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Abstract—Human-robot interactive decision-making is increas-
ingly becoming ubiquitous, and trust is an influential factor in
determining the reliance onautonomy.However, it is not reasonable
to trust systems that are beyond our comprehension, and typical
machine learning and data-driven decision-making are black-box
paradigms that impede interpretability. Therefore, it is critical to
establish computational trustworthy decision-making mechanisms
enhanced by interpretability-aware strategies. To this end, we pro-
pose a Trustworthy Decision-Making (TDM) framework, which
integrates symbolic planning into sequential decision-making. The
framework learns interpretable subtasks that result in a complex,
higher-level composite task that can be formally evaluated using
the proposed trust metric. TDM enables the subtask-level inter-
pretability by design and converges to an optimal symbolic plan
from the learned subtasks. Moreover, a TDM-based algorithm is
introduced to demonstrate the unification of symbolic planning
with other sequential-decision making algorithms, reaping the
benefits of both. Experimental results validate the effectiveness of
trust-score-based planning while improving the interpretability of
subtasks.

Index Terms—Symbolic planning, sequential decision-making,
interactive machine learning, trustworthy machine learning.

I. INTRODUCTION

FROM self-driving cars to voice assistant on the phone,
artificial intelligence (AI) is progressing rapidly. Though

AI systems are undeniably powerful and continue to expand
their role in our daily lives, emerging issues, such as lack of
transparency and uncontrolled risk in decision-making, give rise
to a vital concern: why should the end-users trust the deci-
sion support system? Reliance on technology and autonomy is
strongly influenced by trust [1]. However, a recent study reveals
that a mere belief in interacting with autonomous teammate led
to diminished performance and passive behavior among human
participants even though they were actually collaborating with
a remote human partner [2], indicating that we do not trust the
capabilities of AI systems as much as we trust humans.
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Building trustworthy AI systems [3]–[6] , therefore, becomes
an important issue for humans to reap the full spectrum of
societal and industrial benefits from AI, as well as for ensuring
safety in the use of the system [7]. Indeed, in modern artificial
intelligence systems, there are many interactive relations, pri-
marily in the form of interactions between humans, between
humans and the smart agents (human-computer interaction sys-
tems), between agents and the environment (interactive machine
learning), and among smart agents (multi-agent systems).
It is also important to note that the trust is mutual. AnAI agent

must also gauge the trustworthiness of the end-users. However,
very fewstudies exist in agent-to-human trustmodels. The recent
Boeing 737 MAX 8 incidents [8], [9] have tragically shown the
dangers of the lack of the automated agent’s ability to trust the
end-users. The pilots of the crashed airplanes attempted to take
control back from a malfunctioning flight control system, but
the flight control system could not respond to the change of
trust from pilots. Instead of trusting the pilots’ decisions, the
flight control system continued to override the manual control
resulting in fatal crashes.
Besides, AI systems, in general, need to comply with the

norms of the social and cultural context if they are expected to
operate side by side with humans. Therefore, trust is particularly
important for normative agents that are expected to exhibit
behavior consistent with the norms of a society or group. From
the humans’ perspective, we trust things that behave as we
expect them to, indicating that trust derives from the process
of minimizing the perceived risk [10]. Perceived risk is often
defined in terms of uncertainty about the possibility of failure or
the likelihood of exhibiting improper behavior.
The typical approach to computationally modeling trust is

through beliefs. In multi-agent settings, the agents maintain
beliefs on the trustworthiness of other agents influenced by
mutual interactions [11].When end-users are involved, the agent
maintains beliefs about the beliefs of humans,’ concerning the
trustworthiness of the agent [12]. It is difficult to design an
explicit measure of trust without considering different perspec-
tives. Recent work of [13] suggested several elements, such as
fairness, robustness, and explainability, to increase trust in AI
systems.
To open up the AI black-box and facilitate trust, it is critical to

enable the AI system to be reliable, transparent, and explainable
so that the system can achieve reproducible results, justify
the decisions it makes, and understand what is important in
the decision-making process. And this combination of features
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can be called “interpretability”. Deep learning algorithms have
been successfully applied to sequential decision-making prob-
lems involving high-dimensional sensory inputs such as Atari
games [14]. However, deep learning algorithms have limited
interpretability and transparency, which gives rise to doubt by
the human end-users due to a lack of trust and confidence in the
AI systems. Prior research efforts [15] on interpretability often
focus on explaining the results of learning when the underlying
problem and architecture are complex. Symbolic planning
[16]–[20] has been used to break down the complex task into
simpler interpretable subtasks. However, existing studies [21],
[22] focus on the performance gain of symbolic planning when
it is applied to general sequential decision-making rather than
interpretability.
Motivated by understanding the task-level behavior of the

algorithm and elevating the trust between human end-users and
the smart agents,wepropose a unified frameworkofTrustworthy
Decision-Making. Symbolic planning is utilized to perform
reasoning and planning on explicitly represented knowledge,
which results in task-level interpretability. We also introduce a
computational trustmetric based on the success ratio of symbolic
tasks. The key insight is that the success is better measured
when the tasks are interpretable. Achieving a reliable success
rate of the tasks is equivalent to minimizing perceived risks of
the agent’s behavior, thereby enhancing its trustworthiness.
The rest of the paper is structured as follows. Section II

presents related research in trust, interpretability, followed by a
review of prior trust evaluation studies in the extant literature
from different perspectives. Section III introduces the back-
ground on symbolic planning along with an overview of the
interactive sequential decision problem. Section IV provides a
detailed description of the TDM framework. We introduce a
learning algorithm facilitated by our formal framework in Sec-
tion V. The optimality analysis for the converged plan generated
by the algorithm is presented to substantiate the utility of our
strategy. The experimental results of Section VI validate the
interpretability of the high-level behavior of the system and the
effectiveness of the trustmetricwhilemaintaining improved data
efficiency. Section VII concludes by summarizing our results
and delineating potential avenues of future research.

