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The development and validation of computational models to detect daily human behaviors (e.g., eating, smoking, brushing)
using wearable devices requires labeled data collected from the natural field environment, with tight time synchronization
of the micro-behaviors (e.g., start/end times of hand-to-mouth gestures during a smoking puff or an eating gesture) and
the associated labels. Video data is increasingly being used for such label collection. Unfortunately, wearable devices and
video cameras with independent (and drifting) clocks make tight time synchronization challenging. To address this issue,
we present the Window Induced Shift Estimation method for Synchronization (SyncWISE) approach. We demonstrate the
feasibility and effectiveness of our method by synchronizing the timestamps of a wearable camera and wearable accelerometer
from 163 videos representing 45.2 hours of data from 21 participants enrolled in a real-world smoking cessation study. Our
approach shows significant improvement over the state-of-the-art, even in the presence of high data loss, achieving 90%
synchronization accuracy given a synchronization tolerance of 700 milliseconds. Our method also achieves state-of-the-art
synchronization performance on the CMU-MMAC dataset.
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1 INTRODUCTION
The temporally-precise annotation of sensor data is necessary in order to build models that can passively sense
and infer behavior from sensor signals. For behaviors involving limb movements, such as smoking, eating, and
brushing, video-recordings from wearable cameras are increasingly being used to obtain temporally-precise
ground truth labels. The cameras are worn and positioned to capture movements of interest under field conditions
(see Fig. 1). Video is recorded simultaneously with the target mobile sensor data, and standard video coding is
used to obtain ground truth labels for the sensor streams. These data can be used both to validate the accuracy
of existing methods and to train new models. This approach has been used for eating, drinking, and brushing
activities [1–4, 9, 45], and is particularly valuable for fine-grained activities lasting on the order of seconds.
However, this approach requires accurate time synchronization between the video sequence and the sensor data
streams so that annotations obtained from video can be automatically transferred to label the sensor data. Any
temporal misalignment between the video and sensor streams will result in label noise (i.e., incorrect labeling of
the sensor data) and can significantly degrade the accuracy of the detector.
Because it is common for commodity sensor hardware to utilize independent, unsychronized clocks, previ-

ous sensor system architectures have incorporated effective approaches to sensor synchronization [12, 25, 38].
Unfortunately, these approaches cannot be easily extended to video capture. In contrast to sensor network
approaches [38], commercially-available wearable video cameras such as GoPro, are not designed for synchro-
nization with other non-camera sensors.1 In addition, battery constraints make it infeasible to transmit video
data wirelessly so that it cannot be time-stamped at a central collection point simultaneously with other sensor
streams [25]. As a result of these issues, the problem of time synchronizing of video cameras [20, 37, 41] and
wearable devices [35] is well-known within the community to be a practical challenge in study implementation
and a silent killer of data accuracy [4].2

When data is collected under laboratory conditions, many strategies can be used to establish synchronization
points, such as the well-known clapperboard for audio-visual (AV) synchronization or the use of special hand
gestures to synchronize body-worn accelerometers with cameras [34, 35]. These approaches are impractical for
field studies as they impose significant burden on participants and rely on their adherence [10]. Alternatively,
manual synchronization can be performed with tools such as ELAN [11] or Chronoviz [18]. This approach is
laborious and time-consuming, and as a result of clock drift, it may need to be performed at multiple time points
across a long recording.3 It follows that there is a need for a flexible, general purpose solution for synchronizing
1While add-on products from third-party vendors, such as SyncBac Pro and ’:pulse’ from Timecode Systems [30], can provide synchronization
solutions for wearable cameras, they are limited to synchronizing multiple cameras and do not address our scenario.
2Even something as basic as synchronizing audio and video for film-making has a long history of challenges and failures. For example, a
legendary live performance by Aretha Franklin in 1972 was not released for 46 years, due in part to the failure to synchronize the video and
audio properly during recording [19].
3Several authors have investigated clock drift arising in video cameras [33, 42]. The GoPro has an average drift of 1 second per hour, which is
roughly the same duration as many fine-grained gestures.
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cameras with other mobile sensors that can be applied to field-collected data, does not impose any additional
burden on participants, and is fully-automatic.

In this work, we introduce a fully-automatic method called Window Induced Shift Estimation for Synchroniza-
tion of video and accelerometry (SyncWISE). Given a clip of video and accelerometry data, it outputs the time
offset for synchronization (see Fig. 1(a)). We address the two key technical challenges of partial observability and
coordinate registration. Partial observability refers to the fact that the time intervals in which synchronization
points can be reliably identified are sporadically distributed. For example, a chest-worn camera on a participant
standing at a street corner will capture significant dynamic video content, while a co-located accelerometer will
register no movement. This is in contrast to prior work [13, 21] which has implicitly assumed that all moments
of time are equally good for estimating synchronization. We address partial observability via a kernel density
estimation approach in which weighted segment pairs are correlated and their votes aggregated to obtain the final
offset. The second challenge of coordinate registration arises in synchronizing video with motion-based sensors,
such as accelerometers, that output their data with respect to a 3D coordinate system. In this case, the correct
comparison of the signals requires the two coordinate systems (camera and sensor) to be registered, so that
corresponding directions of movement are being compared. In contrast, prior work on sensor synchronization in
autonomous vehicles [21] leverages the fact that sensors are rigidly mounted and calibrated during installation.
We address coordinate registration by using a PCA analysis to identify a common principle direction between
modalities prior to registration. We validate our SyncWISE method on two datasets: the CMU-MMAC activity
dataset [16], and a novel real-world dataset, called Sense2StopSync (S2S-Sync), from a smoking cessation field
study with 21 participants, consisting of 45.2 hours of recordings over the three days prior to quit. This work
makes the following three contributions:

• We introduce the SyncWISE method for automatically synchronizing video clips with motion-based sensor
data such as accelerometers and Inertial Measurement Units (IMUs). We believe we are the first to identify
and address the challenges of partial observability and coordinate registration that arise in the field
environment.
• We provide the novel Sense2StopSync (S2S-Sync) dataset to the research community,4 comprising 45.2
hours of time-synchronized optical-flow videos and accelerometery data from two chest-worn devices
collected from 21 subjects with annotations of smoking and feeding gestures.
• We present state-of-the-art automatic synchronization results for the CMU-MMAC and S2S-Sync datasets,
which significantly outperforms two versions of a baseline method [21]. The software will be made freely-
available.

2 RELATED WORK
The time synchronization of multiple sensor streams is a long-standing challenge that cuts across a broad range of
application domains and has a long history, ranging from the invention of the clapperboard in 1931 to synchronize
audio and video during movie filming, to the protocols used to synchronize sensor networks [12]. This review
is focused on methods for synchronizing video with wearable sensor streams for mobile sensing applications.
We identify four categories of approaches: 1) Naturalistic methods, of which our work is an example, which do
not impose any special requirement on signal capture; 2) Explicit methods, which enforce synchronization at
the hardware or software level during capture; 3) Participant-based methods, which require specific actions by
participants to achieve synchronization; and 4) Manual approaches which rely on human observation of video
and other signals to identify synchronization points.

4 https://github.com/HAbitsLab/SyncWISE
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Fig. 1. (a) Illustration of input and output in our SyncWISE system. (b) The wearable sensory platform consists of (A) a
chest-worn sensor suite containing a 3-axis accelerometer worn underneath the clothes, (B) a GoPro video camera; an
example of video camera footage is provided below the camera, (C) a wrist-worn sensor containing a 3-axis accelerometer
and a 3-axis gyroscope worn on both wrists, and (D) a study smartphone with data logging software.

2.1 Naturalistic Methods
The goal of these methods is to handle sensor data captured in the field without special hardware or specific
participant behaviors. The closest previous work to ours is Fridman et al. [21], which describes a cross-correlation-
based method designed to synchronize multi-modal signals for research in autonomous driving. Their approach
assumes that all moments in time are equally good for synchronizing signals, and they use global cross-correlation
to utilize the maximum amount of data. This is effective because their sensors are rigidly mounted and the
coordinate axes are aligned and calibrated. In contrast, mobile wearable sensing is plagued by much greater sensor
noise (due to sensors being worn improperly), variable alignment between sensor axes, and partial observability,
meaning that sensors do not always capture the same phenomena with the result that not all moments in time
are equally plausible for synchronization. Our matching approach, which uses windowed cross-correlation in a
weighted kernel density estimation framework, addresses partial observability by identifying which windows of
data provide reliable signals for synchronization. Our PCA-alignment approach provides a means to automatically
align the coordinate frame axes across multiple sensors. Our experimental evaluation in Sec. 5 demonstrates the
benefits of our approach over the baseline method from [21] on two datasets.

