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Abstract— Aircraft upsets are a major cause of
fatalities in civil aviation. Unfortunately, recovery
from upset scenarios is challenging due to the com-
bination of nonlinearities, actuator limits, and upset
modes. In this paper, we consider the use of Model-
Predictive Control (MPC) in combination with a
recently proposed piecewise polynomial prediction
model, for six degree-of-freedom upset recovery. MPC
naturally handles nonlinearities and constraints and
has a provably large closed-loop region of attraction
making it an appealing methodology for upset recov-
ery problems. We present a recovery formulation then
illustrate its utility through high fidelity simulation
case studies, using the Generic Transport Model, of
recovery from oscillatory spin and steep spiral upset
conditions.

I. Introduction

Over the past several decades, aircraft upset incidents
have remained the “highest risk to civil aviation” [1]. As
a result, upset recovery approaches have been extensively
studied in the literature [2–5]. Proposed approaches
include adaptive control [6], machine learning [7], and
model-predictive control [8, 9] as well as state-machine
based recovery strategies [10, 11]. Further approaches
using recoverable sets have been developed and demon-
strated in [12, 13].

The Generic Transport Model (GTM), developed by
NASA and Boeing [14, 15], is an important benchmark
for upset recovery methodologies. The GTMs upset dy-
namics have been extensively studied. In particular, Gill
et al. [16] studied the upset dynamics of the GTM and
identified dynamic regimes with rotary motion such as
steep spirals, as well as oscillatory spins of period one
and three, all of which are partially stable and attractive.

Model-Predictive Control (MPC) is an optimization
based control methodology wherein a feedback law is de-
fined as the solution of a receding horizon optimal control
problem (OCP) parameterized by current measurements
[17, 18]. MPC is well suited for the six degree-of-freedom
(6dof) upset recovery problem, where the ailerons, eleva-
tor, and rudder must be coordinated while accounting for
their physical limits, due to its ability to systematically

?Partly supported by ONERA – The French Aerospace Lab.
The third author acknowledges support of the National Science
Foundation Grant 1931738.

1TC, DL, and IK are with the Faculty of Aerospace Engineer-
ing, University of Michigan, Ann Arbor, Michigan 48109, USA,
{tcunis,dliaomcp,ilya}@umich.edu.

2LB is with Rutgers, The State University of New Jersey, Pis-
cataway, NJ 08854, USA, laurent.burlion@rutgers.edu.

handle nonlinearities and constraints. In this paper, we
present an MPC scheme for six-degrees-of-freedom recov-
ery and demonstrate its capabilities through spiral and
spin upset recovery scenarios.

MPC relies on an appropriate prediction model to
quantify the behaviour of the plant. However, a closed
algebraic formulation of full-envelope aircraft dynamics
is difficult to attain due to the complexity of post-
stall aerodynamics [19]. In this paper, we use a recently
proposed piecewise model of the GTM’s aerodynamic
coefficients [20] as (imperfect) prediction model and the
GTM’s high-fidelity simulation [21] as “real” system.

MPC has been well studied by the aeronautical com-
munity for general and fault-tolerant flight conditions
[22, 23] but less so for upset recovery. For recovery of
a piloted aircraft from a high-pitch upset, [8] generated
guidance trajectories using linear-quadratic MPC. More-
over, in a previous paper [24], we discussed a loss-of-
altitude minimizing economic MPC strategy for deep-
stall recovery of a laterally pre-stabilized aircraft. To
the best of our knowledge, spiral and spin recovery has
only been addressed using ad-hoc, i.e., PID and heuristic-
based, control techniques [25, 26].

This paper’s main contribution is demonstrating that
MPC offers a general and systematic methodology for
designing upset recovery controllers. In addition, we
demonstrate that the proposed piecewise polynomal
model can sufficiently accurately predict the flight dy-
namics, both in normal flight and in the post-stall regime,
to allow for successful closed-loop recoveries of the GTM.

