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Abstract. Controlling and standardizing experiments is imperative for
quantitative research methods. With the increase in the availability and
quantity of low-cost eye-tracking devices, gaze data are considered as
an important user input for quantitative analysis in many social science
research areas, especially incorporating with virtual reality (VR) and
augmented reality (AR) technologies. This poses new challenges in pro-
viding a default interface for gaze data in a common method. This paper
propose GazeXR, which focuses on designing a general eye-tracking sys-
tem interfacing two eye-tracking devices and creating a hardware inde-
pendent virtual environment. We apply GazeXR to the in-class teaching
experience analysis use case using external eye-tracking hardware to col-
lect the gaze data for the gaze track analysis.

Keywords: Virtual reality · Eye-tracking · Human-Computer
Interaction · Education technology

1 Introduction

Eye-tracking methodologies have existed since the late 1970s [20,29], signifi-
cant progress, was established with the addition of the eye-mind hypothesis
(EMH). The EMH attempts to establish a correlation with fixation and cogni-
tion [12]. While the premise of the EMH theory has not implicitly been proven,
eye-tracking technology is based on its premise. One particular issue is covert
attention, as attention was shown be independent of where a user is looking [18].
However, it has been shown that the movement of the attention will substan-
tially move the eyes [4,9]. While eye-tracking data may not be bijective, it has
been shown to give valuable information for domain-specific applications such
as geometry [24].

Being a domain-specific application, virtual reality (VR) stands to bene-
fit from eye-tracking. The first to utilize this technology was aircraft training
[6]. Unlike typical, non-free movement, eye-tracking devices; virtual reality pro-
vides a 3D space for gazing. This virtual environment is consistent and a well-
controlled state, unlike the world. Controlled virtual environments allows for
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researchers to know what exists in at a given time. Knowing this information,
a well crafted training experience can be utilized and annotated. While not
unique to Virtual Reality, eye-tracking can show expertise through visual under-
standing. Like chess [21], this is particularly apparent for environments that are
information-rich and dynamic [11]. With the fine grain control of environments,
virtual reality and eye-tracking can provide keen insights for discerning expertise.

While eye-tacking has given virtual reality an additional layer of information,
through the 3rd dimension of space, it does not come without its issues:

– Head movement. Traditional methods of eye-tracking, such as Pupil Cen-
ter Corneal Reflection (PCCR), are error prone when head movements are
introduced [31]. Fortunately, eye-tracking solutions such as Pupil Lab utilize a
model-based solution that allows for free head movements [15]. This problem,
in-directly, has lead to different adaptions in the gaze estimation process.

– Lack of open standards. Eye-tracking suffers from the lack of open stan-
dards in interfacing with these devices. With the increase of availability and
quantity of eye-tracking devices [7], this issue will continue to grow. From cal-
ibrating the device, structuring of gaze data, and interfacing methodologies,
eye-tracking devices differ from manufacturer to manufacturer.

The nature of our study is interdisciplinary, being that it aims to improve
existing computer science methodologies; while yielding beneficiary to educa-
tional professional development.

– Computer Scientist’s Perspective. This paper aims to improve the
methodology of interfacing with multiple eye-tracking devices to unify the
collection of gaze data. Creating an unique solution and method for stan-
dardization of gaze estimation pipeline.

– Educator’s Perspective. This papers provides educators with a consistent
solution for gaze datum interpretation. Which allows educators to correctly
analyze and critique professional skills through behavioral and observable
methods.

The paper is organized as follows. The introduction presents a logical stepping-
stone for eye-tracking technology into virtual reality and establishes two clear
problems in the field. The background provides the reader with research in the
area and discusses key terminology that will be used throughout the paper. The
system overview describes the architecture of the project and steps taken to
solve any challenge. The case study section provides readers with results of our
work and the performance overview. Finally, the conclusion section provides a
detailed summary of solutions solved, with future works providing the next steps
in the project.

2 Background

2.1 Gaze Mapping

Eye-tracking methodologies have existed since the late 1970s [20,29]. The move-
ment of the eye is often broken down into two categories: saccadic and visual
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fixations [19]. Raw eye movement is tracked through IR cameras, segmenting the
pupil and other eye features. Once process of gaze estimation finishes, it returns
a gaze-vector and a confidence based on the given eye image. Traditional meth-
ods of mapping gaze become more complex in virtual reality. As eye-tracking
adds an additional dimensional to gaze data, known as depth. Using ray casts
from the user’s head to the gazed object, depth information can be computed [2].
However, with flat videos such as that used in a skybox, the depth is constant.
As the depth value is computed when the two dimensional video is mapped into
3D space.