A related set of naturalistic methods provide synchronization solutions for GPS navigation systems, of which [33,
39] are representative examples. Skog et al. [39] provide a Kalman filter-based solution for clock drift that exploits
the fact that both GPS-receiver and IMU provide signals that directly relate to the spatial location of the sensor
system. In contrast, in our setting the optical flow we compute from the video cannot be directly related to the
accelerometry stream due to the partial observability problem.
Another set of related methods address the automatic synchronization of multiple video streams [37, 41, 43].

These approaches leverage the fact that video is a single modality with unique spatiotemporal properties. In
contrast, our work addresses the case of synchronizing across sensor modalities, which requires the extraction of
an appropriate feature representation from each sensor’s signal. Related work by Chung and Zisserman [13] uses
deep learned representations to align audio and video streams in the context of correcting lipsynch effects in
video dubbing. Their solution exploits the fact that the video and audio signals are always directly correlated,
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unlike our case where partial observability is common. Finally, multiple prior works assume that synchronized
audio-video signals are available and construct joint audio-visual feature representations for tasks such as source
separation or sound classification [6, 23, 44]. While some of these works use artificial time shifts between the
audio and video channels as a means of data augmentation, they have not been utilized for signal synchronization.

2.2 Explicit Synchronization
A wide range of signal capture solutions have been designed which enforce synchronization at the hardware-
software level. Here we focus on three approaches. The first approach is used in sensor networks [12, 28, 38],
including body area networks. Since all sensors are on the same network, protocols can be used to keep the sensor
clocks synchronized, and corrections can be applied to address clock drift or skew [12]. In the second approach,
all sensor signals can be wirelessly transmitted to a centralized collection node, such as a smartphone, where they
are time-stamped to a common clock, thereby achieving synchronization (mCerebrum [25] is a representative
example). These two approaches do not work for wearable cameras, due to lack of network support, network
bandwidth, and battery limitations. An exception is when all data collection takes place in the same location.
In [1], a smartphone holder is installed in the location where tooth-brushing occurs, allowing video to be recorded
on the smartphone camera (the centralized node) itself, thereby achieving synchronization. In [16], cooking
activities were captured in the lab, enabling a wearable camera and other sensors to be synchronized via hardware
(e.g., using genlock where a reference signal from one device is used to synchronize all other devices). Note that
we use the dataset from [16] for the experiments in Sec. 5.4. The third approach uses special hardware to achieve
real-time synchronization [7, 14]. In [14], a periodically blinking LED is controlled to provide cues to synchronize
different modalities. While such an approach can be effective, it requires additional implementation and system
complexity, and the automated detection of the LED signal may be challenging in uncontrolled environments.
Our approach leverages commodity hardware and standardized research grade mHealth solutions to support a
broad range of study designs.

2.3 Participant-Based Methods
The clapperboard approach to audio-visual synchronization provides a reliable solution because it introduces an
explicit synchronization point which is visible across modalities. Analogous approaches exist for other multi-
sensor synchronization tasks. In Plötz et al. [34], specific hand gestures are assigned to participants to provide
explicit synchronization points for aligning video and accelerometer data. Similarly, Han et al. [22] propose a
method to synchronize video and sensor data for walking behaviors by detecting and matching the maximum
backward swings of the leg. Bannach et al. [8] develop a method to automatically detect specific gestures (e.g.,
‘clap’) assigned to participants. These approaches can work in controlled settings, but they introduce additional
participant burden and a single point of failure in the mobile setting.

2.4 Manual Synchronization
In cases where alternative synchronization approaches fail, a fall-back solution is to use tools such as ELAN [11]
or Chronoviz [18] that enable the manual identification of synchronization points via inspection. This approach
has been used routinely in prior mHealth and mobile sensing works and should be considered the default
method [2, 3, 27, 35, 45]. Our goal is to remove the need for such manual efforts and provide a fully-automatic
solution to this important practical problem.

3 STUDY DESIGN AND DATA COLLECTION
We now detail the collection of the S2S-Sync dataset. We first describe the study design in Sec. 3.1. The sensor
data collection is outlined in Sec. 3.2 and the approach to data annotation is described in Sec. 3.3.
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3.1 Study Design
Data was collected during a smoking cessation study, Sense2Stop. Participants (age 18-65) were eligible for
Sense2Stop if they had smoked at least 1 cigarette per day for the past year. The S2S-Sync dataset is generated
from Sense2Stop during the three-day pre-quit period in which subjects exhibited maintenance behavior (i.e.
typical smoking patterns). The pre-quit period provided baseline data for participants’ smoking and eating
behaviors. The video collected during pre-quit supports the annotation of smoking and eating behaviors to
validate and refine machine-learned models.

3.1.1 Study Timeline. On Day 1, participants visited the lab, where they were fitted with the mobile devices and
received instructions. The pre-quit phase ended on Day 4, when participants returned to the lab to upload their
wearable video data to the study servers. During this visit, participants had the opportunity to delete any video
footage that they did not wish to share. Participants then continued into the post-quit period without the video
camera.

3.1.2 Participant Instructions. During the pre-quit period, participants were instructed to wear the provided
GoPro camera for 4 hours on at-least 2 separate days, that included at least one smoking event and the eating of
at least one meal and one snack, for a total of 8 hours of in-the-wild recorded video.

3.2 Devices
Thewearable devices worn by the participants included a GoPro video camera strapped to their chest, a chest-worn
sensor suite comprising an accelerometer, electrocardiography (ECG) sensor and respiratory plethysmography
(RIP) sensor, and a pair of wrist-worn devices with tri-axial accelerometers and gyroscopes on each wrist.
Additionally, they were provided with a study-dedicated smartphone with data collection software installed. We
focus our analysis on synchronizing between the chest-worn accelerometer and GoPro video camera.

3.2.1 Video Camera. Participants wore a GoPro Hero 4 camera recording 1080p video at 30 Hz. The GoPro was
mounted on the chest using a chest mount strap and case that protects the camera and image quality from dust,
water, and other elements. The camera was oriented towards the participant’s face. The captured video was
stored on an µSD card as a series of MP4 files, each of which is 4 GB and 17 minutes and 43 seconds long. Before
deployment, the GoPro’s clock was synchronized with a PC to the National Institute of Standards and Technology
(NIST) time server. As an added precaution, the camera is oriented towards the PC to briefly record the NIST
time webpage (time.gov), providing an additional synch reference before the camera goes out into the field.

3.2.2 Accelerometers and Data Logging. There are two sets of accelerometers used in our study. The accelerometer
from the chest-worn device, AutoSense [17], sampled at 10.66 Hz, was used in all of our automatic synchronization
experiments. Note that this device is mounted on a harness which is separate from the GoPro. In Fig. 1(b), the
accelerometer is on (A) while the camera is on (B). Thus while the two devices are roughly co-located, the camera
is capable of significant movement relative to the accelerometer, including changes to its orientation. Additional
accelerometers from the MotionSense wristband [32], mounted one on each wrist and sampled at 16 Hz, were
used by the annotators during manual synchronization (see Sec. 3.3.1).5

Data from all accelerometers was transmitted to the study phone wirelessly and logged on an encrypted µSD
card by the open-source mCerebrum smartphone app [25]. Then the data were periodically uploaded to a secure
server running the open-source Cerebral Cortex [24]. The mCerebrum app time-stamps each packet of data to a
common clock, thereby synchronizing the accelerometry signals to each other. Wireless transmission can result
in dropped packets and packets arriving out-of-order. The software performs interpolation for small gaps in
5The difference in the sampling rates for the accelerometers is due to their different use cases, and the importance of sampling minimally so
as to preserve battery life: The chest sensor monitors respiration, while the wrist sensors monitor physical activity.
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Fig. 2. Illustration of manual determination of the time shift between a wrist-worn accelerometer and chest-mounted GoPro
camera for a drinking gesture, with landmarks defined using the ELAN annotation tool. Once the time-shift is identified, the
label for the segmented drinking event can be transferred to the accelerometer signal.

the data, but significant gaps in the accelerometry signal remain. Our approach to synchronization explicitly
accounts for missing data and poor signal quality, which is endemic to mHealth applications [26, 36].

