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Current attempts at methodological reform in sciences
come in response to an overall lack of rigor in
methodological and scientific practices in experimental
sciences. However, most methodological reform
attempts suffer from similar mistakes and over-
generalizations to the ones they aim to address. We
argue that this can be attributed in part to lack of
formalism and first principles. Considering the costs
of allowing false claims to become canonized, we
argue for formal statistical rigor and scientific nuance
in methodological reform. To attain this rigor and
nuance, we propose a five-step formal approach for
solving methodological problems. To illustrate the
use and benefits of such formalism, we present a
formal statistical analysis of three popular claims in
the metascientific literature: (a) that reproducibility is
the cornerstone of science; (b) that data must not be
used twice in any analysis; and (c) that exploratory
projects imply poor statistical practice. We show how
our formal approach can inform and shape debates
about such methodological claims.

1. Introduction
Widespread concerns about unsound research practices,
lack of transparency in science, and low reproducibility
of empirical claims have led to calls for methodological
reform across scientific disciplines [1; 2; 3; 4].
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The literature on this topic has been termed “meta-research” [5] or “metascience” [6] and has2

had policy impact on science agencies, institutions, and practitioners [7]. Perhaps surprisingly,3

proper evaluation of methodological claims in meta-research –understood as statements about4

scientific methodology that are either based on statistical arguments or affect statistical practice–5

has received little formal scrutiny itself. Policies are proposed with little evidentiary backing6

and based on methods which are suggested with no framework for assessing their validity or7

evaluating their efficacy [e.g., see policy and methods proposals in 8; 9; 10; 11; 12; 13].8

For example, reform methodologists have criticized empirical scientists for: (a) prematurely9

presenting unverified research results as facts [14]; (b) overgeneralizing results to populations10

beyond the studied population [15]; (c) misusing or abusing statistics [16; 17]; and (d) lacking11

rigor in the research endeavor that is exacerbated by incentives to publish fast, early, and12

often [11; 12]. However, the methodological reform literature seems to us to be afflicted with13

similar issues: We see premature claims that untested methodological innovations will solve14

replicability/reproducibility problems; conditionally true statements about methodological tools15

presented as unconditional, bold claims about scientific practice; vague or misleading statistical16

statements touted as evidence for the validity of reforms; and we are concerned about an overall17

lack of rigor in method development that is exacerbated by incentives to find immediate solutions18

to the replication crisis [see also 7, for an overall critique of the dominant epistemology of19

metascience]. This is a reason for concern. We expect methodological reforms to be held to20

standards that are at least as rigorous as those we expect of empirical scientists. Should we fail to21

do so, we run the risk of repeating the mistakes of the past and creating new scientific processes22

that are no better than those they replace. There is an uncomfortable symmetry to this, but also23

an opportunity: Reformers are in an opportune position to take criticism and self-correct before24

allowing false claims to be canonized as methodological facts [18].25

In this paper, we advocate for the necessity of statistically rigorous and nuanced arguments26

to make proper methodological claims in the reform literature. Because methodological claims27

are either based on statistical arguments or affect statistical practice, they need to be statistically28

correct. Statistics is a formal science whose methods follow from probability calculus to be29

valid, and this validity is established either by mathematical proofs or by simulation proofs30

before being advanced for the use of scientists. Formalization allows us to subject our verbal31

intuitions to scrutiny, revealing holes, inconsistencies, and undeclared assumptions and to32

make precise, transparent claims that hold under well-specified assumptions [19]. As such, by33

statistical rigor, we mean doing and showing the necessary formal work to establish how we34

know a methodological claim is valid, in a way that does not leave room for idle speculation.35

Scientific and statistical nuance, on the other hand, is about clearly specifying when (i.e., under36

what assumptions and conditions) a claim should apply, which should result in measured and37

contextual statements while preventing over-generalizations.38

The emphasis and novelty of our current work is in demonstrating by example how formal39

rigor can be achieved when proposing methods in metascience: by motivating them from first40

principles, and using fundamental mathematical statistics machinery to provide their proofs.41

Herfeld and Ivanova [20] talk about first principles in science as fundamental building blocks42

and define them as follows: “Depending on the case, they can be formal axioms, theoretical43

postulations, basic propositions, or general principles that have a special status and role to play44

in the theory in which they are embedded.” Methodological reform and metascience currently45

lack a theoretical foundation [7], are ambiguous about their first principles, and may benefit from46

formalism in establishing these building blocks. A formal approach to solving methodological47

problems can be summarized as follows.48

Formal approach to solving methodological problems:49

0. Conception. An informal problem statement and a proposed solution to that problem,50

often expressed non-technically.51
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1. Definitions. Identification of variables, population parameters, and constants involved in52

the problem, and statistical model building using these quantities, with explicitly stated53

model assumptions.54

2. Formal problem statement. Mathematical propositions or algorithms positing55

methodological claims.56

3. Formal result. Mathematical or simulation-based proofs that interrogate the validity of57

the statements in step 2.58

4a. Demonstrations. If the statements are valid, examples showing their relevance in59

application.60

4b. Extensions and limitations. Assessing methodological claims’ computational feasibility,61

robustness, and theoretical boundaries in domain-specific applications.62

5. Policy making. Recommendations on how methods newly established through steps 2-463

can be useful in practice.64

Regardless of which claims they support or oppose to, most popular methodological proposals65

in the reform literature start with step 0, and jump to step 5 without formal results or much66

evidence of work on intermediate steps. This is in stark contrast with proper formal approach67

in statistical method development. Practical value of a method established by steps 4b and 568

may require domain-specific knowledge and might not be tackled well until after a method is69

introduced. However, in proper method development these steps are undertaken only if steps70

1-4a can actually provide justifications for or against a methodological proposal at the onset.71

To show why formalism is essential in establishing the validity of methodological proposals72

and how informal approaches making the jump from step 0 to 5 might misinform scientific73

practice, we evaluate three specific examples of methodological claims from the reform literature:74

• Reproducibility is the cornerstone of, or a demarcation criterion for, science.75

• Using data more than once invalidates statistical inference.76

• Exploratory research uses “wonky” statistics.77

We focus on these claims as case studies to illustrate our approach because all three are78

methodological claims with statistical implications that have been impactful1 in the metascience79

literature as well as on post-replication crisis practices of empirical scientists while also receiving80

considerable but informal criticism. In an attempt to demonstrate how to formally resolve81

such disagreements, we evaluate each of these claims using statistical theory, against a broad82

philosophical and scientific background.83

The results from our call for formal statistical rigor and nuance can reach further: A formal84

statistical approach establishes a framework for broader understanding of a methodological85

problem by a careful mathematical statement and consideration of model assumptions under86

which it is valid. Most valid methodological advances are incremental, because they can only87

be shown formally to be valid under a strong set of assumptions. These advances rarely ever88

provide simple prescriptions to complex inference problems. Norms issued on the basis of bold89

claims about new methods might be quickly adopted by empirical scientists as heuristics and90

might alter scientific practices. However, advancing such reforms in the absence of formal proofs91

is sacrificing rigor for boldness and can lead to unforeseeable scientific consequences. We believe92

that hasty revolution may hold science back more than it helps move it forward. We hope that93

our approach may facilitate scientific progress that stands on firm ground—supported by theory94

or evidence.95

1As an indication of impact on scientific literature, we looked up Google Scholar citation counts for some of the key articles
from which these claims originate, the oldest of which was published 8 years ago. By the time the current manuscript was
last revised, [1] had 686; [12] had 1045; [21] had 473; [22] had 574; [23] had 529; [4] had 4807; [24] had 1182; [13] had 704; and
[25] had 244 citations.
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2. Claim 1: Reproducibility is the cornerstone of, or a96

demarcation criterion for, science.97

A common assertion in the methodological reform literature is that reproducibility2 is a core98

scientific virtue and should be used as a standard to evaluate the value of research findings [1;99

4; 23; 25; 27; 28; 29; 30]. This assertion is typically presented without explicit justification, but100

implicitly relies on two assumptions: first, that science aims to discover regularities about nature101

and, second, that reproducible empirical findings are indicators of true regularities. This view102

implies that if we cannot reproduce findings, we are failing to discover these regularities and103

hence, we are not practicing science.104

The focus on reproducibility of empirical findings has been traced back to the influence105

of falsificationism and the hypothetico-deductive model of science [31]. Philosophical critiques106

highlight limitations of this model [32; 33]. For example, there can be true results that are by107

definition not reproducible. Some fields aim to obtain contextually situated results that are subject108

to multiple interpretations. Examples include clinical case reports and participant observation109

studies in hermeneutical social sciences and humanities [33]. Other fields perform inference on110

random populations resulting from path-dependent stochastic processes, where it is often not111

possible to obtain two statistically independent samples from the population of interest. Examples112

are inference on parameters in evolutionary systems or event studies in economics. There are also113

cases where observing or measuring a variable’s value changes its probability distribution—a114

phenomenon akin to the observer effect. True replication may not be possible in these cases. In115

short, science does—rather often, in fact—make claims about non-reproducible phenomena and116

deems such claims to be true in spite of the non-reproducibility. In these instances what scientists117

do is to define and implement appropriate criteria for assessing the rigor and the validity of the118

results [32], without making a reference to replication or reproduction of an experimental result.119

Indeed, many scientific fields have developed their own qualitative and quantitative methods120

such as ethnography or event study methodology to study non-reproducible phenomena.121

We argue that even in scientific fields that possess the ability to reproduce their findings in122

principle, reproducibility cannot be reliably used as a demarcation criterion for science because123

it is not necessarily a good proxy for the discovery of true regularities. This counterpoint has124

informally been brought up in metascience literature before [26; 34; 35; 36; 37; 38; 39]. Our goal125

is to further advance this argument by providing a formal, quantitative evaluation of statistical126

reproducibility of results as a demarcation criterion for science. We consider the following two127

unconditional propositions: (1) reproducible results are true results and (2) non-reproducible128

results are false results. If reproducibility serves as a demarcation criterion for science, we129

expect these propositions to be true: we should be able to reproduce all true results and fail130

to reproduce all false results with reasonable regularity. In this section, we provide statistical131

arguments to probe the unconditional veracity of these propositions and we challenge the role132

of reproducibility as a key epistemic value in science. We also list some necessary statistical133

conditions for true results to be reproducible and false results to be non-reproducible. We134

conclude that methodological reform first needs a mature theory of reproducibility to be able to135

identify whether sufficient conditions exist that may justify labeling reproducibility as a measure136

of true regularities.137

2Here we use reproducibility as in: “the extent to which consistent results are observed when scientific studies are repeated”
[23, p.657]. In Appendix A we provide a technical definition of reproducibility which we use in obtaining our results. We limit
our discussion to statistical reproducibility of results only [similar to results reproducibility in 26], and exclude other types such
as computational or methods reproducibility —whether the materials, methods, procedures, algorithms, analyses used in an
original study are reported in a sufficiently detailed and transparent way that enables others to carry it out again.
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Box 1. Some necessary conditions to obtain true results that are reproducible and false
results that are non-reproducible.

