Hindawi

Wireless Communications and Mobile Computing
Volume 2021, Article ID 8891204, 8 pages
https://doi.org/10.1155/2021/8891204

Research Article

WILEY

Hindawi

Detection Mechanisms of One-Pixel Attack

Peng Wang, Zhipeng Cai ("), Donghyun Kim, and Wei Li

Department of Computer Science, Georgia State University, Atlanta 30303, USA

Correspondence should be addressed to Zhipeng Cai; zcai@gsu.edu

Received 21 September 2020; Revised 22 December 2020; Accepted 3 February 2021; Published 23 February 2021
Academic Editor: Wenzhong Li

Copyright © 2021 Peng Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, a series of researches have revealed that the Deep Neural Network (DNN) is vulnerable to adversarial attack, and a
number of attack methods have been proposed. Among those methods, an extremely sly type of attack named the one-pixel attack
can mislead DNNs to misclassify an image via only modifying one pixel of the image, leading to severe security threats to DNN-
based information systems. Currently, no method can really detect the one-pixel attack, for which the blank will be filled by this
paper. This paper proposes two detection methods, including trigger detection and candidate detection. The trigger detection
method analyzes the vulnerability of DNN models and gives the most suspected pixel that is modified by the one-pixel attack.
The candidate detection method identifies a set of most suspected pixels using a differential evolution-based heuristic algorithm.
The real-data experiments show that the trigger detection method has a detection success rate of 9.1%, and the candidate

detection method achieves a detection success rate of 30.1%, which can validate the effectiveness of our methods.

1. Introduction

Deep learning is an artificial intelligence technique that fol-
lows the structure of a human’s brain and imitates the neural
cells in the human brain [1]. Over the past decades, deep
learning has made significant progresses in speech recogni-
tion, natural language processing [2], computer vision [3],
image classification [4], and privacy protection [5-7]. In par-
ticular, with the increase of data volume, traditional machine
learning algorithms, such as SVM [8] and NB [9], suffer a
performance bottleneck, in which adding more training data
cannot really enhance their classification accuracy. Differ-
ently, the deep learning classifiers can continue to get
improvements if more data is fed. However, it has been
revealed that artificial perturbation can make the deep learn-
ing models misclassify easily. A number of effective methods
have been proposed to produce so-called “adversarial sam-
ples” to fool the models [10, 11] and some work focused on
fighting against adversarial attack [12-14].

1.1. One-Pixel Attack. Among the existing works, the one-
pixel attack takes an extreme scenario into consideration,
where only one pixel of an image is allowed to be modified
to mislead the classification models of the Deep Neural Net-

work (DNN) such that the perturbed image is classified to
another label different from the image’s original label [15].
As shown in Figure 1, with the modification of one pixel, the
classification of images is changed to totally irrelevant labels.
The one-pixel attack is harmful to the performance guar-
antee of DNN-based information systems. Via modifying
only one pixel in an image, the classification of the image
may change to an irrelevant label, leading to performance
degradation of DNN-based applications/services and even
other serious consequences. For examples, in medical image
systems, the one-pixel attack may make a doctor misjudge
the disease of patients, and in autodriving vehicles, the one-
pixel attack may cause serious traffic accidents on roads.
More importantly, the one-pixel attack is more threaten-
ing than other types of adversarial attack as it can be imple-
mented easily and effectively to damage system security.
Since the one-pixel attack is a type of black box attack, it does
not require any additional information of the DNN models.
In practice, the one-pixel attack only needs the probabilities
of different labels instead of the inner information about
the target DNN models, such as gradients and hyperpara-
meters. The effectiveness of the one-pixel attack towards
DNNs has been validated in [15], where the attack success
rate is 31.40% on the original CIFAR-10 image dataset and
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FIGURE 1: An example of one-pixel attack from [15].

16.04% on the ImageNet dataset. Such a success rate is large

enough to break down an image classification system.
Therefore, to avoid the loss of system performance,

detecting the one-pixel attack becomes an essential task.

1.2. Technical Challenges. The following two facts result in
the difficulty of examining a one-pixel attack in images.

(1) Extremely Small Modification. The one-pixel attack
modifies only one pixel in an image, which is signifi-
cantly less than other types of adversarial attack. This
makes the detection of the one-pixel attack very
challenging.

