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Abstract

The P-difference between two sets A and B is the set of all points, €, such that the sum of B to any of the points in € is
contained in A. Such a set difference plays an important role in robust model predictive control and set-theoretic control. In
this paper, we show that an inner approximation of the P-difference between two sets described by collections of polynomial
inequalities can be computed using Sums of Squares Programming. The effectiveness of the procedure is shown with some

computational examples.
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1 Introduction

The Pontryagin set difference (or simply P-difference),
so named after L.S. Pontryagin who used it in the setting
of game theory [1], is a fundamental tool in robust model
predictive control (MPC) [2,3] and in set theoretic con-
trol [4,5]. Additionally, the P-difference has found im-
portant applications in image processing [6] and in path
planning [7]. In the literature, the P-difference is also
known as Minkowski set difference or set erosion [8].

It is well known that it is possible to compute the P-
difference between polyhedral sets by solving a Linear
Programming (LP) problem, as reported in [5]. This ap-
proach is broadly used in control and is implemented in
many constrained control toolboxes, e.g. [9]. In [10], an
algorithm is proposed to approximate the P-difference
of zonotopes by solving systems of linear equations. In
[11], the authors propose a novel method to compute
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the P-difference of convex polyhedra based on the fact
that A © B is equivalent to the Minkowski sum of the
complement of A and the symmetric reflection of B.
In [12], the authors show that the P-difference between
some specific classes of convex sets can be computed us-
ing their support functions. However these support func-
tions are notoriously hard to compute and closed forms
are known only for some specific sets. In the same paper
the authors also provide an algorithm to approximate
the P-difference in the case of general convex sets. How-
ever, this algorithm is based on sampling and thus con-
venient only for low dimensions. In computer graphics,
the erosion of general sets (also known as binary ero-
sion) is typically approached numerically using “brute
force” approaches. These approaches are viable only for
low-dimensional sets, e.g. for 2D or 3D images [13].

In this paper, we propose a method to obtain inner ap-
proximations of the P-difference between two sets de-
scribed by finitely many polynomial nonstrict inequal-
ities (basic semi-algebraic sets) using Sum of Squares
Programming (SOSP). Computational examples are re-
ported to illustrate the effectiveness of the proposed ap-
proach.

Notation: The set of all polynomials in the variables
r1,...,xny and with coefficients in R is denoted by
R[x1,...,2N]. A polynomial that can be expressed as
the sum of polynomials raised to an even power is re-
ferred to as a Sum of Squares (SOS) polynomial. The
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Fig. 1. Pontryagin difference between sets A, the solid blue
star, and B, the solid green ball. As it can be seen, x1 will be-
long to A6 B since every vector z € B is such that x1+2z € A.
This can be verified by noting that the set B translated by
z1 (depicted by an orange arrow and a dashed circle) is com-
pletely within A. On the contrary, x2 does not belong to
A © B since there exist some 2’ € B such that z2 + 2’ ¢ A
which means that the set B translated by z2 (depicted by a
blue arrow and a dashed ball) is not fully contained in A.

set of all SOS polynomials in the variables x1,...,zn
is denoted by X[z1,...,2n]. For © € R", R[z] (resp.
Y[z]) denotes Rz, ..., x,] (resp. X[z, ..., x,)). Given
a polynomial p, its overall degree is denoted by deg(p),
its degree in the variable y is denoted as deg, (p), and
its set of coefficients is denoted as cf(p). For a num-
ber of elements ay,...,an, {a;}?_; denotes the set
{a1,...,a,}, and every operator applied to it is meant
to be understood element-wise, e.g. {a;}?_; > 0 means
a; > 0,Vi =1,...,n. For a finite set of polynomials
P = {p;}", € R[z], the cone and the multiplicative
monoid generated by P are denoted by K(P) and M(P),
respectively; these algebraic structures are defined in
Appendix A. The sets of all positive and nonnegative
integers are denoted by Z~ o and Zx, respectively.

2 Problem statement

For two sets A C R™ and B C R", the P-difference is
defined as

AcB={zxcA:x+2z€AVze B},

where typically 0 € B. A simple geometrical way to
interpret this operation is that the set € = A S B is a
set such that if we select a point in € and we add an
any element of B, the resulting point still belongs to A
(see Fig. 1). The objective of this paper is to solve the
following problem:

Problem 2.1 (Pontryagin difference) Let A and B be
two basic semi-algebraic sets in the form

where {a;(x)};24, {b; ()} € Rz]. Determine an in-
ner approximation of A © B.

