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ABSTRACT

Traditional full-waveform inversion (FWI) methods only
render a “best-fit” model that cannot account for uncertainties
of the ill-posed inverse problem. Additionally, local optimi-
zation-based FWI methods cannot always converge to a geo-
logically meaningful solution unless the inversion starts with
an accurate background model. We seek the solution for FWI in
the Bayesian inference framework to address those two issues.
In Bayesian inference, the model space is directly probed by
sampling methods such that we obtain a reliable uncertainty
appraisal, determine optimal models, and avoid entrapment
in a small local region of the model space. The solution of
such a statistical inverse method is completely described by
the posterior distribution, which quantifies the distributions for

parameters and inversion uncertainties. To efficiently sample
the posterior distribution, we introduce a sampling algorithm
in which the proposal distribution is constructed by the local
gradient and the diagonal approximate Hessian of the local
log posterior. Our algorithm is called the gradient-based Markov
chain Monte Carlo (GMCMC) method. The GMCMC FWI
method can quantify inversion uncertainties with estimated
posterior distribution given sufficiently long Markov chains.
By directly sampling the posterior distribution, we obtain a
global view of the model space. Theoretically speaking, statis-
tical assessments do not depend on starting models. Our method
is applied to the 2D Marmousi model with the frequency-
domain FWI setting. Numerical results suggest that our method
can be readily applied to 2D cases with affordable computa-
tional efforts.

INTRODUCTION

An important application of the geophysical inverse theory is
seismic full-waveform inversion (FWI), in which seismic data re-
corded at the surface, seafloors, or in boreholes are used to estimate
subsurface compressional wave and shear wave velocities,
anisotropy parameters, attenuation parameters, etc. In FWI, seismic
waveforms are exploited to update subsurface model parameters by
trying to match the recorded data/observed data with estimated data.
Since the early development of the theory (Lailly, 1983; Tarantola,
1984), FWI has been successfully demonstrated in recovering sub-
surface structures and images at different scales (Pratt and Shipp,
1999; Fichtner et al., 2008; Brossier et al., 2009; Tape et al., 2010;
Zhu et al., 2012; Vigh et al., 2014; Operto et al., 2015).
There are two critical issues often related to the traditional FWI

problem. First, most optimization-based FWI methods are designed
to only find the “best-fit” model. Nevertheless, FWI problems are

often ill-posed, observed data can be noisy and incomplete, model-
ing methods can be inaccurate, prior knowledge can be insufficient,
and model parameterization strategies can be inappropriate. All of
these factors introduce uncertainties into the inversion results
(Scales et al., 1992; Sen and Stoffa, 1996; Sambridge and Mose-
gaard, 2002; Sen and Stoffa, 2013). Multiple plausible solutions
might explain the observed data equally well. In such cases,
obtaining the unique “best” solution is not sufficient to fully de-
scribe the underlying problem. Instead of trying to find the actual
values of model parameters that explain the data (a deterministic
fashion), one might need to infer information on model parameters
provided by the observed data and to estimate the uncertainties as-
sociated with the inference (a probabilistic fashion) (Tarantola,
2005). Second, in traditional local optimization-based FWI meth-
ods, an objective function, which measures the misfit between ob-
served data and estimated data, is minimized with respect to model
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parameters (Santosa et al., 1987; Pratt et al., 1998). The commonly
used L2-norm objective function can have multiple local minima
because of the highly nonlinear forward mapping. Hence, the
inversion is very likely to be trapped into one of the local minima
(Virieux and Operto, 2009). Alternative objective functions and
multiscale inversion strategies have been proposed to mitigate the
issue with varying degrees of success (Luo and Schuster, 1991;
Bunks et al., 1995; Ravaut et al., 2004; Sirgue and Pratt, 2004; Eng-
quist and Froese, 2013; Fichtner et al., 2013; Wu et al., 2014;
Métivier et al., 2016; Warner and Guasch, 2016; Xue et al., 2016;
Zhu and Fomel, 2016; Zhao and Sen, 2019). As argued by Fichtner
and Trampert (2011) and Ray et al. (2017), however, the conver-
gence to geologically meaningful models is not always guaranteed
for local optimization-based methods if the starting point of the in-
version is obtained from very uninformative prior information.
Variants of Bayesian inference methods have been adopted in geo-

physical inverse problems to quantify uncertainties for the inversion
(Duijndam, 1988; Sen and Stoffa, 1996; Ulrych et al., 2001; Petra et al.,
2014; Menke, 2018). By combining prior information with observed
data and modeling errors, the result of the inference is described by the
posterior distribution, which accounts for inversion uncertainties. Most
of the current implementations of Bayesian inference for FWI are lim-
ited to linearizing the forward mapping. The approximate posterior
probability density (PPD) is then estimated by fitting a normal distri-
bution around the maximum a posteriori model, which is obtained by
local optimization methods (Gouveia and Scales, 1998; Bui-Thanh
et al., 2013; Fang et al., 2014; Zhu et al., 2016; Fang et al., 2018).
PPDs obtained by this strategy would be affected by the starting point
of the inversion, and they may not represent the complete possible sol-
utions (Sen and Stoffa, 1996; Fichtner et al., 2018).
Alternatively, one can take the Bayesian inference approach to