(2) Randomness of Pixel Modification. For an image,
there may be more than one feasible pixel that can
cause the change of classification. In [15], the one-
pixel attack randomly selects one of those feasible
pixels to mislead the classifiers. Such randomness
makes the detection of the one-pixel attack harder.

1.3. Contributions. In this paper, we develop two methods to
detect a one-pixel attack for images, including trigger detec-
tion and candidate detection. In the trigger detection
method, based on a concept named the “trigger” [16], we
use gradient information of the distance between the pixels
and target labels to find the pixel that is modified by the
one-pixel attack. By considering the property of the one-
pixel attack, in the candidate detection method, we design a
differential evolution-based heuristic algorithm to find a set
of candidate victim pixels that may contain the modified
pixel. Intensive real-data experiments are well conducted to
evaluate the performance of our two detection methods. To
sum up, this paper has the following multifold contributions.

(i) To the best of our knowledge, this is the first work to
study the detection of the one-pixel attack in litera-
ture, which can contribute to the defense of the
one-pixel attack in future research

(if) Two novel detection mechanisms are proposed, in
which the modified pixels can be identified in two
different ways based on our thorough analysis on
the one-pixel attack
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(iii) The results of real-data experiments validate that
our two detection methods can effectively detect
the one-pixel attack with satisfied detection success
rates

The rest of this paper is organized as follows. In “Related
Works,” the existing works on adversarial attacks and detection
schemes are briefly summarized. The attack model and the
detection model are presented in “System Models.” Our two
detection methods are demonstrated in “Design of Detection
Methods.” After analyzing the performance of our methods
in “Performance Validation,” we conclude this paper and dis-
cuss our future work in “Conclusion and Future Work.”

2. Related Works

A one-pixel attack is a special type of adversarial attack and is
designed based on a differential evolution scheme. Thus, this
section summarizes the most related literatures from the fol-
lowing two aspects: adversarial attack and detection of an
adversarial attack.

2.1. Adversarial Attack. In an adversarial attack, attackers
intend to mislead classifiers by constructing adversarial sam-
ples. Nguyen et al. made efforts on fooling a machine learn-
ing algorithm [17] and found that DNNs give high
confidence results to random noise, which indicates that uni-
versal adversarial perturbation in a single crafted perturba-
tion can cause a misclassification on multiple samples. In
[10, 18], back-propagation is used to find gradient informa-
tion of machine learning models, and gradient descent
methods are used to build adversarial samples.

Since it might be hard or impossible to learn the internal
information of a DNN model in practice, some approaches
have been proposed to generate adversarial samples without
using the internal characteristics of DNN models. Such
approaches are called a black box attack [19-21]. Particularly,
a special type of black box attack is the one-pixel attack, in
which only one pixel is allowed to be modified. Under the
one-pixel attack of [15], an algorithm was developed to find a
feasible pixel for malicious modification based on differential
evolution that has a higher probability of finding an expected
solution compared with gradient-based optimization methods.
Due to the concealed modification of only one pixel, it becomes
more difficult to detect the one pixel attack. As mentioned in
[15], the one-pixel attack requires only black box feedback that
is the probability label without any inner information of the
target network, like gradients or structure.

2.2. Detection of Adversarial Attack. On the other hand,
research attention is also paid to work out detection methods
for adversarial attack. Papernot et al. provided a comprehen-
sive investigation into the security problems of machine
learning and deep learning, in which they established a threat
model and presented the “no free lunch” theory showing the
tradeoff between accuracy and robustness of deep learning
models. Inspired from the fact that most of the current data-
sets are compressed JPG images, some researchers designed a
method to defend image adversarial attack using image com-
pression. However, in their proposed method, a large
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compression may also lead to a large loss of classification
accuracy of the attacked images, while a small compression
cannot work well against adversarial attack. In [16], Neural
Cleanse was developed to detect a backdoor attack in neural
networks, and some methods were designed to mitigate back-
door attack as well.

Compared with the existing works, this paper is the first
work that focuses on the detection of the one-pixel attack.
In particular, two novel detection mechanisms are proposed
with one using a gradient calculation-based method and the
other using a differential evolution-based method.

3. System Models

The attack model and detection model in our considered
DNN-based information systems are introduced as follows.

