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Abstract—This paper proposes a set-theoretic Failure
Mode and Effect Management (FMEM) strategy that han-
dles stuck/jammed actuators and enforces pointwise-in-
time state and control constraints. The approach exploits
nesting between constraint admissible and recoverable
sets to ensure the existence of a recovery sequence. A
reference governor is applied to track reference commands
while imposing constraint satisfaction using the remaining
working actuators. Numerical results of an aircraft longitu-
dinal flight application are reported.

Index Terms— Constrained control, fault tolerant sys-
tems, reference governor, set-theoretic methods, stuck ac-
tuators

[. INTRODUCTION

AINTAINING the safety of systems in applications

such as aircraft and autonomous vehicles is critical.
These systems often operate in constrained environments while
tracking reference commands. For example, an autonomous
vehicle may be given a planned trajectory to follow but it
must simultaneously avoid obstacles such as other vehicles in
traffic or pedestrians. Such applications may require the system
to operate without constraint violation at all times, even when
failures occur.

Continuing to operate without constraint violations is chal-
lenging when there are failed hardware components. It is not
uncommon for hardware components, such as sensors and
actuators, to fail for various reasons. In particular, failures
due to stuck actuators often occur in industrial applications.
Jammed elevators or rudders, for example, are one of the most
common reasons for the failure of aircraft flight control, for
which consequences could be fatal [1]. To mitigate failures,
redundant actuators are often used (e.g., dual steering systems
in automotive applications). In addition, sensors can be added
for diagnostic purposes. As the software and algorithmic
content for handling failure modes can be large and complex,
systematic methods for Failure Mode and Effect Management
(FMEM) system design are very much in need. Such FMEM
strategies must be able to reconfigure system operation to
maintain safety and maximize system availability.

This paper presents an approach to designing an FMEM
strategy for handling actuator failures, where actuators can
fail by getting stuck in a constant position. The proposed
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FMEM system aims to guarantee that pointwise-in-time state
and control constraints are satisfied during normal operation,
in failure modes, and during mode transitions.

There is much literature on the design of fault-tolerant con-
trol systems and on the analysis of the ability to reconfigure,
such as [2] and [3]; usually, state and control constraints are
not considered. Constraint handling using control methods
similar to ours in this paper is addressed in [4]-[6], but failure
modes are not considered. In [7], the case of stuck actuators
is handled using set-theoretic methods; however, the reference
tracking problem is not treated. The use of reference governors
for fault-tolerant control is described in [8] and references
therein, but these approaches are different from ours and are
not combined with the reconfiguration strategy. The use of
recoverable sets for safe trim point to trim point transitions is
considered in [9], but the reconfiguration is not addressed to
handle sequential failures that involve multiple operating mode
transitions. Fault-tolerant Model Predictive Control (FTMPC)
methods proposed in [10] handle constraints and reference
tracking; however, [10] addresses unknown fault intensity
instead of stuck/jammed actuators in this paper and does
not consider sequential failures. A comprehensive comparison
between the FTMPC approaches and our strategy is left to
future work.

In [11], an FMEM strategy is proposed for the case when
actuator failures result in the corresponding control input
being set to zero. This strategy relies on manipulating the
reference command to a nominal controller based on the use
of constraint admissible and recoverable sets constructed using
discrete-time linear models of the closed-loop system in each
mode. A maximum constraint admissible set O s is the set
of all initial states zy of the system and reference commands
v with which the ensuing response satisfies state and control
constraints for all future time instants if operating in mode
M. For each failure mode, a recoverable set Révof‘ﬁ/[ is the set
of all initial states x( of the system for which there exists a
reference command sequence v that steers the states into the
state projection of O, ar Within Ny steps without constraint
violations. Then, if the following conditions are satisfied,

Proj, Ouonr € RIM, VM’ € pred(M), (1)

where M’ is the predecessor mode of M, constraints can
be satisfied in each mode and during mode changes. This
result is established under the assumptions of a single point of
failure (i.e., one actuator failure at a time), instantaneous fault
detection and isolation, and large time between subsequent
failures. Furthermore, [11] introduced three mechanisms by



which (1) can be ensured: (i) by adding extra state constraints
in the preceding mode; (ii) by increasing time duration allowed
for the reconfiguration; and (iii) by temporarily relaxing state
constraints when determining the recovery sequence. The latter
mechanism is suitable for systems with soft constraints when
a temporary constraint violation is permissible.