II. BACKGROUNDS

This section identifies and elaborates several key components
of a computational framework for trustworthy decision-making,
i.e., the definition of trust, interpretability and its relation to trust,
and computational models of trust metrics.
Trust Trust is a subjective perception affected by many

factors. One essential impact factor is risk [10]. Following
this direction, [3], [23] presented a formalization of trust and
its uses in distributed AI; [24] proposed a stochastic block
coordinate ascent policy search algorithm to address the risk
management in dynamic decision-making problems. From the
perspective of human social interactions, [1] studied trust in
automation. Specifically, in the context of AI, [4] presented two
computational models of trust for the recommender systems; [5]
proposed the Local Interpretable Model-agnostic Explanations

framework to explain the predictions of any classifier so that
the model can be transformed into a trustworthy one. In addi-
tion, [13] proposed the supplier’s declaration of conformity to
increase trust in AI services. Another important factor of trust
is performance. Prior research in robotics suggests performance
and risk are related factors. [25] demonstrated how a robot’s
failure influences human trust in real-time. [12] proposed to use
deliberate failures to calibrate the trust level. In this work, the
human users perceive potential failures as risks and then respond
according to the level of trust they place in the robot’s ability.
Interpretability: A key component of an AI system is the

ability to explain its decisions, recommendations, predictions,
or actions along with the process through which they are made.
Studies on interpretability focus on describing the internals of
a system in an understandable way to humans [26]–[28]. [15]
proposed an approach to justify the prediction to the user rather
than only explaining how the prediction is reached automati-
cally. Another line of research attempts to explain the Markov
Decision Processes (MDPs). [29] devised an intelligent assistant
to assist the power plant operator, which can explain commands
generated by an MDP-based planning system. [30] explored the
minimal sufficient explanation of policies for factored MDP by
populating a set of domain-independent templates. Symbolic
planning has been integrated with reinforcement learning in
the previous attempts [21], [22] when the underlying MDP is
relatively simple. Deep reinforcement learning is often used
for larger MDP, and in this direction, the program induction
approach is used instead to enable policy interpretability [31].
Our work admits the symbolic knowledge to enable task-level
interpretability for sequential decision-making with function
approximation, such as deep reinforcement learning, and it is
interpretable by construction.
Computational Models of Trust Metric: Studies have been

conducted on how to evaluate trust quantitatively. [32] proposed
a customized trust evaluation model based on fuzzy logic for
multi-agent systems. [33] presented a decentralized model to
evaluate trust in open systems. [11] devised a socio-cognitive
model of trust by using the fuzzy cognitive maps and introduced
a degree of trust derived from the credibility of the trust be-
liefs. Also, there exists research about trust evaluation in the
context of computer networks. [34] focused on the evaluation
processes of trust evidence in Ad Hoc Networks. [35] presented
an information-theoretic framework to quantitatively measure
trust and model trust propagation in Ad Hoc Networks. [36]
and [37] both proposed trust evaluation frameworks concerning
security in computer networks. In the context of HRI, one of the
earliest trust evaluations is proposed by [38] and expressed as a
regression series. [39] also used a regression series to evaluate
trust in autonomous vehicles. In another work, [40] proposed
a Bayesian model. Trust has also been evaluated as states of
MDP [12].
To the best of our knowledge, there exists limited and incon-

clusive research on establishing a computational model of trust
to measure the quality of a proposed task. In a quality-centric
perspective, the quality of behavior should correspond to the
plan’s trust score that indicates the level of trustworthiness. Such
metrics need to be general enough to make evaluations across
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different tasks. A relevant research area in psychology is called
intrinsic motivation, which is defined as the level of inherent
satisfaction by accomplishing an activity. Interpersonal trust is
strongly correlated to the trustor’s perceived intrinsic motivation
of trustee [41], [42]. Combined with the role of interpretability
in trustworthiness, this means a human is more likely to develop
feelings of trust towards a smart agent if the human understands
that the agent is intrinsically motivated to improve its abilities.
Different from extrinsic motivation, the inherent satisfaction

is driven by an internal utility function [43]. This makes it a
suitable general metric to make evaluations of different tasks.
Intrinsically-motivated learning [44] used the framework of
options. An option, or a subtask, can be initiated in some states to
control the agent’s behavior in a subset of the environment with
a terminating condition. Motivated by these factors, we propose
a trust metric evaluation framework based on the internal utility
function, which can be used to compute the trustworthiness
values for the trust score and evaluate the high-level behavior
of the system. One of the problems of interpretability is that
it can induce unwarranted trust of unreliable agents [45], [46].
We hypothesize that the quality-based metric will alleviate this
problem by justifying why the learned plans are good and
trustworthy, whereas the abandoned plans are not, thus ensuring
the agent’s learning process is reliable.