Notation: Deflections of ailerons, elevator, and rud-
der are denoted by ξ, η, ζ, respectively, and are negative
if leading to a positive moment. The aircraft’s velocity
vector with respect to air is written VT

A =
[
u v w

]
and it’s body rates, ωT =

[
p q r

]
; both are recorded

in the ISO 1151-3 standard body axis system[27] with
the x-axis along the fuselage, the y-axis to the right,
and the z-axis oriented down to complete the orthogonal
frame. The airspeed is denoted by VA = ‖VA‖ and
the longitudinal and lateral relative wind angles, i.e.,
angle of attack and sideslip angle, are denoted by α =
arcsin

(
w/

√
u2 + v2

)
and β = arcsin(v/VA). The attitude

ΦT =
[
Φ Θ Ψ

]
is given in Euler angles describing

bank, pitch, and heading angles.
In the sequel, we will refer to the piecewise polynomial

equations of motion of [20] as the prediction model; and to
the high-fidelity simulation [21] as the simulation model.

{tcunis,dliaomcp,ilya}@umich.edu
laurent.burlion@rutgers.edu


II. Problem Setting

In this paper, we consider recovery approaches for the
unthrottled aircraft (i.e., without thrust), in agreement
with the FAA procedures [28]. The GTM represents a
5.5 % down-scaled, common passenger aircraft with an
open-source high-fidelity simulation model implemented
in Simulink that combines standard Newtonian equations
of motion with extensive look-up tables for the static
and dynamic aerodynamic coefficients based on wind-
tunnel measurements and flight-test data. The state of
the simulation consists of velocity, body rates, attitude,
and position (the latter not considered here); inputs
include surface deflection commands and engine throttle.

In the simulation model, the surface actuators are
represented by first-order linear dynamics with restricted
range and rate of response. Their dynamics are modelled
as first order filers and can be written as

δ̇(t) = 2πf (δcmd − δ(t)) (1)

with f = 5 Hz for δ ∈ {ξ, η, ζ}. Deflections are limited
to ξ ∈ Xξ = [−20°; 20°], η ∈ Xη = [−30°; 20°], and ζ ∈
Xζ = [−30°; 30°]. The actuator speed is limited to δ̇max =
300 °/s for all surfaces.

In this paper, we consider recovery from steep spiral
and period-one oscillatory spin upset conditions. Spiral
and spin both are three-dimensional rotary motions, that
is, they involve revolutions around more than one of the
aircraft body axes. Hence, recovery requires coordinated
effort of multiple, independent control inputs. Fig. 1
illustrates these flight conditions.* Here, the steep spiral
mode is entered for an elevator deflection of η = −30°
and neutral rudder; the oscillatory spin mode is entered
for elevator and rudder deflections of η = −24° and
ζ = −10°, respectively.† Unlike oscillatory spin, the spiral
motion is characterized by constant (non-zero) body
rates; only the heading changes as the result of the steep
spiral. Therefore, the spiral is technically a trim condition
of aircraft flight. The oscillatory spin, in contrast, is in
fact a periodic motion involving all three airspeed and
aerodynamic angles, body rates, and attitude.

III. Controller Design

Our objective is to define a nonlinear MPC formula-
tion that allows the aircraft to recover from an upset
condition to an unthrottled, normal flight trim condition
with low descent speed; specifically, we consider the fol-
lowing nominal, gliding trim condition for the subsequent

*In the figure, the aircraft drawing is roughly to scale and
its orientation represents the aircraft attitude. The aircraft are
depicted first at t = 1.495 s and subsequently with a period of
∆t = 1.75 s.

†The present GTM simulation appears to be robust with respect
to spin; without a significant rudder deflection or exogenous inputs,
the aircraft spin will eventually steady into a spiral (see [16] for a
discussion of the effects of rudder onto spiral and spin modes).
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(b) Oscillatory spin.

Fig. 1: Spiral and oscillatory spin modes of the GTM
(aircraft to scale).

simulation:
Vf = 35.9 m/s, αf = 6.42°, βf = 0°,
ωf = 0 °/s, Φf = −0.037°, Θf = 0.238°,
ξf = −0.893°, ηf = −1.71°, ζf < 0.005°,

and Ψ̇f = 0 °/s. We use a discrete-time nonlinear predic-
tion model of the following form

x+
8e = x8e + τ f8e(x8e,xδ) , (2a)
x+
δ = xδ + τ uδ, (2b)

where f8e : R8×R3 are the continuous time equations of
motion and the state and input vectors are

xT
8e =

[
u v w p q r Φ Θ

]
∈ R8, (3a)

xT
δ =

[
ξ η ζ

]
∈ Xξ ×Xη ×Xζ = Xδ, (3b)

uT
δ =

[
ξ̇ η̇ ζ̇

]
∈ Uδ. (3c)

The equations of motions f8e in (2) are the usual rigid
body flight dynamics, viz.

mV̇A = RA(VA, α, β, ξ, η, ζ,ω) +RG +mω ×VA

Iω̇ = QA(VA, α, β, ξ, η, ζ,ω) +Qcg + ω × Iω
Φ̇ = Mω(Φ)ω

with vehicle mass m, matrix of inertia I, and Euler angle
kinematic matrix Mω. The weight force vector is denoted
by RG, the aerodynamic forces and moments by RA and
QA, respectively, and Qcg are additional torques induced
by displacement of the centre of gravity.