2.2 Head and Eye-Tracking

Ordinary methods of eye-tracking, like Pupil Center Corneal Reflection (PCCR),
could result in errors with angled movement of one degree [31]. Some solutions,
like that of Pupil Lab’s Core uses a model-based approach [15], rendering an
eye in 3D space fitting the pupil to an eclipse [28], to allow for free movement.
This new free movement, allows for an additional layer of head tracking to be
added. One method of measuring head movement is through the use of an inertial
measurement unit (IMU). This method is what allows observer head control for
virtual reality headsets.

2.3 Eye-Tracking Issues

Modern eye-tracking headsets can utilize different calibration methods for gaze-
vector prediction. This can be problematic, when attempting to interface with
multiple eye-trackering devices. While appearance-based deep convolutional neu-
ral networks (CNNs) can solve auto-calibrate [14,27,30]. Leading to removal of
the overhead of platform specific calibration methods, it would require consumer
products to have support from manufactures.

2.4 Visualizing Gaze Data

Gaze data provides spatial-temporal attention details for a given subjects. This
means that data can be represented in terms of both space and/or time. There
exist two scopes of data:

– Local Data. Restricted to a range, such a time restriction
– Global Data. Representative of the whole, such as, a collection of sessions

or a whole video session.

Each sequence of data can utilize a probability density function (PDF) to under-
stand Areas-of-Interests (AOI). Statistical likelihood can be visualized in terms
of a heatmap; this can directly overlay video frames to determine the objects
that peaked the user’s attention and gaze [17]. Displaying an unwrapped video,



50 C. Lenart et al.

can provide context such as field of view (FOV) [16]. Another aspect of gaze
data is fixation, which typically within the threshold of 100–200 ms [23], usually
represented as a path.

3 System Overview

3.1 GazeXR Architecture

For the Pupil Lab’s Core device, our approach utilizes the hmd-eyes Unity plu-
gin1 to communicate with the Pupil Capture service through the ZMQ protocol
over the network [13]. This can be useful if the HMD device is not directly
connected to the eye tacking device, resulting in an additional communication
layer. For our setup, we used an Oculus Rift S2, tethered to a host machine,
that ran the Pupil Lab’s Capture service. Utilizing the host machine as mid-
dleware, the host can ingress gaze data and time synchronize the request with
that of the headset. The middleware server serves as the hub for content and
storing data. It’s broken into two part, web-server and data management. The
web-server provides a route to list the existing videos and is the broker for video
streaming. While the data management part accepts all event logs and session
gaze data ad-hoc or post-session. This process allows for the host machine to
take a detached approach in collecting gaze data. Implicitly, the data will be
piped from the eye-tracker, to the host machine.

Handling this data, there are two coexistent approaches. The first being the
direct storage of raw pupil source frame, gray-scale to keep a minimal data
storage. Saving raw source data would allow for the user to process the eye later
in a gaze estimation pipeline, resulting in better data as models improve. But
this method would require more space to store the image and time writing to
disk over the network. Since the gaze estimation methods of some eye-trackers
are private, the output of gaze vector may be the only output. In this case, the
only approach is to let gaze estimation pipeline handle the process and receive its
values. Resulting in the pupil data being estimated into gaze data, make storage
easy and removing the need for post-posting.

The same approach works for standalone devices, like the Pico Neo 2 Eye,
which was able to handle both the eye-tracking and application running from
within the device. Once a gaze event happens, the hook of the custom “Gaze
Manager plugin” (see Fig. 1) would fire, resulting in a request to get the head-
tracking position from the headsets IMU. Based on Pupil Lab’s white paper,
“the average gaze estimation, from tracking pipeline to network output, was
0.124 s” [13]. Being that these values don’t need to be displayed in real-time,
these values can be queued for later processing. Previous head positional values
must be kept in memory, temporarily, to be correctly paired with proper gaze

1 https://github.com/pupil-labs/hmd-eyes.
2 https://www.oculus.com/rift-s/.
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data. Being that the speeds of 348 ± 92 degrees per second are peak for healthy
individuals [22], this is suitable base-line for sampling. Meaning that for a latency
less than one second, no more than 440 head position values will need to be kept
in memory. Once the head position values are found in memory, they can be
grouped together with the queued gaze data. Returning both the gaze and head
position together at a specific time of gaze. This provides a fair annotation data
point for a given gaze event.

