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Abstract— Platooning has a potential to improve traffic
efficiency and fuel economy by allowing vehicles to travel
with shorter inter-vehicle distances. However, shorter distances
require stricter safety management, including degradation and
failure mode effects management. This paper proposes a
controller mode and reference governor (CMRG) scheme for
constraint and failure management in vehicle platoon systems.
The CMRG is an add-on supervisor for multi-mode controlled
systems that monitors and adjusts the control modes and
reference inputs to enforce constraints. Through simulations we
show that with CMRG, safety constraints can be enforced and
sensor and/or actuator degradations/failures can be managed
in vehicle platoon systems.

I. INTRODUCTION

A vehicle platoon is a string of vehicles traveling together
with a harmonized speed and pre-specified inter-vehicle
distances [1]. Platooning has been shown to be an effective
way to improve traffic efficiency and fuel economy [2], [3].
Various challenges of vehicle platoon systems, including pla-
toon formation [4], [5], string stability [6]–[8], heterogeneity
[9], [10], interaction topology [11], [12] and delay effects
[13], [14] have been addressed. The benefits of platooning
are mainly attributed to shorter inter-vehicle distances, which
can increase road capacity and reduce air resistance for the
follower vehicles, thus improving their fuel economy [2].
Because the vehicles are traveling at shorter inter-vehicle
distances, safety, in terms of not having collisions, is a major
concern.

Many safety requirements, including collision avoidance,
can be imposed as constraints. Reference governors are
add-on, supervisory schemes for closed-loop systems that
handle constraints by monitoring and adjusting the com-
mands/reference inputs to the system [15]. In this paper,
we consider an extension of the reference governor scheme,
referred to as Controller Mode and Reference Governor
(CMRG), which manipulates both the control modes of and
the reference inputs to the system to enforce constraints
and mitigate degradation/failure effects when they occur.
Although a reference governor for multi-mode controlled
systems has been proposed in [16], the use for failure
mode effects management (FMEM) has not been considered.
Furthermore, we use the proposed CMRG to enforce proba-
bilistic chance constraints in vehicle platoon systems subject
to stochastic disturbances, and to handle their sensor and/or
actuator degradations/failures.
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II. MULTI-MODE CONTROLLED SYSTEM

In this paper, we consider systems represented by the
following discrete-time model,

x(k + 1) = Ax(k) +Buu(k) +Bww(k), (1a)
y(k) = Cx(k) +Duu(k) +Dww(k), (1b)

where x(k) ∈ Rnx represents the system state at the discrete
time instant k ∈ Z≥0, u(k) ∈ Rnu represents the control
input, w(k) ∈ Rnw represents the disturbance input, and
y(k) ∈ Rny represents the system output. We assume that
the disturbance input w(k) takes values randomly according
to a normal distribution with mean 0 and covariance W ,
denoted as w(k) ∼ N (0,W ), and independently for each
k ∈ Z≥0.

We assume that a finite set of control policies has been
defined to stabilize the system to desired steady states. They
have the following form,

u(k) = F j x̂(k) +Gjv(k), j = 0, 1, ..., nm, (2)

where x̂(k) represents a measurement/estimate of the system
state x(k), and v(k) ∈ Rnv represents the reference input
which determines the desired steady state of the system. In
particular, we assume x̂(k) = x(k) + x̃(k), where x̃(k) ∼
N (0,Σ0) is a normally-distributed measurement/estimate
error. Such an error may be the outcome of a state observer
(e.g., a Kalman filter). Substituting (2) into (1), we obtain

x(k + 1) = Ājx(k) + B̄jv(k) + wjx(k), (3a)

y(k) = C̄jx(k) + D̄jv(k) + wjy(k), (3b)

where Āj = A + BuF
j , B̄j = BuG

j , C̄j = C +
DuF

j , D̄j = DuG
j , and wj

x ∼ N (0,W j
x), wj

y ∼
N (0,W j

y ) with W j
x = BuF

jΣ0(BuF
j)> + BwWB>w ,

W j
y = DuF

jΣ0(DuF
j)> + DwWD>w . The variable j ∈

{0, 1, ..., nm} in (2) indicates the control mode of the
system, which can be adjusted to address constraints and
sensor/actuator degradations. The following assumptions are
made: 1) the matrices Āj are Schur, and 2) C̄j(Inx

−
Āj)−1B̄j +D̄j are identical for all j = 0, 1, ..., nm, meaning
that for a given constant reference input v(k) ∈ Rnv the
steady-state outputs of different control modes are the same.