A reference governor [8] is used in [11] for reference track-
ing in each mode after the reconfiguration is completed and
until another failure occurs. The reference governor maintains
the state and modified reference in O, ps While minimizing
the difference between the modified references and reference
commands. When a failure occurs and the reconfiguration
begins, the reference governor operation is suspended. A con-
strained quadratic programming problem is solved to generate
a recovery sequence of modified references, which is then
applied until the states enter the constraint admissible set of
the current mode, and the operation of the reference governor
resumes.

In this paper, the approach of [11] is extended to ad-
dress the practically important case when actuators can get
stuck/jammed at a constant position. This requires modifying
control laws in each mode to compensate for failed actuator
positions, as well as re-formulating the constraint admissible
sets, recoverable sets, and reconfiguration conditions to include
the dependence on the failed actuator positions. The case
treated in this paper is significantly more general than that
in [11] where inputs corresponding to failed actuators were
set to zero.

The proposed FMEM strategy (Figure 1), upon failure, first
modifies the reference command by generating a recovery
sequence, and then by using a reference governor once the
state enters the maximum constraint admissible set (Figure 2).
The controller responding to the modified reference command
is also switched for each specific mode.
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Fig. 1. A flowchart of the proposed FMEM strategy. Signals in round
brackets are passed from previous blocks.

Fig. 2. The relation between offline designed constraint admissible and
recoverable sets exploited in the FMEM strategy.

The rest of the paper is organized as follows. First, normal
and failure modes, open and closed-loop discrete-time system
models, as well as constraints are introduced in Section II.
Section III defines the problem statement, constraint admis-
sible and recoverable sets, reconfiguration conditions for dif-
ferent mode transitions, and reference governors for reference
tracking. Numerical results for an aircraft longitudinal flight
application are reported in Section I'V. Finally, conclusions are
drawn in Section V.

II. OPERATION MODES, SYSTEM DYNAMICS, AND
CONSTRAINTS

A. Normal and failure modes

Consider an over-actuated system with N actuators. Each
actuator may fail because it gets stuck/jammed and generates
a constant input equal to the value immediately before the
failure happens. Failures of multiple actuators are possible,
but only one actuator can fail at a time. The time between
subsequent failures is assumed to be large. Furthermore, to
simplify the exposition, we assume that the failure is detected
instantaneously and the failed actuator position is accurately
measured/estimated, while in practice these assumptions can
be relaxed.

Figure 3 shows an example of potential failure paths for the
case of NV = 2 in the worst case scenario when every combi-
nation of actuator failures is possible. Each box represents a
potential operating mode of the system. The numbers inside
the box are labels of the actuators that are still working. Each
mode is denoted by M € {0,1,--- ,2N}, and a vector ¢, is
defined to label each mode by

Uy =[m1 my mn]",

0 if the ¢*" actuator failed,

mi = : th
1 if the ¢*" actuator works,

fori € {1,--- ,N}. In particular,

T

=111 11", =00 0 - 0",

where /g is the label of the normal mode when all actuators
work, and ¢¢, with = 2% labels the mode when all actuators
fail.

M=0

to=[11]7 fa= (00"

M=2
£, =[01]"

Fig. 3. Example of failure paths, modes M, and labels €55 for N = 2.

B. Open-loop and closed-loop system models
We assume that the system in mode M is represented by
the following discrete-time linear model:
Tpt1 = Az + Bupg g, 2
yr = Cg, 3)



where x, is the state, y;, is the output, and uyy  is the input.
We have

unmke =lv Quok + (bo—p) ©uay VO < M < Q,

where
T
uo,kZ[ul,k W2,k HN,k] )
uok = [ & dv]",
th

and where p;j is the input in the ** channel where the
corresponding actuator is working properly, d; is the constant
input in the i*" channel where the corresponding actuator
failed and got stuck, and © is the element-wise product. For
example, in the case with three actuators, if 4 = [1 1 0] T
we have uy g = [g pok da].