III. PRELIMINARIES

In this section, we introduce the motivation for developing a
trust metric and the formulation of a symbolic planning strategy
with respect to sequential decision making.
Interactive Sequential Decision-Making: In sequential

decision-making problems, an agent takes a sequence of actions
to determine its utility. However, the utility is often difficult to
model in practical settings when the environment is complex
or changes dynamically. In such cases, the utility is determined
through feedback from human interaction. We will demonstrate
an environment that changes over time in our experiments but
will simplify it to model the utility changes to allow agents to
train quickly without interaction. One approach is to design
multiple similar tasks in differing complexities, learn simple
tasks first, and transfer the knowledge to learn more complex
tasks [47]. Instead, we will break down complex tasks into
simpler sub-tasks. And since it is expensive to consider a com-
plete sequence of decisions, we will model our problem with
Markovian property.
Consider a Markov Decision Process (MDP) 1 defined by

a tuple (S,A, P a
ss′ , r, γ). We will use the MDP to model the

sequential decision-making problem in symbolic representation,
where S is the set of symbolic states andA is the set of actions.
Then P a

ss′ is the transition kernel that, given a state s ∈ S and
an action a ∈ A, defines the probability the next state will be
s′ ∈ S. Moreover, r(s, a) : S ×A �→ R is a reward function
bounded by rmax, and 0 ≤ γ < 1 is a discount factor. A solution
to an MDP is a policy π : S �→ A that maps a state to an action.

1We follow the style of notation in the 1st edition of reinforcement learning
book by [48].

To evaluate a policy π, there are two types of performance
measures: the expected discounted sum of reward for infinite-
horizon problems and the expected un-discounted sum of re-
wards for finite horizon problems. In this paper we adopt
the latter metric defined as Jπ

avg(s) = E[
∑T

t=0 rt|s0 = s]. We
define the gain reward ρπ(s) reaped by policy π from s

as ρπ(s) = limT→∞
Jπ
avg(s)

T = limT→∞ 1
T E[

∑T
t=0 rt].Gain re-

ward ρπ(s) is often used to measure the lower bound of the
expected cumulative rewards of a task w.r.t a given policy. For
example, ρπ(s) is instrumental in deciding whether a specific
task is rewarding enough to make the “stay-or-leave” deci-
sion [49]. More mathematical details of gain reward can be
referred to [50]–[53].
Symbolic Planning (SP) has been used in tasks that must

be highly interpretable to human users, such as interacting and
cooperating with mobile robots [16]–[20]. By abstracting the
planning problem as symbols, SP can solve the problem based
on logical reasoning. A symbolic representation is constructed
so that it contains the knowledge of objects, properties, and the
effects of executing actions in a dynamic system. Such represen-
tation can be implemented via a formal, logic-based language
such as the Planning Domain Definition Language (PDDL) [54]
or an action language [55] that relates to logic programming
under answer set semantics (answer set programming) [56].
SP algorithms are also white-box algorithms. With the sym-

bolic knowledge designed to be human-readable, the behavior
of an SP agent that plans and reasons based on it is naturally
interpretable. Priorworks combine symbolic planningwith other
sequential-decisionmaking algorithms to bring stability to plan-
based learning [21], [22]. However, these works only highlight
the performance improvement from the prior domain knowledge
represented by SP.
Action Language BC. An action description D in the lan-

guage BC [57] includes two kinds of symbols on signature σ,
fluent constants that represent the properties of the world, and
action constants , representing actions that influences the world.
A fluent atom associates a fluent constant f to a value v and is
expressed as f = v. In particular, we consider a boolean domain
for f . Causal laws can now be defined on the fluent atoms and
action constants, describing the relationship among fluent atoms
and the effects of actions on the value of fluent atoms. A static
lawmaystate that afluent atomA is true at a given time stepwhen
A1, . . . , Am are true (AifA1, . . . , Am) or the value of f equals v
by default (default f = v). On the other hand, a dynamic law
describes an action a(nonexecutable a ifA1, . . . , Am) or the
effect of a on the fluent atom A(a causesA ifA1, . . . , Am). An
inertia is a special case of dynamic law that states the value of
fluent constant f does not change with time (inertial f). An
action description is a finite set of causal laws, capturing the
domain dynamics as transitions.
Therefore, given action description D, here is an example of

how to perform symbolic planning with action language BC.
Let 〈s, a, s′〉 denote a transition from a symbolic state s to a
symbolic state s′ by a set of action a. Then a planning problem
can be formulated as a tuple (I,G,D). The planning problem
has a plan of length l − 1 if and only if there exists a transition
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Fig. 1. Architecture illustration.

path of length l such that I = s1 and G = sl. In the rest of
the paper, Π denotes both the plan and the transition path by
following that plan. Given the above semantics represented in
BC, automated planning can be achieved by an answer set solver
such as CLINGO [58], and provide the solution to the planning
problem.