3.3 Data Screening and Annotation
The unit of data for our experiments is a video clip with an associated segment of accelerometry data. Each clip
corresponds to one MP4 file captured by the GoPro, with a maximum duration of 17 minutes and 43 seconds.
Clips that were shorter than 30 seconds were discarded, resulting in 378 clips from 34 participants. The time
stamps recorded by the GoPro camera are used to identify the segment of accelerometry data which is paired with
the clip. This is an extremely crude correspondence with substantial error. Additional screening steps, detailed in
Appendix A.1, resulted in the final S2S-Sync dataset comprising 163 video clips of 45.2 hours in total duration
with associated accelerometry data from a total of 21 participants. Each participant contributed an average of
2.15 hours of usable data for analysis.

3.3.1 Ground Truth Annotation Process. Because our data capture process uses separate clocks for the video and
accelerometry signals (GoPro clock and study phone clock, respectively), manual alignment of the video and
accelerometry signals in each clip was performed in order to establish ground truth for our experiments. In our
approach, we chose the accelerometer clock as the reference timeline, and we selected the synchronization offset
that shifts the video into alignment.
The manual synchronization process, illustrated in Fig. 2, comprises two stages: a landmark video detection

phase, and an accelerometer alignment phase that aligns the detected video landmarks with one of the two
accelerometers (wrist- or chest-worn accelerometer). A video landmark event is defined as a distinguishable
human movement (often a transition from inactivity to activity) which is visible in the video and potentially
noticeable in either the wrist- or chest-worn accelerometery signals. All accelerometers are utilized in order to
increase the number of available synchronization points. We find that hand movements near the face frequently
result in wrist accelerometer to video matches, while transitions from sitting to standing or from standing
to walking often result in chest accelerometer to video matches. After the landmark event has been localized
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Fig. 3. A sample of 3-axis sensor signal. The accelerometer data comprises sections considered either high-quality, low-quality,
or missing (no data).

in the video, the annotator will utilize a combination of cues to match sudden changes in either the wrist or
chest accelerometer sensor signals to the corresponding hand or body movements in the video. After they
are successfully matched, the time offset can then be calculated, and the video time is adjusted to align with
the accelerometer based on this offset. The aligned signals are then inspected to determine if the estimate is
sufficiently accurate. If errors remain, the process is repeated for other landmark events, resulting in additional
offset measurements. The final offset is produced by combining these measurements. Fig. 2 illustrates the process
of aligning a drinking event shown in the video frame with the corresponding wrist accelerometer motion using
the ELAN [11] annotation tool.

3.3.2 Annotator Agreement. In order to evaluate the consistency of manual labeling, three trained annotators
processed ten video clips and obtained independent estimates of the ground truth offset times. The average
difference in their offset times was 346 ms, with 309 ms standard deviation. This demonstrates an unavoidable
error in ground truth acquisition of fine-grained labeling and time synchronization of about 346 ms. We also
conducted a one-way repeated measures ANOVA (used to determine whether three or more group means are
different when the participants are the same in each group). The result illustrates no significant difference
between the three annotators (F=0.60, P=0.56). Therefore, we conclude that there is no statistically significant
difference between the annotations from different annotators. On average, an annotator spends 25 minutes to
synchronize each video (spanning 17 minutes of data) manually. Our work aims to mitigate this problem of time
synchronization, thus saving researchers thousands of hours of manual time synchronization.

4 METHODOLOGY
In this section, we introduce our approach to solving the problem of time synchronization between video and ac-
celerometry. We start by presenting notation used, data preprocessing, and then present our time synchronization
algorithm Window Induced Shift Estimation (SyncWISE), and finalize by discussing our evaluation metric.

4.1 Notation
We define {xt ∈ R2}𝑇𝑡=1 to be the observed motion acceleration estimated from each frame of video, and {yt ∈
R3}𝑇𝑡=1 to be the observed acceleration from the accelerometer in the chest-worn device. We ensure the signals
are resampled to have the same frequency. Our goal is to estimate the shift ∆ ∈ R between two time series such
that xt and yt+∆ describe the sensed behavior happening at the same time.

4.2 Data Preprocessing
Preprocessing has two tasks: 1) identify high-quality windows of accelerometry data to support matching, and 2)
extract a motion signal from the video that can be compared to the accelerometry signal.
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4.2.1 Accelerometer Data Preprocessing. As illustrated in Fig. 3, different portions of accelerometry data can vary
significantly in quality due to missing data points, as the result of wireless transmission problems. To reliably
screen for poor quality data, we analyze the data in one second long segments and define a per-segment reliability
metric as the ratio of the number of data points collected in a second divided by the expected sampling rate of
10.66 Hz. We then label each segment of data as high-quality if the reliability is above 75% (i.e., 8 samples out of
the 10.66 samples per second are present). Segments that do not meet this threshold are labeled as low-quality. In
order to perform matching, we aggregate high-quality segments into windows of data that are 10 seconds long. A
viable window will consist of 10 consecutive segments (i.e., 10 seconds) that were labeled high-quality. We sweep
across the video clip with a one second stride to segment the viable matching windows. In order for a 17 minute
video clip to be synchronizable, we require that it contain at least 10 viable windows (each 10 seconds long). Each
extracted window is upsampled from 10.66 Hz to 30 Hz to match the camera sampling rate.
Note that our approach uses windows of high-quality accelerometry data as a starting point for matching to

windows of video data in our SyncWISE algorithm (discussed in Sec. 4.3). This approach assumes that there are
no dropped video frames, which is true for the datasets we used in our experiments. Specifically, the GoPro used
in S2S-Sync stores frames locally (see Sec. 3.2.1) and the data in CMU-MMAC was collected in a lab setting. It
is likely that our approach could be extended to accommodate small numbers of dropped frames, but we make
no claims for efficacy in this case. Addressing large numbers of missing frames simultaneously with missing
accelerometry is a topic for future work.

4.2.2 Motion Estimation from Videos. In order to compare video and accelerometry, a key operation is to extract
an estimate of acceleration from video movement. This is accomplished in two steps. First, an estimate for the
velocity at every pixel in every frame, known as optical flow, is computed from each pair of adjacent frames in
the video. Motion features have been used in recognizing daily activities from first-person videos [29, 31, 46].
We use a deep-learning based dense optical flow estimation framework called PWC-net [40]. In the resulting
2D vector field, the vector at each pixel location provides a motion estimate of the pixel in 𝑥 (horizontal) and 𝑦
(vertical) directions. The second step extracts a scalar acceleration signal from the sequence of flow fields. To do
this, we average the optical flow spatially for each frame and then compute the difference in the average optical
flow between the current frame and the previous frame. This provides a 2D camera acceleration feature vector
for each frame 𝑡 , denoted as xt in Section 4.1.

4.2.3 PCA Projection. An important aspect of the video data is that the orientation of the camera can be arbitrary,
and this in turn affects the orientation of the acceleration vector computed in Sec. 4.2.2. While the participants
were instructed to orient the camera towards their head, in practice we observed many different orientations
in the dataset. The orientation can vary day-to-day as the camera harness is put on and taken off each day.
This results in coordinate transformations between the sensors that vary both within-subjects across time and
between-subjects. While the baseline approach [21] compares signals from a fixed pair of axes to determine the
synch points, we need a way to compare axes which vary across time within the dataset.

Principle Component Analysis (PCA) allows us to map each of the 2D video data and 3D accelerometery data to
a single dimension (1D) that captures the motion along the most dominant axis. To extract the 1D signal that best
captures motion in a single axis, we project data from each sensing modality (both the video and accelerometer
signal separately) onto their first principle component direction estimated by PCA. The first principle component
corresponds to the direction of greatest variation in the data, and this is well-matched to our goal since cross-
correlation (used in our proposed algorithm) leverages the variation in the signals. Formally, for video data
{xt}

𝑇𝑉𝑘
𝑡=1 and accelerometer data {yt}

𝑇𝑉𝑘
𝑡=1 collected during video 𝑉𝑘 , we have 𝑝𝑣𝑖𝑑1 and 𝑝𝑎𝑐𝑐1 as the first principle

components from PCA calculated separately on {xt}
𝑇𝑉𝑘
𝑡=1 and {yt}

𝑇𝑉𝑘
𝑡=1 . We then denote the 1D projected time series
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as {x(p1)
t = 𝑝T

𝑣𝑖𝑑1xt}
𝑇𝑉𝑘
𝑡=1 and {y(p1)

t = 𝑝T𝑎𝑐𝑐1yt}
𝑇𝑉𝑘
𝑡=1 . We omit the subscription 𝑝1 for abbreviation throughout the

paper.

