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Abstract

There are many ways to measure how people manage risk when they make decisions. A standard approach is to measure
risk propensity using self-report questionnaires. An alternative approach is to use decision-making tasks that involve risk and
uncertainty, and apply cognitive models of task behavior to infer parameters that measure people’s risk propensity. We report the
results of a within-participants experiment that used three questionnaires and four decision-making tasks. The questionnaires
are the Risk Propensity Scale, the Risk Taking Index, and the Domain Specific Risk Taking Scale. The decision-making
tasks are the Balloon Analogue Risk Task, the preferential choice gambling task, the optimal stopping problem, and the bandit
problem. We analyze the relationships between the risk measures and cognitive parameters using Bayesian inferences about
the patterns of correlation, and using a novel cognitive latent variable modeling approach. The results show that people’s risk
propensity is generally consistent within different conditions for each of the decision-making tasks. There is, however, little
evidence that the way people manage risk generalizes across the tasks, or that it corresponds to the questionnaire measures.

Keywords: risky decision making, sequential choice tasks, optimal stopping problems, bandit problems, Balloon Analogue
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1 Introduction

From financial investments to choosing dating partners, peo-
ple regularly encounter risky decision-making situations.
We are constantly evaluating the potential gains and losses,
and the probabilities of each occurring. An individual’s
intrinsic tendency to be risk seeking, known as their risk
propensity, has been argued to be a meaningful latent con-
struct that can be interpreted as a dominant influence on peo-
ple’s behavior in risky situations (Dunlop & Romer, 2010;
Frey et al., 2017; Josef et al., 2016; Lejuez et al., 2004;
Mishra et al., 2010; Pedroni et al., 2017; Sitkin & Weingart,
1995; Stewart Jr & Roth, 2001). Frey etal. (2017) suggest an
analogy with the general intelligence construct ‘g‘ from psy-
chometrics (Deary, 2020), raising the possibility of a similar
latent construct that guides the balance between risk-seeking
and risk-avoiding behavior in uncertain situations.

There are many ways to assess risk propensity. One ap-
proach relies on self-report questionnaires, usually in the
form of responses to questions using Likert-type scales. An-
other involves measuring the frequency and type of real-
world behaviors related to risk that people engage in. A
third approach uses decision-making tasks that involve un-
certainty, so that different patterns of decisions can be as-
sociated with different risk propensities. If risk is a stable
trait, there should be clear relationships between these three
types of measures. Accordingly, there is a body of research
that examines the relationship between risk questionnaires
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and decision-making tasks that aim to measure risk (e.g.,
Frey et al., 2017; Josef et al., 2016; Szrek et al., 2012). The
most commonly used tasks are ones that require choices be-
tween gambles (De Martino et al., 2006; Russo & Dosher,
1983; Rieskamp et al., 2006), but other cognitive tasks are
also considered. For example, Frey et al. (2017) use the
Balloon Analogue Risk Task (BART: Lejuez et al., 2002,
2003a), the Columbia Card Sorting task (Figner et al., 2009),
as well as various decision-from-description and decision-
from-experience tasks, lotteries, and other tasks. Berg et al.
(2005) use a variety of different forms of auctions. Typically,
measuring risk propensity using decision-making tasks re-
lies on simple experimental measures. For example, Frey
et al. (2017, Table 1) rely entirely on direct behavioral mea-
sures of risk, such as counting the number of pump decisions
in the BART.

The findings from this literature have been mixed. There is
some evidence of risk propensity having a trait-like breadth
of influence and stability over time when measured by ques-
tionnaires about attitudes and patterns of real-world behavior
(e.g., Josef et al., 2016; Mata et al., 2018). The link to be-
havioral measures in decision-making tasks, however, is far
less clear (e.g., Berg et al., 2005; Frey et al., 2017). The
motivation for the current research is the possibility that
the relationship between cognitive task behavior and risk
propensity can be better assessed using cognitive models
than simple experimental measures. Our approach is to ap-
ply cognitive models of the decision-making process to infer
latent psychological parameters that represent risk propensi-
ties. In the model-based approach, risk propensity is inferred
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from its influence on observed task behavior. Potentially, the
model-based approach offers an opportunity to measure an
individual’s risk propensity in a way that is less open to
manipulation, and is more precisely assessed than through
simple experimental measures.

The questionnaires we consider are the Risk Propensity
Scale (RPS: Meertens & Lion, 2008), the Risk Taking Index
(RTT: Nicholson et al., 2005), and the Domain Specific Risk
Taking scale (DOSPERT: Blais & Weber, 2006). These three
questionnaires have been used in a variety of contexts and
have been found to be reliable in measuring people’s risk
propensity (Harrison et al., 2005).

The decision-making tasks we consider are the BART, the
preferential choice gambling task, the optimal stopping prob-
lem (Goldstein et al., 2020; Guan et al., 2015; Guan & Lee,
2018; Lee, 2006; Seale & Rapoport, 2000), and the bandit
problem (Leeetal., 2011; Steyvers etal., 2009; Zhang & Lee,
2010b). All four of these decision-making tasks involve risk
and uncertainty, and have corresponding cognitive models
with parameters that can be interpreted as measuring some
form of risk propensity. As mentioned earlier, the BART and
gambling tasks have previously been considered as natural
measures of risk propensity. Our inclusion of the optimal
stopping and bandit tasks is relatively novel and exploratory,
although optimal stopping tasks are sometimes considered
in the related literature on measuring cognitive styles like
impulsivity (e.g. Baron et al., 1986).

The structure of this article is as follows: In the next
section, we provide an overview of the within-participants
experiment involving all of the questionnaires and decision-
making tasks. We then present analyses of each of the
decision-making tasks separately, describing the experi-
mental procedure and conditions, providing basic empiri-
cal results, and describing and applying a cognitive model
that makes inferences about risk propensity. Once all four
decision-making tasks have been examined, we present re-
sults for the questionnaires. Finally, we bring the results
together, by presenting first a correlation analysis and then
a cognitive latent variable analysis that compare all of the
measures of risk propensity. We conclude by discussing the
implications of our findings for understanding whether and
how risk propensity varies across individuals and generalizes
across different tasks and contexts.

2  Overview of Experiment

2.1 Participants

A total of 56 participants were recruited through Amazon
Mechanical Turk. Each participant was paid USD$8.00 for
completing the experiment. There were 37 male participants
and 19 female participants, with ages ranging from 20 to 61
(M =36.4 years, SD = 11.6 years).
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2.2 Procedure

Each of the four cognitive tasks took about 20-30 minutes
to complete. The RPS and RTI took about 5 minutes each,
while the DOSPERT took about 10—15 minutes. Each par-
ticipant completed all of the questionnaires and decision-
making tasks. Because the entire experiment took about
two hours to complete, the experiment was split into two
parts of about one hour each. Each part included two
decision-making tasks and either the RPS and RTI or the
DOSPERT. The RPS and RTI were completed in the same
part because these two questionnaires are much shorter than
the DOSPERT. The order of questionnaires and decision-
making tasks was randomized across participants.

Upon completing Part 1 of the experiment, each partici-
pant was given a unique code. This code allowed them to
complete Part 2 and receive compensation. All participants
who completed Part 1 returned and completed Part 2. Partic-
ipants were also encouraged to take a break between Part 1
and Part 2, subject to the requirement that they complete
both parts within six days.

3 Balloon Analogue Risk Task

The Balloon Analogue Risk Task is a well-established
and widely-used decision-making task for measuring risk
propensity (Leiuez et al., 2003a; Lichthall et al., 2009; Rao
et al., 2008; Aklin et al., 2005). In the BART, the level of
inflation of a balloon corresponds to monetary value. Peo-
ple are repeatedly given the choice either to bank the current
value of the balloon, or to take a risk and pump the balloon to
add some small amount of air and corresponding monetary
value to the balloon. There is some probability the balloon
will burst each time it is pumped, in which case the value
of the balloon is lost. Usually, the probability of the balloon
bursting increases with each successive pump, but a simpler
version in which this probability is fixed has been used by
some authors (e.g., Cavanach et al., 2012; Van Ravenzwaaij
etal., 2011). A BART problem involves a sequence of bank
or pump choices, and finishes when either the value is banked
or the balloon bursts.

Individual risk propensity is most often quantified by the
mean number of pumps made across problems, excluding
those problems where the balloon burst (Schmitz et al.,
2016). An individual who is risk seeking is likely to pump
the balloon more times across problems than an individual
who is risk averse. The mean number of pumps has been
shown to correlate with risk taking behaviors such as smok-
ing, alcohol and drug abuse, and financial decision making
(Hopko et al., 2006; Holmes et al., 2009; Lejuez et al., 2002,
2003a; Schonberg et al., 2011), as well as psychological traits
such as impulsivity, anxiety, and psychopathy (Hunt et al.,
2005; Lauriola et al., 2014).
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3.1 Method

Participants completed two BART conditions, differing in
the fixed probability of the balloon bursting at each trial.
These probabilities were p = 0.1 and p = 0.2. Participants
were told at the beginning of the task that they will be pump-
ing balloons from two different bags of balloons, and that
balloons from the same bag have the same probability of
bursting. However, they were not told the probabilities of
bursting. At the beginning of the experiment, they received a
virtual bank with $0 and a balloon that was worth $1. At the
bottom of the screen there was a “pump’ button and a “bank”
button. With each pump, the balloon’s worth increased by
$1. Participants were instructed to maximize their monetary
reward. All participants completed the same 50 problems
within each of the two conditions. The order of problems
within each condition was randomized across participants.