IV. THE TDM FRAMEWORK

We will also use the MDP to model the underlying sequential
decision-making problem, define by a tuple (S̃, Ã,˜P a

ss′ , r, γ̃),
where S̃ consists of states of high-dimensional sensory inputs
such as pixel images, Ã is the set of primitive actions, and
others are similarly defined as before. The goal is to learn both
a sequence of subtasks and the corresponding sub-policies, so
that executing the sub-policy for each subtask one by one can
achieve maximal cumulative reward. It should be noted that
our framework is not restricted to high-dimensional sensory
inputs. However, we choose to focus on them since learning
from such inputs is more challenging and relevant to real-world
applications.
We assume human experts can provide a symbolic structure

of the problem. The symbolic structure consists of the knowl-
edge of objects, properties, and the preconditions and effects of
executing subtasks in a given problem domain. Although this
appears to be a lot of effort, it is possible to develop general-
purpose action modules [59]–[61] as it has been shown that
dynamic domains share many actions in common. Therefore,
the symbolic formulation for one problem can be adapted to
another with a little effort by instantiating a different set of
objects or adding a few more rules. Our framework’s domain
dynamics have a coarse granularity and high-level abstraction,
enabling the decision-making process to be robust and flexible
when facing uncertainty and domain changes.
With a symbolic representation given by the human expert,

the TDM architecture is shown in Fig. 1. A symbolic planner
generates a high-level plan, i.e., a sequence of subtasks, based on
the trust evaluator’s evaluation feedback. We implement a map-
ping function to perform symbol grounding in our experiments,
translating the problem domain to a symbolic representation.
However, we assume such functions are generally available
in different domains. After symbol grounding, the subtasks in
the plan will be sent to the controller to execute so that the
sub-policies for the corresponding subtasks are learned. Since
it is possible that the controller cannot successfully learn the

sub-policies, a metric is introduced to evaluate the competence
of learned sub-policies, such as the success ratio over several
episodes. After all subtasks in the plan have been executed,
the trust evaluator computes the trust score by utilizing the
trustworthiness values for subtasks. The evaluation for subtasks
is returned to the symbolic planner and is used to generate new
plans by either exploring new subtasks or sequencing learned
subtasks that supposedly can achieve a higher trust score in the
next iteration.

A. A Computational Framework for Trust Evaluation

We formulate the trust evaluation with a success ratio of task
execution, a simple measure of quality. Intuitively, it is easier to
measure the success of interpretable tasks than non-interpretable
tasks. By design, our plans and subtasks are interpretable, and
therefore it is easier to devise the corresponding trust score in
our problem.
Trust has been evaluated by using the internal utility function

in our case to measure the plan’s trust score. By doing so,
trust evaluation can establish the connection between the trust
metric and observation (trust evidence), and justify the decision
made upon trust score. Therefore, the subtasks in a plan will be
evaluated quantitatively, and the plan with a low trust score will
have less ability to be considered for the final solution.
The internal utility score based on the success ratio alone is

not a convincing measure of trust. So we tie the trust evaluation
to the interpretability perspective and promote the subtasks that
are both successful and interpretable as trustworthy. In essence,
we try to solve an optimization problem tomaximize the explicit
trust score subject to the constraint of implicit interpretability:

max
Π

1

|Π|
∑
o∈Π

ε(o) s.t. I(Π) > δ,

where ε is the success ratio of a symbolic task o,Π is a symbolic
plan, I is an oracle able to numerically qualify the interpretability
of a symbolic plan, and δ is the interpretability threshold.
The success ratio with respect to interpretability is the key

to our trust evaluation mechanism. But interpretability is a
qualitative measure, and it is difficult to formulate a traditional
optimization approach to satisfy this constraint. Instead, we use
the symbolic representation to naturally induce interpretability
in our problem. We discuss the details of our approach in the
subsequent sections.

B. Interpretability Enhancement Via Symbolic Representation

Let us consider a planning problem (I,G,D). Although a
symbolic formulation is possible with various planning or action
languages, we will use BC to represent D as a demonstration.
Specifically, we add the following causal laws toD to formulate
gain rewards of executing actions and their effects on cumulative
plan quality:
� For any symbolic state that contains atoms {A1, . . . , An},
D contains static laws of the form:

s ifA1, . . . , An, for states ∈ S.
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� We introduce new fluent symbols of the form ρ(s, a) to
denote the gain reward at state s following action a. D
contains a static law stating that the gain reward is initial-
ized optimistically by default to promote exploration and
is denoted as INF:

default ρ(s, a) = INF, for s ∈ S, a ∈ σA(D).

� We use fluent symbol quality to denote the total trustwor-
thiness value of a plan, termed as plan quality or trust score.
D contains dynamic laws of the form

a causes quality

= C + Z if s, ρ(s, a) = Z, quality = C.

� D contains a set P of facts of the form ρ(s, a) = z.
In our case, I is still the initial symbolic planning state, but

the goal state G is also a linear constraint of the form

quality > quality(Π), (1)

for a symbolic plan Π measured by the internal utility function
quality defined as

quality(Π) =
∑

〈si,ai,si+1〉∈Π
ρ(si, ai). (2)

It should be noted that (1) in TDM doesn’t have the logical con-
straint part and enables “model-based exploration by planning,”
which is more suitable for the problems where the trust score
drives the agent’s behavior.
With the help of declarative paradigms for modeling, sym-

bolic representation has good interpretability in its nature as the
hypotheses are understandable and interpretable.