4.3 SyncWISE Algorithm
Our approach to matching noisy video and accelerometry signals captured from mobile devices has two key
components. The first is the procedure described in Sec. 4.2.1 and illustrated in Fig. 3, which selects high-quality
windows of accelerometry data for matching, as a way to overcome the noise and missingness in this signal.
The second key component uses weighted kernel density estimation (wKDE) to combine noisy estimates of the
shift produced from multiple accelerometry-video window pairs to obtain an accurate estimate. It utilizes the
cross-correlation response from each window pair to obtain a weighted Gaussian kernel and combines these
kernels to estimate the offset.
The process of offset estimation is illustrated schematically in Fig. 4. The top of the figure shows the signals

from a video clip and corresponding accelerometry clip separated by a ground truth offset of 1.5s. Given a
window of accelerometry data, we search for the offset by shifting the video window by different amounts,
to examine corresponding segments in the video. This is illustrated at the top of the figure. We show three
different accelerometry windows in blue, cyan, and green. Each window will be shifted multiple times to search
for potential matches. One of the corresponding window locations in the video signal is shown as a solid outline,
the other locations are shown with dotted outlines. Given each pair of windows, cross-correlation (CC) is used
to produce an estimate of the shift from that pair. This is illustrated in the lower part of Fig. 4 for each of the
three window pairs shown with solid outlines. After detecting the peak in the CC function, a Gaussian kernel
is fit to the data. Once all pairs have been correlated, a probability density function (PDF) for the global offset
between the signals is constructed via a weighted sum of the Gaussian kernels (i.e., a wKDE for the offset PDF).
Effectively, each window pair is casting a weighted vote for the offset. A single estimate for the offset is obtained
by detecting the peak in the PDF, resulting in an estimate of 1.4s with an error of 100ms in this schematic example.
The confidence score for the final estimate is obtained by fitting a Gaussian to the PDF to obtain the variance (24
in this example). Pseudocode for the method is provided in Appendix A.2. We now describe each step in detail.

4.3.1 Window Pair Sampling. Our starting point is a window𝑤𝑖 of accelerometry data of length𝑇𝑤 with samples
denoted as yi = [𝑦𝑠𝑖 , 𝑦𝑠𝑖+1, . . . , 𝑦𝑠𝑖+𝑇𝑤 ], where 𝑠𝑖 is the time index of the start of window 𝑖 . We generate 𝑁𝑠 different
offsets 𝑜𝑖𝑗 for window 𝑖 , where 𝑗 = 1, . . . , 𝑁𝑠 and |𝑜𝑖𝑗 | <= 𝑇𝑚𝑎𝑥 . For each offset 𝑗 , we obtain corresponding video
samples denoted as xi,j = [𝑥𝑠𝑖+𝑜𝑖𝑗 , 𝑥𝑠𝑖+𝑜𝑖𝑗+1, . . . , 𝑥𝑠𝑖+𝑜𝑖𝑗+𝑇𝑤 ]. Each 𝑜

𝑖
𝑗 defines a window pair (see Fig. 4) for matching

via cross-correlation in Sec. 4.3.2.
This approach has three design parameters: 𝑇𝑤 which controls the window width, 𝑇𝑚𝑎𝑥 which controls the

search range, and 𝑁𝑠 which controls the number of offsets. They are illustrated in Fig. 4. The consequences for
these parameter settings are discussed in Sec. 4.3.4 and their optimization is discussed in Appendix A.3. Note
that there are many possible ways to generate the 𝑁𝑠 offsets. The most straight-forward approach would be to
uniformly sample the search range in fixed steps. Alternatively, if a prior estimate for the shift is available (for
example from knowledge of the capture setup or manual inspection), then sampling from a prior distribution
could focus the window comparisons on the more likely offsets (as in importance sampling). In our experiments,
we sampled offsets at random from a uniform distribution over 𝑇𝑚𝑎𝑥 . We confirmed experimentally that this
approach was indistinguishable from covering the search range in fixed steps.

4.3.2 Window Pair Matching. Given accelerometry-video window pairs yi and xi,j, as defined in Sec. 4.3.1, we
match them by calculating the cross-correlation [21, 34] to obtain an estimate 𝛿𝑖, 𝑗 for the shift between the clips.
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Fig. 4. SyncWISE algorithm overview: for each window that contains high quality accelerometry data, we search for the
offset by shifting the video window by different amounts, to examine corresponding segments in the video (shown as blue,
cyan, and green boxes). Given each pair of windows, cross-correlation (CC) is used to produce an estimate of the shift from
that pair. A probability density function for the global offset between the signals is constructed via aggregating estimates
from all window pairs using weighted Kernel Density Estimation as illustrated in the lower part of the figure.

Specifically, we calculate the cross-correlation function:

𝑐𝑐𝑖, 𝑗 (𝜏) =
𝑇𝑤∑
𝑛=1

𝑦𝑖𝑛 ∗ 𝑥
𝑖, 𝑗
𝑛+𝜏 , 𝜏 ∈ [−𝑇𝑤,𝑇𝑤], (1)

using an efficient fast Fourier transform (FFT)-based approach. The optimal shift for this pair of accelerometery
and video data is then estimated by choosing the 𝜏 that maximizes the absolute value of the cross-correlation
function centered by its median (to normalize the values) and shifted by 𝑜𝑖𝑗 (its pre-generated offset):

𝛿𝑖, 𝑗 = argmax
𝜏

����𝑐𝑐𝑖, 𝑗 (𝜏) − median
𝑡 ∈[−𝑇𝑤 ,𝑇𝑤 ]

{𝑐𝑐𝑖, 𝑗 (𝑡)}
���� + 𝑜𝑖𝑗 . (2)
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Note that each 𝛿𝑖, 𝑗 represents an estimated shift obtained from accelerometry window𝑤𝑖 and offset 𝑜𝑖𝑗 . We then
obtain a confidence score for the estimated shift as follows:

𝑐𝑜𝑛𝑓𝑖, 𝑗 =

max𝜏
����𝑐𝑐𝑖, 𝑗 (𝜏) − median

𝑡 ∈[−𝑇𝑤 ,𝑇𝑤 ]
{𝑐𝑐𝑖, 𝑗 (𝑡)}

����
std

𝑡 ∈[−𝑇𝑤 ,𝑇𝑤 ]
{𝑐𝑐𝑖, 𝑗 (𝜏)}

. (3)

The confidence score captures the fact that not all window pairs are equally informative regarding the true offset.
Intuitively, higher and sharper peaks are associated with more reliable estimates.

4.3.3 Synchronization Offset Estimation. The procedures described in Secs. 4.3.1 and 4.3.2 are repeated𝑀 times
for windows of accelerometry data selected from the input clip. This results in a set of𝑀𝑁𝑠 shift estimates and
associated confidence values {𝛿𝑖, 𝑗 , 𝑐𝑜𝑛𝑓𝑖, 𝑗 }. These inputs are used to obtain a weighted kernel density estimate
(wKDE) for the distribution of possible offset times between the two clips. This is constructed via a confidence-
weighted voting approach as follows:

𝑓 (𝑡) = 1∑𝑀
𝑖=1

∑𝑁𝑠

𝑗=1 𝑐𝑜𝑛𝑓𝑖, 𝑗

𝑀∑
𝑖=1

𝑁𝑠∑
𝑗=1

𝑐𝑜𝑛𝑓𝑖, 𝑗 · 𝐾 (𝑡 |𝛿𝑖, 𝑗 , 𝜎), (4)

where 𝐾 (𝑡 |𝛿, 𝜎) is a Gaussian kernel function with mean 𝛿 and standard deviation 𝜎 . The function 𝑓 (𝑡) is a pdf
over the range of offsets for the input clips, which is constructed by summing weighted Gaussian kernels from
the𝑀 windows and 𝑁𝑠 shifts. The final estimated video shift Δ is attained where 𝑓 (𝑡) is maximum, as follows:

Δ = argmax
𝑡

𝑓 (𝑡). (5)

It can be valuable to have a confidence score associated with the estimated offset Δ. For example, given a
pair of clips to be matched, the confidence score could be used to determine if the number of window samples
𝑀 is sufficient. We estimate the confidence in the offset estimate by using non-linear least squares [15] to fit a
Gaussian curve 𝑔(𝑡) = N(𝜇, 𝜎) to 𝑓 (𝑡), and using the variance 𝜎̂ and the variance of mean 𝑣𝑎𝑟 (𝜇) of the gaussian
to inform the confidence. The intuition here is that, if the variance of the gaussian is high, then the confidence
in the delta offset is lower, and if the variance of the estimated mean is high, then the confidence is also lower.
The estimated variance 𝜎̂ and the variance of the estimated mean 𝑣𝑎𝑟 (𝜇) predicts how well 𝑓 (𝑡) fits a Gaussian
distribution. We define the confidence score as follows:

𝐶 =
𝐶𝑜𝑛𝑠𝑡

𝜎̂ · 𝑣𝑎𝑟 (𝜇) . (6)

In this work, 𝐶𝑜𝑛𝑠𝑡 is empirically set to be 200,000. Appendix A.4.2 gives some examples of this process.