3.2 Two-Parameter BART Model

Wallsten et al. (2005) pioneered the development of cogni-
tive models for the BART that are capable of inferring latent
parameters measuring risk propensity. Their modeling ap-
proach was further developed by Pleskac (2008) and Zhou
etal. (2019). We use the two-parameter BART model devel-
oped by Pleskac (2008, see also Van Ravenzwaaiij et al. 2011)
as a simplification of one of the original Wallsten et al. (2005)
models. The two-parameter model assumes that a decision
maker believes that there is a single constant probability that
a pump will make a balloon burst p°!f that is fixed over all
problems. It also assumes that they decide on a number of
pumps prior to the first pump in a problem, and do not adjust
this number during pumping. This number of pumps that the
participant considers to be optimal, denoted by w, depends
on their propensity for risk taking, y*, and their belief about
the bursting probability of the balloon when it is pumped. It

is defined as .

_ -y
“= (1 = phelier)”
where y* ~ uniform(0, 10).

Our implementation of the two-parameter BART model
naturally incorporates censoring by modeling the probability
of each of participant pumping or banking on each trial they
completed. Thus, the behavioral data are represented as
vijx = 1if the ith participant pumped on the kth trial of the
Jjth problem, and y;;x = 0 if they banked.

In the two-parameter BART model, the probability that
the ith participant will pump on the kth trial of the jth prob-
lem, pf;:’p depends on both w; and a behavioral consistency
parameter 3;, in terms of a logistic function

pump 1
prr = ,
I 1 +exp (Bi (k —w;))
with 3; ~ uniform(0, 10). Given this pumping proba-
bility, the observed data are simply modeled as y;jx ~
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Bernoulli(pf;;np) over all observed trials, finishing on the

trial for each problem at which the participant banked or the
balloon burst.

The logistic relationship that defines the pumping proba-
bilities means that relatively higher values for 3; correspond

to more consistency in decision making. If 8; = O then
p?;;cnp = 0.5, and the participant’s decision to pump or bank

is random. As 8; — oo, the participant’s behavior becomes
completely determined by whether or not the number of
pumps k is greater than w;.

The y} parameter provides a measure of risk propensity,
since it controls the number of pumps attempted. Larger
values of y; correspond to more pumps and greater risk
seeking. Smaller values of y; correspond to fewer pumps,
and more risk-averse behavior.

We implemented the two-parameter model model, and
all of the other cognitive models considered in this ar-
ticle, as graphical models using JAGS (Plummer, 2003).
JAGS is software that facilitates MCMC-based computa-
tional Bayesian inference (Lee & Wagenmakers, 2013). All
of our modeling results are based on four chains of 1,000
samples each, collected after 2,000 discarded burn-in sam-
ples. The chains were verified for convergence using visual
inspection and the standard R statistic (Brooks & Gelman,
1997).

3.3 Modeling Results

For all of the cognitive modeling in this article, we apply the
model to the data in three steps. First, we define task-specific
contaminant models, identifying those participants who did
not understand the task, or did not complete it in a motivated
way. These contaminant participants are removed from the
subsequent analysis. Secondly, we examine the descriptive
adequacy of the model for the remaining participants, us-
ing the standard Bayesian approach of posterior-predictive
checking (Gelman et al., 2004). Finally, we report the in-
ferences for the model parameters, usually starting with a
few illustrative participants who demonstrate the range of
interpretable individual differences, before showing the in-
ferences for all non-contaminant participants.

3.3.1 Removing Contaminants

We developed two contaminant models for BART behavior.
The first was based on a cutoff for the 8 consistency param-
eter. If a participant’s behavior was extremely inconsistent
across the problems they completed, they were considered
contaminants. We used a cutoff of 0.2, which removed 11
participants. The second contaminant model was developed
to capture behavior motivated by wanting to finish the exper-
iment as quickly as possible. If a participant banked on all of
the problems they were also considered contaminants. Three
participants were associated with this form of contaminant
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Ficure 1: Posterior predictive distributions of the number of pumps for each participant in each condition, sorted by the

mean number of pumps per participant in the p = 0.1 condition. The top panel corresponds to the condition with bursting

probability p = 0.1, and the bottom panel corresponds to the condition with bursting probability p = 0.2. The posterior

predictive distributions are shown as gray squares. The minimum and maximum, as well as the 0.25 and 0.75 quantiles, and

the median of the behavioral data are shown to the immediate left in blue for the p = 0.1 condition and red for the p = 0.2

condition.

behavior. Thus, overall, a total of 14 contaminant partici-
pants were removed, and a total of 42 participants were used
in the modeling analysis.

3.3.2 Descriptive Adequacy

Figure 1 summarizes a posterior predictive check of the de-
scriptive adequacy of the two-parameter BART model. The
distributions of the number of pumps are shown as gray
squares, with areas proportional to the posterior predictive
mass. The observed data are shown to the left, with dots
representing the median number of pumps, thicker solid
lines representing the 0.25 and 0.75 quantiles, and thinner
lines spanning the minimum and maximum observed number
of pumps. The posterior predictive distributions generally
match the observed data, suggesting that the model provides
a reasonable account of people’s behavior.

3.3.3 Inferred Risk Propensity and Consistency

Figure 2 shows the inferred y* and B8 parameter values for
four representative participants, together with a summary of
their observed behavior. Each panel shows the distribution
of the number of pumps that the participant made, excluding
problems on which the balloon burst. The left column shows
the condition with p = 0.1 and the right column shows the
condition with p = 0.2.

Participant 1 can be seen to be consistently risk seeking.
They choose to pump a relatively large number of times in
both conditions. This pattern of behavior is captured by their

risk and consistency parameters, with relatively high values
of y* and B parameter values. Participant 2 is also risk
seeking, in the sense that they generally pump a relatively
large number of times across both conditions, but they do so
less consistently. The number of times they pump in both
conditions varies widely from 3 to more than 15 pumps. This
behavior is quantified by their inferred parameter values,
with relatively high values of y* but relatively low values
of 5. Participant 3 is consistently risk averse. They pump
a relatively small number of times across both conditions
and are very consistent in doing so. This is reflected in a
relatively low y* and high 8 parameter values. Participant 4
is also risk averse, but is more inconsistent than Participant 3.
This is captured with relatively low values of both y* and 8
parameter values .

Figure 3 shows the joint and marginal distributions of the
posterior expectations of y* and g for all participants and for
both conditions. The four representative participants shown
from Figure 2 are labeled. It is evident that there is a wide
range of individual differences in both risk propensity and
consistency parameters. There appears to be a negative and
nonlinear relationship between the two parameters in both
conditions. Participants with relatively high values of y* also
tend to have low values of 8, and vice versa. Participants
near the origin have low values of both y* and 8, and are
consequently both risk averse and inconsistent. However,
as participants move from the origin closer to the lower-
right corner, they become more risk seeking but continue to
lack consistency. As participants move further away from
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Ficure 2: Observed behavior and inferred parameter values for four representative participants. The left column corresponds
to the condition with bursting probability p = 0.1 and the right column corresponds to the condition with bursting probability
p = 0.2. The distributions show the number of pumps each participant made before banking, excluding problems where the
balloon burst. The inferred values of the y*, B, and w parameters are also shown.
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Ficure 3: Joint and marginal distributions of 8 and y* posterior expectations across the two conditions for each participant.
The four representative participants shown from Figure 2 are labeled.
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the origin and closer to the top-left corner, they become
consistently risk averse.

4 Gambling Task

Perhaps the most common task for studying decision-making
under risk and uncertainty involves people choosing between
pairs of gambles (De Martino et al., 2006; Russo & Doshet,
1983; Rieskamp, 2008). Each gamble is defined in terms of
the probabilities of different monetary outcomes, and people
are asked to choose the gamble they prefer. For example, a
person might be asked to choose between Gamble A, which
leads to winning$50 with probability 0.6 and losing $50 with
probability 0.4, and Gamble B, which leads to winning $100
with probability 0.65 and losing $100 with probability 0.35.

4.1 Method

Participants completed two gambling tasks conditions. One
condition was framed in terms of gains and the other was
framed in terms of losses. In the gain condition, participants
were instructed to maximize their monetary reward over the
entire set of problems. In the loss condition participants
were instructed to minimize their monetary losses. All of
the participants completed the same 40 problems in each
condition, but the order of problems within each condition
was randomized across participants.

The pairs of gambles were presented as pie charts labeled
with their respective payoffs and probabilities. A screen-
shot of the experimental interface is provided in the supple-
mentary materials. Participants chose between gambles by
clicking the corresponding pie chart. The expected values
of the outcomes were not provided to the participants and no
feedback was given.

4.2 Cumulative Prospect Theory Model

Important cognitive models of how people choose between
gambles include regret theory (Loomes & Sugden, 1982),
decision-field theory (Busemeyer & Townsend, 1993), the
priority heuristic (Brandstitter et al., 2006), anticipated util-
ity theory (Ouiggin, 1982), and prospect theory (Kahneman
& Tversky, 1979; Tversky & Kahneman, 1981). All of these
models extend the standard economic account of choice as
maximizing expected utility (von Neumann & Morgenstern,
1947) and attempt to provide an account in terms of cognitive
processes and parameters.

We use cumulative prospect theory (CPT), which makes
a set of assumptions about how people subjectively weigh
the value of outcomes and probabilities. CPT assumes that
the outcomes of risky alternatives are evaluated relative to
a reference point, so that outcomes can be framed in terms
of losses and gains. In particular, it assumes that the same

828

Measuring risk propensity

absolute value of a loss has a larger impact on the decision
than a gain, consistent with the phenomenon of loss aversion
(Kahneman & Tversky, 1979). In addition, prospect the-
ory assumes that people subjectively represent probabilities,
typically overestimating small probabilities and underesti-
mating large probabilities.