• True values of the unknown and unobservable quantities for which inference is
desired must be in the decision space (Appendix B).

Examples: (i) In model selection, selecting the true model depends on
having an M-closed model space, which means the true model must be
in the candidate set [40]. (ii) In Bayesian inference, converging on the true
parameter value depends on the true parameter value being included in the
prior distribution, as stated by Cromwell’s rule [41, p.90].

• If inference is performed under one assumed model, that model should correctly
specify the true mechanism generating the data.

Example: A simple linear regression model with measurement error
misspecified as a simple linear regression model yields biased estimates
of regression coefficients, which will affect reproducibility of true and false
results (Figure 1, Figure 2).

• The quantities that methods use to perform inference on unknown and
unobservable components of the model must contain enough information about
those components: If they are statistics, they cannot be only ancillary. If they are
pivots that are a function of nuisance parameters, then the true value of those
nuisance parameters should permit reproducibility of results (Appendix B).

Example: In a one sample z-test where the population mean is not equal to
the hypothesized value under the null hypothesis, the test incorrectly fails
to reject with large probability due to large population variance.

• If inference is about parameters, observables must carry enough discernible
information about these parameters. That is, model parameters should be
identifiable structurally and informationally. Even weak unidentifiability will
reduce the reproducibility of true results.

Example: The requirement that the Fisher information [42, p.115]
about unknown parameters should be sufficiently large in likelihoodist
frameworks.

• Free parameters of methods should be compatible with our research goals.

Example: A hypothesis test in Neyman-Pearson framework with Type I
error rate α≈ 1 is a valid statistical procedure that rejects the null hypothesis
almost always when it is true.

• Methods should be free of unknown bias.

Example: Heisenbug is a special case of observer effect –where mere
observation changes the system we study, potentially leading to false results
that are reproducible– found in computer programming, that refers to a
software bug that alters its behavior or even disappears during debugging.

• The sample on which inference is performed is representative of the population
from which it is drawn.

Example: Statistical methods assume probabilistic sampling and do not
make any claims in a non-probabilistic sampling framework [43].

138
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(a) Reproducibility rate is a parameter of the population of studies.139

To examine the suitability of reproducibility as a demarcation criterion, a precise definition of140

reproducibility of results is necessary. While many definitions have been offered for replication141

and results reproducibility [see 44, for a partial list], most are informal and not sufficiently142

precise or general for our purposes3. In this paper, we use our own definitions based on first143

principles to facilitate the derivation of our theoretical results. In assessing the reproducibility144

of research results, literature refers to “independent replications” of a given study. Therefore, it145

is necessary to define the notion of a study mathematically, before referring to replications of146

that study. We provide a precise mathematical definition of an idealized study in Appendix A.147

Briefly, its components involve an assumed probability model generating the data involving the148

random variable and parameters of interest, a data set of fixed sample size, the statistical method149

employed in analyzing the data, the background knowledge about the variable of interest, and150

a decision rule to deliver the result of the analysis. We note that it is not sufficient to lay151

out the higher-level assumptions to provide formal results. Lower-level assumptions such as152

mathematical regularity conditions about variables must also be specified as outlined in step 1153

of our formal approach. We also note that the definition given in Appendix A is sufficiently broad154

to investigate reproducibility of results for any mode of statistical inference including estimation,155

model selection, and prediction, and not just hypothesis testing.156

Strictly, we cannot speak of statistical independence between an original study and its157

replications. If study B is a replication of study A, then many aspects of study B depend on study158

A. Rather, sequential replication studies should be assumed statistically exchangeable, conditional159

on the results and the assumptions of the original study, in the sense that the group of results160

obtained from a sequence of replication studies are probabilistically equivalent to each other161

irrespective of the order in which these studies are performed. Assuming that exchangeability162

holds, probability theory shows that the results from replication studies become independent163

of each other, but only conditional on the background information about the system under164

investigation, model assumed, methods employed, and the decision process used in obtaining the165

result. The commonly used phrase “independent replications” thus has little value in developing166

a theory of reproducibility unless one takes sufficient care to consider all these conditionals.167

This conditional independence of sequence of results immediately implies that irrespective of168

whether a result is true or false, there is a true reproducibility rate of any given result, conditional169

on the properties of the study. This true reproducibility rate is determined by three components:170

The true model generating the data, the assumed model under which the inference is performed,171

and the methods with which the inference is performed. In this sense, the true reproducibility rate172

is a parameter of the population of studies and we have the following result which satisfies step173

2 of our formal approach.174

Proposition 1.1 Let Ro be a result and R(i) be the result in ith attempted replication of175

the idealized study from which Ro is obtained. If I{R(i)=Ro|Ro} = 1 we say that Ro is176

reproduced by R(i). Else, we say that Ro failed to reproduce by R(i). Conditional on Ro,177

the relative frequency of reproduced results ϕN → ϕ∈ [0, 1], as N →∞. Further, ϕ= 1178

only in highly specific problems. Proof is provided in Appendix B, per step 3 of our formal179

approach.)180

3Some exceptions are as follows: Patil et al. [38] use the overlap in prediction intervals from original and replication studies
to define a statistical measure of reproducibility. Gorroochurn et al. [45] investigates the relationship between reproducibility
and p-values and in the context of association between variables. Pauli [46] develops a Bayesian model to evaluate the results
of replication studies and estimate a reproducibility rate. Hedges and Schauer [47] offer a principled way of evaluating
replication studies within a meta-analytic framework. Different from purely statistical approaches, Fanelli [48] takes a meta-
analytic approach to study reproducibility and uses an information theoretical framework to quantify it. We acknowledge
and endorse the formal approach undertaken by these articles to address practical problems of evaluating and quantifying
the results of replication experiments.
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To show the value of the formal approach, we now briefly interpret what Proposition 1.1181

establishes and contributes to our understanding about reproducibility of results. Just like a182

statistic (e.g., sample mean) has a sampling distribution, and it converges to its population183

counterpart (i.e., the population mean) as the sample size increases, the sample reproducibility184

rate of a sequence of idealized studies has a sampling distribution, and it will converge to its185

population counterpart as the number of studies increases. Therefore, the true reproducibility186

rate for an idealized study must be a fixed population quantity and it is independent of our efforts187

given the idealized study. Further, this rate of reproducibility can take any value between 0 and 1.188

The actual value depends on the properties of the idealized study but it can be high or low, so that189

we should not expect it to be high all the time. Finally, we note that this holds for any result, true190

or false. Stepping back, now we see the advantage of the formal approach as follows. Given the191

definitions in Appendix A, if the proof in Appendix B is correct, then our result is a mathematical192

fact and it must be correct. Therefore, a formal statement like Proposition 1.1 has taken us one step193

further to understand the properties of reproducibility of results.194

(b) True results are not necessarily reproducible.195

Much of the reform literature claims non-reproducible results are necessarily false. For example,196

Wagenmakers et al. [13, p.633] assert that “Research findings that do not replicate are worse than197

fairy tales; with fairy tales the reader is at least aware that the work is fictional.” It is implied198

that true results must necessarily be reproducible, and therefore non-reproducible results must199

be “fictional.” More mildly, Zwaan et al. [25, p.13] state: “A finding is arguably not scientifically200

meaningful until it can be replicated with the same procedures that produced it in the first place.”201

Others have taken issue with this claim [e.g., 36; 38; 45], pointing to reasons why replication202

attempts may fail to reproduce the original result other than its truth value. We now take our203

formal approach again and find that an evaluation of the claim provides support for this criticism.204

The fact that the true reproducibility rate is a parameter of the population of studies matters:205

this parameter is a probability and therefore, it takes values on the interval [0, 1]. This implies206

that for finite sample studies involving uncertainty, the true reproducibility rate must necessarily207

be smaller than one for any result and in fact, we have the following result (step 2 of our formal208

approach).209

Proposition 1.2. There exists true results Ro =RT , whose true reproducibility rate ϕT is210

arbitrarily close to 0. (Per step 3 of our formal approach, proof is provided in Appendix B).211

Before looking into some examples for Proposition 1.2, we discuss it to make an important212

point about the formal approach: Proposition 1.2 may seem perplexing because intuitively we213

might expect that if a result is true, we should be able to reproduce it. If this is in fact our214

(wrong) intuition, we should revisit and re-hone it studying the proof of Proposition 1.2. The215

reason is that, in a formal approach as long as the proof is correct, the result must be correct, and216

therefore our intuition must be wrong. Most importantly, all this evaluation is made possible by217

motivating the issue of reproducibility from the first principles and proceeding formally from218

that point into a next by stating and proving the results that help us to build knowledge on219

the subject. We already argued that first principles on evaluating the reproducibility of results220

required a definition of idealized study, together with all its assumptions and mathematical221

regularity conditions (Appendix A). Given these, we were able to show that reproducibility rate222

is a parameter of the population of studies (Proposition 1.1). Given this, we showed that the223

relationship between true results and their reproducibility rate might be complex (Proposition224

1.2). Therefore, moving in this formal way builds a solid body of knowledge, mathematically225

supported under well-defined and delineated models.226

As an example of step 4a of formal approach to solving methodological problems, we discuss227

two statistical scenarios to illustrate the counterintuitive result provided by Proposition 1.2. A228

well-known example is a data generating model where the sampling error (the uncertainty) is229
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large with respect to the model expectation (the signal). This is rather an informal statement of230

the kind we make in step 0 (i.e., no statistical model is specified) of the formal approach to solving231

methodological problems. If we want to check whether the statement is true, it should and can be232

precisely formulated mathematically starting from our definition of idealized study.233