III. CONSTRAINTS AND FAILURES

A. Constraints
Constraints may be imposed on system states/outputs to

represent safety requirements such as collision avoidance,
or be imposed on control inputs to represent, e.g., actuator
limits. We consider constraints that are expressed as

y(k) ∈ Y =
{
y ∈ Rny : y ≤ ylimit

}
. (4)

Note that (4) can represent both state/output and input
constraints by properly choosing the matrix pair (C,Du).
For systems modeled as (1) with stochastic inputs, it is



typical to enforce the constraint (4) probabilistically as
P
(
y(k) ∈ Y

)
≥ γ [17], [18]. On the one hand, it is in

general not possible to enforce (4) deterministically due
to the presence of the Gaussian noise w(k) ∼ N (0,W )
and x̃(k) ∼ N (0,Σ0), which can take arbitrarily large
values with positive probabilities. On the other hand, the
parameter γ ∈ (0, 1), representing a probabilistic guarantee
for constraint enforcement, can be used as a tuning parameter
to balance the tradeoff between performance and robustness,
reducing the conservativeness of the design.

B. Degradations and failures
In addition to constraints, the management of degradations

and failures is another important task, especially for safety
critical systems. Two typical types of failures for control
systems are sensor failures and actuator failures.

We model a sensor degradation/failure as a change in the
measurement covariance Σ0. In particular, we consider

x̃(k) ∼ N (0,Σp0), (5)

where the set of positive semi-definite matrices Σp
0, p =

0, ..., np, represents the measurement covariance for nor-
mal case (p = 0) and for pre-specified different degrada-
tion/failure cases (p = 1, ..., np). We remark that modeling
a sensor failure as a change of Σ0 is reasonable, as in many
safety critical applications the state measurement x̂(k) used
in the control law (2) is obtained by fusing the measurements
of multiple, and at times redundant, sensors to reduce the
measurement covariance. Then, a failure in one or more of
the sensors typically results in an increase in the measure-
ment covariance.

An actuator degradation/failure often causes its capability
of providing force or power to decrease, or in other words,
causes its limits to change. Since input constraints repre-
senting such limits can be incorporated in (4), we model an
actuator degradation/failure by considering

y(k) ∈ Yq =
{
y ∈ Rny : y ≤ yqlimit

}
, (6)

where the set of output limits yqlimit, q = 0, ..., nq , represents
the constraints (including the actuator limits) for normal
case (q = 0) and for pre-specified different failure cases
(q = 1, ..., nq). We also remark that failures in many other
subsystems are often handled by limited operating strategy,
which restricts the actuator authority (e.g., limp home throttle
position, transmission locked in third gear, etc). Such failures
can also be represented as changed control input constraints.

IV. CONTROLLER MODE AND REFERENCE GOVERNOR

The CMRG is a supervisor that manages the control
mode j = 0, 1, ..., nm and the reference input v(k) ∈ Rnv

according to current system status (normal or failure) to
enforce constraints. It operates based on a collection of
output admissible sets defined as follows:

ON (j, p, q) =
{

(x0, v) : If x(0) ∼ N (x0,Σ
p
0), v(k) ≡ v,

then P
(
yj(k) ∈ Yq

)
≥ γ for k = 0, 1, ..., N

}
, (7)

where yj(k) is the output of the system (3) corresponding
to the control mode j, and N ∈ N ∪ {∞} is a spec-
ified planning horizon. Because the exact construction of
ON (j, p, q) requires evaluation of P