frame FWI to be a statistical inverse problem using Markov chain
Monte Carlo (MCMC) sampling methods, in which the posterior
distribution is estimated by directly probing the model space,
usually according to certain proposal distributions (Mosegaard and
Tarantola, 1995; Mosegaard and Sambridge, 2002; Mosegaard and
Tarantola, 2002; Sen and Stoffa, 2013). Early studies of Monte
Carlo (MC) methods to geophysical inverse problems are pioneered
by Keilis-Borok and Yanovskaja (1967) and Press (1968). Recent
applications of MCMC methods can be found in Bodin and
Sambridge (2009), Sen and Stoffa (2013), Sajeva et al. (2016),
Stuart et al. (2016), Aleardi and Mazzotti (2017), Ray et al. (2017),
Sen and Biswas (2017), Ely et al. (2018), Hunziker et al. (2019),
and Stuart et al. (2019). One of the difficulties of implement-
ing MCMC methods for large-scale inverse problems is the high
computational cost for sampling the posterior distribution in high
dimensions. Traditional sampling methods might require solving
the forward mapping more than billions of times before converging
to the target posterior distribution. Efficient sampling strategies can
help to address the “curse of dimensionality” issue for MCMC
methods. The HamiltonianMonte Carlo (HMC) method (Neal, 2011),
using derivatives, can make large independent jumps, at the same time
maintaining a high acceptance ratio when sampling the posterior
distribution, which promotes its application to geophysical inverse
problems (Biswas and Sen, 2017; Fichtner and Simutė, 2018).
To tackle the computational issue of MCMC methods related to

FWI, we propose here a gradient-based Markov chain Monte Carlo
(GMCMC) sampling method for FWI in the framework of Bayesian
inference. We tailor the method proposed by Geweke and Tanizaki

(1999) and Martin et al. (2012) in which the first- and second-order
derivative information is used to construct a proposal distribution
to sample the posterior distribution through the Metropolis-Has-
tings (M-H) algorithm. The method is originally discussed in the
low-dimensional model space with less computationally demanding
problems. The application of similar MCMCmethods to large-scale
inverse problems is rarely studied and reported. Here, we propose
to use the local gradient and the diagonal approximate Hessian of
the log posterior distribution to construct a proposal distribution.
Because the local geometric information of the model space is
considered, the proposal distribution is expected to be a good local
approximation of the underlying posterior distribution. As a result,
high posterior probability regions tend to be more frequently visited
and samples drawn from the proposal distribution are more likely to
be accepted. It helps the Markov chain to more efficiently sample
the posterior distribution. Additionally, MCMC sampling methods
provide the global view of the model space; hence, the inversion
avoids the entrapment in a local region. In theory, the GMCMC
method can accurately estimate the posterior distribution given suf-
ficiently long Markov chains with arbitrary starting points.
In the following sections, we first briefly review the Bayesian

inference framework. Based on the local approximation for the log
posterior distribution, we introduce the GMCMC sampling method
and its implementation for frequency-domain acoustic FWI. The 2D
Marmousi model is used to demonstrate the feasibility of the pro-
posed method for an inverse problem where the number of model
parameters is approximately 2 × 104. We show that the proposed
method achieves approximate convergence with different starting
models. Geologically meaningful statistical assessments are pro-
duced to account for the inversion uncertainty.

METHODOLOGY

Bayesian inference framework

Given a model parameter set m ∈ Rp, the “forward problem”
predicts the data dcal ∈ Rn generated by the system dcal ¼ fðmÞ.
The forward mapping operator f depicts the linear or nonlinear
relationship between m and dcal. In the “inverse problem,” we
are provided with actual measurement/observed data dobs ∈ Rn

to infer m. In the Bayesian inference framework, we combine the
prior knowledge of the unknown model parameter m with the in-
formation provided by the measurement dobs to define the posterior
distribution πpostðmjdobsÞ,

πpostðmjdobsÞ ∝ πpriorðmÞπlikeðdobsjmÞ; (1)

where πpriorðmÞ is the prior probability density, which describes
a priori information on m, and πlikeðdobsjmÞ is the likelihood func-
tion, which describes the conditional probability of dobs given m.
The posterior distribution πpostðmjdobsÞ, often written as πpostðmÞ,
describes the conditional probability of m given the observed data
dobs. The term πpostðmÞ is the solution to the Bayesian inverse prob-
lem consisting of all the information inferred from our prior knowl-
edge and observed data. Such a solution takes the prior information,
noise, discretization errors, and errors in modeling theory into con-
sideration and provides statistical assessments to quantify the inver-
sion uncertainties. In this research, a priori information and ambient
noise are accounted for; we ignore the discretization errors and
theoretical errors present in the forward mapping operation.

