cases in Box 1.

Bullet 1. Fix ¢ such that ¢(c¢) > 0. Consider a model selection problem where d(Sn, ¢) returns a
model between two candidate models M7 and Ma, which are different from the true model M.
The selected model M; or My is false with probability 1 independent of how well S performs. Yet,
My and M3 can be chosen so that the divergence or metric on which the model selection measure
S is based satisfy selecting M over My with probability ¢ =1 — €(c).

Bullet 3. Let 6, be the parameter of interest of Fr and 9:, be nuisance parameters. Assume that the
true value of 0, is in ©. We let d(Sn, ¢) to return Sy as an estimator of parameter 6, where E(Sn)
is not equal to the true value. Sy is often a pivotal quantity. We consider two cases: If further,
Sn is a statistic then it is ancillary for 6,. Let V(Sn) = ¢(c)?. By Chebychev’s inequality we have
[Sn — E(Sn)| < €(c) with probability 1. Thus, the result returned is false and ¢ > 1 — ¢(c). Else
if, Sn is not a statistic, but depends on 0;, choosing the value of 9; suitably yields the result.
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C. Appendix

Conditional analysis

Proof 2.1. By Chebychev’s inequality we have P{|Sn — 0| < \/V(Sn)/a} < o? and P{|Sn’ — 0] <
VV(Sn')/a} < o2, where V(Sn)/a and V(Sn')/« are critical values of the two tests. We have
0< V(Sn') < V(Sn) by Rao-Blackwell Theorem [128, p.342]. It follows that sq > s, and ]P’(Sn/ >
sa|Ho) < o Proof 2.2. By ancillarity we have P(Uq |0) = P(Uy), implying P(Uqa|Sn, 6) =P(Ua|Sn).
The sampling distribution of S given 6 can be written as:

P(Sn|0) =P(Sn|Ua, 0)P(Ua|0)/P(Ua|Sn, 0) = P(Sn|Ua, ) [P(Ua) /P(Ua|Sn)] ,

where the second equality follows by substituting for P(Uq|6) and P(Uq|Sn, 6). The term within
the brackets is independent of 6, so that a test based on Sn, and a test based on Sn|U, yield the
same result. Therefore, using U, to inform H, does not affect the validity of the test.

Remarks for some cases in Box 2.

Left block, 1st row, 1st column. If Sy is not complete sufficient and Us is minimally
sufficient, then for an upper tail test P(Sn > s|Us, Ha) > P(Sn > s|Hq) for some s is
possible, where H, is the alternative hypothesis. That is, the test conditional on a
statistic from prior analysis can be more powerful. Parallel arguments hold for lower
and two-tailed tests.

Left block, 1st row, 2nd column. Rao-Blackwellization guarantees that V(Sy|U) <
V(Sn). See Figure 3 for an example.

Right block, 1st row, 1st column. Conditioning on a decision based on user defined
criterion might alter the support of the sampling distribution of Sp. In these cases,
conditioning is necessary for a valid test. See Figure 4 for an example.

Right block, 3rd row. U, and Sn might be dependent (see Casella and Berger [128, p.284—
285] for an example). Applying a decision with a user defined criterion and U, might
affect the support of the sampling distribution of Sn. In these cases, conditioning on the
decision regarding U, is necessary for a valid test.

D. Appendix

Details of models used in Figures

Figure 1A. The simple linear regression model is given by y; = 8o + B1x; + €;, where the errors
obey Gauss-Markov conditions: E(e;) =0, V(e;) = 02, Vi, and Couv(e;, €;) =0, Y(i,5). The x; are
assumed fixed and known. The errors ¢; ~ Nor(0,0¢). The measurement error model is the
true model when there is stochastic measurement error in x making it a random variable
X. We assume X; =z; +n;, where n; ~Nor(0,0,). The assumed (incorrect) model under
which inference is performed is the simple linear regression model, which corresponds to
on =0. Specific values used in the plot are: = ~ Unif(0, 10), So =2, 1 €{2,20}, oe =1, oy €
{0.01,0.02,-- -, 1.0}, and the sample size is 50.

Figure 2. The model is the same as in Figure 1A, except that the values plotted are oy €
{0.01,0.02, - - - , 10}, and the true value is 81 = 20. The vertical axis shows the distance between
By and By

Figure 3. This example is from Mukhopadhyay [72]. Let X ~ Nor(y, ), ¢ > 0. The data is a
single observation X, which is an unbiased estimator of ;. Using Rao-Blackwellization, | X1 |
is a sufficient statistic for ;1 and the mean of X; conditional on the value | X1 | improves the power
of a test while maintaining its validity.

Figure 4. Let X; ~ Nor(px, ag() and Y; ~ Nor(uy, O'%/), i=1,2,--- ,nindependent samples with
known population variances 0% and o%. Let the null and the alternative hypotheses be H, :
wx =py, Ha:px > py respectively. An appropriate test statistic for level a =P(Z > zo|Ho) test
is the z-score: Z = (X —Y)/(0x/+v/n + oy //n), which follows a standard normal distribution
under H,. Assume we perform the test is only if we observe X — Y > 0. Define: U(c) = X — Y if
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X >V, and U(c) = 0 otherwise. Here, U(c) is the statistic U = X — ¥ whose nonzero values are
constrained by the user defined criterion c, given by X > Y. The conclusion of the test depends
on U(c) since when X > Y, larger the value of U, larger the value of Z. The distribution of the
conditional test statistic Z|U(c), H, is not standard normal and therefore the level of the test is not
necessarily o for the critical value zq, as is with the test statistic Z. However, if the distribution of
Z|U(c), Ho is available then the correct critical value, can be chosen to perform a level o test. We
let W= ZI; 5.y, the standard normal random variable with support on non-negative real line
(folded at zero), properly normalized. This is known as the standard half-normal distribution.

We see that P(W > za|Ho) = 2a. For the level of the conditional test to be «, we adjust the
critical value as 2™ = z,, /» and have P(W > 2*|H,) = a.

E. Appendix

A simulation-based method to sample the conditional distribution of
the test statisticIf the distribution of the conditional test statistic under H,, is not available as
a closed form solution, an appropriate simulation-based method can be used to sample it. Here,
we give an example for the unconditional test statistic Sp with distribution P(Sn|H,), where
H, :0=10,. We aim to sample M values from the conditional distribution of Sn|U(c), H, where
U (c) is a statistic obtained from the data constrained by a user defined criterion c.

Algorithm.

Initialize: Set M (large desired number), and i = 0.
Begin While i < M, do:

1. Simulate X; ~P(X;|65), j=1,2,--- ,n independently of each other. Set Xn @ =
(X1, X2,--+, Xn).

2. Calculate Sy = §(Xn) and U® = U(Xn®).

3. 1 Ut obeys c accept Sn(? as a draw from the distribution of the conditional test
statistic and set 7 =7 + 1. Else discard (Xn(i), Sn(i)7 U(i))A

End While

The accepted values Sn®,8n@ .. 8, (M) s a sample from the distribution Sn|U(c), Ho. A
valid level « test can be built by finding the relevant sample quantile. This method is precise up
to a Monte Carlo error which vanishes as M — co.

Sometimes it may not be possible to condition on the exact value of statistic U(c), for
example when c involves an equality (instead of inequality) and U is continuous random
variable. In these cases, the algorithm given above can be modified to build an approximate test
using an approximate simulation method such as a likelihood free method. The error rates in
approximation can be estimated by simulation.
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