In contrast to statements ubiquitous in metascience literature [e.g., 25; 37], large sampling234

error is not the only reason why true results might not be reproducible. Falling back to the235

definition of an idealized study given in Appendix B, we see that its components are the assumed236

model and its parameters, data, method, background knowledge of the system, and the decision237

function to obtain a result. Because the reproducibility rate is a parameter of population of studies,238

components of an idealized study other than large sampling error can affect the reproducibility239

of a true result. For example, the model might be misspecified. Or the model might be correctly240

specified and sampling error small, but the method might have large error. Or the decision241

function might not be optimal. Again, having defined an idealized study formally helps us to242

investigate and prove any one of these cases if we wish so.243

We can also evaluate the opposite of the large sampling error case: Small sampling error is not a244

guarantee that true results will be highly reproducible. It turns out that there are mathematically245

necessary conditions other than the truth value of a result, that need to be met for true results246

to be highly reproducible. Some of these conditions which are related to the components of247

idealized study are listed in Box 1 informally. Thus, the formal approach has also the advantage of248

motivating and evaluating other cases such as complements, reverses, or counters, and therefore249

it enriches our understanding of reproducibility of results.250

Another well-known statistical scenario illustrating Proposition 1.2 is when the data are251

analyzed under a misspecified model (per step 4a). Here, we take a simple linear regression252

measurement error model in which the measurement error is unaccounted for (Figure 1). We are253

interested in the effect of measurement error on the reproducibility rate of a true effect. As the254

ratio of the measurement error variability in predictor to sampling error variability increases, the255

probability that an interval estimator of the regression coefficient (i.e., the effect size) at a fixed256

nominal coverage contains the true effect decreases. This is not simply an artifact of small sample257

sizes or small effects: the same pattern obtains for large sample sizes and large true effects. In fact,258

for large sample sizes, the reproducibility rate drops to zero at lower measurement error variability259

than for small sample sizes [also see 49, for a similarly counter-intuitive effect of measurement260

error]. Furthermore, the negative effect of measurement error on reproducibility rate of a true261

result actually grows with effect size, as Figure 1A illustrates. Even in this relatively simple setting262

it is by no means a given that a true result will be reproducible. Measurement error is only one263

type of model misspecification. Other sources of misspecification and types of human error (e.g.,264

questionable research practices) might further impair the reproducibility of true results.265

When true reproducibility rate of a true result is low, the proportion of studies that fail to266

reproduce a true result will be high, even when methods being used have excellent statistical267

properties and the model is correctly specified. However, a true low reproducibility rate does not268

necessarily indicate a problem in the scientific process. As Heesen [50] notes, low reproducibility269

in a given field or literature may be the result of there being few discoveries to be made in a given270

scientific system. When that is the case, a reasonable path to making scientific progress is to learn271

from non-reproducible results. Indeed, the history of science is full of examples of fields going272

through arduous sequence of experiments yielding failures such as non-reproducible results to273

eventually arrive at scientific regularities [51; 52; 53].274

In an article that makes practical recommendations to improve the methodology of275

psychological science, Lakens and Evers [54] argue that “One of the goals of psychological science276

is to differentiate among all possible truths” and suggest that one way to achieve this goal is277

to improve the statistical tools employed by scientists. Some care is needed when interpreting278

this claim. Statistical methods might indeed help us get close to the true data generating279

mechanism, if their modeling assumptions are met (thereby removing some of the reasons why280

true results can be non-reproducible). However, statistics’ ability to quantify uncertainty and281
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Figure 1. (A) Reproducibility rate of a true result decreases with measurement error in a misspecified simple linear

regression model. Reproducibility rate is estimated by the proportion of times the 95% confidence interval captures the

true effect. Sample sizes are 50 (small) and 500 (large). The true regression coefficient of the predictor variable is 2

(small effect) and 20 (large effect). Model details are given in Appendix D. (B) Example data (black points) generated

under simple linear regression model E(Y ) = 2 + 20X . Measurement and sampling error are normally distributed with

standard deviations equal 3. Regression lines are fit under measurement error model (magenta line) and the correct

model (blue line) with a sample size of 100. 95% confidence interval for the regression coefficient obtained under the

measurement error model is (7.94, 12.37), which does not include the true value 20. In contrast, 95% confidence interval

for the regression coefficient obtained under the correct model, (19.86, 20.21), includes the true value.

inform decision making does not guarantee that we will be able to correctly specify our scientific282

model. Irrespective of reproducibility rates of results obtained with statistical methods, scientists283

attempting to model truth use theories developed based on their domain knowledge. Some of the284

problems raised in Box 1, including model misspecification and decision spaces that exclude the285

true value of the unknown components, can only be addressed using a theoretical understanding286

of the phenomenon of interest. Without this understanding, there is no theoretical reason to287

believe that reproducibility rates will inform us about our proximity to truth.288

It would be beneficial for reform narratives to steer clear of overly generalized sloganeering289

regarding reproducibility as a proxy for truth (e.g., reproducibility is a demarcation criterion290

or non-reproducible results are fairy tales). A nuanced view of reproducibility might help us291

understand why and when it is or is not desirable, and what its limitations are as a performance292

criterion.293

(c) False results might be reproducible.294

Contrary to Proposition 1.2, the next proposition considers false results and the respects in which295

these can sometimes be highly reproducible (per step 2 of our formal approach).296

Proposition 1.3. There exists false results Ro =RF , whose true reproducibility rate ϕF is297

arbitrarily close to 1. (Per step 3 of our formal approach, proof is provided in Appendix B).298
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In well-cited articles in methodological reform literature, high reproducibility of a result is299

often interpreted as evidence that the result is true [4; 12; 24; 25]. A milder version of this claim300

is also invoked, such as “Replication is a means of increasing the confidence in the truth value301

of a claim.” [12, p.617]. The rationale is that if a result is independently reproduced many times,302

it must be a true result.4 This claim is not always true [36; 57]. To formally establish this, it is303

sufficient to note that the true reproducibility rate of any result depends on the true model and304

the methods used to investigate the claim. We follow with two examples (step 4a).305

First, consider a valid hypothesis test in which the researcher unreasonably chooses to set306

α= 1. Then, a true null hypothesis will be rejected with probability 1 and this decision will be307

100% reproducible, assuming that replication studies also set the significance criterion (α) to 1.308

While we know better than to set our significance criterion so high, this example shows how309

reproducibility rate is not only a function of the truth but also our methods. Second, consider310

estimators that exploit the bias-variance trade-off by introducing a bias in the estimator to reduce311

its variance. These estimators have a higher reproducibility rate but for a false result by design.312

In this case, researchers deliberately choose false results that are reproducible when they prefer a313

biased estimator over a noisy one for usefulness. Next, we give a realistic example, in which we314

describe a mechanism for why reproducibility cannot serve as a demarcation criterion for truth.315

We consider model misspecification under a measurement error model in simple linear316

regression. Simple linear regression involves one predictor and one response variable, where the317

predictor variable values are assumed to be fixed and known. The measurement error model318

incorporates unobservable random error on predictor values. The blue belt in Figure 2 shows319

that as measurement error variability grows with respect to sampling error variability, effects320

farther away from the true effect size become perfectly reproducible. At point F in Figure 2, the321

measurement error variability is ten times as large as the sampling error variability, and we have322

perfect reproducibility of a null effect when the true underlying effect size is in fact large.323

Now consider a scientist who takes reproducibility rate as a demarcation criterion. Assume she324

starts at point A and she performs a study which lands her at point B—which might happen by325

knowingly or unknowingly choosing noisier measures or by reducing sampling error variability.326

The reproducibility of her results has increased (from white to inside the blue belt) and to increase327

it further, she performs another study by further tweaking the design, which then lands her at328

point C. If she were to move horizontally to the right with her future studies, the reproducibility329

of results will decrease, and she will turn back to C, which ultimately will be a stable equilibrium330

of maximal reproducibility. Further, this is just one of the possible paths that she could take to331

achieve maximal reproducibility. When at point B, she might perform a study that follows the332

purple path, always increasing the reproducibility of her results ending up at point D, which is333

another stable equilibrium point of maximal reproducibility. In fact, any sequence of studies that334

increases reproducibility will end at one of the points that corresponds to the darkest blue color in335

the belt. At this point, however, we note that going from point A to point C, our researcher started336

with a false result where the estimated slope was some ≈ 13 units off the true value (y axis, point337

A) and arrived at the same false result (y axis, point C), even though she has maximized the338

reproducibility of her results. Worse, when she arrived at point D, the estimated slope is now339

some ≈ 15 (y axis, point D) units away from the true value, even though she still maximized the340

reproducibility of her results.341

Taking a step back, we note that to approach the true result, one needs to move to the origin342

in this plot. However, that approach is controlled by the vertical axis, and not the horizontal.343

Unless we know that we are committing a model misspecification error, we get no feedback344

when we perform studies that move us randomly on the vertical axis (yellow arrows). For345

example, points C and D have similar reproducibility of results but at C we are closer to truth346

then D. In fact, consider points E and F: we get high reproducibility of results at both points,347

but estimates obtained at point E are much closer to the true value than estimates obtained348

4An epistemic claim that well-confirmed scientific theories and models capture (approximate) truths about the world is an
example of scientific realism. The arguments for and against scientific realism (e.g., positivism) are beyond the scope of this
paper. Interested readers may follow up on discussions in the philosophical literature [e.g., 55; 56].
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Reproducibility rate of false results under measurement error model
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Figure 2. An example of almost perfectly reproducible false results in a misspecified simple linear regression model with

measurement error. Color map shows reproducibility rate (RR). Darkest blue cells indicate perfect reproducibility rate

(almost 100%) of false results at appropriate measurement error for each false effect size, shown by its distance from

the true effect size on the vertical axis. The true regression coefficient of predictor variable (effect size) is 20. Details are

given in Appendix D. For description of letters and arrows, refer to the text.

at point F. The mechanistic explanation of this process is that reproducibility-as-a-criterion can349

be optimized by the researcher independently of the underlying truth of their hypothesis. That is,350

optimizing reproducibility can be achieved without getting any closer to the true result. This351

is not to say that reproducibility is not useful, but it means that it cannot be used as a demarcation352

criterion for science.353

While we advance a statistical argument for the reproducibility of false results, the truth354

value of reproducible results from laboratory experiments has also been challenged for non-355

statistical reasons [58, p.30]. Hacking notes that mature laboratory sciences sometimes construct356

an irrefutable system by developing theories and methods that are “mutually adjusted to each357

other”. As a result, these sciences become what Hacking calls “self-vindicating”. That is:358

“The theories of the laboratory sciences are not directly compared to ’the world’; they359

persist because they are true to phenomena produced or even created by apparatus in the360

laboratory and are measured by instruments we have engineered.”361
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Hacking concludes that “[h]igh level theories are not ‘true’ at all.” They can be viewed as a362

summary of the collection of laboratory operations to which they are adapted, but if that set of363

operations is selected to match a particular theory, its evidentiary value may be limited. Hacking’s364

description of what makes mature laboratory sciences highly reproducible is consistent with our365

definition of reproducibility rate as a function of true model, assumed model, and methods.366