We use a variant of the CPT model developed and imple-
mented by Nilsson et al. (2011). In this model, the expected
utility of an alternative O is defined as

EU(0) =) piu(x),

where u (-) defines the subjective utility of x;.

This subjective utility is weighted by the probability p;
that the ith outcome occurs. According to the CPT model, if
alternative O has two possible outcomes, then the subjective
value V of O is defined as

V(0) = m(pi)v (xi),

L

where 7 (-) is a weighting function of the objective proba-
bilities and v (-) is a function defining the subjective value
of the ith outcome. The probability weighting function and
the value function differ for gains and losses. The subjective
value of payoff x is defined as

x® ifx>0
v(x) = o« .
-1 (—x)? ifx <0,

where 0 < @ < 1 is a parameter that controls the curvature of
the value function. Nilsson et al. (2011) used different value
functions for gains and losses. We use a simplification of the
model in which the shape of the value function, determined
by @, is the same for gains and losses. If 1 > 1, losses carry
more weight than gains, corresponding to the theoretical
assumption of loss aversion. The larger the value of A,
the greater the relative emphasis given to losses. When
0 < 4 < 1, in contrast, gains have more impact on the
decision than losses. Although prospect theory expects loss
aversion, we use a prior A ~ uniform(0, 10) that tests this
assumption.

The CPT model generates subjective probabilities by a
weighting function which, for two possible outcomes, is de-

fined as
C

Dy
(pf + (1= pi))
where ¢ = 7y for gains and ¢ = ¢ for losses. The parameter
0 < ¢ < 1 determines the inverse S-shape transformation of
the weighting function.

Finally, our CPT model allows for probabilistic decision
making by assuming a choice rule in which choice probabil-
ities are a monotonic function of the differences of the sub-
jective values of the gambles. Specifically, the exponential

ﬂ-(pi): /¢’
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Ficure 4: Inferred subjective value function curves and probability weighting function curves for representative participants.
The three participants in the left panel span the range of inferred individual differences in @ and A. The three participants in
the right panel span the range of inferred individual differences in v and §.

Luce choice rule, rewritten as a logistic choice rule, assumes
that the probability of choosing Gamble A over Gamble B is

1
" T+expo (V(B) -V (A)

04,8

The parameter ¢ can be interpreted as a measure of the
consistency of choice behavior. When ¢ = 0, the proba-
bility of choosing Gamble A over Gamble B becomes %
and choice behavior is random. As ¢ increases, choice be-
havior becomes increasingly determined by the difference
in subjective value between Gamble A and Gamble B. As
¢ — oo, choices become increasingly consistent in the un-
derlying preference, until in the limit the preferred gamble is
always chosen.

We use independent priors for all five parameters for
each participant. Besides the prior 4 ~ uniform(0, 10)
already mentioned, the remaining parameters have priors
@ ~ uniform(0,1), ¥ ~ uniform(0, 1), § ~ uniform(0, 1),
and ¢ ~ gamma(2,1). Note that the final prior on the re-
sponse consistency gives the highest density to ¢ = 1, which
corresponds to probability matching, while also allowing for
more random or more deterministic behavior.

To measure risk propensity using the CPT model we focus
on the loss aversion parameter A. The motivation is that an
individual who exhibits strong loss aversion can be inter-
preted as being risk averse, since their preference will be for
gambles that avoid the possibility of a large loss. For the
inference about loss aversion to be meaningful, there must
be some level of behavioral consistency, and so we place
a secondary focus on the ¢ parameter. We acknowledge
that there are other ways in which the CPT model could

be interpreted in terms of risk propensity. For example, if
the probability weighting function infers that an individual
perceives probabilities in extreme ways, significantly un-
derestimating small probabilities and overestimating large
probabilities, this could be seen as supporting a risky per-
ception of the gambles. Alternatively, a lack of consistency
in decision-making corresponds to a form of risk-seeking,
but is more in line with erratic behavior than the underlying
risk propensity trait we aim to measure.

4.3 Modeling Results
4.3.1 Removing Contaminants

We used a simple guessing model of contamination that as-
sumes the probability any participant will choose Gamble A
over Gamble B is 64 5 = % This guessing model was
applied using a latent-mixture procedure based on model-
indicator variables (Zeigenfuse & Lee, 2010). A total of
22 of the participants were inferred to be using the guessing
model, and were removed from the remainder of the analysis.

4.3.2 Descriptive Adequacy

We checked the descriptive adequacy of the CPT model us-
ing the mode of the posterior predictive distribution for each
participant on each problem. This measure of the choice de-
scribed by the model agreed with 77% of the decisions that
participants made. Given that the chance level of agreement
for choosing between two gambles is 50%, we interpret these
results as suggesting that the CPT model provides a reason-
able account of people’s behavior in the gambling task.
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Ficure 5: The joint and marginal distributions of the pos-
terior expectations of the A risk aversion and ¢ consistency
parameters over all participants. The representative partici-
pants from the left panel of Figure 4 are labeled.

4.3.3 Inferred Subjective Value Functions

We found large individual differences in the subjective value
functions and probability weighting functions that partici-
pants use. Figure 4 shows the inferred functions for a set of
representative participants. In the left panel the first partic-
ipant, shown by the dotted line, has a relatively high value
of A but a low value of @. Consequently, their subjective
value curve significantly undervalues the magnitude of both
gains and losses, but still shows loss aversion in the sense
that the magnitude of losses are weighed more heavily than
gains. The second participant, shown by the dashed line, has
a relatively high value of both @ and A. This participant’s
subjective value curve also undervalues the magnitude of
both gains and losses, but shows strong loss aversion. The
subjective magnitude of losses are much larger than gains.
The third participant, shown by the solid line, has a relatively
high value of @ but A is close to one. Consequently, the effect
of undervaluing the magnitude of both gains and losses is
weaker.

The first participant in the right panel of Figure 4, shown
by the dotted line, has relatively lower values of both y and
¢. Consequently, their weighting functions for both condi-
tions overestimate smaller probabilities and underestimate
larger probabilities. The second participant, shown by the
dashed line, has relatively high values of both y and §. Their
probability weighting functions are extremely close to the
diagonal, which corresponds to good calibration. The third
participant, shown by the solid line, has a relatively low
value of y but high value of ¢. This participant significantly
underestimates small probabilities and overestimates large
probabilities.
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Figure 5 shows the joint and marginal distributions of the
posterior expectations of the loss aversion parameter A as a
measure of risk propensity, and the consistency parameter
¢, over all participants. The representative participants from
the left panel of Figure 4 are labeled. It is clear from that
there is a range of inferred individual differences in both loss
aversion and consistency. About one-third of the participants
exhibit the opposite of loss aversion, with A values below 1.
About one-third of the participants exhibit relatively strong
loss aversion with values of A values over 1.5. All of the ¢
consistency parameters are inferred to be well above 0, as
expected given the removal of guessing contaminants, but
many are less consistent than probability matching.

S Optimal Stopping Problems

5.1 Theoretical Background

Optimal stopping problems are sequential decision-making
tasks in which people must choose the best option from
a sequence, under the constraint that an option can only
be chosen when it is presented (Fereguson, 1989; Gilbert
& Mosteller, 1966). These problems are sometimes called
secretary problems, based on the analogy of interviewing
a sequence of candidates for a job with the requirement
that offers must be made immediately after an interview has
finished, and before the next candidate is evaluated.

People’s behavior on optimal stopping problems has been
widely studied in a variety of contexts, using a number of dif-
ferent versions of the task (Bearden et al., 2006; Christian &
Griffiths, 2016; Kogut, 1990; Lee, 2006; Seale & Rapoport,
1997, 2000). Some studies have used the classic rank-order
version of the problem, in which only the rank of the cur-
rent option relative to the options already seen is presented
(Seale & Rapoport, 1997, 2000; Bearden et al., 2006). Other
studies have used the full-information version of the task, in
which the values of the alternatives are presented (Goldstein
et al., 2020; Lee, 2006; Guan et al., 2014, 2015; Shu, 2008).
For both of these versions there are known optimal solution
processes to which people’s performance can be compared
(Ferguson, 1989; Gilbert & Mosteller, 1966¢).

We use the full-information version of the problem, for
which the optimal solution is to choose the first number that
is both currently maximal and above a threshold that depends
upon the position in the sequence. The values of the optimal
thresholds also depend on two properties of the problem.
One is the number of options in the sequence, known as the
length of the problem. Intuitively, the more options a prob-
lem has, the higher thresholds should be, especially early in
the sequence. The second property is the distribution from
which values of the options are chosen, known as the envi-
ronment distribution. Intuitively, distributions that generate
many large values require setting higher thresholds, while


http://journal.sjdm.org/vol15.5.html

Judgment and Decision Making, Vol. 15, No. 5| September 2020

distributions that generate many small values require setting
lower thresholds.

5.2 Method

Participants completed four types of optimal stopping prob-
lems, made up of combining problem lengths of four and
eight with environment distributions we call neutral and
plentiful. In the neutral environment, values were gener-
ated from the uniform(0, 100) distribution. In the plentiful
environment, values were generated by scaling values drawn
from the beta(4, 2) distribution to the range from 0 to 100.
All participants completed the same 40 problems within each
condition, and the order of problems within each condition
was randomized across participants.