3.1. Attack Model. In this paper, the attack model of [15] is
taken into account, in which an adversarial image is gener-
ated by modifying only one pixel in the victim image. The
purpose of a one-pixel attack is to maliciously change the
classification result of a victim image from its original label
to a target label. As shown in Figure 2, the image is correctly
classified as an original label, “sheep,” by a given DNN
model. After being modified one pixel, the output label with
the highest preference of the model is changed to a target
label, “airplane,” leading to a wrong classification result.
The attackers perform a black box attack only, which means
they have the accessibility to the probability labels and can-
not get the inner information of the network. Also, consider-
ing that the attacker aims to make the attack as efficiently as
possible, it is supposed that all the images in the dataset are
altered.

3.2. Detection Model. Suppose that a set of adversarial images,
which are modified by the aforementioned one-pixel attack,
are given to the system. With these given images, our objec-
tive is to distinguish which pixel has been modified by a
one-pixel attack.

To detect the one pixel attack, two novel methods are
developed. The first method is the “trigger detection” to iden-
tify the modified pixel, and the second one is the “candidate
detection” to find a set of victim pixels. The “trigger detec-
tion” model is designed for white box detection that requires
all the network information including inner gradients and
network structure. In the trigger detection model, we first
propose a new concept named “trigger” for image data and
then detect the trigger in a given adversarial image. If the
detected trigger is the pixel modified by the one-pixel attack,
our detection is successful. The “candidate detection” is for
the black box detection, where only the output probabilities
of labels are needed for the detection. In the candidate detec-
tion model, we aim to find a set of pixels as the candidate vic-
tim pixels. If the selected victim pixels include the pixel
modified by the one-pixel attack, our detection is successful.
The details of our two detection mechanisms are demon-
strated in “Design of Detection Methods.”

3
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FiGURE 2: Illustration of one-pixel attack.

4. Design of Detection Methods

Our proposed detection methods are described as follows.
For a better presentation, the major notations are summa-
rized in Table 1.

4.1. Trigger Detection Method

4.1.1. Main Steps. Formally, the trigger of an image is
defined to be the pixel that has the greatest impact on
the model classification. Thus, any image, which has a
properly modified trigger, should have a higher confidence
on a target label and will be likely to be classified as the
target label regardless of other unchanged image features.
In other words, the classification result would be changed
to a target label if the trigger is modified properly using
DNNSs’ properties.

Let L represent the set of output labels in a DNN model.
For any adversarial image, we assume its original label is L,
€ L and its target label is L, € L, where in # . Under a one-
pixel attack model, the modification on the trigger pixel can
transform all inputs of L, to be classified as L,.

Motivated by the above observations, the one-pixel attack
can be detected via identifying the triggers of adversarial
images according to the following steps.

Step 1. For a given label, we treat it as a potential target label
in the one-pixel attack. We use an optimization-based
scheme to find the trigger that can misclassify all samples
from other labels into the target label.

Step 2. We repeat Step 1 for each output label in the DNN
model and obtain N potential triggers, in which N =|L]| is
the number of labels of the DNN model.

Step 3. After calculating N potential triggers, we measure the
size of each trigger. The size of a trigger is defined to be the
modified RGB value of the trigger pixel. Then, the outlier
detection algorithm of [22] is adopted to detect whether the
perturbation of each potential trigger is significantly smaller
than others. A significant outlier is likely to indicate a real
trigger, and the label matching the real trigger is the target
label in the one-pixel attack.

4.1.2. Trigger Identification. The details of our optimization-
based scheme for identifying trigger are addressed below.
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TaBLE 1: Notations.
Notations Meaning
L Output labels in a DNN model
L, The original label
L, The target label of a one-pixel attack
A(e) The function that applies a trigger to an image
X The original image
, The modified image
x A pixel of x and x; ;. represents a pixel of x'
Xije i and j are the x and y coordinates of the pixel, respectively, and c is the color channel
A A trigger of an image
Loss(e) The loss function measuring classification error
Xpext An element of the candidate solution
T max Maximum iteration numbers

Suppose X is a set of clean images without modification.
A generic form of injecting trigger for any original image, x
€ X, is given in

A(x, m,A):x', (1)

where A(-) represents the function that applies a trigger to x.
Correspondingly, the modified image is denoted as x'. Let
Xije ic Tepresent a pixel of x',
where i and j are the x and y coordinates of the pixel, respec-
tively, and c is the color channel. The relationship between x
and x’ can be mathematically expressed by

represent a pixel of x and x'

xli,j,c =(1-m)-x;;c+m-4;, (2)
in which A represents a trigger of x and m € [0, 1] describes
how much A can overwrite the original image. Particularly,
when m =1, the pixel of the trigger completely overwrites
the original color, and when m =0, the original color is not
modified at all. The original image x is classified to the orig-
inal label L;,, and the modified image x' is classified to the
target label L,.