An example of a theory from laboratory sciences that is not directly compared to ’the world’367

comes from cognitive science. One high level theory that has become prominent in this field over368

the last two decades is the “probabilistic” or “Bayesian” approach to describing human learning369

and reasoning [59; 60]. As the paradigm rose to prominence, questions were raised as to whether370

claims of the Bayesian theory of the mind held any truth value at all, in either a theoretical or371

empirical sense [61].372

Within a specific framework, a particular experimental result may have value in connection373

to a theoretical claim without being tied to the world. For instance, Hayes et al. [62] presented374

several experiments that appear to elicit the “same” phenomenon in different contexts, and375

an accompanying Bayesian cognitive model that renders these results interpretable within that376

framework. On the other hand, rational Bayesian models of cognition have been criticized for not377

taking into account process-level data and making unrealistic environmental assumptions [63].378

These models function at the computational rather than algorithmic level [per Marr’s levels of379

analysis, 64] and do not aim to explain the true mechanisms underpinning human reasoning [65].380

Hence these robust empirical results from experiments that were designed from and adapted381

to the Bayesian framework do not necessarily imply normative claims about mechanisms382

underlying human cognition [see the discussion in 62, pp.40-44].383

As this example illustrates, Hacking’s observations about the “mutual tuning” between384

theoretical claims and laboratory manipulations are observed in practice, in cognitive science385

and potentially in other disciplines. Our measurement error example shown in Figure 2 provides386

just one possible realization for Hacking’s conjecture [see also 66, for a detailed discussion on387

measurement practices that might exacerbate measurement error]. Other forms of inference under388

model misspecification might present different scenarios under which this mutual tuning may389

take place—for example, the inadvertent introduction of an experimental confound or an error in390

a statistical computation have the potential to create and reinforce perfectly reproducible phantom391

effects. The possibility of such tuning renders suspect the idea that reproducibility is a good proxy392

for assessing the truth potential of a result.393

The reform movement began as a response to the proliferation of false results in scientific394

literature. Our formal analysis suggests that if we were to treat observed reproducibility of a395

given result as a heuristic to establish its truth value, we might incentivize research that achieves396

high levels of reproducibility for the wrong reasons (per Goodhart’s law) and end up canonizing397

a subset of false results that satisfy specific criteria without facilitating any true discoveries.398

Hence we believe that turning reproducibility into a new false idol goes against the essence of399

the ongoing efforts to reform scientific practice.400

3. Claim 2: Using data more than once invalidates statistical401

inference.402

A well-known claim in the methodological reform literature regards the (in)validity of using data403

more than once, which is sometimes colloquially referred to as double-dipping or data peeking.404

For instance, Wagenmakers et al. [13, p.633] decry this practice with the following rationale:405

“Whenever a researcher uses double-dipping strategies, Type I error rates will be inflated and406

p values can no longer be trusted.” The authors further argue that “At the heart of the problem407

lies the statistical law that, for the purpose of hypothesis testing, the data may be used only408

once.” Similarly, Kriegeskorte et al. [67, p.535] define double-dipping as “the use of the same data409

for selection and selective analysis” and add the qualification that it would invalidate statistical410

inference “whenever the test statistics are not inherently independent of the selection criteria411
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under the null hypothesis.” This rationale has been used in reform literature to establish the412

necessity of preregistration for “confirmatory” statistical inference [13; 22].413

In this section, we provide examples to show that it is incorrect to make these claims in overly414

general terms. The reform literature is not very clear on the distinction between “exploratory”415

and “confirmatory” inference. We will revisit these concepts in the next claim but for now, we416

evaluate the claim that using data multiple times invalidates statistical inference. For that, we will417

steer away from the exploratory-confirmatory dichotomy and focus on the validity of statistical418

inference specifically.419

The phrases double-dipping, data peeking, and using data more than once do not have formal420

definitions and thus they cannot be the basis of any statistical law. These verbally stated terms421

are ambiguous and create a confusion that is non-existent in statistical theory.422

A correct probability theory approach to establish the effect of using the data –in any way–423

is to derive the distributions of interest that will make the procedure valid under that usage. In424

fact, many well-known valid statistical procedures use data more than once [see 68, for a detailed425

analysis in the context of data dependent priors]. In these procedures, the conditioning is already426

taken into account while deriving the correct probability distribution of the quantity of interest.427

The consumers of statistical procedures are often not exposed to steps involved in derivations428

and it might be surprising to find that some of the well-known statistical procedures actually use429

the data more than once. Colloquially, phrases such as double-dipping, data peeking, and using430

data more than once might be associated with practices such as model selection followed by431

inference and sequential testing. However, here, we pick a somewhat unusual example to make432

our point clear. Our main message is that one has to think carefully and formally what these433

phrases actually might mean.434

We consider testing whether the population mean µ, of a Normally distributed random435

variable X is equal to a fixed value µo. We assume that we have a simple random sample of436

size n from X ∼Nor(µ, σ) where σ is the population standard deviation.437

If we start to develop a test using the sample mean X̄ , a reasonable development toward438

obtaining a test statistic would be as follows: Under Ho we have X ∼Nor(µo, σ), and thus X̄ ∼439

Nor(µo, σ/
√
n), and so we must have440 (︁

X̄ − µo
)︁/︂ (︁

σ/
√
n
)︁
∼Nor(0, 1). (3.1)

The test statistic in equation 3.1 is distributed as standard normal and therefore the test is a z-test.441

This is all good, however, the test requires knowing σ, which we often do not. To surpass this442

issue, we now think of extracting the sample standard deviation from the data (using the data443

once more) and substitute it as an estimate of σ in equation 3.1 so that we can perform the test.444

But because we use the sample quantity s, the distribution of the new statistic is not standard445

normal anymore. What we can do, however, is to derive the correct probability distribution of the446

new statistic and still have a valid test. Indeed the quantity447 (︁
X̄ − µo

)︁/︂ (︁
s/
√
n
)︁
, (3.2)

is t-distributed and results in t-test. Technically, the quantity in equation 3.2 uses the data at least448

three times, specifically to obtain n, X̄, and s. Although this example is simplistic, its main point449

is instructive: Irrespective of how many times the data is used or whether it is used in a single-step450

or a multi-step fashion, if the correct distribution of a test statistic can be derived via appropriate451

conditioning or from scratch, then it must yield a valid statistical procedure.452

The principle of deriving the correct distribution of statistics to obtain a valid statistical453

procedure also applies when we perform a variety of statistical activities on the data prior to an454

inferential procedure of specific interest. These activities can be of any type, including exploration455

of the data by graphical or tabular summaries, performing other formal procedures such as tests456

for assumption checks [see 69, for a formal approach for testing model assumptions]. In fact, one457

can even build a valid statistical test by using the data to obtain almost all aspects of a hypothesis458

test that are not specifically user defined, including the hypotheses themselves. The key to validity is459
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not how many times the data are used and for which type of activity, but appropriate application460

of the correct conditioning as dictated by probability calculus as information from the data is461

extracted with these activities [70]. When deriving valid statistical procedures, these rules must462

invariably hold for all cases of manipulations of random variables, whether it is a t-pivot, or a463

multi-step analysis.This is a mathematical fact and the validity of statistical procedures depend464

only on mathematical facts. Furthermore, under many cases, the conditioning does not affect the465

validity of the test of interest, and therefore can be dropped, freeing the data from its prison for466

use prior to test of interest [71].467

When conditioning on prior activity on the data is indeed needed to make a test valid,468

overlooking that a procedure should be modified to accommodate this prior activity might lead469

to an erroneous test. However, this situation only arises if we disregard the elementary principles470

of statistical inference such as correct conditioning, sufficiency, completeness, and ancillarity.471

Conditional inferences are statistically valid when their interpretation is properly conditioned472

on the information extracted from the observed data, which are sufficient for model parameters.473

Therefore, unconditionally stating that double-dipping, data peeking, or using data more than once474

invalidates inference does not make statistical sense. In contrast with common reform narratives,475

one can use the data many times in a valid statistical procedure. Below, we describe the conditions476

under which this validity is satisfied. We also discuss why preregistration cannot be a prerequisite477

for valid statistical inference, confirmatory or otherwise.478
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Box 2. Valid inference using data multiple times.
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We assume a test based on an unbiased test statistic generates valid inference, in the
sense of achieving its nominal Type I error probability, under its assumptions within the
Neyman-Pearson hypothesis testing paradigm. Information extracted from the data prior
to the test of interest is represented by a statistic from prior analysis. Cells describe the
necessity and/or the outcome of conditioning the test of interest on this statistic from
prior analysis, for varying levels of information captured. Some technical clarifications
for special cases are discussed in Appendix C.
Left: The statistic from prior analysis is not used in decision making, for example, by
combining it with a user defined criterion which might affect aspects of the test of interest.
Many commonly used linear models fall in the first column where procedures are based
on an optimal test statistic and therefore, using the information from prior analysis does
not affect the validity of the test of interest. However, even if the statistic for the test
of interest is not optimal, conditioning on statistic from prior analysis is not necessary
for validity of inference. Further, conditioning never hurts the validity of inference and
improves the performance in most cases. Details of the conditional analyses in this block
are provided in Propositions 2.1 and 2.2.
Right: The statistic from prior analysis is combined with a user defined criterion to
affect aspects of the test of interest through a decision. An example is using the data to
determine which subsamples to compare. The validity of the test of interest is maintained
when inference is conditioned on this decision if the statistic from prior analysis contains
at least some information about the parameter to be tested.
The change in corresponding cells between left block and right block shows the effect of
using this user defined criterion on conditional statistical inference.