4.3.4 Discussion of Impact of Parameter Choices. The method depends on the choice of window size𝑇𝑤 , maximum
offset 𝑇𝑚𝑎𝑥 , and number of window pairs (shifts) 𝑁𝑠 . Only windows sampled near the ground truth offset can
contribute positive votes to the response curve 𝑓 (𝑡). The percentage of positive votes is at most 𝑇𝑤/𝑇𝑚𝑎𝑥 . So
larger 𝑇𝑤 and smaller 𝑇𝑚𝑎𝑥 values are preferred. However, the effect of 𝑇𝑤 also depends on the data quality
and when 𝑇𝑤 is too large it may be difficult to find a sufficient number of windows with high-quality samples.
Similarly, 𝑇𝑚𝑎𝑥 should be larger than the maximum expected true offset. 𝑁𝑠 should be sufficiently large to cover
the search range with candidate sync points, but the only upper bound on its value is computational resources.
In general, the optimal choice of these parameters will be dataset-dependent.
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5 EXPERIMENTS AND RESULTS
We performed extensive experimentation in order to evaluate the proposed SyncWISE algorithm. We evaluated
four different synchronization methods on two datasets: our novel S2S-Sync dataset and the CMU-MMAC kitchen
activities dataset [16]. The algorithm variations are detailed in Sec. 5.1, followed by a discussion of error metrics
in Sec. 5.2. Experiments on S2S-Sync and CMU-MMAC are detailed in Secs. 5.3 and 5.4, respectively.

5.1 Algorithm Variations
We identify four different synchronization methods that vary according to their treatment of the partial observ-
ability and coordinate registration problems. Our baseline method is the approach in [21], which performs a
single global cross-correlation (CC). In the S2S-Sync dataset, we fill any missing accelerometry data by carrying
over the last observation. We report results for two variants of this core approach.6 The first is Baseline-xx,
in which we select the 𝑥 component of both the accelerometry and camera acceleration features, defined in
Sec. 4.2.1. This choice was motivated by the orientation of the sensors (see Fig. 1(b)), as the 𝑥-axis corresponds
to side-to-side motion and is most likely to result in a strong motion signal during movement in real-world
settings.7 The second variant is Baseline-PCA, for which we use the PCA-based approach described in Sec. 4.2.3
to determine the 1D signals used for CC. The SyncWISE family of methods uses the paired window matching
approach with wKDE described in Sec. 4.3. The variant SyncWISE-xx uses the 𝑥-axis coordinate choice described
above, while SyncWISE incorporates the PCA representation. SyncWISE is the best-performing variant across
both datasets, and it establishes the new state-of-the-art for this problem. Note that in order to ensure a fair
comparison, before applying cross-correlation to Baseline, we drop all low-quality windows from each clip and
concatenate the high-quality windows together in both video and accelerometry, thereby ensuring that both
methods see the same signals as input.

5.2 Evaluation Metric
We use two measures to evaluate algorithm performance: 1) the average of the absolute value of the synchroniza-
tion error, 𝐸𝑎𝑣𝑔 , and 2) the percentage of clips which are synchronized to an offset error of less than 𝑛 ms, PV-𝑛.
The choice of 𝑛 connects to the question of how accurate temporal synchronization needs to be in order to be
useful in practice. In general, the answer to this question will be application dependent. For example, a smoking
puff can be as short as 500ms, but smoking sessions last 5-7 minutes [5] and teeth brushing lasts 2 min [1]. We
note that the average annotator disagreement in S2S-Sync was 346ms, and prior works such as [8] used 300ms
as the accuracy target. Based on these considerations, we chose to report PV-300 and PV-700 as the accuracy
measures in our experiments. The PV-𝑛 measure is complementary to 𝐸𝑎𝑣𝑒 , which can be sensitive to outliers if a
few difficult videos produce very large synchronization errors.

5.3 Experimental Results for S2S-Sync Dataset
We conducted two experiments to validate the performance of our method, using parameter settings described in
Sec. 5.3.1. The experiment in Sec. 5.3.2 compares the performance of Baseline and SyncWISE using a simulated
dataset with randomly-generated offsets, to provide a large-scale evaluation. The experiment in Sec. 5.3.3
demonstrates the ability of the method to synchronize the original clips in S2S-Sync using an iterative extension
of our basic algorithm. In addition, Appendix A.3 describes a comprehensive sensitivity analysis on a held-out
dataset which illustrates the impact of parameter changes on performance. All findings are discussed in Sec. 5.3.4.

6We used the open source reference implementation provided by the authors and incorporated it into our codebase so we could easily
implement preprocessing and other steps. Our code and data are available at https://github.com/HAbitsLab/SyncWISE.
7We verified experimentally that selection of the 𝑦-axis direction results in worse performance.
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Table 1. Result on S2S-Sync Dataset for baseline-xx, baseline-PCA, SyncWISE-xx and SyncWISE (𝑇𝑤=10s, 𝑇𝑚𝑎𝑥=5s, 𝑁𝑠=20)
with random shift. The SyncWISE results are averaged over 30 runs. In each run, we generate a random number from [-3 sec,
3 sec] as the ground truth shift between videos and accelerometer data. Baseline results are based on a single run because it
is not affected by different input shift and no randomization is involved in this algorithm.

Method # Videos Ave #Win Pairs Ave Error (ms) PV-300 (%) PV-700 (%)

Baseline-xx [21] 130 1 29690.79 50.77 82.31
Baseline-PCA 130 1 51124.77 47.69 70.77
SyncWISE-xx 130 1403.45 447.01 62.36 89.72
SyncWISE 130 1403.45 416.30 73.38 88.72

5.3.1 Parameter Specification. As described in Sec. 4.3.4, the choice of parameters for the method is dataset-
dependent in general. We now detail the parameters used in all experiments in this section. The relatively high
amount of missing data in the accelerometry signal motivated the choice of 𝑇𝑤 = 10s. We performed a sensitivity
analysis, detailed in Appendix A.3, to characterize the effect of 𝑁𝑠 and 𝑇𝑚𝑎𝑥 on the performance. We selected
𝑁𝑠 = 20 and 𝑇𝑚𝑎𝑥 = 5s. We used 𝜎 = 500 for the wKDE in Equation 4, and set the search bounds for 𝜇 and 𝜎 in
obtaining confidences for Equation 6 to be [−20, 000𝑚𝑠, 20, 000𝑚𝑠] and [0, 𝐼𝑛𝑓 ], respectively.

5.3.2 SyncWISE Compared to Baseline. We applied a random 20/80 split of the 163 video clips, where 20% (33
videos) are used to optimize the parameters of our algorithm, and 80% (130 videos) are used to test our algorithm
and produce the final results. Using the ground truth synchronization offsets for the 130 test video clips (see
Sec. 3.3), we generate a synthetic testing dataset as follows: random offsets in the range [-3 sec, 3 sec] were
sampled 30 times for each clip and used to shift the synchronization, resulting in 3,900 test clips. These synthesized
test clips were used to assess the performance of our algorithm.8 The experimental results are summarized in
Table 1. We can see that 𝐸𝑎𝑣𝑔 is two orders of magnitude smaller for SyncWISE compared to Baseline. This is
not surprising, as Baseline does not aggregate votes based on a quality measure and is therefore susceptible to
the prevalent signal noise. Similarly, the PV-300 and PV-700 measures are higher for SyncWISE, although the
difference is not as large, suggesting a smaller set of difficult clips may explain the high 𝐸𝑎𝑣𝑔 result for Baseline.
We see that the use of PCA in SyncWISE provides a modest benefit relative to SyncWISE-xx, particularly for
PV-300, but Baseline-PCA performs worse than Baseline-xx. We hypothesize that this is because the PCA step
primarily benefits the quality of the confidence estimate, which is not used in Baseline. We include some examples
of response curves for both methods in Appendix A.4.