(
yj(k) ∈ Yq

)
, which

involves integration of the density function of a multivariate
normal distribution over a polyhedral set and is in general

computationally difficult [19], we consider the following
subset of ON (j, p, q),

ÕN (j, p, q) =
{

(x0, v) : If x̂(0) = x0, v(k) ≡ v,
then ŷj(k) ∈ Yq ∼ Pj,p(k) for k = 0, 1, ..., N

}
, (8)

where ŷj(k) is the output of the disturbance-free system
x̂(k + 1) = Āj x̂(k) + B̄jv(k),

ŷ(k) = C̄j x̂(k) + D̄jv(k), (9)

and Yq ∼ Pj,p(k) =
{
y : y + ỹ ∈ Yq for all ỹ ∈ Pj,p(k)

}
denotes the P(ontryagin)-difference between the sets Yq and
Pj,p(k) =

{
y : y>(Υj,p(k))−1y ≤ F−1(γ, ny)

}
. Here,

Pj,p(k) is the γ-level confidence ellipsoid, Υj,p(k) is the
output of the following system

Ξ(k + 1) = Āj Ξ(k) (Āj)>+BuF
jΣp0(BuF

j)>+BwWB>w ,

Υ(k) = C̄j Ξ(k) (C̄j)>+DuF
jΣp0(DuF

j)>+DwWD>w , (10)

with the initial condition Ξ(0) = Ξp
0, and F−1(γ, ny) is

the inverse of the cumulative distribution function of the χ2

distribution with ny degrees of freedom evaluated at γ.
We remark that for the polyhedral set Yq defined in (6),

Yq ∼ Pj,p(k) can be computed as [20]

Yq ∼ Pj,p(k) = (11){
y : yi ≤

(
yqlimit

)
i
−
√
F−1(γ, ny)

(
Υj,p(k)

)
ii
, i = 1, ..., ny

}
.

It can be seen from (9)-(11) that the set ÕN (j, p, q) is
characterized by a set of linear inequalities acting on the pair
(x0, v). The numerical procedure to construct ÕN (j, p, q) is
similar to the one in Section 3.2 of [18], and is omitted here.

Algorithm 1: CMRG

1 Input Current sensor-actuator status
(
p(k), q(k)

)
,

state measurement x̂(k), and original reference v̂(k).
2 Output Current control mode j(k) and adjusted

reference v(k).
3 Function

(
j(k),v(k)

)
= CMRG

(
p(k),q(k),x̂(k),v̂(k)

)
4 Solve: minv0 ‖v0 − v̂(k)‖2S subject to

(x̂(k), v0) ∈ ÕN

(
0, p(k), q(k)

)
;

5 if solution exists then
6 return (0, v0).
7 else
8 V ← ∅;
9 for j = 1, 2, ..., nm do

10 Solve: minvj ‖vj − v̂(k)‖2S subject to
(x̂(k), vj) ∈ ÕN

(
j, p(k), q(k)

)
;

11 If solution exists, then V ← V ∪ {vj};
12 end for
13 Find vj

∗
= arg minvj∈V ‖vj − v̂(k)‖2S and

return (j∗, vj
∗
).

14 end if

The CMRG operates based on Algorithm 1. In Algo-
rithm 1, v̂(k) denotes the original reference input at time
k, which may represent the maneuver command from a
human operator or be generated by a higher-level planning
algorithm without accounting for constraints or failures, and
‖ · ‖S =

√
(·)>S(·) with S being a positive definite matrix.



After the control mode and reference pair (j(k), v(k)) is
determined by CMRG, the system is switched to the mode
j = j(k) and applies the reference input v(k) for one step.