C. Implicit Interpretability Constraint Satisfaction: From
Symbolic Transitions to Subtask Options

Our discussion of trust evaluation and interpretability en-
hancement has been restricted to general machine learning.
Symbolic planning can be used in many problem domains, e.g.,
image classification, and success ratio may be replaced with a
suitablemetric, such as accuracy, in the respective domain.Here,
we narrow our focus to a sequential decision-making problem,
which will allow us to devise a specific algorithm based on the
TDM framework.
Let us define a symbolic mapping function as F : S × S̃ �→

{True,False}. If a symbolic state s ∈ S corresponds to
s̃ ∈ S̃, then F = True. F = False if otherwise. We assume
an oracle exists to determine whether the symbolic properties
specified as fluent atoms of the form f = v in s are true in s̃. Due
to advances in computer vision, an oracle such as a perception
module for object recognition in images is not uncommon.
An MDP can be considered as a flat decision-making system

where the decision is made at each time step. On the contrary,
humans make decisions by incorporating temporal abstractions.
A subtask policy (I, π, β) is temporally extended course of
action where a policy π : S ×A �→ [0, 1], a termination con-
dition β : S �→ [0, 1], and an initiation set I ⊆ S. A subtask
policy (I, π, β) is available in state st if and only if st ∈ I .When
a subtask policy is initiated, the subtask is executed through

Fig. 2. The mapping from a symbolic transition path to subtasks.

actions stochastically selected according to π until a terminating
symbolic state is reached according to β.
GivenF and a pair of symbolic states s, s′ ∈ S , we can induce

a semi-Markov subtask policy, as a triple (I, π, β) where the
initiation set I = {s̃ ∈ S̃ : F(s, s̃) = True}, π : S̃ �→ Ã is the
intra-subtask policy, and β is the termination condition such that

β(s̃′) =
{
1 F(s,′ s̃′) = True, for s̃′ ∈ S̃
0 otherwise

The formulation above maps symbolic transition to a similar
structure of subtask policies. It implies that the execution of the
subtask will be feasible if the termination condition is 1, while it
will be infeasible if the termination condition is 0. Therefore, the
interpretability of the subtasks depends on how they contribute
to the plan’s symbolic transitions. The interpretability of the
feasible subtasks is guaranteed by the interpretability of the
corresponding symbolic transition. In contrast, the infeasible
subtasks are abandoned as un-interpretable as they do not con-
tribute to any interpretable symbolic plan.
Bymapping the tasks of the symbolic plan to the subtask poli-

cies, we incorporate the hierarchical structure to the decision-
making where the symbolic task controls the higher-level plan-
ning, and the corresponding subtask policy controls the primitive
actions required to accomplish the task. As illustrated in Fig. 2,
the subtask policies exhibit Markovian property at the symbolic
task level and thus executed sequentially according to the plan.

D. Explicit Success Ratio Maximization

We first assign te(s̃′) with some trustworthiness values in a
binary form, which is used for computing the trust score. It is
defined as:

te(s̃′) =
{
+1, β(s̃′) = 1
−1, otherwise

(3)

which means that the trustworthiness value will be +1 if the
subtask terminated at s̃′ can be achieved, otherwise it will
be −1. Other more sophisticated distribution (e.g., Bernoulli
distribution) can also be modeled other than this 0-1 distribution
model in practice.
We further define re(s, o) as re(s, o) = f(ε), where f is a

function of ε, and ε is the success ratio that denotes the average
rate of completing the subtask successfully over the previous 100
episodes. This metric is used to measure whether the subtask o
at symbolic state s is learnable or not. This is different from the
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definition of te(s̃′) since re(s, o) requires reliably achieving the
subtask after the training by episodes and keeping the success
ratio above a certain threshold. Therefore, f is defined as

f(ε) =

{−ψ ε < E
r(s, o) ε ≥ E

(4)

where ψ is a large positive numerical value, r(s, o) is the reward
obtained from the MDP environment by following the subtask
o, and the hyper-parameterE is a predefined threshold of success
ratio. In our experiments, we set E = 0.9 according to empirical
performance observations. Intuitively, it means if the sub-policy
can reliably achieve the subtask after the training by episodes,
then the trustworthiness value of re(s, o) at s′ reflects true
cumulative reward from the MDP environment by following the
subtask; otherwise, the trustworthiness valuewill be very low (as
a large negative number), indicating that the sub-policy performs
badly and is probably not learnable. A plan Π of (I,G,D) is
considered to be optimal iff

∑
〈s,a,s′〉 re(s, o) is maximal among

all plans.

V. ALGORITHM DESIGN

We present a learning algorithm for the TDM framework in
Algorithm 1 and show TDM’s planning and learning process.
Each episode starts with the symbolic planner generating a
symbolic plan Πt for the problem (I,G,D) (Line 4). The
symbolic transitions of Πt are mapped to subtasks (Line 10)
to be learned by a controller (Line 11). The controller performs
deep Q-learning with te using experience replay (Lines 12–15)
to estimate the Q value Q(s̃, ã; o) ≈ Q(s̃, ã; θ, o), where θ is
the parameter of the non-linear function approximator. The
observed transition (s̃t, ãt, re(s̃t+1, g), s̃t+1) is stored as an
experience in Do. The loss at ith iteration is calculated as an
expectation over the collected experience and is given by

L(θ; o) = E(s̃,ã,g,te,s̃′)∼Do
[re + γmax

ã′
Q(s̃, ã′; θi−1, o)

−Q(s̃, ã; θi, o)]
2. (5)

When the inner loop terminates, a symbolic transition
〈st, at, st+1〉 for the subtask ot is completed, andwe are ready to
update the trust score of the subtask (Line 18). Although various
learning methods, such as Q-learning, may be used here, we use
R-learning [62] to evaluate the trust score as an average reward
case rather than a discounted reward case. With R-learning, the
update rule becomes

Rt+1(st, ot)
α←− re − ρott (st) + maxo R(st, o)

ρott+1(st)
β←− re +maxo Rt(st+1, o)−maxo Rt(st, o)

(6)

The quality ofΠt is measured by (2) (Line 20) and the trust score
of the plan is updated according to quality(Πt) (Line 21). The
symbolic formulation is then updated with the learned ρ values
(Line 22). With the symbolic formulation changed, an improved
plan may be generated in the next episode. The loop terminates
when no such improvement can be made.
The algorithm guarantees symbolic level optimality condi-

tioned on R-learning convergence.