In the normal mode (M = 0), a stabilizing feedback plus
feedforward controller is used, of the form,

uo,k = Koz + Govg, 4

where K| is a stabilizing feedback gain, GG is a feedforward
gain such that the tracking error in steady state is equal to
zero, and vy, is the reference command.

In failure modes M, 0 < M < {2, when there are actuators
stuck at constant values, we first define py,,  as the vector
of inputs of the working actuators and d,, as the vector of
constant inputs of the failed actuators by reducing ups  to

Peng ke = OWnrsunrk)s dey, = O(lo — Car, unr k),

where ((¢, E) is an operator that reduces the dimension of
the vector, matrix, or product of sets £ by removing the
ith ¢ {1,---, N} element, row, or set if the corresponding
it" element in ¢ is zero.

It is assumed that in all failure modes the number of
references is less than or equal to the number of working
actuators. Then for each mode M, a stabilizing controller is
assumed to have been designed, and given by

ten kb = Kpzp + Gyror + Hyrdy,, )

where K is the stabilizing feedback gain and G, and H)y,
are the feedforward gains for the reference commands and
stuck inputs. They are designed so that the system has zero
steady-state tracking error.

In general, the closed-loop dynamics are represented by

Tpr1 = Ayzg + By Uk, 6)

where Uy, is the closed-loop input, and
o for M =0,

Ay = A+ BK,, By =BGy, Uy = vy,
o for 0 < M < Q,

Ay = A+ By K,

By = [BuuGy BuyuHuy + Bl s

U]W,k? = |:dl;k :| )

CM

where

By = (0(bar, BM)", Bara = (Ol — €ar, BY))".

In the failure mode when all actuators fail and give constant
inputs (M = (), the system runs in open-loop. In this case we
assume that the open-loop system is stable as otherwise state
constraints cannot be handled. For consistency of notations,
we let

Aq =A, Bg =B, Ugy = uqy-

C. Constraints
To ensure safe operation, pointwise-in-time state and control
constraints are imposed given by inequalities of the form,

X

Tk € X}\%(UM,]C) = {LE : f‘l}t/[ |:UM k:| < EX/[} (7)

It is assumed that individual open-loop input range constraints
of the form wups;, € Dy X - -+ X Dy are reflected in (7) where
D;, v = 1,--- N, is the feasible input range for the ith
actuator.

Modifications of constraints may be needed to facilitate
the sequential failure mode reconfiguration design. Firstly, to
satisfy subsequent conditions for the safe reconfiguration, it
may be necessary to restrict the operation in preceding modes
by artificially tightening constraints (7) to

X (Unir) N X (Uns i)

= {z: a4y [UAJ;J < by},

T € XM(UMyk) =
(3)

where the sets X7 (Uxs 1) need to be appropriately designed.

Secondly, in practical applications, some of the state con-
straints could be imposed conservatively to extend the system
operating life and can be relaxed temporarily during the
recovery to, for example, reduce the number of steps needed
for the recovery. Thus, during the short period when the
recovery sequence is applied, the constraints can be relaxed to

zp € Xpm(Umk) = {x: Apum [U; ’J <bgm}, 9

)

where XR,M(UMJ@) D XM(UM}]@), and XR7M(U]\47]€) also
need to be appropriately designed.

I1l. RECONFIGURATION STRATEGY

The FMEM strategy has two basic goals. Firstly, constraints
should not be violated at any time so that safety is preserved.
The system needs to operate safely in all modes and during
mode transitions. Secondly, the system output should follow
the given reference command as closely as possible. The pro-
posed strategy exploits constraint admissible sets, recoverable
sets, and reference governors.