5.3.3 Synchronizing with the Original Offsets. The simulation experiment in Sec. 5.3.2 facilitated a large-scale
evaluation over a six second range of offsets. However, the ground truth offsets for the S2S-Sync clips are
substantially larger and have a complex distribution, with an average offset of 21s, max offset of 180s, and min
offset of 387ms. The direct application of SyncWISE to these clips is unsuccessful, as the search range is too large
for accurate registration given the noisy and complex properties of these signals.
We therefore developed an interactive version of the SyncWISE method which can extend the search range

arbitrarily, with the downside of requiring human intervention for verification. We make an analogy to image
search to explain this issue. When the query is easy, the first returned result will have high confidence and can be
accepted immediately. This is the case for synchronization with a six second offset range. But when the query is
challenging, the confidence must be used to rank the results, and manual inspection is needed to verify the correct
8Since SyncWISE searches in the space of offsets and evaluates a discrete set of windows, it will produce different outputs for different relative
shifts. In contrast, the Baseline approach uses a single global cross-correlation, and the shift-invariance property of the cross-correlation
function means that the results will be the same for all shifts. Therefore, the Baseline method was run once for each clip.
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(a) (b)

Fig. 5. Result of the Extended SyncWISE method on the S2S-Sync dataset with the original offsets (unsynchronized clips).
Ranked proposals for sync points are examined to retrieve the correct sync. The plot shows the relationship between the
number of top-ranked proposals examined and the resulting PV-300 measure (a) on 130 videos in test dataset, and (b) on 92
videos after removing problematic videos.

match. This is because the confidence estimates are not sufficiently accurate over an extremely large search range.
We now describe the Extended SyncWISE approach as follows: We define a step size 𝑉𝑠𝑡𝑒𝑝 of 3s and a maximum
shift 𝑉𝑚𝑎𝑥 of 3 min. These are chosen to search over the range of +/- 3 min, which is sufficient to cover all of the
offsets in the S2S-Sync clips. We generate a set of shifted clips by starting with −𝑉𝑚𝑎𝑥 and incrementing to +𝑉𝑚𝑎𝑥

in steps of 𝑉𝑠𝑡𝑒𝑝 , resulting in our case in 120 shifted clips. Each shifted clip is synchronized using SyncWISE, and
the offsets from these clips are ranked according to the confidences computed via Equation 6. We then ask the
user to examine the proposed sync points in ranked order, to identify a desired level of accuracy.
Since we already have the ground truth sync points for the purpose of this experiment, the role of the user

can be automated. The results are depicted in Fig. 5. The x-axis shows the number K of top-K ranked proposal
(candidate) sync points that must be examined, and the y-axis gives the percentage of clips correctly synchronized
according to the PV-300 measure if the best proposal within the top K is selected. In the 130 videos in the test
dataset, several had less than ideal recording conditions: 5 videos were recorded under dim lighting conditions, 1
video was blurred by water droplets on the lens; 9 videos had the edge of the lens covered by the GoPro case; and
23 exhibited little to no salient body movement. In Fig. 5 we report on both the 130 videos and the 92 videos
(after removing these problematic videos). After removal of problematic videos, we can see that simply choosing
the top-ranked sync proposal (as is done in the standard SyncWISE approach), results in a PV-300 of around 54%.
However, examining the top 5 proposals permits an improvement to around 70%, while examining the top 10
proposals achieves a PV-300 of 74%. While this result falls short of a fully-automated approach, our method has
the benefit of broad applicability and may still save significant human effort in synchronizing video clips under
difficult and real-world recording conditions.

5.3.4 Discussion. Our results demonstrate the benefits of our SyncWISE approach over the Baseline global
cross-correlation method. We believe this makes sense, as the baseline approach assumes that all parts of the
video and accelerometry signals contain information which is relevant to the offset, and combines them into a
single global estimate. This is unlikely to be true in our case due to partial observability. Our method attempts
to automatically find most salient windows with high correlation to act as “marker gestures,” similar to those
defined manually in synchronizing data from a controlled in-lab study in [8, 34]. The problem of sychronizing
clips over very long offsets in the presence of sensor noise remains open, but the Extended SyncWISE approach
can provide a stop-gap interactive method. Use of SyncWISE requires the user to set the system parameters,
and we included a sensitivity analysis in our experiments which leveraged the known ground truth. In general,
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Table 2. Final result on the CMU-MMAC Dataset for synchronization between wearable camera and right arm accelerometor
using SyncWISE, Baseline-PCA and Baseline-xx (with 𝑇𝑤=60s, 𝑇𝑚𝑎𝑥=60s, 𝑁𝑠=10).

Method # Videos Ave #Win Pairs Ave Error (ms) PV300 PV700

Baseline-xx [21] 126 1 26371.69 30.16 43.65
Baseline-PCA 126 1 21983.33 40.48 50.0
SyncWISE 126 2865.32 14358.99 49.21 63.49

it will be difficult to specify the correct system parameters in advance for all sync problems. In practice, we
believe an iterative approach will be needed, in which an initial set of parameters are refined through repeated
synchronization and analysis of a small set of clips. Once effective parameters are found, then an entire dataset
can be synchronized automatically, or interactively using Extended SyncWISE.

5.4 Experimental Results for CMU-MMAC Dataset
We now describe our experiments on CMU-MMAC, a well-known multimodal activity dataset [16]. The data
of different modalities used in this experiment are described in Sec. 5.4.1. Parameter settings are described in
Sec. 5.4.2. The experiment in Sec. 5.4.3 compares the performance of Baseline and SyncWISE using the ground
truth synchronization provided with the dataset. In addition, Appendix A.5 provides additional results and
examples. The findings are discussed in Sec. 5.4.4.

5.4.1 CMU-MMAC Dataset. In this dataset, a wearable camera is attached to a head lamp whose bulb has been
removed and it is worn around the head of the subject, and five accelerometer sensors are placed on the subject’s
back, legs, and arms. Data is recorded by a laptop through wired connections, and synchronization between the
signals is achieved through network time sync protocols. The ground truth offsets to achieve synchronization are
within the range of [1.8s, 178.0s], with a mean of 26.4s. The videos are collected at 30 fps and accelerometry data
at 125 Hz. There are 126 sessions from 30 subjects which have valid video and IMU data. In this experiment, we
use the unsychronized video and accelerometry as the input to our method.

5.4.2 Parameter Specification. We interpolate the accelerometry data to match the video sampling rate. We
choose random offsets 𝑜𝑖𝑗 over three ranges, from 0 to 60, 90, or 120, to generate an initial offset for synchronizing
and then apply windowed cross-correlation. Note that the maximum temporal offset we can recover with our
method is the sum of the maximum random offset amount 𝑇𝑚𝑎𝑥 and the window size 𝑇𝑤 . In this dataset, we set
𝑁𝑠 = 10. We select a Gaussian kernel 𝐾 (𝛿, 𝑡) with 𝜎 = 3000𝑚𝑠 . We set the search bounds for estimating 𝜇 and 𝜎
of 𝑔(𝑡) to be [−600𝑠, 600𝑠] and [0, 𝐼𝑛𝑓 ], respectively.

5.4.3 SyncWISE Compared to Baseline. Table 2 shows the results from the Baseline method and the SyncWISE
algorithm. The input clips combine the wearable camera signal with the accelerometer data coming from the
right arm. We include the results for pairing video with the accelerometers from the other locations, along with
different parameter combinations and examples of the response curves from both methods, in Appendix A.5. This
dataset is challenging because none of the accelerometery sensors are co-located with the camera. The frequent
relative movement between the sensor and camera creates challenges for the baseline method. From Table S2,
we can see that PCA improves the performance of the baseline, presumably by identifying the corresponding
axes across modalities in the face of relative movement of the sensors. Our window-weighted kernel density
estimation approach further improves the performance consistently across all of the different accelerometer
positions. This demonstrates the ability of our method to automatically focus on the "signal intensive" temporal
windows and ignore those of little synchronization utility.
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5.4.4 Discussion. In the case of the CMU-MMAC dataset, where data is collected with a fixed sampling rate
and no data frames are dropped during capture, we are able to select a large window size 𝑇𝑤 without worrying
about problems arising due to low data quality, and use a reasonable empirically set value for 𝑇𝑚𝑎𝑥 . At the same
time, the performance of all methods on this dataset are lower than that of the S2S-Sync dataset, which suggests
that the large relative motion between the camera and the accelerometers, as a result of their positions on the
body, may be playing a role in making the sync task quite challenging. The experiments in Appendix A.5 further
demonstrate that parameter choices are dataset-dependent. Even for the same dataset, the best performance for
accelerometers located at different positions is achieved by different parameter choices.