The aerodynamic forces RA and moments QA are
modelled using aerodynamic coefficients defined as piece-
wise polynomial functions around a near-stall switching
point α0. Exemplarily, the piecewise fit of the force
coefficient along the body x-axis over the angle of attack
can be found in Figure 2. A detailed description of the
full model is available in [29, Eqs. (2.3)–(2.5), (2.7)–(2.9),
(2.20) and Appendix B.1] as well as in [20].

The equation (2b) is a simplified discrete-time imple-
mentation of the actuator dynamics of (1) as integrator.
We refer to (2) as the piecewise polynomial model. For
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Fig. 2: Piecewise CX-coefficient as function of α.

the model, we use the (desired) actuator rates ξ̇, η̇, ζ̇ as
inputs and choose a sampling period τ = 50 ms. The set
of admissible state-input pairs is then Z = R8×Xδ ×Uδ.
Note that, although we have not directly incorporated
the actuator dynamics of (1) into the prediction model,
we limit the actuator rates such that |2πf (δ+ − δ(t))| ≤
δ̇max for all t ∈ [0; τ); i.e.,

Uδ =

[
− δ̇max

2πfτ
; +

δ̇max

2πfτ

]3

.

We also normalize the states and inputs to improve the
scaling of the prediction model. After scaling of states
and inputs, we denote the combined state vector by
x̃T =

[
D−1

x8e
x8e D−1

xδ
xδ

]
, the scaled input vector by

ũ = D−1
uδ

uδ, the discrete system by x̃+ = f+(x̃, ũ), and
the steady-state control inputs are ũf = 0. The scaling
matrices are given in the appendix.

A. Optimal Control Problem Formulation
The MPC feedback law µN (·) is based on solving the

following finite-horizon optimal control problem (OCP)

min
x̃(·),ũ(·)

N−1∑
k=1

`(x̃k, ũk) (4a)

s.t. x̃k+1 = f+(x̃k, ũk), k ∈ [1;N) (4b)
x̃k ∈ R8 × X̃δ, k ∈ [1;N) (4c)

ũk ∈ Ũδ, k ∈ [1;N) (4d)
x̃N = x̃f , (4e)

where x(t) = Dxx̃1 is the measured state at time t, N =
120 is the prediction horizon (equal to 6 s), tracking stage
cost is given by

`(x̃, ũ) =
1

2
‖x̃− x̃f‖2Ẽ +

1

2
‖ũ‖2F̃ , (5)

with ‖x‖2E = xT Ex, Ẽ = I11, and F̃ = I3/100, and x̃f is
the nominal gliding trim condition defined above given
in scaled variables. The MPC feedback is then given by
µN (x(t)) = Duδ

û1 if û solves (4).
Weights were picked based on numerical experience

and the horizon length was chosen to be long enough
to capture the entire recovery manoeuvre. We use a

terminal state constraint to guarantee nominal closed-
loop stability. In the future, we plan to switch to a less
stringent pair of terminal penalty and terminal region
constraint, computed using sum-of-squares programming
techniques, to enlarge the closed-loop region of attrac-
tion.

As the tracking cost function in (5) is positive-definite,
asymptotic stability of the nominal closed-loop dynamics
follows from [29, Theorem II.4] under the assumption
of weak controllability. Note that in the presence of
model mismatch offset-free tracking is not guaranteed.
In an upset recovery scenario, convergence to an slightly
different but stable trim condition is acceptable closed-
loop behaviour. Another option would be switching to a
nominal flight controller (with integral action) once the
aircraft has recovered [24].

B. Implementation Details
We solve the OCP in Eq. (4) using the nonlinear

interior-point solver Ipopt [30]. The functions necessary
to solve the problem, such as the objective function as
well as its gradient vector and Hessian matrix, were gen-
erated using CasADI [31] and compiled into MATLAB’s
binary mex file format to increase evaluation speed. The
computed optimal trajectories for a time t0 are subse-
quently used as initial guess for x(t0 + τ).