479

(a) Valid conditional inference is well-established.480

Imagine we aim to confirm a scientific hypothesis of interest which can be formulated as a481

statistical hypothesis and be tested using a chosen a test of interest. We suppose that we perform482

some statistical activity on the data as described in the previous section, until we begin the test483

of interest. We aim to assess the effect of information gained by this activity on the validity of the484
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test of interest to be performed. To be useful in establishing results, it is necessary to assume that485

such information can be summarized by a statistic, as in a statistic obtained from prior analyses.486

First, we categorize the amount of information contained in the test statistic of interest.487

This statistic may contain anywhere from no information to all information in the data about the488

parameter of interest. Further, it can satisfy some statistical optimality criterion, in which case it489

is identified as the best statistic with respect to this criterion. The case of no information is trivial490

and not interesting. The case of all information is well known.5 For many commonly used models,491

an optimal statistic is also well known6 (first column in left and right blocks, Box 2. Other cases492

include partial information (second column in left and right blocks, Box 2).493

Second, the statistic that summarizes the analyses performed on the same data prior to the test494

of interest may also contain anywhere from no information to all information in the data (rows in495

left and right blocks, Box 2). However, here the case of no information is also of interest7.496

If the statistic summarizing the prior analysis is used in a subsequent analysis for the test of497

interest, the validity of the test is guaranteed by conditioning the subsequent analysis on this498

statistic, using probability calculus. A relatively simple case may involve only conditioning on499

the statistic obtained from prior analysis (left block, Box 2). In this case, no quantity exogenous500

to the model generating the data is introduced into the test of interest. If the test of interest501

uses an optimal statistic (which is the case for many well-known models), the conditioning is502

irrelevant because the validity of the test is not affected by the prior information (left block first503

column in Box 2). The same result with the same validity is obtained as if we did not perform504

any activity on the data, previous to the test of interest. Hence, one can freely use information505

prior to performing the test of interest without any modification in the test of interest. If the506

test of interest does not use an optimal statistic, then conditioning will maintain the validity507

and often improve the performance of the test (left block second column in Box 2). This is a508

manifestation of Rao-Blackwellization of the test statistic to reduce its variance. We reproduce509

an example by Mukhopadhyay [72] of estimating the parameter of a normal distribution whose510

mean and standard deviation are equal using a randomly sampled single observation in Figure 3.511

Therefore, Claim 2 is false for this case. Further, results showing this falsity can be generalized512

beyond hypothesis testing into other modes of inference such as estimation. Formally, we have513

the following definition and results (per step 1 and 2 of our formal approach respectively).514

Definition. Let Sn ∼ P(Sn|θ) be a test statistic such that it is: 1) a function of an unbiased515

estimator of θ, and 2) fixed prior to seeing the data. Let U ∼ P(U |θ) be a statistic obtained516

from the data, after seeing the data. If U is complete sufficient for θ, it is denoted by Us,517

and if U is ancillary for θ, it is denoted by Ua.518

Proposition 2.1. Let Sn
′ =E(Sn|Us). For an upper tail test, define α= P(Sn ≥ sα|Ho) =519

P(Sn
′ ≥ s′α|Ho). Then, sα ≥ s′α and P(Sn

′ ≥ sα|Ho)<α. Parallel arguments hold for520

lower and two tail tests.521

Proposition 2.2. Let Ho : θ ∈Θo such that Θo = g(Ua), where g is a known function and522

Ua is a function of the data. Then, the upper tail test P(Sn ≥ s|Ho)≤ α is a valid level α523

test. Parallel arguments hold for lower and two-tailed tests.524

(See Appendix C for proofs per step 3 of our formal approach).525

An intuitive interpretation of these formal statements is as follows. Assume a hypothesis test526

where a statistical procedure is pre-planned in the sense that its elements are determined before527

seeing the data. We then imagine using the data to obtain other statistics (necessarily after seeing528

the data). The propositions consider two scenarios regarding these statistics: In the first scenario,529

we consider a statistic that captures all the information in the data about the parameter being530

tested in a most efficient manner. Then, conditioning on this statistic results not only in a valid531

procedure, but also an equally good or improved one with respect to the pre-planned procedure.532

5sufficient statistic
6complete sufficient statistic
7ancillary statistic
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Figure 3. For a normally distributed variable with equal mean and variance, we randomly sample a single observation

from the population. We plan to use this observation as a test statistic for the common parameter. However, prior to this

test we observe the absolute value of the sample and we decide to perform the test using the information in both the

observation and its absolute value, therefore, using the unsigned part twice. The plot compares power of the test based

on the single observation and on the single observation conditioned on its absolute value. Conditioning improves inference

by reducing the variance of the test statistic. This case corresponds to left block, first row, second column in Box 2. Lighter

shades represent larger true parameter values. Technical details are given in Appendix D.

In the second scenario, we consider a statistic that contains no information about the parameter533

being tested. The null hypothesis is built using this statistic obtained from the data, and the test534

based on the pre-planned procedure still remains valid.535

A more complicated case occurs when one not only obtains a statistic from prior analysis,536

but also makes a decision to redefine the test of interest based on the observed value of that537

statistic—a decision that depends on an exogenous criterion and alters the set of values the test538

statistic of interest is allowed to take (right block, Box 2). For example, an exogenous criterion539

might be to perform the test only if the statistic from prior analysis satisfies some condition. Subgroup540

analyses or determining new hypotheses based on the results of prior analysis (HARKing) are541

other examples [73]. Conditional quantities which make the test of interest valid are now altered542

because conditioning on a statistic and conditioning on whether a statistic obeys an exogenous543

criterion have different statistical consequences. If this criterion affects the distribution of the544

test statistic of interest, then conditioning is necessary. The correct conditioning will modify545

the test in such a way that the distribution of the test statistic under the null hypothesis is546

derived, critical values for the test are re-adjusted, and desired nominal error rates are achieved.547

A general algorithm to perform statistically valid conditional analysis in this sense is provided in548

Appendix E. Adhering to correct conditioning, then, guarantees the validity of the test, making549

Claim 2 false again.550

Figure 4 provides an example of how conditioning can be used to ensure that nominal error551

rates are achieved (step 4a). We aim to test whether the mean of Population 1 is greater than the552

mean of Population 2, where both populations are normally distributed with known variances.553

An appropriate test is an upper-tail two-sample z-test. For a desired level of test, we fix the critical554

value at z, and the test is performed without performing any prior analysis on the data. The sum555

of black and dark orange areas under the black curve is the nominal Type I error rate for this556

test. Now, imagine that we perform some prior analysis on the data and use it only if it obeys an557

exogenous criterion: We do not perform our test unless “the mean of the sample from Population 1558
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Figure 4. For a two sample z-test, we display rejection regions for an unconditional test and a conditional test, setting the

alternative hypothesis in the direction of the observed effect. The black curve shows the distribution of the unconditional

test statistic, with the critical value given by z. The orange curve shows the distribution of the conditional test statistic, with

the adjusted critical value given by z∗.

is larger than the mean of the sample from Population 2.” This is an example of us deriving our559

alternative hypothesis from the data. The test can still be made valid, but proper conditioning is560

required. If we do not condition on the information given within double quotes and we still use561

z as the critical value, we have inflated the observed Type I error rate by the sum of the light gray562

and light orange areas because the distribution of the test statistic is now given by the orange563

curve. We can, however, adjust the critical value from z to z∗ such that the sum of the light and564

dark orange areas is equal to the nominal Type I error rate, and the conditional test will be valid.565

This case corresponds to the right block, first row, first column in Box 2. Technical details are566

provided in Appendix D.567

Caution with regard to double-dipping might sometimes be justified. However, the claim that568

it invariably invalidates statistical inference is unsupported. In fact, the opposite is true since569

all cells in Box 2 yield valid tests. Following steps 1-4a of our formal approach, we established570

some foundations for claims regarding double-dipping. These are summarized in Box 2. Further,571

we provide a fairly generic algorithm (Appendix E) to obtain the sampling distribution of any572

statistic conditional on using some information in the data. Statistically and computationally573

nimble readers should find it straightforward to apply this algorithm to specific double-dipping574

problems they encounter. On the other hand, extending theoretical results from steps 1-4a of575

the formal approach to its applied part of steps 4b and 5 typically takes intensive work. This,576

for example, involves developing user friendly and well-tested tools of analysis, ready for mass577

consumption to perform conditional inference in a specific class of statistical models.578

Clearly, proper conditioning solves a statistical problem. However, the garden of forking paths579

applies to problems of scientific importance as well, since our conclusions become dependent on580

decisions we make in our analysis. Statistical rigor is the prerequisite of a successful solution, but581

we should ask: Solution to which problem? Statistical validity does not necessarily imply scientific582

validity [74]. The connection between statistical and scientific models might be weak—a problem583
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that cannot be fixed by statistical rigor8. Further, valid inference by proper conditioning entails584

maintaining the same conditioning for correct interpretation of scientific inference.585

Conditioning is not the only statistically viable way to address double-dipping related586

problems. Alternatives to conditioning include but are not limited to multilevel modeling [16; 85],587

multiverse analysis [86], simultaneous inference for valid data-driven variable selection [87],588

sequential or stepwise model selection procedures for optimal post-selection inference [88; 89],589

and iterative Bayesian workflow [90]. The key to successfully implement these solutions is a good590

understanding of statistical theory and a careful interpretation of results under clearly stated591

assumptions.592

(b) Preregistration is not necessary for valid statistical inference.593

Nosek et al. [22] claim that “Standard tools of statistical inference assume prediction”9. Nosek et594

al. [22] intend to convey that in hypothesis testing, the analytical plan needs to be determined595

(i.e., preregistered) prior to data collection or observing the data for statistical inference to have596

diagnostic value, that is, to be valid. Wagenmakers et al. [13] suggest that preregistration would597

allow for confirmatory conclusions by clearly separating exploratory analyses from confirmatory598

ones and preventing researchers from fooling themselves or their readers. According to the599

methodological reform, any inferential procedure that is not preplanned or preregistered should600

better be categorized as postdiction or exploratory analysis, and should not be used to arrive at601

confirmatory conclusions [21; 91].602

In this section, we first clarify the statistical problem which preregistration aims to address.603

Then we assess what preregistration cannot statistically achieve under its strict and flexible604

interpretation. We argue how preregistration can harm statistical inference while trying to solve605

its intended problem. After showing that preregistration is not necessary for valid statistical606

inference, we describe what it can achieve statistically.607

What is the statistical problem that preregistration aims to address? Statistically, preregistration608

is offered as a solution to the problem of using data more than once and issues of validity of609

statistical procedures resulting from this usage [13; 22; 92; 93]. Once a hypothesis and an analytical610

plan is preregistered, the idea is that researchers would be prevented from performing analyses611

that were not preregistered and subsequently, from presenting them as “confirmatory”. We have612

shown that using data multiple times per se does not present a statistical problem. The problem613

arises if proper conditioning on prior information or decisions is skipped. The reform literature614

misdiagnoses the problem as an ordinal issue regarding the order of: hypothesis setting, decisions615

on statistical procedures, data collection, and performing inference. Preregistration locks this616

order down for an analysis to be called “confirmatory”. Our examples of valid tests in Box 3 ( per617

step 4a of our formal approach) show that the problem is not ordinal but one of statistical rigor.618

Prediction and postdiction—as proposed by Nosek et al. [22]—do not have technical definitions in619

their intended meaning that reflects on statistical procedures. Further, the reform literature does620

not present any theoretical results to show the effects of this dichotomy on statistical inference. All621

well-established statistical procedures deliver their claims when their assumptions are satisfied.622