Algorithm 1: TDM Planning and Learning Loop.

Input: (I,G,D,F) where G = (quality > 0), and an
exploration probability ε
Output: An optimal symbolic plan Π∗

P0 ⇐ ∅, Π ⇐ ∅
while True do
Π∗ ⇐ Π
Take ε probability to solve planning problem and obtain
a plan Π ⇐ CLINGO.solve(I,G,D ∪ Pt)
if Π = ∅ then
return Π∗

end if
for symbolic transition 〈s, a, s′〉 ∈ Π do
Obtain current state s̃
Correspond to subtask o by using F to obtain
initiation set and terminate condition
while β(s̃) �= 1 and maximal step is not reached do
Pick up an action ã and obtain transition
(s̃, ã, s̃′, te(s̃′))
Store transition in experience replay buffer Do

Estimate Q(s̃, ã; θ, o) by minimizing loss
function (5) when there are sufficient samples inDo

Update current state s̃ ⇐ s̃′
end while
Calculate re(s, o) with trustworthiness values
Update R(s, o) and ρo(s) using (6).

end for
Calculate quality of Π by (2).
Update planning goal G ⇐ (quality > qualityt(Π)).
Update facts
Pt ⇐ {ρ(s, a) = z : 〈s, a, s′〉 ∈ Π, ρat (s) = z}
end while

Theorem 1 (Termination): If the trust evaluator’s R-learning
converges, Algorithm 1 terminates iff an optimal symbolic plan
exists.
Proof:WhenR-learning converges, for any transition 〈s, a, t〉,

the increment terms in (6) diminish to 0, which implies

R(s, o) = maxo′ R(s, o′),
ρa(s) = re(s, o)−maxo′ R(s, o′) + maxa′ R(t, o′) (7)

Algorithm 1 terminates iff there exists an upper bound
of plan quality iff there does not exist a plan with
a loop L such that

∑
〈s,a,t〉∈L ρa(s) > 0. By (7), it is

equivalent to
∑

〈s,o,t〉∈L(re(s, o)−R(s, o) +R(t, o)) ≤ 0 iff∑
〈s,o,t〉∈L re(s, o)−R(s|L|, o) +R(s0, o) ≤ 0. Since L is a

loop, s|L| = s0, so
∑

〈s,a,t〉∈L re(s, o) ≤ 0 iff any plan Π does
not have a positive loop of cumulative reward iff optimal plan
exists, which completes the proof.
Theorem 2 (Optimality): If the trust evaluator’s R-learning

converges, when Algorithm 1 terminates, Π∗ is an optimal
symbolic plan.
Proof: By [57, Theorem 2]Π∗ is a plan for planning problem

(I,G,D). For Πo returned by Algorithm 1 when it terminates,
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Fig. 3. Experimental Results on Taxi Domain.

quality(Π) ≤ quality(Π∗) for˜anyΠ iff∑
〈s,a,t〉∈Π

ρa(s) ≤
∑

〈s,a,t〉∈Πo

ρa(s).

By (7), the inequality is equivalent to∑
〈s,a,t〉∈Π

re(s, o) +R(s|Π|, o) ≤
∑

〈s,a,t〉∈Πo

re(s, o)

+R(s|Π∗|, o).

Since s|Π| and s|Π∗| are terminal states of each symbolic planwith
no subtask policies available, we have

∑
〈s,a,t〉∈Π re(s, o) ≤∑

〈s,a,t〉∈Πo
re(s, o). This completes the proof.

VI. EXPERIMENT

We use the Taxi domain [63] to demonstrate the behavior of
learning and planning based on the trust score, Grid World [21]
to show the ability to learn unmodeled domain knowledge,
and on Montezuma’s Revenge [14] for interpretability and data
efficiency. We use 1 M to denote 1 million and 1 k to denote
1000.

A. Taxi Domain

The objective of the Taxi domain is to maximize reward
by successfully picking-up and dropping-off a passenger at a
specified destination on a grid map (Fig. 3(a)). A taxi agent

moves from a cell to an adjacent cell with -1 reward collected at
each time step. The agent receives a reward of 50 for dropping
the passenger off at the destination while receiving a reward
of -10 when attempting to pick-up or drop-off at an incorrect
location. Additionally, there is a one-time reward coupon the
taxi can collect at (4,4). With a reward of 10, we will observe
the behavior of learning agents when the environment changes.
Setup: For each episode, the taxi starts at (0,4), and we will

call every 2000 episodes a task. The experiment consists of 10
tasks where the reward for the successful drop-off decreases in
each task by 5, i.e., 50 in Task 1, 45 in Task 2, and so forth. Other
reward settings stay constant throughout the tasks. We compare
TDM with Q-learning.
Experimental Results: First, let us consider the optimal