To complete each problem, participants were instructed to
pick the heaviest cartoon cat out of a sequence, with each
cat’s weight ranging from 0 to 100 pounds. A screenshot of
the interface is provided in the supplementary material. Par-
ticipants were told the length of the sequence, that a value
could only be chosen when it is presented, that any value
that was not the maximum was incorrect, and that the last
value must be chosen if no values were chosen beforehand.
Participants indicated whether or not they chose each pre-
sented value by pressing either a “select” or a “pass” button.
The values that participants rejected in a sequence were not
shown once the next value in the sequence was displayed.
The values in the sequence after the one the participant chose
were never presented. After each problem, participants were
provided with feedback indicating whether or not they chose
the option with the maximum value.

5.3 Bias-From-Optimal Model

Previous work modeling decision making in optimal stop-
ping problems has found evidence that people use a series of
thresholds to make decisions, and that there are large indi-
vidual differences in thresholds (Goldstein et al., 2020; Guan
etal., 2014; Guan & Lee, 2018; Lee, 2006). A surprising but
reliable finding is that, beyond the initial few problems in an
environment (Goldstein et al., 2020), there is relatively little
learning or adjustment of thresholds (Baumann et al., 2018;
Campbell & Lee, 2006; Guan et al., 2014; Lee, 2006). This
justifies modeling an individual’s decisions in terms of the
same set of thresholds being applied to all of the problems.
We use the previously-developed Bias-From-Optimal
(BFO) model to characterize the thresholds people use.
(Guan et al., 2015). The BFO model represents the thresh-
olds an individual uses in terms of how strongly they devi-
ate from the optimal thresholds for the problem length and
environmental distribution. We denote the optimal thresh-
olds as Ti,..., T, for a problem of length m (Gilbert &
Mosteller, 1966, Table 2). Naturally, the last threshold in
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Ficure 6: The thresholds produced by the bias-from-optimal

threshold model under different parameterizations of g and

y. The optimal threshold, correspondingto 8 = y = 0, is

also shown.

the sequence must be O since the last value must be cho-
sen. The ith participant’s thresholds depend on a param-
eter " ~ Gaussian(0, 1) that determines how far above
or below their threshold is from optimal, and a parameter
yit o~ Gaussian (0, 1) that determines how much their bias
increases or decreases as the sequence progresses. Formally,
under the BFO model, the ith participant’s kth threshold in
a problem of length m is

" =100 x ® |Dd7! i my Kom
Ti K= X m + ﬁi + n—1’)/l
for the first m — 1 positions, and Tl?:’n = O for the last. The
link functions ® (-) and ®~! (-) are the Gaussian cumulative
distribution and inverse cumulative distribution functions,
respectively.
According to the BFO model, the probability that the ith
participant will choose the value they are presented in the
kth position on their jth problem is

m
Gm — ai
ijk = ) 1-a™ .

e otherwise

H m m m __ m m
if Vi > Tik and Vi =max {Vijl’ e, vijk}

for the first m positions and

m—1
m  _ 1 _ m
O = 1= > 6,
k=1

for the last position. The parameter o ~ uniform(0, 1) is
the individual-level accuracy of execution that corresponds
to how often the deterministic threshold model is followed
(Guan et al., 2014; Rieskamp & Ottc, 2006).

Figure 6 shows how the shape of threshold functions
changes with different values of 8 and 7y, as compared to
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the optimal decision threshold for a problem of length eight
in the neutral environment. The optimal threshold corre-
sponds to the case with 8 = 0 and y = 0, and is shown in
bold. The 8 parameter represents a shifting bias from this op-
timal curve, with positive values resulting in thresholds that
are above optimal and negative values resulting in thresh-
olds that are below optimal. The y parameter represents
how quickly thresholds are reduced throughout the problem
sequence, relative to the optimal rate of reduction. Positive
values of y produce thresholds that drop too slowly, while
negative values of y produce thresholds that drop too quickly.
Priors are placed on the two risk parameters and consistency
parameter for each participant so that y, 8 ~ Gaussian (0, 1)
and @ ~ uniform(0, 1).

Our decision to use the BFO model was based on the direct
interpretability of its parameters in terms of risk propensity.
It is an unrealistic model of the cognitive processes involved
in optimal stopping problem decisions, because it assumes
perfect knowledge of the optimal thresholds, which are dif-
ficult to derive and compute. Alternative models based on
fixed and linearly decreasing thresholds provide more re-
alistic cognitive processing accounts (Baumann et al., in
press; Goldstein et al., 2020; Lee, 2006; Lee & Courev, in
press). The BFO model is better interpreted as a measure-
ment model, with the § and y parameters quantifying how a
set of thresholds are more or less risky than optimal.

One interpretation is that higher thresholds that require
higher values represent risk seeking and lower thresholds
represent risk aversion. Larger values S increase thresholds,
and larger values of y maintain higher thresholds for longer.
Under this interpretation larger values of 8 and y correspond
to greater risk propensity. In contrast, smaller values of 8
and 7y both lead to lower thresholds over the course of the
sequence and correspond to lower risk propensity.

5.4 Modeling Results

Before applying the BFO model, we checked that there was
no clear evidence of learning or adaptation. As discussed
above, this is a basic empirical pre-condition for the appli-
cation of threshold models. Figure 7 shows the performance
of participants, measured by the proportion of problems for
which they correctly chose the maximum. The problems
were split into four blocks of 10 problems each. In the two
length-four conditions mean performance is between about
0.5 and 0.6. In the two length-eight conditions mean perfor-
mance is between about 0.3 and 0.5. Participant performance
is better in the shorter problems, but there do not appear to
be large differences in performance between the neutral and
plentiful environments. These results do not suggest there is
any significant learning or adaptation.
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Ficure 7: Mean proportion correct over all participants on
successive blocks of 10 problems for the four different optimal
stopping conditions.

5.4.1 Removing Contaminants

We developed two contaminant models for the optimal stop-
ping task. The first assumes that people simply picked the
first option in the sequence repeatedly across all problems,
regardless of its value. The second assumes that people
choose randomly, so that each option in the sequence is
equally likely to be chosen. A latent-mixture analysis identi-
fied three participants as using the first contaminant model,
and these were removed from subsequent analysis.

5.4.2 Descriptive Adequacy

As a posterior predictive check, we took the mode of the
posterior predictive distribution for each participant on each
problem as the decision the model expects. By this mea-
sure, the BFO model successfully described about 77% of
the decisions that participants made. Given that the base
rate or chance level of agreement is 25% for length-four
problems and 12.5% for length-eight problems, we interpret
these results as evidence that the model provides a reasonable
account of people’s behavior.

5.4.3 Inferred Thresholds

Figure 8 shows the marginal posterior expectations for all the
inferred thresholds under all four conditions for all of the par-
ticipants. The optimal decision threshold in each condition
is also shown as a solid black line. It is clear that partici-
pants are generally sensitive to both length of the problem
and the environmental distribution from which values are
drawn. The thresholds in the plentiful environment condi-
tions are relatively higher than the thresholds in the neutral
environment conditions. The thresholds in the length-eight
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Ficure 8: The inferred thresholds for all participants in the optimal stopping conditions corresponding to the length-four
neutral environment (top-left), the length-four plentiful environment (top-right), the length-eight neutral environment (bottom-
left), and the length-eight plentiful environment (bottom-right). Two representative participants are shown by the dashed and

dotted lines.

conditions remain higher longer into the sequence than the
thresholds in the length-four conditions. Interestingly, it ap-
pears that participants in the length-eight conditions tend to
use thresholds that are lower than optimal in both environ-
ments, and especially so in the plentiful environment.

It is also clear that there are individual differences in
thresholds in all four conditions. Two participants are high-
lighted by dotted and dashed lines in Figure 8, showing their
inferred thresholds in all four conditions. These participants
were chosen because they show very different patterns of
risk propensity in terms of their thresholds. The participant
represented by the dotted lines can be seen to be risk seek-
ing, because their thresholds for all four conditions are much
higher than optimal. The participant starts their threshold
high and maintains it at a high level as the sequence pro-
gresses. This risk-seeking behavior is quantified by their g8
and y parameter values, which are both positive and rela-
tively large. Conversely, the participant represented by the
dashed lines can be seen to be risk averse, because their
thresholds are much lower than optimal in all four condi-
tions. The participant starts their threshold low and lowers it
quickly as the sequence progresses. This risk-averse behav-

ior is also quantified by their large negative 8 and y parameter
values.

Figure 9 summarizes the individual differences across all
participants for all four conditions. The posterior expecta-
tions of the B8 and vy risk parameters are shown jointly in
the scatter-plot in the center panel, and their marginal dis-
tributions are shown as histograms on the bottom and left
margins. The two participants highlighted in Figure 8 are
labeled in the joint distribution. The dotted lines represent
where 8 and y are equal to 0. Where the dotted lines meet
in the center represents the optimal threshold. It is clear
that there is a wide range of both quantitative and qualitative
individual differences in risk propensity, because all four
quadrants around optimality are populated.

6 Bandit Problems

6.1 Theoretical Background

Bandit problems are widely used to study human decision
making under risk and uncertainty (Banks et al., 1997; Daw
et al., 2006; Mever & Shi, 1995; Lee et al., 2011). In bandit
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conditions for all of the participants. The risk-seeking and risk-averse participants from Figure 8 are labeled.

problems, people must choose repeatedly between a set of
alternatives. Each alternative has a fixed reward rate that is
unknown to the decision maker, and each time it is chosen
this probability is used to generate either a reward or a failure.
The goal is to maximize the total number of rewards over
the sequence of decisions. Bandit problems are psychologi-
cally interesting because they require that the exploration of
new good alternatives be balanced with the exploitation of
good existing alternatives (Mehlhorn et al., 2015). People
generally start by exploring the different available alterna-
tives before shifting to exploit the alternative with the highest
reward rate.