When CMRG cannot find a feasible pair (j(k), v(k)) after
searching over all available control modes j = 0, 1, ..., nm
(which may result from the occurrence of a very large
disturbance input realization), as a fail-safe, CMRG relaxes
the constraint yqlimit to yqlimit +λ with λ ≥ 0 as an optimization
variable representing the degree of constraint violation. Cor-
respondingly, the constraint (x̂(k), vj) ∈ ÕN

(
j, p(k), q(k)

)
is relaxed by replacing each of the inequality (11) with

yi ≤
(
yqlimit

)
i

+ λ−
√
F−1(γ, ny)

(
Υj,p(k)

)
ii
. (12)

After that, CMRG solves for the pair (j∗, vj
∗
) with the

minimum violation λ. Theoretical properties of the CMRG
Algorithm 1 could be characterized following similar steps
as in [18]. This will be pursued in our future work.

V. CONSTRAINT AND FAILURE MANAGEMENT IN
VEHICLE PLATOON SYSTEMS

We apply the proposed CMRG scheme to constraint and
failure management in vehicle platoon systems (see Fig. 1).
We first introduce the model to represent the longitudinal
dynamics of a vehicle platoon and the control law to realize
car-following behavior. We then introduce the models that
represent constraints and sensor/actuator failures. After that,
we discuss the incorporation of these models into the CMRG
scheme to achieve constraint and failure management.

A. Car-following dynamics and control

Fig. 1. Vehicle platooning illustration.

In a vehicle platoon, each vehicle i = 1, ..., nv follows its
preceding vehicle i− 1 according to the following dynamics

ḣi(t) = vi−1(t)− vi(t), (13a)
v̇i(t) = ui(t), (13b)

where hi denotes vehicle i’s headway distance to vehicle
i−1, vi denotes vehicle i’s longitudinal speed, and ui denotes
its longitudinal acceleration and is the controlled signal.

We consider the following controller for ui,

ui(t) = ûi(k∆t), (14)

for t ∈ [k∆t, (k + 1)∆t), where

ûi(t) = αi
(
ĥi(t)− hri (t)

)
+ βi

(
v̂i−1(t)− vi(t)

)
, (15)

in which ĥi is a measurement of the headway distance hi,
v̂i−1 is a measurement of the preceding vehicle’s speed vi−1,
the gain αi is used to match the measured headway distance
ĥi to a reference headway distance hri , and the gain βi is used
to match the ego vehicle’s speed vi to the measured speed of
the preceding vehicle v̂i−1. We assume ĥi(t) = hi(t)+ h̃i(t)
and v̂i−1(t) = vi−1(t)+ṽi−1(t), where h̃i(t)∼N (0, wh

i ) and
ṽi−1(t) ∼ N (0, wv

i ) are normally distributed measurement
errors. We also assume each vehicle i can measure its own
speed vi(t) perfectly. Note that the piecewise constant control

signal (14) accounts for the fact that measurements are taken
at sample time instants t = k∆t, k ∈ Z≥0.

Substituting (14) and (15) into (13), we obtain

ḣi(t) = vi−1(t)− vi(t), (16a)
v̇i(t) = αi

(
hi(k∆t)− hri (k∆t)

)
+ βi

(
vi−1(k∆t)− vi(k∆t)

)
+ αih̃i(k∆t) + βiṽi−1(k∆t), (16b)

for t ∈ [k∆t, (k + 1)∆t), k ∈ Z≥0.
Assuming vi−1(t) stays constant over [k∆t, (k + 1)∆t)

and integrating (16), we further obtain

hi(k + 1) =
(
1− ∆t2

2
αi
)
hi(k)−

(
∆t− ∆t2

2
βi
)
vi(k)

+
∆t2

2
αih

r
i (k) +

(
∆t− ∆t2

2
βi
)
vi−1(k)

− ∆t2

2

(
αih̃i(k) + βiṽi−1(k)

)
, (17a)

vi(k + 1) = ∆t αihi(k) + (1−∆t βi)vi(k)−∆t αih
r
i (k)

+ ∆t βivi−1(k) + ∆t
(
αih̃i(k) + βiṽi−1(k)

)
. (17b)