3.2 Interfacing Multiple Devices

When handling multiple Virtual Reality headsets, it is important to keep an
agnostics approach to handle multi-platform support. This approach allows for
a singular monolithic codebase to handle the functionality, allowing for consistent
experience, despite the platform. A multiple component system can be utilized to
break up the platform’s code where functionality differs. This solution attempts
to generalize both Virtual Reality functionalities and Eye-tracking solutions, in
order to, interface and record the appropriate data. There exists a plethora of
SDK solutions to manage interfacing with virtual reality devices such as OpenVR
and Unity XR. These solutions provide a way to communicate with multiple
native interfaces, for a single subsystem to handle. Allowing for Inputs devices
such as controllers, IMU sensors, and displays to be controlled by a software
interface.

Unlike interfacing with a virtual reality device, no general interface exists to
handle eye-tracking by default. Eye-tracking devices can be broken down into two
categories: built-in eye-tracking and external eye-tracking devices. Built-in eye-
tracking can be implemented through features within a manufacturer’s native
SDK, such as that in the Pico Neo 2 Eye3. External eye-tracking hardware from
the HMD device, like a Pupil Core4 devices requires an extra communication
level of abstraction to handle gaze data. To generically handle multiple devices,
an additional level of abstraction is required to handle gaze data. Being limited
to two eye-tracking devices, one built-in eye-tracking device and one external
eye-tracking device. Our approach was generalized to attempt to handle the
addition of future devices. Given the constraints, our solution provides a custom
Unity plugin to create a gaze event hook. This method will take the multiple
sources of gaze data and generalize it so that it becomes generic and consistent
implementation. Allowing for universal functions to be created despite the data
source.

3 https://www.pico-interactive.com/us/neo2.html.
4 https://pupil-labs.com/products/vr-ar/.

https://www.pico-interactive.com/us/neo2.html
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Fig. 1. The Gaze Manager Plugin is a default interfaces with PicoXR and Pupil Lab’s
hdm-eye plugin. Allowing for a direct communications for managing gaze datum.

3.3 Video’s Role in Gaze Data

Being that our research targets gaze events that exist within a video, a more few
parameters must be considered to be able to properly recreate the experience.
One important property is the video frame number, the still image number at
the time of gaze. Much like obtaining head position, the video frame must take
into account latency from the gaze event. Unlike the head position, this value
can be computed since it is time dependent. This is done by taking the current
frame, fcurrent, and subtracting the frames from since that time. The amount
of frames since latency is the product of the video’s frames per second, fps, and
the latency time, Timecurrent. Where fx is targeted frame in the video.

Fx = Fcurrent − (fps ∗ Timecurrent) (1)

Being that fx is reliant on several variable, the equation is built to be devices
agnostic. As video formats can change the frame-rate based on the device, this
information can be pulled from the video’s meta-data.

3.4 Data Management

Once, this frame has been calculated, the all the required properties are com-
puted for the gaze event. Meaning that the gaze event data can be saved as a
JSON object (see the Fig. 2 for format) and queued to be added to the database.
Interfacing with a NoSQL database means no structures, that the JSON struc-
ture can directly be pushed as it comes in. Collections can be made for each of
the 3 structures: videos, videoSessions, and gazeEvents.
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Fig. 2. The data relationship model for gaze events

3.5 Creating a Virtual Environment

Given a 360◦ equirectangular video, there are two classical approaches for video
mapping: equirectangular projection (ERP) [25] and cubic mapping (CMP) [8].
Projecting is the process of taking a 2D video and projecting it onto a geometric
object. Where an observer, the VR users, stands in the middle of said object.
Giving the video the appearance of depth, creating a virtual environment. A
panoramic video can be converted from its longitude and latitude layout and
mapped to a UV texture. Then this texture that can be used as a skybox,
resulting in a similar appearance of a CMP (see Fig. 3). This means that the
projection gains all the benefits that come with CMP such as visual quality
improves due to texel density. Since the resulting video is projected, the same
calculations and shader functions can be used to transform the 2D gaze data
into the needed its spot in 3D space.