policies as shown in Fig. 3(a). The dark red colored route
that collects the coupon, picking up, and then dropping off the
passenger is the optimal policy from Task 1 to Task 7. From
Task 8 and onward, the reward for the passenger drop-off (≤ 15)
is no longer worth the effort, and hence, the optimal policy
changes to simply collecting the coupon as indicated by the
blue line. As shown in the learning curve in Fig. 3(b), averaged
over 10 runs, TDM successfully learns the optimal policy for
all Tasks. As noted, the optimal policy changes at Task 8, and
TDM quickly abandons the sub-tasks that lead to a sub-optimal
policy and learns the newoptimal policy. All these are in contrast
to Q-learning. While Q-learning converges faster than TDM
(see the zoom-in of Task 1 in Fig. 3(b)) because its model-free
exploration is more aggressive than TDM’s exploration guided
by the trust-score-based planning, Q-learning often fails to learn
the optimal policy. Moreover, once Q-learning converges to a
policy, it is unable to learn a new one when the environment
changes. On the other hand, the trust evaluation mechanism in
TDM allows the agent to be flexible and abandon the plan with
lower trust score. In practice, the reward is often collected from
interaction and changes over time in a dynamic environment.
This experiment shows TDMmay adapt well in such situations.

B. Grid World

TDM can learn domain details that are not modeled into
symbolic knowledge. We demonstrate this behavior with the
Grid World adapted from [21], shown in Fig. 4(a). An agent
must navigate to (9,10), which can only be entered through a
door at (9, 9). At the door, the agent must grab a doorknob, turn
it, and then push the door to reach the goal, all of which may fail
and incur a -10 penalty. As in the Taxi domain, every movement
has a reward of -1.
Setup: Horizontal and vertical bumpers represent the domain

details that the agent needs to learn. The agent receives an
additional penalty for a movement into a bumper. Penalties are
-30 and -15 for red and yellow bumpers, respectively. The agent
starts at randomon one of the numbered grids in the first column.
We use Q-learning and a standard planning agent (P-agent)
as baselines for this domain. P-agent generates plans using
CLINGO and executes the plans without any learning capability.
Experimental Results: Learning curves of cumulative reward
are shown in Fig. 4(d). TDM achieves the optimal behavior: it
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Fig. 4. Grid World.

avoids the bumpers and learns to reliably open and push through
the door (e.g., Fig. 4(b)), surpassingQ-learning in both the rate of
learning and variance of the cumulative reward. P-agent prefers
shortest planswhich are not ideal plans in this case. P-agent relies
on re-planning upon encountering failures without learning. As
such, the number of execution failures to enter the door remains
high throughout episodes, as shown in Fig. 4(c). On the other
hand, TDM abandons unsuccessful plans due to their low trust
scores and quickly learns to correctly open the door and reach
the goal.

C. Montezuma’s Revenge

In “Montezuma’s Revenge,” the player controls a game char-
acter through a labyrinth avoiding dangerous enemies and col-
lecting items that are helpful to the player. We focus on the first
room of the labyrinth. Here, the player has to collect a key in the
room to unlock the door to the next room. In a typical setting for
DRL, an agent receives +100 reward for collecting the key and
+300 for opening the door with the key. This is a challenging
domain for DRL as it involves a long sequence of high-level
tasks and many primitive actions to achieve those tasks. This
is a challenging domain where the vanilla DQN often fails to
learn [14].
Setup: Our experiment setup follows the DQN controller

architecture [64] with double-Q learning [65] and prioritized
experience replay [66]. The architecture of the deep neural
networks is shown in Table I. The experiment is conducted

TABLE I
NEURAL NETWORK ARCHITECTURE FOR MONTEZUMA’S REVENGE

using Arcade Learning Environment (ALE) [67]. We have im-
plemented the symbolicmapping functionF based onALEAPI.
The binary trustworthiness value follows (3) for when a subtask
successfully completes or the agent loses its life. The subtask
trust score follows (4) whereψ = 100 and define r(s, o) = −10
for ε > 0.9 to encourage shorter plan. We use hierarchical DQN
(hDQN) [64] as the baseline.
Symbolic Representation: We represent the transition dy-

namics and domain knowledge in action languageBC. There are
6 pre-defined locations or objects: middle platform (mp), right
door (rd), left of rotating skull (ls), lower left ladder (lll),
lower right ladder (lrl), and key (key). Note that the number
of predefined locations or objects depends on the users and their
domain knowledge. We then formulate 13 subtasks based on
the symbolic locations. The corresponding symbolic transitions
from the mapping function F are shown in Table II. The dif-
ference between our and hDQN’s subtask definitions should be
noted. A subtask is only associated with an object in hDQN;
However, in our work, it is defined as a symbolic transition with
an initiation set and termination condition based on the states

Authorized licensed use limited to: Auburn University. Downloaded on July 12,2021 at 09:04:10 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LYU et al.: TDM: TRUSTWORTHY DECISION-MAKING VIA INTERPRETABILITY ENHANCEMENT 9

Fig. 5. Experimental Results on Montezuma’s Revenge.