We elected to use a multiple-shooting (where the
state and control inputs are considered optimization
variables) formulation for the OCP (4) rather than a
single-shooting approach (where only control inputs are
considered optimization variables). The computational
complexity of multiple-shooting methods scale linearly
with N while single-shooting methods scale like N3, as
the prediction horizon is relatively long (N = 120),
the multiple shooting approach is better suited to our
problem.

IV. High-fidelity Simulation Results

In this section we present simulation results where the
MPC controller, which uses the piecewise polynomial
prediction model, is run in closed-loop with the high-
fidelity GTM. The GTM is implemented in Simulink and
uses a fixed-step ode3 solver operating at a frequency
of 200 Hz, 10 times faster than the discrete prediction
model (τ−1 = 20 Hz). The OCP (4) is solved at the lower
frequency of 20 Hz and the control input is subsequently
held constant between sampling instances. The optimal
control inputs, the actuator rates returned by µN (·), are
converted into the deflection commands as

δcmd(t) = δ(t0) + τ δ̇µ (6)

for all t ∈ [t0; t0 + τ), where δ̇µ is the MPC feedback
for x(t0). As the time constant of (1) is smaller than τ ,
the actuators will not reach the commanded deflection
within one period of the MPC feedback. This results in
mismatch between the simulation and prediction models.



Furthermore, the simulation computes the dynamic co-
efficients using the hybrid Kalviste method [32], whereas
the piecewise polynomial model directly evaluates the
aerodynamic coefficients for the body rates. The MPC
feedback is evaluated for the first time at t = τ . We
assume full state feedback is available throughout.

A. Recovery from steep spiral
Fig. 3 details the aircraft’s flight path and attitude

during recovery. Note that the depiction of the aircraft is
enlarged here for clarity. We observe that, due to a quick
recovery of the bank angle, the the aircraft is recovered
from its spiral motion without further change of the
heading despite the initial rotatory flight condition.
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Fig. 3: Flight path of steep spiral recovery (aircraft not
to scale).

Fig. 4 shows the aircraft states during simulated re-
covery from the steep spiral upset condition. Figure 4
also shows the state values predicted for the next step,
i.e., x̂(t) = x̂1 for t ∈ [t0; t0 + τ) if x̂(·) is the optimal
trajectory for x(t0). Here, commanded and one-step
ahead predicted actuator deflections are equal despite the
mismatch of modelled integrator dynamics and simulated
first-order damping. The bank angle is recovered first
with an angle of attack of about 15°. After 4 s the aircraft
is levelled and the longitudinal flight condition is restored
by reducing angle of attack and air speed.

B. Recovery from oscillatory spin
Fig. 5 shows the time history of the simulated oscilla-

tory spin recovery.‡ During early restoration of the bank

‡Note that due to the delayed engagement of the MPC feedback
only after one period τ and the fact that the oscillatory spin
constitutes a periodic motion, the first state of the simulated MPC
recovery has been slightly evolved compared to the initial condition
of the aircraft simulation, which has coincided with the initial
condition for the nominal MPC recovery.
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Fig. 4: Simulated recovery from steep spiral upset. Sim-
ulation in solid ( ), one-step prediction dotted ( ).
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Fig. 5: Simulated recovery from oscillatory spin. Simula-
tion in solid ( ), one-step prediction dotted ( ).

angle, the ailerons operate at the lower limit for almost
400 ms but are moved to a near-neutral position soon
after. Right before the aircraft’s angle of attack is fully
restored, and after bank angle and aileron deflections
have been close to the trim condition for some time, we
observe a spike in the lateral motion initiated by a sharp
deflections of ailerons and rudder. It is only afterwards
that, together with the angle of attack, the bank angle
is fully restored.
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Fig. 6: Flight path of oscillatory spin recovery (aircraft
not to scale).

The flight path (Fig. 6) further reveals a quick recov-
ery of the lateral spin motion. Note that the recovery
time during the high-fidelity simulations is longer than
the prediction horizon, despite the terminal state con-
straint being successfully enforced. Due to the receding
horizon nature of the MPC formulation convergence is
asymptotic despite finite time convergence being pos-
sible. Achieving minimum or finite-time convergence in
MPC requires specific formulations such as [33, 34].