Other non-mathematical considerations are irrelevant for the validity of a statistical procedure. A623

valid statistical procedure can be built either before or after observing the data, in fact, even after624

8Testing hypotheses with no theory to motivate them is a fishing expedition regardless of methodological rigor. See [44; 75;
76; 77; 78; 79; 80; 81; 82; 83; 84] for discussions on scientific theory.
9Prediction here is not used in statistical sense but refers to “the acquisition of data to test ideas about what will
occur” [22, p.2600]. To clarify, statistics uses sample quantities (observables) to perform inference on population quantities
(unobservables). Inference, therefore, is about unobservables. Statistical prediction, on the other hand, is defined as predicting
a yet unobserved value of an observable and therefore, is about observables. The quote refers to a procedure about
unobservables and hence “prediction” is not used in a statistical sense. Instead it is used to demarcate the timing of hypothesis
setting and analytical planning with regard to data collection or observation. The authors also specifically refer to null
hypothesis significance testing procedure as the standard tool for statistical inference referenced in this quote. While the statement
itself can be misleading because of these local definitions and assumptions, our aim is to critique the intended meaning not
the idiosyncratic use of statistical terminology.
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using the data if proper conditioning is followed. Therefore, the validity of statistical inference625

procedures cannot depend on whether they were preregistered.626

How can preregistration (strict or flexible) harm statistical inference? Preregistration may interfere627

with valid inference because nothing prevents a researcher from preregistering a poor analytical628

plan. Preregistering invalid statistical procedures does not on its own ensure the validity of629

inference [see also 73], while it does add a superficial veneer of rigor.630

Assume hypotheses, study design, and an analysis plan are preregistered, and the researchers631

follow their preregistration to a T. Many hypothesis tests make parametric assumptions and not632

all are robust to model misspecification. Dennis et al. [94] show that under model misspecification,633

the Neyman-Pearson hypothesis testing paradigm might lead to Type I error probabilities634

approaching 1 asymptotically with increasing sample sizes. Model misspecification is suspected635

to be common in scientific practice [74; 81; 95]. Since the validity of a statistical inference636

procedure depends on the validity of its assumptions, performing assumption checks —where637

it is possible and sensible to do so— to choose and proceed with the model and method whose638

assumptions hold is sound practice. Assumption checks are performed after data collection and on639

the data, but before specifying a model and a method for analysis. To accommodate assumption checks640

under preregistration philosophy, an exception would need to be made to the core principle641

because they necessitate using data multiple times. Indeed such exceptions are often made [22; 92]642

and it has been suggested that assumption checks and contingency plans should be preregistered.643

However, no statistical reasoning is provided to define the boundaries of such deviations from644

preregistration.645

A common reform slogan states that “preregistration is a plan, not a prison10,” offering an646

escape route from undesirable consequences of rigidity. Nosek et al. [22, p.2602] suggest that647

compared to a researcher who did not preregister their hypotheses or analyses, “preregistration648

with reported deviations provides substantially greater confidence in the resulting statistical649

inferences.” This statement has no support from statistical theory. On the other hand, the claim650

may make researchers feel justified in changing their preregistered analyses as a result of651

practical problems in data collection or analysis, without accounting for the conditionality in their652

decisions, leading to invalid statistical inference.653

A study of 16 Psychological Science papers with open preregistrations shows that research654

often deviated from preregistration plans [96]. Hence, in practice, preregistration fails to lock655

researchers in an analytical plan. Deviating from a preregistered plan might prevent a statistically656

flawed procedure from being implemented, and hence, might improve statistical validity of657

conclusions. On the other hand, it is possible to deviate from a plan by introducing more658

sequential decisions and contingency to data analysis, which if not accounted for, would659

invalidate the statistical inference. A strict interpretation of preregistration may also lead to660

invalid inference by locking researchers in a faulty plan. As such, preregistration or deviations661

from preregistration have little say over the diagnosticity of p-values or error control. Statistical662

rigor can neither be ensured by preregistration nor would be compromised by not preregistering663

a plan.664

10While not part of our core argument this particular slogan is underspecified. It is not clear how the argument for
the necessity of preregistration for statistically valid inference should be reconciled with the proposed flexibility of
preregistrations. In any case, this line of thinking is moot from our perspective since the underlying premise itself does
not hold.
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Box 3. Validity of statistical analyses under strict, flexible, and no preregistration. We
show how a strict interpretation of preregistration and a failure to use proper statistical
conditioning may hinder valid statistical inference with a simulation example. Our
simulations consist of 106 replications of hypothesis tests for the difference in the location
parameter between two populations. We build the distribution of p-values under the
null hypothesis of no difference for three cases and four true data generating models.
In addition to the Normal distribution with exponentially bounded tail, we use Cauchy
and T distributions for heavy tail, and Gumbel distribution for light tail. By a well-known
result, the distribution of p-value under the null hypothesis is standard uniform for a
valid statistical test.
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Distribution of p−value for test of location parameter under valid and invalid tests
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• Hypothesis tests in Group 1 (solid lines) were performed using the following
procedure:

(i) Collect data with no specification of hypothesis, model, or method (no
preregistration).

(ii) Calculate the sample medians. Set the alternative hypothesis so that the
median of the population corresponding to the larger sample median is
larger than the median of the other population (using the data to determine
the hypotheses).

(iii) Build the conditional reference distribution of the test statistic by permuting
the data (reusing the data to determine the method).

(iv) Calculate the test statistic from the data to compare with the reference
distribution (reusing the data to calculate observed value of the test statistic).

The tests in Group 1 derive almost all their components from the data by reusing
them multiple times. The distribution of the p-values show that these tests are
valid since they follow the standard uniform distribution (solid lines).

• Hypothesis tests in Group 2 (dashed lines) demonstrate a situation that may
arise under either flexible preregistration (assumption checks allowed) or no
preregistration, when proper statistical conditioning is not performed in step 3.
This is akin to HARKing without statistical controls. In this case, the distribution
of p-values is uniform on (0, 0.5). These tests are not valid, since P(p≤ α|H0) =

2α for some significance thresholds α.
• Hypothesis tests in Group 3 (dotted lines) demonstrate a situation that may

arise under a strict preregistration protocol (altering the preregistered model or
methods not allowed) when there is model misspecification. The preregistered
model is Normal, but the data are generated under other models. These tests are
not valid, since P(p≤ α|H0)>α for some significance thresholds α.

665
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What can preregistration achieve statistically? Strict preregistration might work as a behavioral666

sanction that prevents researchers from doing any statistical analysis that involves conditioning667

on data, valid or invalid. This way, preregistration can prevent using data multiple times without668

proper conditioning by preventing proper conditioning procedures along with it. Nevertheless,669

as we show in Box 2, conditioning on data may improve inference. On the other hand, a flexible670

interpretation of preregistration that allows for deviations in the plan so long as they are labeled671

as “exploratory” rather than “confirmatory” has no bearing on statistical outcomes. If proper672

conditioning is performed, analyses that are referred to as “exploratory” in the reform literature673

might observe strict error control and if it is not, analyses currently being labeled “confirmatory”674

might be statistically uninterpretable.675

There exist other social advantages to preregistration of empirical studies, such as the676

creation of a reference database for systematic reviews and meta-analysis that is relatively677

free from publication bias. While these represent genuine advantages and good reasons to678

practice preregistration, they do not affect the interpretation or validity of the statistical tests679

in a particular study. We demonstrate some of the points discussed in this section with680

examples in Box 3. Our exposition and illustration in this section have policy implications,681

primarily suggesting caution when proceeding to step 5 of our formal approach in this context.682

The statistical theory behind these examples show that the benefits of preregistration —in683

promoting systematic documentation and transparent reporting of hypotheses, research design,684

and analytical procedures— should not be mistaken for a technical capacity for ensuring statistical685

validity. If and only if a statistically appropriate analytical plan has been preregistered and686

performed, would preregistration have a chance of ensuring the meaningfulness of statistical687

results. Yet a well-established statistical procedure always returns valid inference, preregistered688

or not.689

4. Claim 3: Exploratory Research Uses “Wonky” Statistics690

A large body of reform literature advances the exploratory-confirmatory research dichotomy691

from an exclusively statistical perspective. Wagenmakers et al. [13] argue that purely exploratory692

research is one that finds hypotheses in the data by post-hoc theorizing and using inferential693

statistics in a “wonky” manner (borrowing Wagenmakers et al.’s [13] terminology) where p-694

values and error rates lose their meaning: “In the grey area of exploration, data are tortured to695

some extent, and the corresponding statistics is somewhat wonky.” The reform movement seems696

to have embraced Wagenmakers et al. [13]’s distinction and definitions, and this dichotomy has697

been emphasized in required documentation for preregistrations [97], registered reports [21], and698

exploratory reports [98].699

We start by discussing why the exploratory-confirmatory dichotomy is not tenable from700

a purely statistical perspective. The reform literature does not provide an unambiguous701

definition for what is considered “confirmatory” or “exploratory”. There are many possible702

interpretations including: (1) Formal statistical procedures such as null hypothesis significance703

testing are confirmatory, informal ones are exploratory. (2) Only preregistered hypothesis tests are704

confirmatory, non-preregistered ones are exploratory. (3) Only statistical procedures that deliver705

their theoretical claims (e.g., error control) are confirmatory, invalid ones are exploratory. These706

three dichotomies are not consistent with each other and lead to confusing uses of terminology.707

One can speak of formal statistical procedures such as significance tests, and informal procedures708

such as data visualization, or valid and invalid statistical inference, but there is no mathematical709

mapping from these to exploratory or confirmatory research, especially when clear technical710

definitions for the latter are not provided, in clear violation of step 1 of our formal approach.711

Moreover, the general usefulness and relevance of this dichotomy has also been challenged for712

theoretical reasons [79; 80]. In this section, we sidestep issues with the dichotomy but argue713

against the core claim presented by [13] regarding the nature of exploratory research specifically,714

advancing the following points:715
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• Exploratory research aims to facilitate scientific discovery, which requires a broader716

approach than statistical analysis alone and cannot be evaluated formally to derive717

meaningful methodological claims.718

• Exploratory data analysis (EDA) is a tool for performing exploratory research and uses719

methods that only answer to their assumptions to be valid. When making claims about720

EDA specifically, we should follow the steps of our formal approach.721

• Using “wonky” inferential statistics does not facilitate and probably hinders exploration,722

because statistical theory only provides guarantees for statistical inference when its723

assumptions are met.724

• Exploratory research needs rigor to serve its intended aim to facilitate scientific discovery.725