Then, given the target label L,, the problem of finding a
trigger can be formulated as a multiobjective optimization
problem, i.e.,

miAnLoss(Lt,f(A(x, m,A)))+m, VxeX. (3)

In Eq. (3), Loss(-) is the loss function measuring classifi-
cation error that is computed by cross entropy and f(-) is the
prediction function of the DNN model.

In this paper, L1 norm of m is adopted to measure the
magnitude of the trigger. By solving the above optimization
problem, we get the trigger, A, for each target label and its
L1 norm. Next, in Step 3, we identify the triggers that show
up as outliers with smaller L1 norm by utilizing the outlier
detection algorithm of [22].

4.2. Candidate Detection Method. Notably, to generate adver-
sarial images, the one-pixel attack of [15] uses a differential
evolution algorithm to randomly select a pixel that can lead
misclassification on an image. Mathematically speaking, for
the problem of image generation, the selected pixel is a feasi-
ble solution and may not be an optimal solution. Therefore,
the obtained trigger pixel might not be actually modified in
the one-pixel attack, resulting in failed detection. In order
to improve the attack detection success rate, the goal of our
candidate detection method is to find a set of victim pixels
(i.e., a set of feasible solutions), each of which satisfies the
requirement of adversarial image generation in the one-
pixel attack.

4.2.1. Problem Formulation. Without loss of generality, we
assume an input image can be represented by a vector in
which each scalar element represents one pixel. In a DNN
model, f(-) receives an image as input and gives confidence
of N labels. Accordingly, the probability of x being classified
toalabel L € L is f(x)[L]. For an original image x, an additive
adversarial perturbation is represented by a vector v. The
modification degree is measured by the length of v, and the
allowable maximum modification is 1 in the one-pixel attack
model. The problem of generating adversarial images using
the one-pixel attack is formulated as follows.

max flx+A)[L], @

st |4 <1

4.2.2. Differential Evolution-Based Heuristic Algorithm. To
obtain the solution to Equation (4), a heuristic algorithm is
designed based on differential evolution (DE), which brings
the following benefits.

(i) DE gives a higher probability of finding global opti-
mal solutions as well as a lower probability of getting
“trapped” in the local solutions compared with gra-
dient descent and greedy searching algorithms
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1: Initialize model with the target DNN model
2: Randomly chose N,

ini

4: for all each label L € Ldo

20: if AttackSucc is true then

21: returnC candidate victim pixels
22: else

23: return fail to find candidates
24: end if

Input: an adversarial image generated by a one-pixel attack, a DNN classifier, and a label set L with |L| =N
Output: a set of pixels containing C candidate victim pixels

pixels from the image, and for each point, randomly set a color as present pixel set
3: Calculate the confidence of the image on all N labels

5:  while true do

6: Calculate the change of the confidence on L when modifying with parent pixels
7: Generate offspring pixels based on Equation (5)

8: Calculate the change of confidence on L when modifying with offspring pixels
9: Select N, pixels with the highest confidence changed as new parent pixels

10: if all top C confidences changed on targets are larger than p then

11: Save the top C pixels as candidate victim pixels

12: Set AttackSucc = true

13: Break while loop

14: end if

15: if while loop is over T, times then

16: Break while loop

17: end if

18: end while

19: end for

ArcoriTHM 1 Algorithm of candidate detection method.

(ii) DE requires less information from the optimization
objectives. DE does not require gradient information
from the dataset, which means it even does not
require the problem to be differentiable. Under the
extremely strict constraint of modifying only one
pixel in an image, the problem is not differentiable
and can be effectively resolved by DE

(iii) To detect a one-pixel attack, we only need to know
whether the confidence changes after modifying a
pixel, which can be formulated and solved in a sim-
ple way using DE

In this paper, we encode the perturbation into an array
(i.e., a candidate solution) which is optimized (evolved) by
differential evolution. One candidate solution contains a
fixed number of perturbations, and each perturbation is a
tuple holding five elements including x-y coordinates and
RGB value of the perturbation, where one perturbation mod-
ifies one pixel. The DE algorithm is performed iteratively and
is terminated when one of the two conditions is satisfied: (i)
the maximum number of iteration T, is reached or (ii)
the probability of being classified to the target label exceeds
a threshold p,,. Let Ni; be the initial number of candidate
solutions (population) and N, be the number of candidate
solutions (i.e., children) produced in each iteration. At the (
g+ 1)-thiteration, N, candidate solutions are produced from
the g-th iteration via the following DE formula:

Xnext (9 +1) =%, (9) + F(x,,(9) — %, (9))> (5)

where x, ., is an element of the candidate solution; r,, r,, and
ry are random values with r, # 7, #r;; and F is the scale
parameter. After being generated, each candidate solution
competes with their parents according to the index of the
population, and the winners survive in the next iteration.
When the algorithm terminates, C candidates are output.
The pseudocode of our algorithm is shown in Algo-
rithm 1. For each image, the above algorithm will go through
all the N labels, i.e., the “for loop” in lines 4-19 of Algorithm 1.
For each label, the candidate selection process will run up to
T ..« iterations, i.e., the “while loop” in lines 5-18 of Algo-
rithm 1. Each iteration costs a constant time to generate N,
children and pick N winners. As a result, the time complex-
ity of Algorithm 1is O(N - T

max) *

5. Performance Validation

In this section, extensive real-data experiments are con-
ducted to evaluate the performance of our two detection
methods.

5.1. Experiment Settings. Our experiments adopt CIFAR-10
as the dataset and VGG-16 as the DNN model. Table 2 shows
the structure of the VGG-16 network which is the same as the
network used in a one-pixel attack. After training, we get the
model with the accuracy as shown in Table 3.

To measure the performance of the one-pixel attack, we
calculate the classification accuracy of the VGG-16 model
on the test images. Also, we calculate the success rate of
launching the one-pixel attack, in which “airplane” is set as



TaBLE 2: Network structure of VGG-16.

Conv2d layer (kernel = 3, stride = 1, depth = 64)
Conv2d layer (kernel = 3, stride =1, depth = 64)
Max pooling layer (kernel = 2, stride = 2)
Conv2d layer (kernel = 3, stride = 1, depth = 128)
Conv2d layer (kernel = 3, stride = 1, depth = 128)
Max pooling layer (kernel = 2, stride = 2)
Conv2d layer (kernel = 3, stride = 1, depth = 256)
Conv2d layer (kernel = 3, stride = 1, depth = 256)
Conv2d layer (kernel = 3, stride = 1, depth = 256)
Max pooling layer (kernel = 2, stride = 2)
Conv2d layer (kernel = 3, stride = 1, depth = 512)
Conv2d layer (kernel = 3, stride = 1, depth = 512)
Conv2d layer (kernel = 3, stride = 1, depth = 512)
Max pooling layer (kernel = 2, stride = 2)
Conv2d layer (kernel = 3, stride = 1, depth = 512)
Conv2d layer (kernel = 3, stride = 1, depth = 512)
Conv2d layer (kernel = 3, stride = 1, depth = 512)
Max pooling layer (kernel = 2, stride = 2)
Flatten layer
Fully connected (size = 2048)
Fully connected (size = 2048)
Softmax classifier

TasLE 3: Classification accuracy of VGG-16.

Model Accuracy on test set  Claimed accuracy on test set
VGG-16 93.4% 94%

TABLE 4: Success rate of one-pixel attack.
Model Accuracy on test set  Claimed accuracy on test set
VGG-16 93.4% £ 1.65% 17.3% £ 3.61%

the target label. The success of the one-pixel attack means
after being modified a pixel, an image whose original classi-
fied label is not airplane is misclassified to airplane by the
DNN network. Moreover, to reduce the influence caused by
the randomness in the differential evolution algorithm of
the one-pixel attack, the classification process is repeated 5
times, and the average accuracies and their variances are pre-
sented in Table 4.

Specifically, the one-pixel attack is launched towards
60,000 testing images and succeeds in making 8655 nonair-
plane images get classified to airplane. In the experiments,
we pick 8000 such adversarial images to evaluate our detec-
tion method.

5.2. Performance Metrics. The performance metrics are intro-
duced as follows.

(i) Label confidence. The label confidence is the confi-
dence of different labels given by the DNN model
to an image. For a label, higher confidence means a

Wireless Communications and Mobile Computing

higher probability that the image is classified to the
label.