Bandit problems can differ in terms of how many alterna-
tives are available and in terms of how many decisions are
made within a problem. In infinite-horizon bandit problems
the total number of decisions to be made is not known in
advance, but there is some probability that the problem stops
after any decision. In finite-horizon bandit problems the to-
tal number of decisions to be made within a problem is fixed
and known in advance. This corresponds to the length of a

problem. Bandit problems can also differ in terms of the dis-
tributions of reward rates that underlie each alternative. This
distribution corresponds to the environment for the problem.

6.2 Method

Participants completed four types of finite-horizon bandit
problems, all involving two alternatives. The four condi-
tions combined problem lengths of eight and 16 with neutral
and plentiful environmental distributions. In the neutral
environment, reward probabilities were generated from the
uniform(0, 1) distribution. In the plentiful environment, re-
ward probabilities were generated from the beta(4, 2) distri-
bution. Consequently, the plentiful environments contained
alternatives that had relatively higher reward rates. All par-
ticipants completed 40 problems within each condition and
the order of problems within each condition was randomized
across participants.

Participants were instructed to maximize the number of
rewards by pulling the arms of two cartoon slot machines. A
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screenshot of the interface is provided in the supplementary
material. Before beginning each condition, participants were
informed that the reward probabilities for each machine were
different for each problem in the block, but the same for
all choices within a problem. They were also told how
many choices were required for each problem. They were
not, however, told the underlying distribution of the reward
probabilities.

Participants made their choice selection by clicking a
“pull” button under one or the other of the two slot ma-
chines. The reward or failure outcome was then provided,
in the form of a green or red bar. If a choice resulted in a
reward, a green bar was added to the left side of the chosen
slot machine. If a choice resulted in a failure, a red bar was
added to the left side of the chosen slot machine. Thus, the
bars showed the cumulative pattern of reward and failure
over the course of the problem, and the total reward points
earned on the current problem was also shown at the top of
the screen. A problem was completed once the participant
completed all of the choices.

6.3 Extended Win-Stay Lose-Shift Model

There are many different models of human decision making
on bandit problems, including the e-greedy, e-decreasing and
the 7-first model (Sutton & Barto, 1998). We use a variant of
perhaps the simplest and most widely used model, known as
win-stay lose-shift (WSLS: Robbins, 1952; Sutton & Bartc,
1998). In its deterministic form, this model assumes that
people stay with the most recently-chosen alternative if it
provides a reward, but shift to another alternative if it does
not. In the standard stochastic version of the WSLS strat-
egy, there is a probability y of following this rule for every
decision.

In our extended WSLS model there is a probability vy,, of
staying after a reward and a potentially different probability
v; of shifting after a failure. This WSLS model allows there
to be a psychological difference between reacting to reward
and failure in the decision-making process. This model has
been found to account well for people’s behavior (Lee et al.,
2011; Zhang & Lee, 2010a).

The extended WSLS model does not require memory of
previous actions and outcomes beyond the immediately pre-
ceding trial. It is also insensitive to whether the horizon is
an infinite or finite. Despite this simplicity, it provides a
measure of risk propensity. A person who is risk seeking is
likely to shift to another alternative with a high probability
following a failure, in order to explore the other available
options. In contrast, a person who is risk averse is likely to
shift to another alternative with a relatively lower probability
following a failure.

We represent the behavioral data as y;jx = 1 if the ith
participant chose the left alternative on the kth trial of their
Jjthproblem, and y;;x = 0 if they chose the right option. The
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extended WSLS model assumes the probability of choosing
the left alternative is

1/2 ifk=1
YV if chose left and r;;(x-1) = 1
Oijk =11 -7y if chose leftand r;;(x_1) =0
1 -y, if choseright and r;;(x-1) = 1
Vi if chose right and r;;(x-1) = 0,
where r;j(x-1) = 1 if the previously selected alternative

resulted in a reward, and r;j_1) = O if the previously
selected alternative resulted in a failure. The observed
rewards and failures on each trial r;;; are generated by
rijk ~ Bernoulli(p*), where p't and p*e" are the reward
rates for the two alternatives. These reward rates are gener-
ated from either the neutral or plentiful environment. The
behavioral data are modeled as y;jx ~ Bernoulli(6;;x). Fi-
nally, our model uses the priors y,,, y; ~ uniform(O, 1).

6.4 Modeling Results
6.4.1 Removing Contaminants

We used a guessing contaminant model in which, for ev-
ery trial of a problem, the participant chooses at random.
Using the latent-mixture approach, there was overwhelm-
ing evidence in favor of the extended WSLS model over the
guessing model for all of the participants. Consequently,
no contaminant participants were removed and the modeling
analysis used all 56 participants.

6.4.2 Descriptive Adequacy

As a posterior predictive check, the mode of the posterior
predictive distribution for each participant on each problem
was used as the decision that the model expected to have
been made. The extended WSLS model was able to describe
84% of the decisions that the participants made. Given
that the chance level of agreement for selecting either of the
two alternatives is 50% on each trial within all problems,
we interpret this result as showing that the extended WSLS
model provides a good account of people’s behavior.

6.4.3 Inferred Win-Stay Lose-Shift Probabilities

Figure 10 shows the numbers of shifts following rewards
and failures across positions for four representative partic-
ipants. These participants were chosen because they span
the range of inferred individual differences. The left pan-
els show the length-eight conditions while the right panels
show the length-16 conditions. The numbers of shifts fol-
lowing failure are shown in blue for the neutral condition,
and in green for the plentiful condition, while the numbers
of shifts following reward are shown in gray. In all four
conditions, Participant 1 shifts relatively often after a failure
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Ficure 10: The number of shifts following reward versus failure for four representative participants in each of the four
conditions. The left panels show the length-eight conditions while the right panels show the length-16 conditions. The numbers
of shifts following failure are shown in blue for the neutral condition, and in green for the plentiful condition. The numbers
of shifts following reward are shown in gray. The inferred y,, and y; parameters for each participant in the the neutral and

plentiful conditions are also shown.

but rarely after a reward. Participant 2 almost never shifts,
either following a reward or a failure. Participant 3 shifts
relatively more often following failure than Participant 2,
but also shifts sometimes following a reward. Participant 4
shifts moderately often following both reward and failure for
early decisions in the sequence, but shifts less often as the
sequence progresses. The inferred vy, and y; parameters for
each participant in the the neutral and plentiful conditions
are also shown, and correspond to the observed staying and
shifting behavior.

Figure 11 shows the joint and marginal distributions of
the posterior means of the " and y! for each participant,
for all four conditions. The four representative participants
from Figure 10 are labeled. It is clear that the " and
parameters capture the consistent differences in their behav-
ior observed in Figure 10. For example, Participant 1, who
almost always stays after a reward and shifts after a failure, is
consistently in the top right of the scatter plot, corresponding
to high values of both the y* and y! parameters. In contrast,
Participant 2, who rarely switches, is consistently located
in the bottom right of the scatter plot, corresponding to a
high value of the " parameter and a small value of the '

parameter.

Overall, it is clear that there is a range of individual dif-
ferences in both win-stay and lose-shift probabilities, and
that there is a negative relationship between the two param-
eters. Participants who tend to stay following a reward also
tend to stay following a failure. Participants who shift rela-
tively more even after a reward also tend to explore the other
alternative after a failure.

7 Questionnaires

Participants completed three questionnaires: the Risk
Propensity Scale (Meertens & Lion, 2008), the Risk Tak-
ing Index (Nicholson et al., 2005), and the Domain Specific
Risk Taking scale Blais & Weber (2006). The questions
involved in these instruments are provided in the supple-
mentary materials.
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FiGure 11: Joint and marginal distributions of the means of the y* and ! posterior expectations across the four conditions
for each participant. The four representative participants shown from Figure 10 are labeled.

7.1 Risk Propensity Scale

The Risk Propensity Scale (RPS) was designed to be a short
and easily administered test for measuring general risk-taking
tendencies. The RPS originally consisted of only nine items,
from which two items were later removed. The version of
the RPS we use consists of the seven remaining items. All
of the items involve statements that are ratecl on a nine-
point scale ranging from “totally disagree” to “totally agree,”
except for the last item, which involves a nine-point rating
from “risk avoider” to “risk seeker.” Items 1, 2, 3, and 5
were reverse-scored so that high scores represented high risk
propensity. Meertens & Lion (2008) reportecl an internal
reliability coefficient measured by Cronbach’s ¢ of 0.77.
Participants indicated their selection by checking the ap-
propriate box under each number. To obtain an overall RPS
score for each participant, the mean of the seven items was
taken. The left panel of Figure 12 shows the distribution of
RPS scores across all 56 participants. The RPS scores are
right-skewed ranging from 1 to 8.14, with M = 3.61 and
SD = 1.86. These results are different from Meertens &

Lion (2008), who reported a mean score of 4.63 and stan-
dard deviation of 1.23. The Cronbach’s @ observed in this
sample of 56 participants was 0.90.

7.1.1 Risk Taking Index

The Risk Taking Index (RTTI) assesses overall risk propensity
in six domains: recreation, health, career, finance, safety, and
social. There is only one item for each of the six domains,
but each item is answered twice: once for current attitudes,
and once for past attitudes. All of the answers are given using
a five-point Likert scale ranging from “strongly disagree” to
“strcngly agree.”