A. Constraint admissible sets

For M € {0,---,§}, the maximum constraint admissible
sets are defined by

Oco,mt ={(Un,20) : ¢ € Xpp(Unr) Vt € Zio,
xM,ss(UM) DB C XM(UM)}
={(Un,20) : Ao o < boo, , (Un)},

(10)



where x; is the response of (6) to the initial condition zg and
constant closed-loop input Uas, zar,ss(Unr) is the steady-state
point given by

Tares(Unr) = (I — App) "' By Uy,

and B, is an open ball of radius ¢ > 0. By adding the constraint
T ss(Unr) ®Be C Xar(Unr), one can ensure that, under mild
additional assumptions, the set Oy s is positively invariant,
finitely determined, and can be represented by a finite set
of affine inequalities [12]. Positive invariance means that if
(U, z0) € Oco,a, then (Upy, x) € Ooo, py for all future time
instants ¢ > 0 as long as the mode remains equal to M. Being
finitely determined means that there exists 1" € Zx>( such that
Tt € XJM(UA{) Vvt < T is equivalent to (UM,JJQ) S 00071\4.
As a result, it is possible to represent O ps by a finite set of
inequalities as in (10) (see, e.g., [9] for derivation).

B. Recoverable sets

The recoverable sets for M € {1,---,Q — 1} are defined
as

R]ovojillv[(dfM) = {xO : EI{”O» ce
Ty € XR7M(UM¢) Vi=0,1,--

(U]VLNIVI’Z‘N}W) € OOO7M}’

,UN,, } such that

-, Ny — 1, an

where Nj; is the number of steps allowed for the re-
configuration, which is a design parameter. We let v =
[vp -+ v NM]T designate the reference sequence.

In mode (2, when all actuators fail, the system runs open-
loop, so it needs to be already running inside Oy o in
the immediate preceding modes. To keep the consistency of
notations, we let

RI%, =Proj, O VNq >0, (12)

where

PI‘ij Ooo,M = {.730 : 34U, such that (UM,QL‘()) S Ooo,M}

C. Reconfiguration conditions

The safe reconfiguration conditions that follow are based
on an extension of (1). If these conditions are satisfied, upon
failure, the states of the system are in the state projection of the
constraint admissible set of the predecessor mode, which is a
subset of the recoverable set of the successor mode. Therefore,
the states are guaranteed to be inside the recoverable set of
the successor mode, and there exists a feasible sequence of
references for the reconfiguration.

For transitions to mode M € {1,---,Q — 1} from mode
M’ € pred(M), where pred(M) is the set of all predecessor
modes that can change to the successor mode M due to a
single actuator failure, it suffices to require that

Proj, Ooo,mr € m Rivolfl]\/[(déM%

deps €Dey,

(13)

where

Dy,, = 0o —Lpr, D1 x -+ X Dyy)

is the set of control constraints for dy,,.
For transitions to mode 2 from M’ € pred(f2), since none
of the actuators work, we have to ensure that

Ooc,]M’ c Ooo,Q7 (14)

for all M’ € pred(2).

D. Safe reconfiguration upon failure detection

At the beginning of the reconfiguration and mode transition
to mode M € {1,---,Q—1}, the recovery reference sequence
v is computed by solving the following quadratic programming
(QP) problem

Minimize ||r;1 — v|?
subject to x; € XR,JVI(U]\/[,t) Vi=k+1,---,k+ Ny — 1,

(UM7k+NAJ’xk+NM) € Ooo,]%v (15)

where 7, equals to the given reference command at the
beginning of the transition (at time step k). Then the system
runs for Ny, steps using the recovery sequence of modified
references v until the end of the reconfiguration.

E. Reference governor

A reference governor (RG) is used for reference tracking
after the reconfiguration is completed. With the system run-
ning in mode M € {0,---,Q — 1}, the reference governor
determines the modified reference based on the solution of
the following optimization problem

Minimize |7, — vy ||?

subject to (UM,k, l‘k) S Ooo,M- (16)

The modified reference vy, is then updated at every time step.
By construction, the following result is obtained:

Theorem: For system operation in arbitrary mode M €
{1,---,Q — 1}, if (13) is satisfied, the time between failures
is larger than Ny, and the safe reconfiguration strategy and
reference governor based on (15) and (16) are used, then
constraints given by (9) and (8) are satisfied respectively
during the reconfiguration and after the recovery is completed.