(ii) Detection success rate. The definition of successful
attack detection is different in our two detection
methods. In trigger detection, our detection is suc-
cessful if the detected trigger is the pixel modified
by a one-pixel attack, while, in the candidate detec-
tion model, our detection is successful if the pixel
modified by the one-pixel attack is included in the
set of selected victim pixels. For both detection
methods, the detection success rate is defined as the
ratio of the number of successful detection to the
number of adversarial images.

5.3. Performance of Trigger Detection. Since the L1 norm has
a better feature selection performance and interpretability
[23], our trigger detection method uses the L1 norm to mea-
sure the distance between the pixel and a label. If the L1 norm
of a pixel is obviously different from others, we can consider
that the pixel is infected. Figure 3 shows the L1 norm of all
pixels of an infected image.

From Figure 3, one can find that the L1 norm of the 751st
pixel is obviously different from others. With verification, we
know that the 751st pixel is the pixel modified in the one-
pixel attack. Also, to understand how the affected target label
is related to the modified pixel, we calculate the L1 norm of
the infected pixel to different labels. In Figure 4, we can find
that the L1 norm to the airplane is lower than that to the
other labels. Thus, our approach can also determine which
label is the target label.

The average detection success rate of our trigger detec-
tion method is 9.1%.

5.4. Performance of Candidate Detection. In our candidate
detection method, the initial number of candidate solutions
and the number of produced candidate solutions are set to
be 400, i.e., N;; = N, = 400; the maximum number of itera-
tions is T, = 100; the scale parameter is F =0.5; and the
threshold for the probability of being classified to the target
label is p;, = 90%. To eliminate the influence of random var-
iables in our Algorithm 1, we run the experiment 5 times with
the fixed parameter settings and present the results in
Table 5. Moreover, to investigate the impact of the size of
candidate set, we also compare the detection success rates
when C is set to be different values.

As shown in Figure 5, when C = 1, the success detection
rate is 5.4% smaller than the success detection rate of our
trigger detection method. Particularly, with C =1, both the
trigger and the candidate detection methods output one
detected pixel but differ in their pixel selection schemes: (i)
in out trigger detection, the trigger pixel is an optimal solu-
tion of trigger identification problem as well as has a smallest
value of the L1 form, while (ii) in our candidate detection, the
only one candidate victim pixel is randomly selected by the
differential evolution-based heuristic algorithm. From the
definition of the trigger pixel in this paper, the probability
of the trigger pixel being modified in a one-pixel attack is
larger than that of other pixels. Therefore, the trigger
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TaBLE 5: Detection success rate of candidate detection.

Experiment 1 2 3 4 5
Success rate (%) 20.4 24.3 30.1 21.9 26.7

Detection rate (%)

=
0
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F1GURE 5: Impacts of the number of output candidates.

detection method outperforms the candidate detection
method when C =1, confirming that the idea of finding the
trigger pixel to detect the one-pixel attack is solid.

When C is increased from 1 to 5, the detection success
rate grows from 5.4% to 30.1%. The main reason is that with
a larger number of output candidate pixels, more possible

modified pixels can be examined, and the probability of find-
ing the actual modified pixel is increased.

However, when C is increased from 5 to 10, the detection
success rate nearly remains the same (in Figure 5, the subtle
difference of the detection success rate results from the ran-
domness of the DE algorithm). This illustrates that only
increasing the number of candidate pixels may not always
enhance the detection success rate. In summary, for the
detection success rate, the marginal benefit of enlarging the
number of candidate pixels is diminishing, and thus, setting
an appropriate value to C can help effectively and eficiently
detect the one-pixel attack (e.g., C =5 in our experiments).

6. Conclusion and Future Work

This paper proposes two novel methods, ie., the trigger
detection method and the candidate detection method, to
detect a one-pixel attack that is one of the most concealed
attack models. The trigger detection method gives the exact
pixel that may be modified by the one-pixel attack; the candi-
date detection method outputs a set of pixels that may be
changed in the one-pixel attack. Via extensive real-data
experiments, the effectiveness of our two methods can be
confirmed; in particular, the detection success rate of our
candidate detection can achieve 30.1%.

As a preliminary exploration of the one-pixel attack
detection, in this paper, we consider that all the images are
attacked and the detection is thus implemented on a dataset
full of modified images. In our future work, we will carry
out further research activities along two directions: (i)
attempting to distinguish between the benign images and
the attacked images in the presence of the one-pixel attack
and (ii) mitigating the impact of the one-pixel attack by
enhancing the resistance to adversarial samples in DNNs.
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