Scientific exploration is the process of attempting to discover new phenomena [99]. Outside726

of the methodological reform literature, exploratory research is typically associated with727

hypothesis generation and is contrasted with hypothesis testing—sometimes referred to as728

confirmatory research. Exploratory research may lead to serendipitous discoveries. However, it729

is not synonymous with serendipity but is a deliberate and systematic attempt at discovering730

generalizations that help us describe and understand an area about which we have little or731

no knowledge [100]. In this sense, it is analogous to topographically mapping an unknown732

geographical region. The purpose is to create a complete map until we are convinced that there733

is no element within the region being explored that remains undiscovered. This process may734

take many forms from exploration of theoretical spaces [i.e., theory development; 82; 83] and735

exploration of model spaces [77; 101] to conducting qualitative exploratory studies [102] and736

designing exploratory experiments [103; 104], and finally to exploratory data analysis [105; 106;737

107; 108].738

This process of hypothesis generation is notoriously hard to formalize, as Russel [109, p.544]739

so clearly laid out:740

As a rule, the framing of hypotheses is the most difficult part of scientific work, and the part741

where great ability is indispensable. So far, no method has been found which would make it742

possible to invent hypotheses by rule. Usually some hypothesis is a necessary preliminary743

to the collection of facts, since the selection of facts demands some way of determining744

relevance. Without something of this kind, the mere multiplicity of facts is baffling.745

Therefore, without further work on formal approaches it is not easy to implement a formal746

approach to make methodological claims about exploration, since we will fail at step 1. At least747

in our current knowledge state, we are not able to formally define exploration as a research748

activity. Informally, hypothesis generation requires creativity, flexibility, and open-mindedness749

to allow for ideas to emerge [99; 100]. The inferential approach employed during exploration750

cannot be described as deduction or induction since it requires adding something new to known751

facts. This process of generating explanatory hypotheses is known as abduction proper11 and752

the process of generating that set of hypotheses. The latter process, which is of interest to our753

discussion, is specifically known as abduction proper [83; 111]. Abduction proper is then a way754

to meaningfully reduce the search space for possible hypotheses. Blokpoel et al. [111] show that755

abduction proper is uncomputable when unconstrained and remains computationally intractable756

even when constrained. This seems to render attempts at efficiently capturing this process with757

rules and formalism somewhat futile. [112], which involves studying the facts and generating a758

theory to explain them [112, p.90]. Abduction proper requires scientists to absorb and digest all759

known facts about a phenomenon, mull them over, use introspection and common sense [113],760

evaluate them against their background knowledge [83], and add something as of yet unknown,761

with the intention of providing new insight or understanding that would not have been possible762

without abduction [112]. Hypothesis generation, therefore, cannot be reduced down to formal763

11Abductive inference involves both the process of making inference to the best explanation based on a set of candidate
hypotheses [110]
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statistical inference, whose methods are deductively derived and used inductively in application.764

In fact, meticulous exploration via abduction proper would improve our statistical inference by765

facilitating the first two conditions mentioned in Box 1 by constraining our search space in a766

theoretically meaningful fashion.767

That said, exploratory data analysis (EDA) can be instrumental in hypothesis generation.768

Tukey [108] suggests that EDA is not a bundle of formal inferential techniques and that769

it requires extensive use of data visualization with a flexible approach. EDA is usually an770

iterative process of model specification, residual analysis, examination of assumptions, and model771

respecification [77; 105] to find patterns and reveal data structure. If inferential statistics are772

employed for the purposes of data exploration, we can prioritize minimizing the probability of773

failing to reject a false null hypothesis [114; 115] as opposed to minimizing false positives because774

priority is given to not missing true discoveries. Nonetheless, other methods than hypothesis775

testing are often more closely associated with EDA due to their flexibility in revealing patterns,776

such as graphical evaluation of data [105; 108], exploratory factor analysis [105; 107], principal777

components regression [116], and Bayesian methods to generate EDA graphs [106; 117; 118].778

Whichever method is selected for EDA; however, it needs to be implemented rigorously to779

maximize the probability of true discoveries while minimizing the probability of false discoveries.780

As Behrens [105, p.134] observes:781

A researcher may conduct an exploratory factor analysis without examining the data for782

possible rogue values, outliers, or anomalies; fail to plot the multivariate data to ensure the783

data avoid pathological patterns; and leave all decision making up to the default computer784

settings. Such activity would not be considered EDA because the researcher may be easily785

misled by many aspects of the data or the computer package. Any description that would786

come from the factor analysis itself would rest on too many unassessed assumptions to787

leave the exploratory data analyst comfortable.788

The implication is that using “wonky” statistics cannot be a recommended practice for data789

exploration. The reason is that by repeatedly misusing statistical methods, it is possible to790

generate an infinite number of patterns from the same data set but most of them will be what791

Good [113, p.290] calls a kinkus—“a pattern that has an extremely small prior probability of792

being potentially explicable, given the particular context”. If the process of hypothesis generation793

yields too many such kinkera (plural of kinkus), it can neither be considered a proper application794

of abduction principle nor would serve the ultimate goal of exploratory research: making true795

discoveries. Relying on statistical abuse in the name of scientific discovery will easily lead to well-796

known statistical problems such as increasing false positives by multiple hypothesis testing [119],797

specifically by multiple tests of the same hypothesis [120; 121], or by failing to use proper798

conditioning as we outlined in the previous section.799

If exploratory research needs to satisfy a certain level of rigor to be effective but we are800

not able to formalize it, what criteria should we use to assess its quality? Since the process of801

exploration is elusive and informal, it may not be possible to derive some minimum standards802

all exploratory studies need to meet. Nonetheless some desirable qualities can be inferred from803

successful implementation of exploratory approaches in different fields. (1) As suggested by804

Russell’s quote, exploration needs to start with subject matter expertise or theoretical background,805

and hence, cannot be decontextualized, free of theory, or completely dictated by the data [83;806

102; 104; 105; 111; 113]. (2) The key for running successful exploratory studies is the richness of807

data [122]. Random data sets that are uninformative about the area to be explored will likely808

not yield important discoveries. (3) Exploration requires robust methods that are insensitive to809

underlying assumptions [105]. As such, rather than misusing or abusing standard procedures for810

inferential statistics, using robust approaches such as multiverse analysis [86] or metastudies [123]811

could be more appropriate for exploration purposes. (4) Exploratory work needs to be done in a812

structured, systematic, honest, and transparent manner using a deliberately chosen methodology813

appropriate for the task [10; 122].814



25

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

The above discussion should make two points clear, regarding Claim 3: First, exploratory815

research cannot be reduced to exploratory data analysis and cannot be formalized, rendering816

broad methodological claims about exploration unwarranted. Second, when exploratory data817

analysis is pursued as a preferred method for scientific exploration, it needs rigor and formal818

justifications. Describing exploratory research as though it were synonymous with or accepting819

of “wonky” procedures that misuse or abuse statistical inference not only undermines the820

importance of systematic exploration in the scientific process but also severely handicaps the821

process of discovery.822

5. Conclusion823

Our call for statistical rigor and scientific nuance encompasses all claims regarding scientific824

practice and policy changes. Rigor requires attention to detail, precision, clarity in statements and825

methods, and transparency. Nuance necessarily means moving away from speculative, sweeping826

claims and not losing sight of the context of inference. Simple fixes to complex scientific problems827

rarely exist. Simple fixes motivated by speculative arguments, lacking rigor and proper scientific828

support might appear to be legitimate and satisfactory in the short run, but may prove to be829

counter-productive in the long run. It is instructive to remember how taking p < 0.05 as a sign of830

scientific relevance or even truth has proved to be detrimental to scientific progress.831

Recent developments in methodological reform have already been impactful in inducing832

behavioral and institutional changes. However, as Niiniluoto [124] suggests, impact of research833

“only shows that it has successfully ‘moved’ the scientific community in some direction. If science834

is goal-directed, then we must acknowledge that movement in the wrong direction does not835

constitute progress.” Unfortunately, the reform literature has largely overlooked the necessity of836

first principles and formalism in advancing methodological tools. That is: Providing mathematical837

definitions of fundamental concepts the methods rely on, making claims about these tools with838

transparency and under clearly stated assumptions, supporting these claims by and mathematical839

or simulation proofs, and documenting the limitations of these tools. Such a formal approach840

aids us in making positive contributions to scientific progress. The five-step formal approach we841

illustrated in this article is just an example of this formalism, showing how to encapsulate the842

necessary standard for methodological rigor and nuance. With this example, and its application843

to three proposed reform policies, we hope to contribute to laying the groundwork of a formal844

methodology in scientific reform.845
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A. Appendix1103

Regularity conditions and notation. We assume some regularity conditions which are sufficient1104

for our purposes here for all random variables:1105

• Distribution functions F ≡ F (w) = P(W ≤w), are absolutely continuous and non-1106

degenerate, endowed with the density function f(w) = dF (w)/dw.1107

• {E(|W |n)<∞, ∀n}, E(W 2)> 0, where E(W ) =
∫︁∞
−∞ f(w)dw, and V(W ) =E(W 2)−1108

[E(W )]2.1109

• We make frequent use of the indicator function: I{A} = 1 if A, and 0 otherwise.1110

Assumptions of idealized study. We build on the notion of idealized study [101], obeying the1111

following assumptions:1112

A1. There exists a true probability model MT , completely specified by FT of random variable1113

X, which is the observable for a phenomenon of interest.1114

A2. Some known background knowledge K partially specifies MT up to property θ ∈Θ,1115

which denotes unknown and unobservable components of MT . For notational economy,1116

K is often dropped, with the understanding that all statements are conditional on K.1117

A3. A statement that is in principle testable via statistical inference using a simple random1118

and finite sample Xn = (X1, X2, · · · , Xn), where Xi ∼ FT is made about θ.1119

A4. Candidate mechanisms Mi, inducing distribution functions Fi are formulated.1120

A5. A fixed and known function S is used to extract the information in Xn pertinent to Mi.1121

S evaluated at Xn returns Sn, with non-degenerate distribution function P(Sn ≤ s).1122



31

rsos.royalsocietypublishing.org
R

.S
oc.

open
sci.

0000000
..............................................................