Participants indicated their selection by checking the ap-
propriate box under each number. To obtain an overall RTI
score for each participant, the sum of each domain’s re-
sponse was taken across the current and past contexts. Then,
the sum of each domain was taken as the overall RTI score.
Therefore, RTI scores can potentially range from 12 to 60,
where higher scores indicate higher risk propensity. Nichol-
son ct al. (2005) reported high internal consistency for the
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general risk propensity scale with a Cronbach’s @ of 0.80.
The left panel of Figure 12 shows the distribution of RTI
scores across all 56 participants. The RTI scores are possi-
bly bi-modal and range from 12 to 42. There is a large group
of participants with a peak around 20 and a smaller group of
participants with a peak around 35. These results are sim-
ilar to Nicholson et al. (2005); the original study reported
a mean score of 27.54 and standard deviation of 7.65. The
Cronbach’s a observed in this sample of 56 participants was
0.84.

7.2 Domain Specific Risk Taking Scale

The Domain Specific Risk Taking scale (DOSPERT) was
originally developed by Weber et al. (2002) and later revised
by Blais & Weber (2006) to be shorter and more broadly
applicable. The original version was revised from 40 items
down to 30 items, evaluating risky behavioral intentions orig-
inating from five domains: ethical, financial, health/safety,
social, and recreational risks. Each domain involves six
items.

The DOSPERT differs from the RPS and RTI in that it
attempts to distinguish people’s tendency to be risk seeking
from people’s perception of risk. Blais & Weber (2006)
found a negative relationship between the two; people who
tend to engage in more risk seeking behavior also tend to
perceive situations as less risky, and vice versa. Therefore,
the DOSPERT is split into two assessments, separating risk
taking from risk perception. Participants rated each of the 30
statements in terms of self-reported likelihood of engaging
in risky behaviors to measure risk taking, and in terms of
their gut-level assessment of the riskiness of these behaviors
to measure risk perception. In the risk-taking assessment, a
seven-point rating scale was used, ranging from “extremely
unlikely” to “extremely likely.” In the risk-perception as-
sessment, a seven-point rating scale was used ranging from
“not at all risky” to “extremely risky”.

Participants indicated their selection by checking the ap-
propriate box under each number. Ratings were summed
across all items of each domain to obtain five subscale scores
for risk taking and five subscale scores for risk perception.
The overall DOSPERT risk taking score is the mean of each
subscale score for the risk taking assessment. Similarly, the
overall DOSPERT risk perception score is the mean of each
subscale score for the risk perception assessment. Therefore,
each of the scores can potentially range from 6 to 42, where
higher scores indicate higher risk propensity. Blais & Webet
(2006) reported Cronbach’s a’s ranging from 0.71 to 0.86
for the risk-taking scores, and Cronbach’s o values ranging
from 0.74 to 0.83 for the risk-perception scores.

The right panel of Figure 12 shows the relationship be-
tween the risking taking and risk perception scores from the
DOSPERT across all 56 participants, along with the marginal
distributions of each. The risk taking scores also appear to
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be slightly bi-modal, with a large group of participants cen-
tered around about 16—18 and then a smaller group near 30.
Risk perception scores are unimodal and centered around
27. These results are consistent with the findings from Blais
& Weber (2006), in the sense that there is a negative re-
lationship between risk taking and risk perception scores
(r = =0.22). The Cronbach’s « observed in this sample of
56 participants was 0.92 for the overall risk-taking score, and
0.92 for the overall risk-perception score.

8 Correlation Analysis

Our main goal is to examine the relationship between the
risk propensity and consistency parameters within and across
tasks, and their relationship to the questionnaire measures.
Before doing this, however, we compared the behavioral per-
formance of participants within and across each cognitive
task. Performance in the BART was computed as the aver-
age dollar amount collected on each problem. Performance
in the gambling task was computed as the proportion of
problems for which the participant chose the gamble with
the maximum expected utility. Performance on the optimal
stopping problem was computed as the proportion of prob-
lems where the participant correctly chose the maximum.
Performance in the bandit task was computed as the average
proportion of trials that resulted in reward.

Figure 13 shows the correlations of participant perfor-
mance across each condition for all of the decision-making
tasks. The area of the circles represent the magnitude of
Pearson’s correlation », with blue circles representing pos-
itive correlations and red circles representing negative cor-
relations. These empirical results suggest that participant
performance is highly correlated within tasks, but that it is
less strongly correlated across tasks.

8.1 Cognitive Task Overview

Table 1 provides an overview of the four decision-making
tasks, models, and relevant parameters. The BART has
two risk parameters, 7’?:2’ and two consistency parameters,
Bi1:2. The gambling task has one risk parameter, 4, and one
consistency parameter, ¢. The optimal stopping task has
eight risk parameters, B1.4 and 7y.4, and four consistency
parameters, a.4. The bandit task has four risk parameters,
yi: 4» and four consistency parameters, y;",. In total, there
are 26 relevant parameters from the decision-making tasks
to be compared within and across tasks for each individual.

8.2 Estimating Correlations with Uncertainty

The correlations between each risk and consistency parame-
ter from all four decision-making tasks were estimated, using
a Bayesian approach, based on Lee & Wagenmakers (2013,
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Ficure 12: The distributions of questionnaire-based measures of risk. The left panel shows the joint and marginal distributions
of RPS and RTI scores. The right panel shows the joint and marginal distributions of the DOSPERT risk taking and risk

perception scores.

Task Conditions = Model Risk parameter(s)  Consistency parameter
Optimal Stopping 4 BFO Bis-- s BaryYiseoorYa Alyee., 4
BART 2 2-parameter Y7 B1, B
Bandit 4 e-WSLS YooY VWaovy
Gambling 2 CPT A 1)

TaBLE 1: Overview of tasks and parameters.

Chap. 5). A key feature of this approach is that it incorporates
uncertainty in the inferences of the parameters themselves
(Matzke et al., 2017). That is, we do not use point estimates
of the various risk and consistency parameters, but instead
acknowledge that participant’s behavior is consistent with a
range of possible values, given the limited behavioral data.
Our inferences about the correlations between parameters
are thus sensitive to the precision with which their values are
determined from the cognitive models and decision-making
tasks we used.

Formally, for each pair of parameters, we correlate a set of
samples for the ith participant, rather than just a single best
estimate for each participant. These samples are generated
by assuming Gaussian marginal posterior distributions

xij ~ Gaussian(y;;, 15),

where y; = (yi1,yi2) represents the latent true value of the
parameters, and A¢ = (/lf, /lg) denotes the precision of the
inference about them. The precisions are estimated as the
standard deviations of the marginal posterior distributions
from the inferences of the decision-making models. The
correlation focuses on the latent true values of the cognitive
measures, by modeling them as a draw from a multivariate

Gaussian distribution

-1
. 0'12 ro107
yi ~ GauSSIan (/’lla /'12) > 2 .
ro107 0'2

Our hierarchical correlation model uses the following priors
onr, oy, oo, Ui, and py:

r ~ uniform(-1,1)

0?0} ~ invGamma(0.001,0.001)
uniform(0, 1) for OS a, Bandit ", y*
uniform (0, 10) for BART 8, v*

M1, 42~ {Gaussian(0,0.001) for OS S,y
uniform(1,9) for RPS

uniform(10, 50) for RTI, DOSPERT.
The correlation analysis was implemented as a Bayesian
graphical model in JAGS. It was applied independently to
all possible parameter combinations, inferring the posterior
distribution of the correlation coefficient in each case. We
generally use the posterior mean as a summary of the infer-
ence, but also use the Savage-Dickey method (Wetzels et al.,
2010) to estimate Bayes factors to compare the hypotheses
of correlation and no correlation.
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Ficure 13: Pearson’s correlations of performance across
each condition in all of the decision-making tasks. Blue cir-
cles represent positive correlation, while red circles represent
negative correlations. The areas of the circles correspond to
the magnitudes of the correlations.

An advantage of Bayesian analysis is that it can find ev-
idence in favor of a null hypothesis such as no correlation.
Whereas null hypothesis significance testing can either find
evidence for a correlation, or fail to find evidence for a cor-
relation, the Bayesian analysis can produce three outcomes.
These possible outcomes are evidence for a correlation, evi-
dence for the absence or a correlation, or no strong evidence
for either possibility. This is important in evaluating whether
the data contain enough information to make meaningful
claims about the correlations. To the extent that the Bayes
factors provide evidence in favor of either the presence or ab-
sence or correlations, the data can be considered sufficiently
powerful to have answered the research question. Evidence
for the data being insufficient would be provided by Bayes
factors that provide no strong evidence in either direction.

8.3 Correlation Results

Combining the scores from the three questionnaires to the
parameters from the four decision-making tasks gives a total
of 30 risk and consistency measures to be compared, which
leads to 435 pairwise correlations. Figure 14 shows the re-
sults for all of these correlations. The dashed lines divide the
grid into the three questionnaires and four decision-making
tasks. The circles indicate parameter pairs for which the
Bayes factor provides evidence of a correlation. We used
a cutoff of 3 for the Bayes factor, because it is a standard
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boundary corresponding what is variously labeled “substan-
tial” (Jeffreys, 1961), “positive" (Kass & Raftery, 1995), and
“moderate” (Lee & Wagenmakers, 2013) evidence.! The ar-
eas of the circles correspond to the magnitudes of the corre-
lations, given by the posterior expectation of r. Blue circles
indicate that a correlation is positive while red circles in-
dicate that a correlation is negative. Meanwhile, the cross
markers correspond to those comparisons where Bayes factor
was at least 3 in favor of the null hypothesis of no correlation.

It is clear that there are positive correlations between the
same parameters within tasks. For example, all of the con-
sistency parameters across conditions from optimal stopping
are highly correlated, as are the risk parameters within the
BART. This is clear from the patterns of blue circles along
the diagonal. The positive correlations across conditions
within the same task are expected, given the stability we ob-
served in representative participants across conditions in the
decision-making task analyses. Furthermore, the RTI, RPS,
and DOSPERT RT are also positively correlated with each
other, replicating previous findings.