Remark I: Note that if (13) is satisfied, the system can
operate safely not only when the input is stuck at a con-
stant value immediately preceding the failure, but even if it
instantaneously jumps to another constant value at the time of
failure as long as dy,, € Dy,,, such as for the zero control
considered in [11] where (13) coincides with (1) by having
dlM € DZM = {0} and RévoMM = Rivoz,bﬁ{(dfzw)'

Remark 2: The FMEM strategy is developed offline and in-
volves choosing variables Nys, X/ (Uns 1), and Xrm(Uni k)
to satisfy (13) as in Figure 2 for each mode transition.
Then during the online operation (Figure 1), the modified
reference command is generated by (15) or (16). Note that the
online chronometric load would not regularly increase with
the increase in the number of redundant actuators or possible
failure paths as the underlying QP problems are only relevant
to the current mode. However, the read-only memory (ROM)
size necessary to store sets for different modes can grow.



IV. APPLICATION TO AIRCRAFT LONGITUDINAL FLIGHT
CONTROL

A. System dynamics

1) Open-loop model: The aircraft model represents a Boeing
747-100 aircraft in steady level flight corresponding to Mach
0.5 cruise at 20,000 feet [13]. The linearized longitudinal
flight dynamics under the normal operating conditions with
the classical phugoid approximation are modeled by

Ai = —0.0075Au — 0.1713A0 + Aar — 0.0051A6,,
Af = 0.0436Au — 0.0423A6,,
and the output is
Ah = 2.7645A0,

where A denotes the deviation from the trim value, u is the
projection of the velocity vector on the xz-axis of the body-
fixed frame in m/s, 6 is the pitch angle in °, ar is the thrust-
to-mass ratio in N, /kg, 6. is the elevator deflection in °, and
h is the climb rate in m/s.

The system can be written compactly in the form,

= Ax+ Bu, y=Cux, a7

where © = [Au Af]T is the state vector, u = [Aap Ad]"
is the input vector, and y = Ah is the output. This model is
converted to discrete-time assuming a 5-second update period.
Note that this system has two redundant actuators, hence N =
2 as in Figure 3.

2) Closed-loop model: The controllers (4) for M = 0 and
(5) for M € {1,2} are designed using Linear Quadratic
Regulator (LQR) theory with the dlgr command in Matlab
to obtain the feedback gain K ;. The feedforward gains Gy
and Hj; are computed so that the steady-state gain from the
reference v to the output y for the climb rate deviation is equal
to 1. The weights Qs and Rj; are chosen by trial and error
and assuming that the use of thrust is more expensive than
the use of the elevator. Their values and those of the resulting
G and H); matrices are as follows:

¢ In Mode 0, the controller is designed to track a given

climb rate deviation from nominal and a zero deviation
of the velocity magnitude from nominal, that is, to hold
u, using

e ) me s

B -1
ci= ([} 257 u-aas) [ .
Go = (O([1 0)7,GT)T.

o In Modes 1 and 2 (for M € {1,2}), the controller only
tracks a given climb rate deviation reference, with

1 0 10 O
Ql[o J,Rl[o 0},

10 0 0
QQ[O 1}’R2[0 2.5}’

Gy = [C(I — Ay) ' Bary ™,
Hy = 7GM[C(I — AM)ilBM,d}il.

The closed-loop systems are then obtained based on (6).

B. Constraints

Constraints are imposed on the climb rate, the thrust-to-mass
ratio, and the elevator deflection as

max ? and |A6€| S U2

where ymax = 20 m/s, uy,.. = 2 N/kg, and usy
These constraints define X 5,(Uas,x) given by (7) for all modes
of M €{0,1,2,3).

AR < Ymax, [Aar| < ug (18)

= 45°.

max

max 7

C. Design of constraint admissible and recoverable sets

1) Constraint admissible sets: The design begins from Mode
3. During simulation, constraints for the failed inputs 4, and 4,
by (18) are automatically satisfied due to the same constraints
being applied to the working inputs i, ; and ps j in preceding
modes. However, the input constraints are still used to define
X5 (Us i) so that Oy 3 is a bounded set. Since Mode 3 is the
last mode of the failure sequence, no subsequent conditions
need to be considered, so for (8), let X5(Us ) = X5 (Us k).
Then, the constraint admissible set of Mode 3, as defined in
(10), can be represented by