3 Computation of the Pontryagin Difference

In this section we propose a way to solve Problem 2.1
based on the Krivine — Stengle Positivstellensatz (P-
satz) [14]. To simplify the problem, the first step is to
note that the set A can be represented as A = (/] A;
where A; = {z : a;(z) > 0},i=1,...,ma.

Since A©GB = 2] (A; ©B), we can focus on a single set
A; at a time without any loss of generality. Considering
the P-difference A; © B = {x : a;(x + 2) > 0 Vz € B},
a possible way to approximate A; © B from inside is
by means of a set ¢; = {x : ¢;(z) > 0} C A; © B,
ci(z) € R[z], where the polynomial ¢; must be such that

ci(z) < mi%lai(a: +2) Vo € R™. (1)
ze

Note that whenever (1) is an equality, C; = A; © B.

Remark 1 Note that this choice of ¢(x) limits the ap-
proximation space to basic semi-algebraic sets defined by
only one inequality. To the best of the authors’ knowledge,
it has not been proven that the P-difference of basic semi-
algebraic sets is itself a basic semi-algebraic set comprised
of the same number of inequalities. Hence, such a choice
can be a source of conservatism.

Condition (1) is equivalent to the following set emptiness
condition,

{(z,2) 1 ci(z) —ai(x + 2) >0, z€ B} = 0. (2)

Since in the Krivine-Stengle P-satz, the set required to
be empty is described in terms of equal-to, greater-than-
or-equal-to, and not-equal-to operators, the set in the
left-hand side of (2) is thus rewritten in terms of these
operators as

{(x,z) cei(r) —ai(z+2) >0,
i) — ailw +2) £ 0, {b()}]5 = 0} = 0. (3)

At this point, the Krivine-Stengle P-satz states [14] that
(3) is satisfied if and only if there exist two polyno-
mials p(z,2) and ¢(z, 2) such that p(z, 2) + ¢*(z,2) =
0, where p € K ({ci(z) — a;(x + 2),b1(2), .. ., by (2)}),
and ¢ € M (¢;(x) — a;(x + 2)). By conveniently select-
ing only some of the terms of K and M in the above nec-
essary and sufficient condition, we obtain the following
sufficient condition,

(ci(@) = ail@ +2))* + so(x, 2) (i) — ailz + 2))

ma

D 5w 2)bi(2) (ei() — il +2)) =0,



where {s;(, 2)}]5 € X[, 2]. This equation can be fur-
ther simplified by dividing by ¢;(x) — a;(z + z), which is
always a nonzero polynomial, to obtain:

ci(x) —ai(z+2) + so(x, 2) + Z sj(z, 2)bj(z) = 0.

Since sg € X[z, 2], it follows that the latter is equivalent
to

Pi(z,z) Efal (x+2)— Zs] z,2)b;i(z) €X[x, z]. (4)

Finally, since we are interested in the largest inner ap-
proximation of A © B, using (4) we can define the prob-
lem of finding ¢;(x) as the following Sum of Squares Pro-
gramming (SOSP) problem

Iylax /cl(x) dz
cf({s;};25), ctles)

s.t. Pi(z,z) € X[z, 2] (5)
{Sj(x7z)}§n:931 € E[x,z],

where R O A is a domain such that the expression of
fR ¢i(z) dz is polynomial. A possible such choice is an
outer- boundlng box for A, which can be computed using
the algorithm presented in [15].

As well known [16], once the Structure and the degrees
of the decision polynomials {s;}7", ¢; have been cho-
sen, optimization problem (5) can in turn be cast into a
Semi-Definite Programming (SDP) optimization prob-
lem that can be solved efficiently using existing SDP
solvers e.g. [17]. In order for (5) to admit a solution, the
following necessary conditions on the degrees of the de-
cision polynomials ¢;(z) and {s;};2 must hold

max{deg. (s,) + deg.(b;)} > deg. (@)
deg(cy) = max{deg, (s,)}.

It is worth mentioning that the if degree of (4) is odd,
any feasible solution of (5) will be such that the odd
terms of the highest degree cancel out, rendering P;(z, )
of even degree.

Remark 2 The upper bound on the decision variables of
(5) is given by ("+d )—l—z ("+d '), where d, = deg(c;)

and ds; = deg(s;) Vj = 1,.. mg It is important to
choose the degrees so that thzs upper bound does not be-
come unreasonably large.

x

Fig. 2. Result of subtracting the norm-2 ball from the bow-tie
set.