There also appear to be some negative correlations be-
tween different parameters within tasks. For example, the
¥" and y! parameters in the bandit task are negatively corre-
lated with each other, and the risk and consistency parameters
in the BART are also negatively correlated. As we noted in
the task-specific analyses, there is some trade-off between
parameters for some of these tasks.

There appears, however, to be less evidence for systematic
correlations across tasks. Indeed, there is generally evidence
for a lack of correlation between parameters from different
tasks, and between cognitive parameters and the question-
naire measures. The one exception relates to the gambling
tasks parameters, for which there is no evidence for or against
correlations with other cognitive parameters and question-
naire measures. This result likely reflects a failure of the
experimental design to measure the risk aversion and con-
sistency parameters with enough precision. In contrast, the
results in Figure 14 show that there is enough information
to make inferences, either in favor or against the presence of
a correlation, for all of the other cognitive parameters and
questionnaire measures. This finding speaks directly to the
adequacy of the data to address the main research question
about correlations between model parameters and question-
naire measures.

Figure 15 provides a different presentation of the corre-
lation analysis that focuses on the comparisons for which
there is evidence for correlations. Only pairs of parameters
or measures with Bayes factors greater than 10 in favor of
the alternative model are considered in this analysis, to fo-
cus on those pairs for which the evidence of correlation is
strongest. The left panel shows the 95% Bayesian credible
intervals of r for each comparison. The right panel shows

1See https://www.nicebread.de/grades-of-evidence- a-cheat-sheet/.
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Ficure 14: Correlation matrix of the risk and consistency parameters. Blue circles represent positive correlations for which the
Bayes factor provided at least moderate evidence, while red circles represent negative correlations for which the Bayes factor
provided at least moderate evidence. The areas of the circles correspond to the absolute values of the posterior expectation
of the correlation r. Cross markers indicate that the Bayes factor provided at least moderate evidence for the absence of a
correlation. The parameters within tasks are identified by the dashed gray lines. OS « represents consistency in the optimal
stopping problem and OS 8 and vy represent risk in the optimal stopping problem. Bandit y* represents consistency in the
bandit task and Bandit y represents risk. Bart y* represents risk in the BART task and Bart 3 represents consistency. Gamble

¢ represents consistency and Gamble A represents risk.

the log Bayes factors for the corresponding comparisons.
The strong positive positive correlations between the same
cognitive parameters across different conditions within tasks
are clear, as are the trade-offs between different parameters
within tasks, shown by the strong negative correlations.

variable model analysis (CLVM: Vandekerckhove, 2014; Pe
et al., 2013). CLVMs are a broad category of models that
involves a latent variable structure built on top of cognitive
process models and other measures of behavior, to allow in-
ference of latent variables that have higher-order cognitive

interpretations.
A CLVM is defined by a factor matrix @, which contains a
9 Cognitive Latent Variable Analysis score ¢ ¢, for each participanti = 1, ..., ] on each of F latent
factors f = 1,..., F, and a loadings matrix ¥, which has F
The correlation analysis is one way to test the idea that there  columns corresponding to latent dimensions or factors, and
is a general risk factor underlying the cognitive parameters E rows e = 1,. .., E corresponding to cognitive parameters

that control people’s risk propensity on the cognitive tasks,
and is also measured by the questionnaires. As asecond com-
plementary approach to testing the same idea, we explored
the factorial structure of the tasks using a cognitive latent

or other behavioral measures. The values ¥ ¢ in the load-
ings matrices, corresponding to factor-parameter pairings,
may be set to assume there is no association (Y.y = 0),
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assume there is an association (.5 = 1), or allow for the
possibility there is some level of association to be inferred.
These assumptions formalize different models of the factor
structure underlying the relationships between the cognitive
model parameters and questionnaire measures. Each cog-
nitive model parameter and questionnaire measure e has an
expected value given by the weighted average of all factors:
E(eij) = Z? Wer @ yi. The likelihood of the model is

F
eij ~ Gaussian(z Yerdri,A°),
S

where the uncertainty A€ is estimated as the standard de-
viation of the marginal posterior distribution of parameter
e as obtained from the preceding analyses. In all cases,
the latent factor scores have multivariate Gaussians priors
with mean zero and precision matrix the identity matrix:
¢.; ~ multivariateGaussian (0px1, 1pxr). Similarly, the
free loadings (i.e., those K loadings not constrained to be
0 or 1) were given the same multivariate Gaussian prior
¥... ~ multivariateGaussian (0x x1, 1Lk xx )-

We consider eight CLVMs. Three of these models capture
what we believe are sensible theoretical positions, and three
are based on the data and are exploratory in nature. The
remaining two models are “bookend” models, which serve
as reference points for assessing the merit of the substantive
models based on theory and data (Lee et al., 2019).

9.1 Theory-based models

The first theoretical model is the “general risk” model. It
has one latent factor for each cognitive model parameter,
and combines their independent replication across experi-
mental conditions. For example, with respect to the opti-
mal stopping model, there is one factor for all four of the
a error-of-execution parameters applied to the four experi-
mental conditions, one factor for all of the 8 bias parameters,
and one factor for all of the y decrease parameter. The same
separation and grouping of parameters applies to the other
cognitive models. In addition, the general risk model has a
general factor that all parameters share and is assumed to cor-
relate with the risk surveys. The theoretical motivation for
this model is based on the possibility that there is a general
factor, which can be conceived as a risk propensity equiv-
alent to the general intelligence factor “g” from cognitive
abilities and psychometric testing. The general risk model
emphasizes this general factor, while also allowing for the
uniqueness of the cognitive tasks.

The left panel of Figure 16 details the structure of the
general risk model. Rows represent the cognitive model pa-
rameters and questionnaire measures and columns represent
the assumed factors. Dark blue squares indicate that a pa-
rameter or measure is assumed to load on a factor. Light
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yellow squares indicate that some level of association is pos-
sible. Empty squares assume a lack of association. Thus,
the first factor has dark blue squares for the questionnaire
measures, since these are assumed to index general risk, and
light yellow squares for the cognitive parameters, allowing
for the possibility they may also index risk. The remainder of
the model structure loads each cognitive parameter in each
task on a separate factor.

The second theoretical model is the “two-factor” model. It
is a simpler model, with only two latent factors. The middle
panel of Figure 16 details the structure of this model. One
factor corresponds to risk propensity and the other corre-
sponds to behavioral consistency. The risk propensity factor
loads on the specific cognitive model parameters we inter-
pret as controlling risk propensity in the tasks. These are
the S bias and y decrease parameters in the optimal stopping
model, the y! lose-shift parameters in the extended-WSLS
model, the y risk propensity parameter in the BART model,
and the A loss aversion parameter in the cumulative prospect
theory model. It also loads on the risk measures produced by
the four questionnaires. The behavioral consistency factor
loads on the other cognitive model parameters, which con-
trol the error of execution and response determinism within
the models.

The third theoretical model is the “three-factor” model. It
is detailed in the right panel of Figure 16. The three-factor
model is an extension of two-factor model that loads the four
questionnaire measures on a separate third factor, rather than
on the risk propensity factor. This model was included to
test the possibility of a difference between behavioral risk
taking, as potentially expressed in the cognitive tasks, and
self-reported risk taking, as measured by the questionnaires.

9.2 Exploratory models

The exploratory models were constructed based on inspec-
tion of the correlation analyses presented in Figure 14. We
measure the performance of these models relative to two
bookend models. The first bookend is the “unitary” model,
which has a single latent factor for all cognitive model pa-
rameters and questionnaire measures. It is a very simple
CLVM account of the data that provides a lower bound on
the goodness-of-fit that can be achieved. The other book-
end is the “saturated model”, which has one latent factor
for each of the 30 cognitive model parameters and question-
naire measures. It is the most complicated CVLM account
of the data. It provides an upper bound on the goodness-of-
fit. The role of bookend models is to provide comparison
points for substantively interesting models. A useful sub-
stantive model should outperform both bookends in terms
of a model evaluation measure that balances goodness-of-fit
and complexity. In addition, requiring substantive mod-
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panel) theory-based CLVMSs. In each panel, rows correspond to cognitive model parameters and questionnaire measures, and
columns correspond to model factors. Dark blue squares indicate an assumed association between a factor and a parameter
or measure. Light yellow squares indicate a possible association, to be estimated. Empty squares indicate an assumed lack

of association.

els to outperform the saturated model provides confidence
that they are descriptively adequate, because their balance
between goodness-of-fit and complexity is better than an
account that has high descriptive adequacy. We use the
Deviance Information Criterion (DIC: Spiegelhalter et al.,
2002, 2014), which has theoretical limitations, but provides
a useful practical measurement for a coarse-grained assess-
ment of competing models.

The first exploratory model we found is the “question-
naires only” model. It simplifies the saturated model by
assuming that a single latent factor underlies all four ques-
tionnaire measures, but that the cognitive model parameters
continue to have their own factors. The second exploratory
model is the “BART g7 model. It simplifies the saturated
model by assuming that a single latent factor underlies the
two Bart S8 parameters. Finally, the “questionnaires and
BART B” model combines the constraints of the first two
exploratory models, so that a single factor underlies all of
the four questionnaires and the BART S parameters.