A6. Formal statistical inference returns a result {R= d(Sn, c), R⊂Θ}, where c is a user-1123

defined known quantity, and d(·, ·) is a fixed and known non-constant decision function1124

which formalizes the statistical inference (by inducing a frequency assessment for a1125

result).1126

Definitions.1127

• ξ = (Mi, θ,Xn, S,K, d) is an idealized study.1128

• ξ(i) which differs from ξ only in K and Xn
(i) generated independently from Xn, is a1129

replication experiment.1130

B. Appendix1131

(a) Relationship between true results and reproducible results1132

Proofs of Propositions 1.1, 1.2, and 1.3. R(i) are {0, 1} exchangeable random variables since1133

ξ(i) are invariant under permutation of labels. By De Finetti’s representation theorem for {0, 1}1134

variables, there exists a ϕ such that R(i) are conditionally independent given ϕ. For a finite1135

subsequence R(1), R(2), · · · , R(N), and the relative frequency of reproduced results defined by1136

ϕN =N−1 ∑︁N
i=1 I{R(i)=Ro|Ro}, we have limN→∞ ϕN = ϕ, almost surely by the Strong Law of1137

Large Numbers.1138

By definition ϕ≥ 0, since it is a probability. It follows by contradiction that ϕ= 1 only in highly1139

specific cases: Assume ϕ= 1. We have ϕ=E(I{R=Ro|Ro}) = P(R=Ro|Ro) = 1, which implies1140

that I{R(i)=Ro|R} = 1 for all i. Therefore, d(Sn, c) in A6 must return a singleton (Ro) for all values1141

of Sn. This can happen in three ways: Xn is non-stochastic, which contradicts A1, or Sn is non-1142

stochastic, which contradicts A5, or Ro is not a proper subset of Θ, which contradicts A6.1143

The truth of 1.2 implies 1.3 and vice versa: if a result is not true, then it is false because ϕT +1144

ϕF = 1. To see that ϕT can be arbitrarily close to zero (and ϕF arbitrarily close to 1), fix RT .1145

Choose S such that d(Sn, c) does not return RT with probability 1− ϕT . A simple example is1146

a biased estimator of a parameter in a probability distribution. We also note that by Proposition1147

1.1, ϕT must have positive probability for every point on its support for some ξ, which includes1148

values arbitrarily close to 0.1149

Remark. ϕN should not be misinterpreted as an estimator with less than ideal properties. Quite1150

the opposite: By Central Limit Theorem, (ϕN − ϕ)/[ϕ(1− ϕ)] converges to the standard normal1151

distribution and ϕN has excellent statistical properties as an estimator of ϕ [125; 126; 127].1152

(b) Remarks for some cases in Box 1.1153

Bullet 1. Fix c such that ϵ(c)> 0. Consider a model selection problem where d(Sn, c) returns a1154

model between two candidate models M1 and M2, which are different from the true model MT .1155

The selected model M1 or M2 is false with probability 1 independent of how well S performs. Yet,1156

M1 and M2 can be chosen so that the divergence or metric on which the model selection measure1157

S is based satisfy selecting M1 over M2 with probability ϕF = 1− ϵ(c).1158

Bullet 3. Let θo be the parameter of interest of FT and θ
′
o be nuisance parameters. Assume that the1159

true value of θo is in Θ. We let d(Sn, c) to return Sn as an estimator of parameter θo where E(Sn)1160

is not equal to the true value. Sn is often a pivotal quantity. We consider two cases: If further,1161

Sn is a statistic then it is ancillary for θo. Let V(Sn) = ϵ(c)2. By Chebychev’s inequality we have1162

|Sn − E(Sn)| ≤ ϵ(c) with probability 1. Thus, the result returned is false and ϕF > 1− ϵ(c). Else1163

if, Sn is not a statistic, but depends on θ
′
o, choosing the value of θ

′
o suitably yields the result.1164
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C. Appendix1165

Conditional analysis
Proof 2.1. By Chebychev’s inequality we have P{|Sn − θ| ≤

√︁
V(Sn)/α} ≤ α2 and P{|Sn

′ − θ| ≤√︁
V(Sn

′)/α} ≤ α2, where V(Sn)/α and V(Sn
′)/α are critical values of the two tests. We have

0≤V(Sn
′)≤V(Sn) by Rao-Blackwell Theorem [128, p.342]. It follows that sα ≥ s′α and P(Sn

′ ≥
sα|Ho)<α. Proof 2.2. By ancillarity we have P(Ua|θ) = P(Ua), implying P(Ua|Sn, θ) = P(Ua|Sn).

The sampling distribution of S given θ can be written as:

P(Sn|θ) = P(Sn|Ua, θ)P(Ua|θ)/P(Ua|Sn, θ) = P(Sn|Ua, θ) [P(Ua)/P(Ua|Sn)] ,

where the second equality follows by substituting for P(Ua|θ) and P(Ua|Sn, θ). The term within1166

the brackets is independent of θ, so that a test based on Sn, and a test based on Sn|Ua yield the1167

same result. Therefore, using Ua to inform Ho does not affect the validity of the test.1168

Remarks for some cases in Box 2.1169

Left block, 1st row, 1st column. If Sn is not complete sufficient and Us is minimally1170

sufficient, then for an upper tail test P(Sn ≥ s|Us, Ha)≥ P(Sn ≥ s|Ha) for some s is1171

possible, where Ha is the alternative hypothesis. That is, the test conditional on a1172

statistic from prior analysis can be more powerful. Parallel arguments hold for lower1173

and two-tailed tests.1174

Left block, 1st row, 2nd column. Rao-Blackwellization guarantees that V(Sn|U)≤1175

V(Sn). See Figure 3 for an example.1176

Right block, 1st row, 1st column. Conditioning on a decision based on user defined1177

criterion might alter the support of the sampling distribution of Sn. In these cases,1178

conditioning is necessary for a valid test. See Figure 4 for an example.1179

Right block, 3rd row. Ua and Sn might be dependent (see Casella and Berger [128, p.284–1180

285] for an example). Applying a decision with a user defined criterion and Ua might1181

affect the support of the sampling distribution of Sn. In these cases, conditioning on the1182

decision regarding Ua is necessary for a valid test.1183

D. Appendix1184

Details of models used in Figures1185

Figure 1A. The simple linear regression model is given by yi = β0 + β1xi + ϵi, where the errors1186

obey Gauss-Markov conditions: E(ϵi) = 0, V(ϵi) = σ2
ϵ , ∀i, and Cov(ϵi, ϵj) = 0, ∀(i, j). The xi are1187

assumed fixed and known. The errors ϵi ∼Nor(0, σϵ). The measurement error model is the1188

true model when there is stochastic measurement error in x making it a random variable1189

X . We assume Xi = xi + ηi, where ηi ∼Nor(0, ση). The assumed (incorrect) model under1190

which inference is performed is the simple linear regression model, which corresponds to1191

ση = 0. Specific values used in the plot are: x∼Unif(0, 10), β0 = 2, β1 ∈ {2, 20}, σϵ = 1, ση ∈1192

{0.01, 0.02, · · · , 1.0}, and the sample size is 50.1193

Figure 2. The model is the same as in Figure 1A, except that the values plotted are ση ∈1194

{0.01, 0.02, · · · , 10}, and the true value is β1 = 20. The vertical axis shows the distance between1195

β1̂ and β1.1196

Figure 3. This example is from Mukhopadhyay [72]. Let X ∼Nor(µ, µ), µ > 0. The data is a1197

single observation X1, which is an unbiased estimator of µ. Using Rao-Blackwellization, |X1|1198

is a sufficient statistic for µ and the mean of X1 conditional on the value |X1| improves the power1199

of a test while maintaining its validity.1200

Figure 4. Let Xi ∼Nor(µX , σ2
X) and Yi ∼Nor(µY , σ2

Y ), i= 1, 2, · · · , n independent samples with1201

known population variances σ2
X and σ2

Y . Let the null and the alternative hypotheses be Ho :1202

µX = µY , Ha : µX >µY respectively. An appropriate test statistic for level α= P(Z ≥ zα|Ho) test1203

is the z-score: Z = (X̄ − Ȳ )/(σX/
√
n+ σY /

√
n), which follows a standard normal distribution1204

under Ho. Assume we perform the test is only if we observe X̄ − Ȳ > 0. Define: U(c) = X̄ − Ȳ if1205
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X̄ > Ȳ , and U(c) = 0 otherwise. Here, U(c) is the statistic U = X̄ − Ȳ whose nonzero values are1206

constrained by the user defined criterion c, given by X̄ > Ȳ . The conclusion of the test depends1207

on U(c) since when X̄ > Ȳ , larger the value of U, larger the value of Z. The distribution of the1208

conditional test statistic Z|U(c), Ho is not standard normal and therefore the level of the test is not1209

necessarily α for the critical value zα, as is with the test statistic Z. However, if the distribution of1210

Z|U(c), Ho is available then the correct critical value, can be chosen to perform a level α test. We1211

let W =ZI{X̄>Ȳ }, the standard normal random variable with support on non-negative real line1212

(folded at zero), properly normalized. This is known as the standard half-normal distribution.1213

We see that P(W >zα|Ho) = 2α. For the level of the conditional test to be α, we adjust the1214

critical value as z∗ = zα/2 and have P(W >z∗|Ho) = α.1215

1216

E. Appendix1217

A simulation-based method to sample the conditional distribution of1218

the test statistic If the distribution of the conditional test statistic under Ho is not available as1219

a closed form solution, an appropriate simulation-based method can be used to sample it. Here,1220

we give an example for the unconditional test statistic Sn with distribution P(Sn|Ho), where1221

Ho : θ= θo. We aim to sample M values from the conditional distribution of Sn|U(c), Ho where1222

U(c) is a statistic obtained from the data constrained by a user defined criterion c.1223

Algorithm.1224

Initialize: Set M (large desired number), and i= 0.1225

Begin While i <M, do:1226

1. Simulate Xj ∼ P(Xi|θo), j = 1, 2, · · · , n independently of each other. Set Xn
(i) =1227

(X1, X2, · · · , Xn).1228

2. Calculate Sn
(i) = S(Xn

(i)) and U (i) =U(Xn
(i)).1229

3. If U (i) obeys c accept Sn
(i) as a draw from the distribution of the conditional test1230

statistic and set i= i+ 1. Else discard (Xn
(i),Sn

(i), U (i)).1231

End While1232

The accepted values Sn
(1),Sn

(2), · · · ,Sn
(M) is a sample from the distribution Sn|U(c), Ho. A1233

valid level α test can be built by finding the relevant sample quantile. This method is precise up1234

to a Monte Carlo error which vanishes as M →∞.1235

Sometimes it may not be possible to condition on the exact value of statistic U(c), for1236

example when c involves an equality (instead of inequality) and U is continuous random1237

variable. In these cases, the algorithm given above can be modified to build an approximate test1238

using an approximate simulation method such as a likelihood free method. The error rates in1239

approximation can be estimated by simulation.1240

1241
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