C. Discussion
Overall, the piecewise polynomial prediction model

provides reasonably accurate predictions of the one-step
ahead future aircraft states during recovery both from
steep spiral and oscillatory spin upsets. However, during
both manoeuvres, we observe a stark disparity between
the predicted and actual pitch rates while the bank
angle is recovered. Here, the angle of attack and the
elevator deflection are both roughly constant an equal
to α = 15° and η = −10°, respectively. Comparison
of look-up table data and polynomial model for the
pitch-moment coefficient Cm, in Fig. 7, reveals a highly
inaccurate model for these conditions. It is worth noting
that polynomials of higher degrees than the used 3rd-
order polynomials of [20] could improve model accuracy.
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It might be interesting to further compare the op-
timizing MPC recovery strategies to switching control
approaches such as presented in [10] or [11]. In fact, the
MPC recovery reveals some sequential elements for the
recovery of angle of attack and side-slip, reduction of roll
and yaw rate, as well as bank angle restoration.

First, angle of attack and side-slip§ are reduced – yet
not recovered – and the body rates are regulated. Only
after restoration of the bank angle, the angle of attack
and side-slip are fully recovered, too. In that, the MPC
recovery contrasts the approach of [10] which emphasised
the recovery of aerodynamic angles over attitude. The
work of [11], on the other hand, focused on the regulation
of body rates first before recovering all three angle of at-
tack, side-slip angle, and bank angle. As in the switching
approaches, the MPC recovery restores air speed last.

In [29, Chapter 8], the closed-loop behaviour of the
nominal model has been discussed for first insights into
model-predictive upset recovery strategies. We observe
that for both spiral and oscillatory spin the simulated
recovery on the high-fidelity model is faster than on
the nominal model while remaining qualitatively similar.
Despite being incidental, the lower recovery time of the
simulation compared to the nominal model indicates that
the aircraft behaviour is relatively benign (in terms of
spiral and spin upsets). Indeed, previous analyses have
indicated that reduction of the angle of attack suffices for
spiral recovery [16] and neutral position of the rudder
leads to the relaxation of oscillatory spin into a spiral
motion.

D. Computational Footprint
During our high-fidelity simulations it took, on aver-

age, below 1 s to compute the the optimal control action
(Intel Core i7, 3 GHz, 16 GB): Only the first OCP, for
which no proper initial guess exists, required 13.3 s and
28.4 s, respectively; once an initial guess was available,
the computation took on average 0.707 s (worst-case
1.70 s) and 0.849 s (worst-case 2.12 s).

§The side-slip angle is not shown in Figs. 4 and 5.

Our current implementation is too slow for real-time
deployment but is sufficient to demonstrate that MPC
feedback laws are capable of recovering the aircraft,
despite model mismatch and noise. Further reduction
of the computation times is imperative for future work
integrating model-predictive recovery strategies into real
aircraft systems. As a result, the next step is to achieve
real-time feasibility by exploiting efficient implementa-
tions or real-time methods such as [35, 36]. Considering
recovery of a full-sized transport aircraft, the use of a
moderately-sized desktop computer and precomputing
recovery trajectories for solver warm-start are reasonable
assumptions.

V. Concluding Remarks
This paper presented a nonlinear MPC based 6dof up-

set recovery strategy and demonstrated its effectiveness
through closed-loop simulations using the high-fidelity
GTM model. We have demonstrated, through successful
simulated recoveries from spiral and spin upsets, that
the piecewise prediction model is sufficiently accurate,
and that the MPC approach is sufficiently robust against
uncertainties, to allow the MPC controller to recover
the aircraft despite the mismatch between the prediction
and the actual dynamics (as reflected in the high-fidelity
simulation). Future work includes investigating the ro-
bustness properties of the proposed MPC controller,
additional development to reduce the computational
footprint, and experiments on small drones.

Appendix
The singular non-differentiable point of the piecewise

polynomial aerodynamic models (namely, at α0) were
again smoothened by the Heaviside step function H(α) =

1
1+e−2α/ν and the parameter ν has been reduced from
π
36 for the first iteration down to π

576 for the fifth and
all following iterations. States and inputs of the discrete
nonlinear dynamics are scaled by

Dx8e = diag(40 m/s, 25 m/s, 35 m/s, 50 °/s,
100 °/s, 50 °/s, 30°, 45°) ,

Dxδ
= diag(15°, 20°, 25°) ,

Duδ
= diag(150 °/s, 150 °/s, 150 °/s) .
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