9.3 CVLM results

Table 2 summarizes the results of the CLVM analysis. Ac-
cording to the DIC measure, none of the theory-based mod-
els performed well. The exploratory models lead to slight
improvements. We could not find any other CLVM that im-
proved on the unitary and saturated bookend models. These
results are largely consistent with the results of the corre-
lational analysis above: There is not much evidence for a
jointly explanatory underlying structure between the cogni-
tive tasks. Even within tasks, the CLVM analysis provides
evidence for models with multiple underlying dimensions
per task. Perhaps the most interesting exploratory finding
from the CLVM analysis is that it is the BART task, and its
associated cognitive model parameter measuring behavioral
consistency, that most closely aligns with the measure of risk
produced by the questionnaires.
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Model Factors DIC ADIC

General Risk 10 62,221 62,859

Two-factor 2 170,725 171,363
Three-factor 3 170,737 171,375
One-factor 1 220,896 221,534
Saturated 30 —588 50
Surveys only 27 —-600 38
BART g3 29 —611 27

Surveys, BART g 26 —618 0

TaBLE 2: Results of the CLVM analysis. DIC = deviance
information criterion. ADIC measures difference in DIC to
the best-performed “Surveys, BART 8" model.

10 Discussion

The goal of this article was to explore the psychological con-
struct of risk propensity in the context of cognitive tasks and
the inferred latent parameters of cognitive models that can
be interpreted as the psychological variables that control risk
seeking and risk avoiding behavior. We compared these mea-
sures of risk across four sequential decision-making tasks
and measures obtained from more traditional questionnaires
based on self-report. In each of the independent analyses of
the four decision-making tasks we used a cognitive model
that provided an adequate account of people’s behavior. The
inferred parameters of the cognitive models have natural
interpretations as measures of risk propensity and decision-
making consistency, and appear to capture stable individual
differences across conditions within each task. The mea-
sures found using the questionnaires were generally consis-
tent with previous studies, with similar means and standard
deviations.

If risk propensity is a stable psychological construct that
can be measured by these decision-making tasks, then the
risk parameters and questionnaires are expected to correlate
across tasks. We found strong within-task correlations and
interpretable consistency in the key parameters for repre-
sentative participants across task conditions. We did not,
however, find evidence for any systematic between-task re-
lationships consistent with stable underlying risk propensity
or consistency traits in individuals. A complementary anal-
ysis based on cognitive latent variable modeling reached the
same conclusion. The data provided no evidence for any
model that incorporated an interpretable general risk factor
that spanned the four cognitive tasks. There was some ev-
idence for a relationship between cognitive models of risk
propensity in the BART and the RPS, RTI, and DOSPERT
scale measures. Of the four cognitive tasks we considered,
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the BART has been the most widely used as a psychome-
tric instrument for measuring risk propensity (e.g. Tagkin
& Gokgay, 2015; White et al., 2008), including examining
its correlation with questionnaire measures (e.g. Asher &
Meyer, 2019; Courtney et al., 2012), and as a predictor of
real-world risk-taking behavior Lejuez et al. (2003b, 2007).

Overall, however, our results do not find evidence for a
common underlying risk trait. This lack of evidence arose
despite the use of cognitive models to make inferences about
latent parameters, rather than relying on simple behavioral
measures. Similar findings of weak relationships between
measures from behavioral tasks and questionnaires has been
found in psychological research on individual differences in
other domains such as the description-experience gap (Rad-
ulescu et al., 2020), self-regulation (Eisenberg et al., 2018),
intelligence (Friedman et al., 2006), and theory of mind
(Warnell & Redcay, 2019),

10.1 Limitations and Future Directions

An obvious potential limitation of this study is the relatively
small sample size. Generally, studies focusing on individ-
ual differences use larger sample sizes, typically over 100
participants, with some studies recruiting many more than
that (Eisenberg et al., 2018; Frey et al., 2017). A common
reaction to our use of 56 participants is to question whether
our experimental design was sufficiently “powerful” to ad-
dress the research questions it aimed to answer. We think
this question reflects a (widely-held) conceptual misunder-
standing, sometimes called the power fallacy (Wagenmakers
et al., 2015). Power is a pre-experimental concept and is
not relevant once data have been collected. Power analyses
consider, before data have been collected, the results an ex-
perimental design could produce, and whether those results
would be informative. Once the data have been collected,
the uncertainty is resolved, and it is not logical to continue
considering what are now counterfactual possibilities. From
a Bayesian perspective, scientific inferences should be con-
ditioned on only the observed data.

This means that whether our data are sufficiently infor-
mative can be answered by the direct examination of the
inferences they produce. The key results are presented in
Figure 14, where it is shown that for the large majority of
parameter pairs, the Bayes factor provides clear evidence in
favor of either the presence or the absence of a correlation.
The one exception, as we noted, is for the gambling task.
Here, we believe the lack of evidence is caused by our use
of relatively few conditions and trials compared to previ-
ous literature (Nilsson et al., 2011). All of the other tasks
and measures, however, have sufficient information about
the cognitive parameters and behavioral measures to answer
our research questions. Thus, overall, we believe our results
demonstrate that the experiment was well enough designed,
had enough participants, and was completed by sufficiently
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motivated participants, to address the research question of
whether behavior on the task is controlled by a common
underlying risk trait.

A different limitation of our study involves the specific
cognitive models we used, and the details of how they were
applied to the behavioral data. There are many other possible
accounts of the BART, gambling behavior, optimal stopping,
and bandit problem decision making. We referenced a num-
ber of alternative models for each task before we presented
the model we used. While our models provide reasonable
starting points, there are clearly many alternative models
that could be explored. Similarly, we made practical choices
about contaminant behavior that could be extended or im-
proved. Different modeling possibilities are not limited to
just different assumptions about cognitive processes. Alter-
native cognitive models could also be explored by consider-
ing more informative priors, which corresponds to making
different assumptions about the psychological variables con-
trolling the processes (Lee & Vanpaemel, 2018). As one
concrete example, it could be reasonable to in the extended
WSLS model of bandit problem behavior to assume that the
probability of winning and staying is greater than the prob-
ability of losing and shifting. This order constraint would
lead to more informative priors. As another example, it is
probably possible to develop better priors for the BART task
than the uniform priors we used, by seeking choices that lead
to empirically reasonable prior predictive distributions (Lee,
2018).

We did not attempt to use common-cause models that cap-
ture the consistency of individuals across conditions for the
same decision-making task (Lee, 2018). This has previously
been done successfully for the specific BFO model of opti-
mal stopping (Guan et al., 2015), and could likely be done for
the other models we used. Indeed, the consistency of within-
participant parameters across conditions for the same tasks
makes this an obvious extension. Common-cause modeling
could easily be implemented hierarchically in the graphical
modeling framework we used, and would have the advantage
of reducing the number of risk and consistency parameters to
one per task, rather than one per condition. The parameters
should also be more precisely measured, because they would
be based on the entirety of each participant’s behavior in a
task. On the other hand, we would expect this commonality
to emerge from the cognitive latent variable modeling we
conducted, and so we think it is likely that there simply is no
evidence for the common construct in our data and modeling
analysis.

While all of the decision-making tasks we used were
sequential decision-making tasks involving risk and un-
certainty, there are fundamental differences between them.
There is debate about exactly whether and how the tasks
and questionnaires measures risk propensity (e.g. De Groot
& Thurik, 2018), and even more scope for debate about
whether and how the cognitive model parameters relate to
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the relevant psychological concepts. As such, there is no
clear consensus that either the tasks or the cognitive mod-
els we used capture risk propensity and consistency in the
same way, or capture it at all. What we did is choose tasks
that depend on risk seeking and avoidance in some way, and
provide a rationale for the interpretations of the cognitive
modeling parameters in terms of risk propensity.

A finer-grained version of this general issue is that the
different cognitive tasks provide information about risk and
uncertainty in different ways, and these differences could af-
fect the way any latent risk construct is able to be inferred.
The optimal stopping problem involves holding out until a
desirable option comes along, but the value of each option
is presented to the decision maker explicitly. The preferen-
tial choice gambling task requires people to make judgments
based on both the value of each option and probabilities as-
sociated with those values, without explicitly stating the ex-
pected reward from each gamble. The bandit problem gives
feedback after each decision is made, explicitly showing the
number of rewards and failures. Meanwhile, the BART only
provides feedback when a balloon bursts, and by keeping
track of the total banked amount over problems. These nu-
ances suggest that each of the decision-making tasks require
related but different cognitive processes. It is thus entirely
plausible that risk seeking or avoidance in the optimal stop-
ping problem does not translate directly to loss aversion in
the gambling task. Similarly, the tendency to pump a bal-
loon more with the risk of losing it all in the BART might
not be psychologically equivalent to balancing exploration
and exploitation in a bandit task.

Collectively, these sorts of considerations raise the issue
of whether risk propensity can usefully be salvaged as a
multi-dimensional construct. While we sought a single la-
tent trait to explain individual differences across the tasks, it
is possible that how people manage risk is better conceived
in terms of a few inter-related but distinct traits. Theoreti-
cally, of course, this is a slippery slope. As the number of
traits expands to match the number of tasks, the usefulness
of the notion of an underlying risk propensity controlling be-
havior is lost. It becomes better understood as a temporary
psychological state than a permanent psychological trait.

10.2 Conclusion

We used cognitive models to analyze four sequential
decision-making tasks that are sensitive to people’s propen-
sity for risk. We found stable individual differences within
tasks for model parameters corresponding to the psychologi-
cal variables of risk and consistency. However, we found lit-
tle evidence for commonality or stability when we compared
conceptually similar parameters across the tasks. In addition,
we found little evidence for any meaningful relationships be-
tween the model-based measures of risk and standard widely-
used questionnaires for measuring risk propensity based on
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self-report. Our results contribute to the discussion about
how cognitive process models of sequential decision-making
tasks can be used to measure risk, and whether risk propen-
sity is a stable psychological construct that can be measured
by cognitive behavioral tasks.
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