6 DISCUSSION, CONCLUSION AND FUTURE WORK
The ability to accurately synchronize multiple data streams is a longstanding problem with increasing utility
for researchers who seek to develop and validate computational models to detect daily human behaviors from
multimodal wearable sensor suites in the wild. Specifically, as visual confirmation is a widely used method to
label target events, an accurate, feasible, less burdensome means to synchronize video with adjacent sensor
streams has become urgently needed.
In the current study, we demonstrated the feasibility and effectiveness of a novel approach (SyncWISE) to

synchronize data from a wearable video camera with data from a wearable accelerometer. SyncWISE addresses the
problems of partial observability (where sensors do not capture the same events) and coordinate transformation
(sensor axes are not spatially-aligned over time) that characterize challenging real-world synchronization tasks
involving data collected fromwearable sensors. We evaluate SyncWISE on two datasets: a novel smoking cessation
dataset S2S-Sync and the CMU-MMAC dataset [16]. We demonstrate state-of-the-art performance relative to a
recent baseline method.

Although our work focuses on resolving the time synchronization problem between a wearable camera and a
chest-worn accelerometer sensor, the algorithm design can be further adapted to other sensing modalities on
different parts of the human body. Doing so will enable temporal alignment of video-derived labels to diverse
wearable sensor signals. Such temporally-precise labels obtained from the in-wild environment can improve the
accuracy of detecting fine-grained micro-behaviors (e.g., dynamics of hand-to-mouth gestures) underlying a wide
variety of daily behaviors such as eating, drinking, brushing, flossing, and smoking. In addition to advancing
computational models for detecting daily behaviors, fine-grained observations of micro-behaviors in the wild
can also advance our understanding of daily human behaviors. Finally, we provide our novel S2S-Sync dataset
to the research community, for use as a benchmark for in-the-wild time synchronization, along with our time
synchronization software, including scripts for reproducing all of the experiments in this manuscript, so as to
continue to advance this area of research.
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A APPENDIX

A.1 Data Filtering
Because participants can turn on and off the camera at any time, the video clips can be of any length. After
removing the clips shorter than 30 seconds, we received a total number of 378 on-body GoPro video clips. We
present our dataset screening procedure in a flow diagram in Fig. S1. The 378 video clips go through an initial
video quality screening phase where 31 video clips are excluded due to poor lighting condition affecting visibility
of the recorded video footage, and one extra video clip is removed because the lens was blocked by the wearer’s
clothing. We filtered data due to sensor quality and hardware error. Since our approach requires a minimum
number (20) of 10-second windows with high-quality data (as discussed in Sec. 4.2), we exclude 136 clips that do
not meet this minimum threshold of data quality. Additionally, when we visualized the sensor data together with
the video, we discovered two video clips with erroneous sensor readings, which resulted from a faulty device. We
then removed video clips that did not have a landmark or distinguishable human movement (needed to manually
synchronize between the two signals, and explained in Sec. 3.3). After filtering videos that are not capable of
being synchronized, we end up with 163 video clips (45.2 hours) and sensor data from a total of 21 participants.
Each participant contributed 2.15 hours on average of "usable" data for analysis.

Video quality screening (n=378)

Obtain free-living on-body GoPro
video clips following camera time

setup protocol (n=378)

Sensor data quality screening
(n=346)

Manual synchronization (n=208)

Videos included (n=163)

- Not visible due to darkness
(n=31)

- Not visible due to lens blocked
(n=1)

- Sensor data missing (n=136)
- Erroneous signal due to faulty 

device (n=2)

- No sync landmark can be
identified (n=45)

Fig. S1. Flow diagram of dataset formation.
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A.2 SyncWISE Algorithm

Algorithm 1: SyncWISE: Synchronization based on Window Induced Shift Estimation
input :video and accelerometer data clip with asynchronous clocks
output : time shift 𝛿 of video and accelerometer data and confidence 𝐶
Obtain optical flow of video;
Calculate 1-component PCA of optical flow as 𝑥1, 𝑥2, . . . , 𝑥𝑘 and 3-axis accelerometer data as 𝑦1, 𝑦2, . . . , 𝑦𝑘 ;
Data screening on accelerometer data to obtain 𝑇𝑤 second windows of high data quality, and resample to
the same sampling rate as the optical flow signal;
Initialize 𝑁𝑠 ,𝑇𝑚𝑎𝑥 ,𝑇𝑤 ;
𝑁 ← number of windows;
for 𝑖-th window (𝑠𝑖 , 𝑠𝑖 +𝑇𝑤) do

for 𝑗 = 1, 2, . . . , 𝑁𝑠 do
𝑜 𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚(−𝑇𝑚𝑎𝑥 ,𝑇𝑚𝑎𝑥 );⃗⃗⃗
𝑥 ← 𝑥𝑠𝑖+𝑜 𝑗

, 𝑥𝑠𝑖+1+𝑜 𝑗
, . . . , 𝑥𝑠𝑖+𝑇𝑤+𝑜 𝑗

;⃗⃗
𝑦 ← 𝑦𝑠𝑖 , 𝑦𝑠𝑖+1, . . . , 𝑦𝑠𝑖+𝑇𝑤 ;
𝑐𝑐 (𝜏) ← cross-correlation of ⃗⃗⃗𝑥 and ⃗⃗𝑦;

𝛿𝑖 𝑗 ← argmax𝜏

����𝑐𝑐𝑖, 𝑗 (𝜏) − median
𝑡 ∈[−𝑇𝑤 ,𝑇𝑤 ]

{𝑐𝑐𝑖, 𝑗 (𝑡)}
���� + 𝑜𝑖𝑗 ;

𝑐𝑜𝑛𝑓𝑖 𝑗 ←
max𝜏

����𝑐𝑐𝑖,𝑗 (𝜏)− median
𝑡∈[−𝑇𝑤,𝑇𝑤 ]

{𝑐𝑐𝑖,𝑗 (𝑡 ) }
����

std
𝑡∈[−𝑇𝑤,𝑇𝑤 ]

{𝑐𝑐𝑖,𝑗 (𝜏) } ;

end
end
𝑓 (𝑡) ← 0;
for 𝑖 = 1, 2, . . . , 𝑁 do

for 𝑗 = 1, 2, . . . , 𝑁𝑠 do
𝑓 (𝑡) ← 𝑓 (𝑡) + 𝑐𝑜𝑛𝑓𝑖 𝑗 · 𝐾 (𝛿𝑖 𝑗 , 𝑡), 𝐾 () = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛();

end
end
𝑓 (𝑡) ← 1∑

𝑖

∑
𝑗 𝑐𝑜𝑛𝑓𝑖 𝑗

𝑓 (𝑡);
𝛿 ← argmax𝑡 𝑓 (𝑡);
Fit Gaussian curve N(𝜇, 𝜎) to 𝑓 (𝑡);
𝐶 ← 𝐶𝑜𝑛𝑠𝑡

𝜎̂ ·𝑣𝑎𝑟 (𝜇)

A.3 Parameter Optimization on S2S-Sync Dataset
We perform sensitivity analysis (parameter optimization) using 20% (33 of the 163) of the videos. We set the
Gaussian kernel 𝜎 to 500. We also optimize the following 3 main parameters (𝑇𝑤 , 𝑇𝑚𝑎𝑥 , and 𝑁𝑠 ).

A.3.1 Optimization for Window Size 𝑇𝑤 . As described in Sec. 4.2.1, since we eliminate the seconds with low data
quality, if 𝑇𝑤 is too large, then it may disqualify several windows due to the 80% sampling rate quality threshold.
When we set𝑇𝑤 as 10 s, after the data screening step, the 33 videos each have on average 82 qualified high-quality
windows. When we adjust 𝑇𝑤 to 20s, 29 videos no longer have a sufficient number of qualified windows. After
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Table S1. Parameter 𝑇𝑚𝑎𝑥 search (𝑇𝑤=10s, 𝑁𝑠=20) for S2S-Sync dataset

Input Shift (s) 𝑇𝑚𝑎𝑥 (s) Ave Error (ms) PV-700 PV-300 Ave Conf.

0 2 268 0.94 0.79 892
0 4 262 0.94 0.79 96
0 6 284 0.94 0.76 11
0 8 364 0.94 0.76 1
0 10 282 0.94 0.76 0

2 2 447 0.91 0.79 106
2 4 307 0.91 0.79 18
2 6 264 0.91 0.76 5
2 8 597 0.88 0.73 1
2 10 753 0.88 0.67 0

4 2 947 0.79 0.67 1
4 4 923 0.82 0.7 1
4 6 786 0.85 0.73 0
4 8 814 0.88 0.73 0
4 10 716 0.88 0.76 0

more investigation we set the window size to 10s, to ensure enough videos can be processed, and we can address
low-quality video-sensor pairs.