Note that k and k + 1 in the above expressions correspond
to the discrete time instants k∆t and (k + 1)∆t. In matrix
form, the discrete-time dynamics (17) can be written as

xi(k + 1) = Aixi(k) +Bih
r
i (k) + Φivi−1(k) + Ψiwi(k), (18)

where xi(k)=
[
hi(k), vi(k)

]>
, wi(k)=

[
h̃i(k), ṽi−1(k)

]>
,

Ai =

[
1− ∆t2

2
αi −∆t+ ∆t2

2
βi

∆t αi 1−∆t βi

]
, Bi =

[
∆t2

2
αi

−∆t αi

]
,

Φi =

[
∆t− ∆t2

2
βi

∆t βi

]
, Ψi =

[
−∆t2

2
αi −∆t2

2
βi

∆t αi ∆t βi

]
. (19)

The reference headway distance hri , which determines the
steady-state car-following distance as h∗i = hri , is a design
variable. It is often designed as a function of the preceding
vehicle’s speed, i.e., hri (k) = G

(
vi−1(k)

)
, called a range

policy. We consider the following range policy, which is
modified from the range policies proposed in [10], [21],

hri (k) = G
(
vi−1(k)

)
=

hlo 0 ≤ vi−1(k) ≤ vlo,

hlo +
vi−1(k)−vlo
vup−vlo

(hup − hlo) vlo ≤ vi−1(k) ≤ vup,

hup vi−1(k) ≥ vup.

(20)

B. Car-following constraints
Two types of constraints are considered in this paper. The

first type is imposed on the headway distance hi(k). On the
one hand, hi(k) should not be too small to avoid rear-end
collisions; on the other hand, hi(k) should not be too large to
prevent other cars from cutting in. Specifically, we consider
the following constraints on hi(k),

hmin ≤ hi(k) ≤ hmax. (21)

The second type of constraints represents actuator limits. In
particular, we consider the following constraints on ui(k),

amin ≤ ui(k) = αi
(
hi(k) + h̃i(k)− hri (k)

)
+ βi

(
vi−1(k) + ṽi−1(k)− vi(k)

)
≤ amax. (22)

For instance, the upper bound amax > 0 may represent
an engine power limit and the lower bound amin < 0
may represent a braking force limit. In matrix form, the
constraints (21) and (22) can be written as[

hmin

amin

]
≤ yi(k) ≤

[
hmax

amax

]
, (23)



where
yi(k) = Cixi(k) +Dih

r
i (k) + Θivi−1(k) + Ξiwi(k), (24)

Ci =

[
1 0
αi −βi

]
, Di =

[
0
−αi

]
, Θi =

[
0
βi

]
, Ξi =

[
0 0
αi βi

]
.

Due to the presence of the Gaussian noise wi(k) =[
h̃i(k), ṽi−1(k)

]>
, we enforce (23) probabilistically as,

P
([

hmin

amin

]
≤ yi(k) ≤

[
hmax

amax

])
≥ γ, γ ∈ (0, 1). (25)

C. Sensor and actuator failures
1) Sensor failure: The ĥi and v̂i−1 values used to com-

pute the control (15) are usually derived by fusing the
measurements of multiple sensors, such as radar, lidar and
cameras, so that uncertainty can be reduced. In turn, a failure
in one or more of the sensors typically results in an increase
in the uncertainty. Therefore, we model a sensor failure
as a change in the measurement covariance. In particular,
wi(k) =

[
h̃i(k) ṽi−1(k)

]> ∼ N (0,W p
i ), where p = 0

corresponds to the normal measurement covariance and p =
1, ..., np correspond to the covariances of a pre-specified set
of sensor failure cases. For instance, suppose ĥi and v̂i−1 are
derived by fusing the radar, lidar and camera measurements.
Then, depending on the state of health of each of the three
sensors, there are in total 8 cases, including 1 normal case,
and np = 7 failure cases.