0.6

Fig. 3. Result of subtracting an ellipsoid from the guitar pick
set.

4 Examples

To illustrate the efectiveness of the proposed method-
ology, in this section we apply it to a number of 2 and
3-dimensional sets. All of the showcased examples de-
pict € ~ A S B, where A = {x : a(z) > 0}, and
B = {z : b(z) > 0} with varying a(x) and b(x) depend-
ing on the example. Table 1 reports the expressions of
a(x) and b(x), the chosen degrees of ¢(x) and the s;(z, z),
the elapsed time to compute the approximation, as well
as the following error index

emar = max inf _||lz+y— 2|,

z€0C yeB, zeA

where OC denotes the boundary of € and A denotes
the complement of A. This index represents the max-
imum distance from C to A © B. For fairness of com-
parison, in parentheses we also report e,,,, normalized
with respect to the maximum radius of the set B, i.e.

€max
maxges |[z][”

In Figs. 26 A is depicted as a solid blue set, B as a
solid yellow set, C as a solid orange set, and A S B (com-
puted by gridding) as a green set. For space reasons, the
expressions of ¢(z) have been omitted from this paper,
but they can be found in the addendum [18]. All SDP
optimization problems were solved using Mosek [17] in-
terfaced in Julia 1.5.2 running on an Intel Core i7-7500
at 2.7 GHz with 16 GB of RAM.

€maxz,n =



Fig. a(z) deg(c) | deg(s;) t emaz (Emaz,n)
2 0.1 — zf — 23 + 1027 — 23 1—a? — a3 14 6 2.14 s 0.2864 (0.29)
3 x5 — (z1 — 0.5)% — (z1 — 0.5)* 0.1 — 227 — 1623 10 6 0.77 s 0.053 (0.23)

0.1 — 2.5z%23
4 4— 22— a3 ( x1x2)2 10 2 0.15s | 0.0598 (0.09)
—0.05(z1 + z2
_ 2 2 2\3 3 2 2 2\2
5 (@1 a3 +a3)" + S(at + a3+ a3) 01—2? —23 —4a2 | 10 4 0.75s | 0.2338 (0.74)
—9(xf + 23 + 3) + 16(2? — 3x123 + 223)
1 _ 6 _ .6 __ 6 5 4 _ 3 4,2
6 B + TR O 107 0 —af —af | 10 4 | 8min40s | 0.1577 (0.732)
—10x7x523 — 31Ty + 5303
Table 1

Expressions of a(z) and b(z), degrees of ¢(z) and s(zx, z), computational times and maximum and normalized errors for the

examples depicted in Figs. 2—6.
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Fig. 4. Result of subtracting a 4-pointed star-shaped set from
the norm-2 ball.

Fig. 5. Result of subtracting an ellipsoid from the 3-dimen-
sional 2-torus.

5 Computational studies

In this section we present two numerical studies demon-
strating the effectiveness of the proposed methodology:
in the first one we test the accuracy of our method in the
case of polyhedral sets, and in the second one we show
how our methodology scales with the dimensions of the
problem.

Fig. 6. Result of subtracting the 6-norm ball from the rotated
5-pointed star algebraic cylinder.

5.1 Polyhedral P-difference

It is well known that when A and B are both polyhedral,
the problem of computing A © B can be solved exactly
and very efficiently using the ad hoc algorithm presented
in [5] and for which publicly available state-of-the-art
implementations like MPT3 [9] or the one present in the
library LazySets. j1 [19] are available. In this subsection
we will particularize (5) for the polyhedral case and com-
pare the exact solution computed with the implementa-
tion of the P-difference in LazySets. j1 with that of our
methodology. In the case at hand, a;(z) = alz + af,
with a; € R", a2 e R, i =1,...,n; bj(z) = B;Fx—i—,@;),
B; € R, ,3? €ER,j=1,....,mgp, and ¢;(z) = afz + 0;,
0; € R. Under these assumptions, equation (4) becomes

P2) ¥ aTz4+al -0, — i 5,(2)b(z) € T[z], (7)
j=1

where {5;}"% € X[z]. In turn, the SOSP optimization
problem becomes

max 0;
cf({5;};5),0:

5.t Pi(2) €3]z (8)
{8;(2)};5 € E[2].



Remark 3 Note that, unlike the s;(x, z) in (5), the 5;(2)
in (7) do not depend on x since none of the other poly-
nomials in (7) do, thus drastically reducing the number
of decision variables in (8).