Oso3 = {(dh, d2,20) :
/qos»l{lt[l + /qos,@‘é + 203»101‘0 § 603}

Next, in Modes 1 and 2 (M € {1,2}), in order to satisfy the
condition (14) for transitions to Mode 3, the state constraints
can be tightened by imposing constraints from O 3, that is,
to have

w0 € {0 : Ao, g4, WMk T A03,dy,, dtr + A05,20%0 < bos }s
(20)

where w1 is generated by the controller in (5), as a function
of Ups k. By substituting paz,, in (20) by (5), we define

X (Unk) =
{0 : A0, 4, Grvk + (Ao, 4y, Hr + A0s,4,,, ey
+ (ﬂOg,L{]\/jK]\/I —|—ﬂ03,$0)$0 < Eos}

19)

2

Then, X/ (Unr,r) and Oso s are defined based on (8) and
(10).

Finally, to satisfy the recovery conditions of (13) for mode
transitions between Modes 0 and 1 and 0 and 2, the constraints
are tightened by a scaling coefficient of no € (0,1] that
needs to be tuned (beginning from 1 and decreasing until the
recovery conditions are satisfied). Then, Xo(Up ) is defined
by these tightened constraints as

x
Xo(Uo k) ={x0: A <mnob}, 22
0(Uok) = {zo : A [Uo,k] <noby} (22)
and O is defined based on (10).

2) Recoverable sets: The recoverable sets for Modes 1 and
2 (M € {1,2}) are designed based on (13).

The state constraints during recovery are temporarily re-
laxed by having

XevmUmgk) ={x: aux [Uz\i k] <nrmbr,x}, (23)

where nr ar > 1 is a design parameter. Then, the recoverable
sets are constructed based on (11).



3) Choosing design parameters to satisfy recovery condi-
tions: The final tuning results are 7o = 0.7, Ny = 5,
Nr1 = 1.9, No = 5, and nr2 = 1. Conditions (13) are
checked using the toolbox Bensolve [14]. Figure 4 shows
the state projections of the O 5 sets for all modes, compared
with the intersection of sets évoﬁw(dgM) for all d¢,, € Dy,,
for M = 1 and 2. It can be seen that the reconfiguration
conditions (13) are satisfied. By checking the set relations of
Ooo,1 and O 2 versus Oy 3 using the Bensolve command
le, it has been confirmed that the conditions (14) are also
satisfied.

D. Simulation results

Figure 4 shows the state trajectories and time-based trajecto-
ries of the major signals of a simulation with mode switching
from O to 2 to 3 at times 0 and 225. In order to demonstrate
the reconfiguration process, an initial condition is picked such
that ([1}0 }1170]T,.730) ¢ 00072 but zy € Ri%Q(ul,o), and the
simulation starts at the transition from Mode 0 to Mode 2.

The system runs from 0 to 25 seconds with the modified
reference sequence {vt}év ? generated by the recovery sequence
generator. The thrust is stuck while the elevator is working
normally. At 25 seconds, the state is steered inside Oq 2, SO
after that, the reference governor updates the reference at every
time step, until 225 seconds when the mode switches from 2
to 3, in which both actuators fail. Since 2y € O,2 prior to the
transition, the system continues to operate without constraint
violation in open-loop after it switches to Mode 3.
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Fig. 4. Aircraft example simulation results (initial states are picked such
that recovery is needed).

V. CONCLUDING REMARKS

Failure Mode and Effect Management (FMEM) systems
need to be properly designed to avoid safety constraint vi-
olations when failures occur. Redundant actuators can be ex-
ploited to improve system reliability, but failures could happen
due to one or multiple actuators being stuck. A set-theoretic
based strategy for system reconfiguration was presented, us-
ing constraint admissible and recoverable sets together with
the use of a reference governor that enables tracking of
references. The strategy considers sequential transitions of
normal and failure modes, guaranteeing safe operations in
all modes as well as during mode transitions. Mechanisms
to help satisfy the reconfiguration conditions were illustrated
through a numerical example of an aircraft longitudinal flight
control application. By requiring that the recovery sequence
be simultaneously feasible for multiple modes, the present ap-
proach can be extended to the case when failure detection and
isolation are not instantaneous. In such a setting, generating
a recovery control sequence directly rather than a modified
reference command sequence could be more straightforward.
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