A.3.2 Optimization for Max Random Offset 𝑇𝑚𝑎𝑥 . We tested a range of values for 𝑇𝑚𝑎𝑥 from 2s to 10s with input
data of different shifts from 0 to 4s. As shown in Table S1, when the input shift is 2 and 𝑇𝑚𝑎𝑥 is set to 6s, the
average error is 264ms. The average error goes up to 753ms with increasing 𝑇𝑚𝑎𝑥 . When the input shift is 0s, the
average errors are 268, 262, and 284ms when𝑇𝑚𝑎𝑥 is 2s, 4s, and 6s, respectively, showing no significant difference.
With a 4s input shift, the minimum average error occurs when 𝑇𝑚𝑎𝑥 is set to 10s. When we apply SyncWISE
in a real world setting, due to a lack of the prior knowledge of the input shift, we select 𝑇𝑚𝑎𝑥 to be 5s (average
between 4 and 6), as long as the target offset range is less than 4s.

A.3.3 Optimization for Number of Random Offsets 𝑁𝑠 . We then fixed 𝑇𝑤 and 𝑇𝑚𝑎𝑥 and adjusted 𝑁𝑠 . As shown
in Fig. S2, when we adjusted 𝑁𝑠 in the range from 20 to 80, with input data of different shifts of 0 and 2s, the
average error did not significantly change, suggesting that 20 offsets within a window is sufficient. Fig. S2 shows
the average error as a function of 𝑁𝑠 . We selected 𝑁𝑠 to be 20, which provides the least average error.

A.4 Examples in S2S-Sync Dataset
A.4.1 Examples of Response Curves. Figure S3 shows example response curves of both methods on two sessions
using the wearable camera and chest accelerometer. Baseline method fails in the second session because of the
irregular sampling rate and sparse signal segments in our dataset.

A.4.2 Examples of Confidence Scores. Figure S4 shows some examples of voted shift curves 𝑓 (𝑡) and their
corresponding confidence score. Confidence in (a) and (b) is low due to large variance and spurious peaks.
Figure(c) shows an example of high confidence.

A.5 Results on CMU-MMAC Dataset
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Fig. S2. Average error with different number of random offsets for each window (𝑇𝑤=10s, 𝑇𝑚𝑎𝑥=3s).
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(a) Baseline-xx estimation on session 1 is -267ms (b) SyncWISE estimation on session 1 is 261ms
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(c) Baseline-xx estimation on session 2 is 190426ms (d) SyncWISE estimation on session 2 is -34ms

Fig. S3. Example response curves of both methods on two sessions using a wearable camera and chest accelerometer. Ground
truth for both sessions is 0s. (a) and (c) show the cross-correlation function of baseline method. (b) and (d) show 𝑓 (𝑡) of
SyncWISE for the same sessions. In (b), 480 windows are sampled and the confidence score of the estimation is 0.89. In (d),
2140 windows are sampled and the confidence score of the estimation is 10.11.

A.5.1 Results on all IMU Positions and Different Parameter Combinations. As shown in Table S3, among all
window size/maximum random offset configurations, SyncWise-60/60 achieves the best performance. This
supports our analysis in Sec. 4.3.4 that large window sizes and small maximum random offsets are preferred in
this algorithm.
Comparing results across different IMU positions, we find that right arm acceleration is most informative in

synchronizing with the camera using both approaches followed by the back sensor, with the left and right leg data
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(a) Ground truth shift = -325ms (b) Ground truth shift = 1827ms (c) Ground truth shift = 2755ms

Fig. S4. Examples of video shift and confidence estimation. In (a), 500 windows are sampled, SyncWISE estimation is -206
ms and the confidence score of the estimation is 0.19. In (b), 260 windows are sampled, SyncWISE estimation is 1651 ms
and the confidence score of the estimation is 1.13. In (c), 460 windows are sampled, SyncWISE estimation is 2958 ms and
the confidence score of the estimation is 9.37. Confidence in (a) and (b) is low due to large variance and spurious votings.
Figure(c) shows an example of high confidence. The fitted Gaussian successfully finds the true peak and ignores the false
peaks.

Table S2. Baseline results on CMU-MMAC

IMU Position Baseline-xx Baseline-PCA

Average Error PC-300 PC-700 Average Error PC-300 PC-700

Left Arm 32687.30 12.70 16.67 29832.01 20.63 30.16
Right Arm 26371.69 30.16 43.65 21983.33 40.48 50.00
Left Leg 50740.48 2.38 7.14 46670.90 7.94 13.49
Right Leg 52933.07 1.59 4.76 49400.26 3.97 8.73
Back 53221.43 3.17 5.56 29112.96 23.81 30.95

being the least informative modalities. This is consistent with our findings. In this kitchen dataset, the subjects
perform a lot of actions using their right hand which cause the camera to vibrate accordingly. In contrast, leg
motion has less impact on the camera located on the head of subjects. This is an interesting finding because we
expected that the IMU on the subject’s back had the least relative motion to the camera and as a result would yield
the best synchronization performance. But the results show that variability in the data, representing frequent
motion, is essential for successful synchronization, even when the camera and accelerometer are not co-located.

A.5.2 Comparing Window Sampling Methods. We randomly selected 10 videos from the CMU-MMAC dataset to
validate our choice of random offset instead of evenly placed offsets. Table S4 shows results using even spaced
sampling and random sampling. The window size and maximum search range are set at 60s and 60s, respectively.
𝑁𝑠 = 20 window pairs are sampled for each sliding window in accelerometer data. The two sampling methods do
not yield significant performance difference.

A.5.3 Examples of Response Curves in CMU-MMAC Dataset. Figure S5 shows example response curves of both
methods on two sessions using the wearable camera and right arm accelerometer in the CMU-MMAC dataset.
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Table S3. SyncWISE results on CMU-MMAC

IMU Position SyncWise-30/60 SyncWise-30/90 SyncWise-30/120

Ave Error PV-300 PV-700 Ave Error PV-300 PV-700 Ave Error PV-300 PV-700

Left Arm 19539.15 22.22 43.65 20157.14 24.60 43.65 26284.92 19.84 33.33
Right Arm 15902.12 43.65 65.87 17626.72 39.68 60.32 19237.83 34.13 53.17
Left Leg 19738.36 22.22 42.06 20122.22 12.70 39.68 23418.52 11.90 29.37
Right Leg 16624.07 20.63 42.06 20339.68 12.70 36.50 21445.50 13.49 30.95
Back 16755.03 43.65 59.52 18342.59 38.88 56.35 18522.22 38.89 53.97

IMU Position SyncWise-60/60 SyncWise-60/90 SyncWise-60/120

Ave Error PV-300 PV-700 Ave Error PV-300 PV-700 Ave Error PV-300 PV-700

Left Arm 16808.99 25.40 43.65 17866.67 24.60 44.44 18337.30 22.22 40.48
Right Arm 14358.99 49.21 63.49 13194.71 46.83 62.70 12669.58 42.06 61.11
Left Leg 20927.25 10.32 28.57 19902.38 11.90 31.75 25044.44 9.52 26.98
Right Leg 20777.78 13.49 32.54 22119.58 11.11 27.78 22855.29 9.52 25.40
Back 15759.26 39.68 53.17 16034.39 35.71 52.38 15425.13 34.13 53.17

Table S4. Experiment on window sampling methods

Even Spaced Sampling Random Sampling

IMU position Ave error PV-300 PV-700 Ave error PV-300 PV-700

Left Arm 25526.67 0 20 29263.33 0 30
Right Arm 38446.67 50 50 38433.33 50 50
Left Leg 35470.00 20 20 35486.67 20 30
Right Leg 46040.00 10 20 39883.33 10 20
Back 29760.00 40 50 29776.67 40 50

Both methods work well in the first session. Baseline method failed in the second session because this session
contains less hand movement with high frequency and high magnitude across the video.
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(a) Baseline-PCA estimation on session 1 is 47.800s (b) SyncWISE-60/60 estimation on session 1 is 47.733s
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(c) Baseline-PCA estimation on session 2 is -179.433s (d) SyncWISE-60/60 estimation on session 2 is 8.400s

Fig. S5. Example response curves of both methods on two sessions using wearable camera and right arm accelerometer. (a)
& (b) Ground truth 47.700s, (c) & (d) Ground truth 8.000s. In (b), 3190 windows are sampled and the confidence score of the
estimation is 0.05. In (d), 4710 windows are sampled and the confidence score of the estimation is 0.39.
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