Due to the large size of panoramic videos and ambisonic audio, it can be
difficult for a standalone virtual reality headset to save to disk. To combat this
issue, a hosting external machine, running a web-server and a database can aid.
As seen in Fig. 2, a collection of videos and there name can be pulled from the
web-server by a HTTP request. Then when a video is requested to be played on a
headset, the video is sent by MPEG-DASH (DASH) to be streamed. Using DASH
allows for content to be streamed over the network in segments [26]. Since the
Pico Neo 2 is running a version of Android, and the support for DASH isn’t full-
supported yet [5], the web-server will serve the content as a progressive stream
as a fallback. If paired with a tile based method and a hexaface sphere-mapping,
it can save up to 72% bandwidth [10].

3.6 User Event Handling

Many things can go wrong physically when it comes to a VR headset. The cables
could tangle, the controller’s batteries could die, the headset could slip-off the
users, or a software related issue could exist. Slipping, can cause an issue with
the data collected during an experiment. It’s even recommended to readjust
the headset and re-calibrate the eye-trackers every five to ten minute [1]. It is
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Fig. 3. This frame is the front facing cube texture, or positive X, of the skybox video
projection. The video is streamed to the application through DASH.

more important to be able to stop recording data when things go wrong. For
this reason, a event-driven architecture (EDA) was chosen, as it is important
to send events asynchronous and tie them to state. Two current states exist for
this architecture: recording and video player state. Given the possible failure, it
is critical to pause before data become unusable. On the other spectrum, being
that users are in a virtual space, being able to pause and to take a further look is
important too. This allows for a more data to be collected on an area-of-interest
(AOI). Including the additional data produced by the event logs, an additional
layer of information such as time of pause and gaze points during pause. Since
the frame of video is recorded on a gaze event, pausing will still record gaze data
for the proper video context. Along with this, data that exists over-multiple
frames; while the time of gaze from the system’s clock increases, can be used to
sequentially build paused video segments of a session.

3.7 Results

With gaze visualization methods, gaze can be projected into virtual classrooms.
Using gaze data, fixations can be determined and plotted to a heatmap which
displays clear AOIs in the classroom (as seen in Fig. 4A). Through the visualiza-
tion of gaze vectors and binding perspective to be the top view, or positive Z-axis,
rotational data be show where users stopped turned. In the case of Fig. 4D, the
user spent most of the time in the front and didn’t even turn around.

4 Discussion

With the high resolution video being sent through the network, it can lead to
performance bottleneck for networks that exceed its bandwidth. We profile the
network traffic shown in Fig. 5, while downloading the 360 video into VR headset.
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Fig. 4. The figure A provides is Pupil Lab’s Capture program, which is tracking the
pupil and passing it through the gaze estimation. The remaining figures [B-D], shows
gaze in a virtual environment: through fixation markers, heatmaps, or gaze vectors.

Fig. 5. The bandwidth of a 2.94 GB equirectangular video being streamed over Pico
Neo 2 for 3 min, through http progressive streaming. The blue represents the inbound
traffic, peaking at 97.39 Mbit/s or 12.17 MB/s. (Color figure online)
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With standalone headsets, like Pico Neo 2, sending data through the WiFi is the
only networking method. Networking standards like WiFi 4, or IEEE 802.11n-
2009, might struggled if interfaced with multiple devices due to 600Mbit/s theo-
retical limit. However, more durable solutions like WiFi 5, IEEE 802.11ac-2013,
or WiFi 6, IEEE 802.11ax, can handle 866 Mbit/s and 1201 Mbit/s respectively
[3]. Local-storage can solve this solution, but isn’t applicable on all standalone
devices. As these videos can take up significant file-storage space. With moder-
ation, sending videos over the network can be successful.

5 Conclusion and Future Work

In this paper, we present GazeXR, which is designed for projecting eye-tracking
data into virtual reality headsets. Utilizing the Gaze Manager plugin, both Pupil
Lab’s Core Device and Pico Neo 2 Eye are able to interface with the virtual
realty based in-class teaching experience analysis application on their respective
platforms. GazeXR provides a customs platform for handling gaze events that
can be managed and analyzed by researchers.

In future work, we plan to collect research data through systematic trials. to
provide a way of computing insight for social science researchers utilizing gaze
data in any virtual environment applications. GazeXR can help to compute a
score of expertise in the field, through gazed objects recognizing from video
frames. Using machine learning (ML), objects can be detected and classified.
An expert in the field then can be introduced to input a baseline knowledge
to determine important actions. To determine if a user fixates on an object, a
bounding-boxes or image segmentation can be used to see if the user‘s gaze col-
lides, which may result in a change in score. Along with this, a mobile application
could be built to interface with this system.
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