2) Actuator failure: The bounds amax and amin on ui
represent engine/braking system limits. We model a degrada-
tion/failure in these systems (e.g., brake fading) as a change
in the values of these bounds. In particular, aqmin ≤ ui(k) ≤
aqmax, where q = 0 corresponds to the normal actuator limits
and q = 1, ..., nq correspond to the limits of a pre-specified
set of actuator failure cases.

D. Constraint and failure management using CMRG
The CMRG manages constraints relying on a predictive

model of the system. Let k = 0 denote the current sample
time instant and assume that a measurement v̂i−1(0) of
the preceding vehicle’s current speed vi−1(0) has been
obtained. We model the variations in preceding vehicle’s
speed over planning horizon stochastically as vi−1(k) =
vi−1(0) + ˜̃vi−1(k), where ˜̃vi−1(k) ∼ N (0, wpre

i−1). Then,
after augmenting the trivial dynamics vi−1(0) = vi−1(0) to
the model (18), (24) and incorporating multiple designs for
the gains (α, β) in the control law (15) as well as possible
adjustments of the reference signal hri (k), we obtain the
following predictive model

x̄i(k + 1) = Āji x̄i(k) + B̄ji µ+ Ψ̄j
i w̄i(k), (26a)

y(k) = C̄ji x̄i(k) + D̄j
iµ+ Ξ̄ji w̄i(k), (26b)

where x̄i(k) =
[
hi(k), vi−1(0), vi(k)

]>
, w̄i(k) =[

h̃i(k), ṽi−1(k), ˜̃vi−1(k)
]>

, and

Āji =

1− ∆t2

2
αji ∆t− ∆t2

2
βji −∆t+ ∆t2

2
βji

0 1 0
∆t αji ∆t βji 1−∆t βji

 , (27)

B̄ji =

 ∆t2

2
αji

0
−∆t αji

 , Ψ̄j
i =

−∆t2

2
αji −∆t2

2
βji ∆t− ∆t2

2
βji

0 0 0
∆t αji ∆t βji ∆t βji

 ,
C̄ji =

[
1 0 0
αji βji −βji

]
, D̄j

i =

[
0
−αji

]
, Ξ̄ji =

[
0 0 0
αji βji βji

]
.

The first two components of the initial condition x̄i(0) =[
hi(0), vi−1(0), vi(0)

]>
are not perfectly measured but can

be estimated using the measurements ĥi(0) and v̂i−1(0)
based on

x̄i(0) ∼ N

( ĥi(0)
v̂i−1(0)
vi(0)

 , [W p
i 0

0 0

])
. (28)

The disturbance input w̄i(k) =
[
h̃i(k), ṽi−1(k), ˜̃vi−1(k)

]>
takes values based on

w̄i(k) ∼ N

(
0,

[
W p
i 0

0 wpre
i−1

])
. (29)

Furthermore, we have replaced the reference headway dis-
tance hri (k) in the model (18) with µ in (26), which is
determined by solving the following optimization problem

min
µ

(
µ−G(v̂i−1(0))

)2
, (30)

where G(·) is the range policy (20), subject to the model (26)
and the following probabilistic constraint for k = 0, 1, ..., N ,

P
([

hmin

aqmin

]
≤ yi(k) ≤

[
hmax

aqmax

])
≥ γ, γ ∈ (0, 1). (31)

Up to this point, we have identified the model (3) in (26),
the sensor failure model (5) in (28), (29) with p = 0, 1, ..., np,
and the actuator failure model (6) in (31) with q = 0, 1, ..., nq

for the specific vehicle platoon system. Then, we can apply
the CMRG defined by Algorithm 1 to manage the constraints
and failures of this vehicle platoon system.