In this study we computed 1000 instances of the P-
difference of a randomly oriented halfspace A = {z €
R” : Tz > 0}, € R™ and a random irregular n-
simplex? for increasing n. The results of this study
can be found in Table 2. For all dimensions we set
deg({5;}7) = 2 which ensures that the conditions (6)
are satisfied. As can be seen, the SOSP method proposed

n t emaz (Emaz,n) tLs

2 | 1.8ms | 1.7-107%° (3.107%%) || 0.6 ps
3 | 28ms | 1.81071% (2.2.107%) || 0.9 ps
4 | 42ms | 55107 (7.3-107'%) || 0.95 ps
5 | 6.2ms | 7.2.1071% (9.6-107%) || 0.98 s
6 | 10ms | 1.1-107° (1.4-1079) 1.1 ps
7 | 16ms | 1.5107° (2.1-107°) 1.2 ps
8 | 28ms | 2.3-107% (2.9-107%) 1.2 ps
9 | 47ms | 1.8-107% (2.4-107%) 1.2 ps
10 | 78 ms | 3.1-107% (4.1.107%) 1.2 ps

Table 2

Computational time and average maximum and normal-
ized error of our method alongside the computational time
of LazySets.jl for the study in Section 5.1 for n €
{2,3,...,10}.

in this paper is able to get very close to the exact solu-
tion. The difference in computational times is due to the
fact that the algorithm that LazySets.jl implements
is based on solving a much easier LP problem, however,
such an approach is only possible with polyhedra.

5.2 Dimensional study

In this subsection we study how the proposed method-
ology scales with the dimensions of A and B for non-
polyhedral domains. To do so, we consider the problem
of computing A & B with A = {z e R" : 31" | 2} <1}
and B = {z € R": Y_"" 27 < 0.04} for increasing val-
ues of n. The obtained results are reported in Table 3.

2 An n-simplex is the n-dimensional generalization of a tri-
angle: a 2-simplex is a triangle, a 3-simplex is a tetrahedron,
a 4-simplex is a 5-cell ... etc.

3 Note that this high computational time is to be attributed
to the high dimensionality and degrees, which translates into
a large optimization problem. As per the error indices, con-
vergence is satisfactory.

n | deg(s;) | deg(c) emaz (Emaz,n) t

2 6 8 | 3-107* (0.0015) 0.57 s

3 6 8 | 9-107* (0.0047) 277 s

4 6 6 0.001 (0.005) 16 min

5 4 6 0.018 (0.088) 3 min

6 4 4 0.015 (0.078) 8 min

7 4 4 0.019 (0.097) 1h 12 min?®

8 2 4 0.026 (0.13) 18.9 s

9 2 4 0.03 (0.15) 77.54 5

10 2 4 0.035 (0.17) 3min 15 s
Table 3
Degree of the s;(x, z), degree of the ¢(z), maximum and nor-
malized error, and computational time for n € {2,3,...,10}.

We note that when performing these tests we have
never encountered the numerical issues (e.g. large resid-
uals, poor convergence) that typically plague naive
formulations of SOS problems. This suggests that the
P-difference SOS formulation proposed in this paper
tends to be numerically well-conditioned. This fact al-
lowed us to compute P-differences in fairly high number
of dimensions and still obtaining good approximations.
In fact, the limit we reached and that did not allow us to
use higher degrees polynomials (and thus better approx-
imations) for n > 5 was due to hardware limitations (in
particular RAM overflow) and could be arguably over-
come by more powerful machines and/or better solvers.

6 Concluding remarks

In this paper, we proposed a systematic approach for
inner approximating the Pontryagin difference between
two basic semi-algebraic sets based on SOSP. We show-
cased the effectiveness of this methodology by applying
it to several different examples up to dimension 10. Pos-
sible applications for this methodology include the ana-
lytical determination of an inner approximation of con-
straint sets in robust control.
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A Definitions of Cone and Monoid

To make this paper self-contained we now present the
definitions of the algebraic structures used in Section 3

Definition 4 The multiplicative monoid generated by a
set of polynomials P, M(P) with P = {p;}", € Rlz],

x € R™ is defined as M(P)= {H:’;l Pl ki, € Zzo} .

Definition 5 The cone generated by a set of polynomials
P,K(P), with P = {p;}}2, € R[z], z € R™ is defined as
K(P)={so+>i—y sibi:{si}izo € Xla], {b:}io, € M(P)}.