TABLE II
SUBTASKS FOR MONTEZUMA’S REVENGE

satisfying symbolic properties. With this informative symbolic
representation, our approach is more general, descriptive, and
interpretable. It also makes sub-policy for each subtask to be
more easily learned and subtasks more easily sequenced.
Experimental Results: It is easy to see that TDM is more

data-efficient than the baseline hDQN from the learning curve
(Fig. 5(a)). Interpretability requires a qualitative analysis. We
will emphasize how trust score guides TDM on planning, learn-
ing, and sequencing of the subtasks, and therefore learns the
optimal behavior, all of which are visualized in our figures.
The results have been averaged over 10 runs and we shown

mean-variance plots in the Fig. 5(a), 5(b)(c). The description of
subtasks can refer to both Fig. 5(a) andTable II. The environment
rewards are only given for completing Subtask 3 (picking up the
key,+100) and Subtask 7 (opening the right door,+300). Since
other subtasks do not receive any reward from the environment,

we can infer from Fig. 5(d) that TDM first learns the plan to
sequence Subtasks 1–3. The agent learns other subtasks through
exploration as the trust-score-basedplanning encourages execut-
ing untried subtasks and try different locations until it reaches the
door. At that point, we can see in the learning curve that the agent
quickly converges to the optimal plan that sequences through
Subtasks 1–7 (Fig. 5(d)), resulting in the maximal reward of
400. In contrast, hDQN does not reliably achieve the maximal
reward even after TDM stably converges. Also, it’s difficult
to see how hDQN sequenced through its subtasks due to high
variance. TDM achieves a smaller variance than hDQN partially
because our definition of the subtask is easier to learn than the
one defined in hDQN, leading tomore robust and stable learning.
The symbolic planning of TDM allows flexibility in reusing

the learned subtasks in various plans. Fig. 5(b) shows that TDM
learns Subtask 6 before Subtask 3, but in the optimal plan, Sub-
task 3 must be sequenced before Subtask 6. This means Subtask
6 has been learned as a part of a different plan but re-selected
in the optimal plan, which is possible because subgoals of the
subtasks are associated by their starting states and only activated
by the planner when the agent satisfies the starting states.
During the experiment, Subtasks 1–10 are successfully

learned by controllers (or DQNs), with 7 of them being selected
in the final solution with achieving a success ratio of 100%,
shown in Fig. 5(b). TDM prunes other Subtasks 8–13 based on
the low trust score achieved during training. Subtask 8, from
the lower right ladder to the left of the rotating skull, reaches
a success ratio of 0.9 but later quickly drops back to 0, due to
the instability of DQN. Subtasks 9 and 10 reach the required
success ratio but are discarded as they do not contribute to the
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TABLE III
COMPARISON OF TDM AND HDQN

optimal plan, whereas the success ratio on subtasks 11–13 are
poor, suggesting they are difficult to learn.
Interpretability and Trust: In our proposed framework, the

evaluation criteria are designed through human involvement,
based on the human expert’s interpretation of the agent’s ex-
ecution. The symbolic representation can then be refined to im-
prove the agent’s performance. Therefore, the agent’s decision-
making’s trustworthiness is rooted in the trust we place in the
underlying symbolic representation. Although many existing
interpretable frameworks focus on simplifying the underlying
model to generate human-understandable explanations [5], [26],
[68], we show that the trade-off between the interpretability and
performance of the model is not always necessary. In our case,
a performance-based trust metric is used to guide the learning
agent to maximize its performance and justify the subtasks it
learns. This is, in essence, a separation of descriptive and per-
suasive explanation tasks [69], where we handle the descriptive
task through symbolic representation and perform persuasive
explanation through the use of the trust score.
We now relate these concepts to the comparison of our frame-

work to the baseline. In both hDQN and TDM, the bounding box
defined by a human expert is utilized, considering the locations
of objects only. As a result, the bounding box can be meaningful
and interpretable with the human expert’s domain knowledge.
The subtasks of hDQN are only associated with the bounding
box. However, TDM utilizes symbolic representation to derive
subtasks except for the boundingbox and canprovide a relational
perspective, such as objects/entities and their relations. This
makes the subtasks of TDM more descriptive since a symbolic
state may contain more rich information than hDQN. According
to the trust evaluation on subtasks, trust scores would motivate
the TDM agent to maximize its performance by executing the
learnable subtasks while discarding the unlearnable ones. The
experiment results show TDM’s persuasive explanation is more
convincing than hDQN. Also, the variance about the curves
(Fig. 5(a)) demonstrates the degree of robustness when the agent
faces uncertainties. The summarization is shown in Table III.

VII. CONCLUSIONS

Since interpretability of the high-level behavior is critical to
enhancing trust in a hierarchical sequential decision-making
problem, we proposed the TDM framework in this paper by
integrating symbolic planning with sequential decision-making
operating on high-dimensional sensory input. We also presented
a TDM-based deep learning algorithm. Deep learning archi-
tecture is used to learn low-level control policies for subtasks
managed by high-level symbolic planning based on explicit
symbolic knowledge. Both theoretical analysis and empirical
studies on benchmark problems validate that our trust-score

based algorithmic framework brings task-level interpretability
to deep reinforcement learning and improved data efficiency
induced by the symbolic-planning-learning framework of the
agent.
There are several promising future work potentials in this

research direction. For example, it would be intriguing to ap-
ply TDM in the human-computer interaction systems, allow-
ing layperson to understand the system behavior and provide
meaningful evaluation feedback to the machine. The second
interesting direction is to apply the framework of TDM in
multi-agent systems. Trust is important in interactions among
different agents where the integrity of some agents is not always
guaranteed. Interpretability may be used to help improve the
behavior of the agents and lead to a better equilibrium.
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