VI. SIMULATION RESULTS

A. Model and control parameters

The sampling period ∆t is chosen as 0.1[s]. We consider
the following set of control gain pairs (i.e., control modes) for
(15): (αj

i , β
j
i ) ∈ {0.5, 1, 1.5, 2} × {0.5, 1, 1.5, 2, 2.5, 3},

where (α0
i , β

0
i ) = (1, 3) is the nominal/default pair. The

parameter values for the range policy (20) are hlo = 2[m],
hup = 30[m], vlo = 0[m/s], and vup = 30[m/s]. The
constraints on the headway distance are set as hmax = 25[m]
and hmin = 16[m]. The normal measurement covariance is
assumed to be W normal

i = diag(0.012, 0.022). The normal
acceleration limits are assumed to be anormal

max = 3[m/s2]
and anormal

min = −3[m/s2]. For the CMRG design, we set
the variance wpre

i−1 that accounts for the variations in the
preceding vehicle’s speed vi−1(k) over the planning horizon
as wpre

i−1 = 0.22. The probabilistic constraint satisfaction
parameter γ is chosen to be 0.99.

B. Sensor failure management in a two-vehicle platoon

The first example represents the scenario where a sen-
sor failure occurs to the follower vehicle in a two-vehicle
platoon. It is assumed that the leader vehicle (indexed by 0)
drives with a trapezoidal speed profile v0, which corresponds
to the blue dash-dotted reference headway distance profile
hr1 in Fig. 2(a) according to the range policy hr1 = G(v̂0)
in (20). We assume that at the time instant tf = 12.5[s],
a failure occurs to the follower vehicle’s sensor system,
which increases the measurement covariance from W normal

1 =
diag(0.012, 0.022) to W degraded

1 = diag(0.042, 0.082).



Fig. 2(a)-(c) show the time histories of the reference µ,
headway distance h1 and acceleration u1 of the follower
vehicle when there is no supervision (i.e., j ≡ 0 and µ ≡ hr1),
when a reference governor (RG) [18] is used to supervise µ
but provides no supervision on controller mode (i.e., j ≡ 0),
and when CMRG is used to supervise both controller mode
and reference. The RG algorithm is similar to Algorithm 1,
but does not search over the ancillary controller modes
j = 1, 2, ..., nm for feasible solutions and switches directly
to the fail-safe mode (12) after Step 7.

(a) (b)

(c) (d)

Fig. 2. Sensor failure management. (a) Original reference (blue), RG
output (red), and CMRG output (green) of the follower vehicle. (b) Headway
distance and (c) acceleration time histories of the follower vehicle without
supervision (blue), with RG (red), and with CMRG. (d) Time history of
control gains (α, β) with CMRG.

Without supervision, the headway distance constraints
hmax and hmin are violated. With RG, the follower vehicle
maintains its headway distance within the constrained range
before the sensor failure. However, when the sensor failure
occurs at 12.5[s], not only a large deviation of µ from hr1
is observed but this large deviation also causes the serious
failure to satisfy the headway distance lower bound hmin

later on. This is because when the sensor failure occurs and
the measurement covariance increases, the output admissible
set ÕN shrinks, i.e., fewer state measurement and reference
input pairs are constraint admissible. When the control gains
(α, β) are fixed, the RG has to significantly adjust the
reference value to enforce constraints, even fails to identify
a feasible solution. In contrast, with CMRG, the follower
vehicle successfully maintains constraint satisfaction both
before and after the sensor failure. This is because a larger
set of constraint admissible state measurement and reference
input pairs is achieved by issuing the follower vehicle the
flexibility of choosing control gain values. The CMRG
identifies the optimal pair of controller mode j and reference
input µ in terms of minimizing the deviation of µ from hr1.
Fig. 2(d) shows the time history of the control gain pair
(α, β). The CMRG switches (α, β) from the default value
(1, 3) to (1.5, 2) over a short period after the sensor failure
occurs at 12.5[s] to enforce constraints.

Fig. 3 plots the projections of the output admissible sets
ÕN and trajectories of the follower vehicle on the (h1, µ)
plane. The blue and red dashed polygons in Fig. 3(a) show
the ÕN sets of RG before and after the sensor failure,
respectively, and the dotted curve shows the vehicle tra-
jectory under RG supervision. Before the sensor failure,
the trajectory is maintained within the normal case ÕN

set (the blue dashed polygon). However, when the sensor
failure occurs, the immediate vehicle state (highlighted by
the orange point) falls outside the failure case ÕN set
(the red dashed polygon). This causes the failure to satisfy
the headway distance constraint in Fig. 2(b). In contrast,
when the sensor failure occurs, the CMRG switches the
control mode to a transition mode, whose ÕN set (the green
dashed polygon in Fig. 3(b)) contains the immediate vehicle
state. This implies the existence of a constraint admissible
reference input µ, and therefore constraint satisfaction is
maintained. After the trajectory enters the failure case ÕN

set of the default control mode (the red dashed polygon),
CMRG switches the mode back to default.
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Fig. 3. Projections of output admissible sets and vehicle trajectories on
the (h1, µ) plane; (a) corresponds to RG supervision; (b) corresponds to
CMRG supervision.

C. Sensor and brake failure management in two/three-
vehicle platoons

We then consider the case where the sensor failure con-
sidered in the first example and a degradation/failure of the
brake system occur concurrently at tf = 12.5[s] to the
follower vehicle (vehicle 1). We consider such a concurrent
occurrence of multiple failures to test the robustness of
our CMRG design. In particular, we assume that after the
brake failure occurs, the deceleration limit is decreased from
anormal

min = −3[m/s2] to adegraded
min = −1.5[m/s2], illustrated by

the red dashed lines in Figs. 4(c) and 5(c).
Fig. 4 shows the time histories of the reference µ1,

headway distance h1, acceleration u1, and control gains
(α1, β1) of vehicle 1 without supervision, with RG, and
with CMRG supervisions by blue, red, and green curves,
respectively. Similar to the results of Fig. 2, without super-
vision, the headway distance and acceleration constraints are
both violated. The RG can maintain the headway distance
within the constrained range before failures, but fails to
do so after failures occur. In contrast, when CMRG is
used to supervise both the control mode and the reference
input, the vehicle successfully maintains headway distance
constraint satisfaction and violates the acceleration constraint
only slightly. Note that such a slight constraint violation is
due to the probabilistic enforcement of constraints (31). To



compensate for the failure effects, the CMRG switches the
gain pair (α1, β1) from the default value (1, 3) to (0.5, 1)
over a short period.

(a) (b)

(c) (d)

Fig. 4. Sensor and brake failure management. (a) Original reference (blue),
RG output (red), and CMRG output (green) of the follower vehicle. (b)
Headway distance and (c) acceleration time histories of the follower vehicle
without supervision (blue), with RG (red), and with CMRG. (d) Time history
of control gains (α, β) with CMRG.

Lastly, we illustrate the failure effects on the entire platoon
by plotting in Fig. 5 the response of the vehicle (vehicle
2) immediately following the vehicle with sensor and actu-
ator failures (vehicle 1). We assume that both vehicles use
CMRG to supervise their control modes and reference inputs.
Note that the speed profile of vehicle 1, v1, determines
the original reference headway distance profile for vehicle
2, hr2, according to the range policy hr2 = G(v̂1). With
CMRG, vehicle 2 satisfies the headway distance constraints
hmin ≤ h2 ≤ hmax. Note that the deceleration limit for
vehicle 2 is anormal

min = −3[m/s2] over the entire simulation,
since vehicle 2 does not have a brake failure.

(a) (b)

Fig. 5. Sensor and brake failure management in a three-vehicle platoon.
(a) Headway distance and (b) acceleration time histories of vehicle 1 (blue)
and vehicle 2 (red), where vehicle 1 has sensor and brake failures at 12.5[s].

VII. CONCLUSION

This paper considered the application of a controller mode
and reference governor (CMRG) scheme to constraint and
failure management in vehicle platoon systems. The CMRG
monitors and adjusts the control modes and reference inputs

of a multi-mode controlled system to enforce constraints and
mitigate degradation/failure effects. Simulation results illus-
trated that with CMRG, safety constraints can be satisfacto-
rily enforced and sensor and/or actuator degradations/failures
can be managed in vehicle platoon systems.
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