R16 Zhao and Sen
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Under the assumption that the noise and the model prior can be
represented by multidimensional normal distributions, we have

πpriorðmÞ ∝ exp

�
−
1

2
ðm − m̄priorÞTΓ−1

priorðm − m̄priorÞ
�
;

(2)

πlikeðdobsjmÞ ∝ exp

�
−
1

2
ðdcal − dobsÞTΓ−1

noiseðdcal − dobsÞ
�
;

(3)

where the superscript T represents the matrix transpose, m̄prior ∈ Rp

is the prior mean model and Γprior ∈ Rp×p and Γnoise ∈ Rn×n are
covariance matrices of prior model and data noise, respectively.
Then, we obtain

πpostðmjdobsÞ ∝ exp

�
−
1

2
ððm − m̄priorÞTΓ−1

priorðm − m̄priorÞ

þ ðdcal − dobsÞTΓ−1
noiseðdcal − dobsÞÞ

�
: (4)

Note that, for problems in which fðmÞ is nonlinear, πpostðmÞ is
not Gaussian. Directly computing πpostðmÞ according to equation 4
requires evaluating fðmÞ for every possible m in the model space.
For applications in which the numbers of model parameters are
large and the forward mapping is governed by computationally ex-
pensive partial differential equations, directly computing πpostðmÞ
poses tremendous challenges to current computational resources.
To efficiently approximate πpostðmÞ, sampling techniques such as
MCMC methods are developed to generate samples y ∈ Rp from
the posterior distribution with the M-H algorithm (Metropolis et al.,
1953; Hastings, 1970; Tierney, 1994; Kaipio and Somersalo, 2006).
Here, a sample is drawn from a proposal distribution qðmk; yÞ at the
current model mk ∈ Rp. The generated sample y is then subjected
to be accepted or rejected according to the M-H criterion. In this
way, a chain of samples can be obtained, and the ensembles of the
samples from multiple chains are used to estimate πpostðmÞ.
The mismatch between qðmk; yÞ and πpostðmÞ has a great impact

on the performance of an MCMC method (Tierney, 1994; Chib and
Greenberg, 1995; Gilks et al., 1995; Roberts et al., 1997). A pro-
posal distribution that is not a good approximation of the underlying
posterior distribution might lead to poor MCMC performance,
especially in high dimensions. To efficiently estimate πpostðmÞ, a
proposal distribution that well represents the underlying πpostðmÞ
becomes critical. In addition, sampling from the proposal distribu-
tion should be easy to achieve so that the computational cost for
drawing samples is acceptable. In the following sections, we exploit
the local approximation of the log posterior distribution and derive a
new proposal distribution.

Local approximation for the posterior distribution

Several nomenclatures are summarized in Table 1 to make the
derivations easy to follow.
We rewrite equation 4 as

πpostðmjdobsÞ ∝ expð−EðmÞÞ; (5)

with

EðmÞ ¼ 1

2
ððm − m̄priorÞTΓ−1

priorðm − m̄priorÞ
þ ðdcal − dobsÞTΓ−1

noiseðdcal − dobsÞÞ: (6)

Equation 6 can be regarded as the regularized L2 misfit function for
the deterministic inverse problem where matrices Γ−1

prior and Γ−1
noise

represent weighting matrices for the model regularization and the
data regularization, respectively. For any givenmk, we can approxi-
mate EðmÞ with the Taylor series and retaining up to the quadratic
term as

EðmÞ ¼ Eðmk þ ΔmÞ ≈ ~EðmÞ

¼ EðmkÞ þ ΔmTgþ 1

2
ΔmTHΔmþOðkΔmk3Þ; (7)

where Δm ¼ ðm −mkÞ ∈ Rp, and g ∈ Rp and H ∈ Rp×p are the
gradient and the Hessian of EðmÞ at mk, respectively. We have

g ¼ ∇mEðmkÞ ¼ JTΓ−1
noiseΔdðmkÞ þ Γ−1

priorðm − m̄priorÞ;
(8)

and

H ¼ ∇2
mEðmkÞ ¼ Ha þ Rþ Γ−1

prior; (9)

with

Ha ¼ JTΓ−1
noiseJ; R ¼ ∂JT

∂mT Γ
−1
noiseðΔdðmkÞ : : :ΔdðmkÞÞ;

(10)

where J ∈ Rn×p is the Jacobian matrix representing the partial
derivatives of wavefields with respect to the model parameters,
that is, Jij ¼ ∂dcali∕∂mj; i ¼ ð1; 2; : : : ; nÞ; j ¼ ð1; 2; : : : ; pÞ.

Table 1. Nomenclature.

Symbol Type Description

m Vector Model parameter

m̄prior Vector Prior mean model

EðmÞ Scalar Log posterior/objective function
~EðmÞ Scalar Local approximation of the log

posterior/objective function

Γ−1
prior Matrix Covariance matrix of the prior model

Γ−1
noise Matrix Covariance matrix of data noise

Ha Matrix JTΓ−1
noiseJ

R Matrix ∂JT
∂mT Γ−1

noiseðΔdðmkÞ : : :ΔdðmkÞÞ
H Matrix Ha þ Rþ Γ−1

prior

m� Vector −H−1g, local minimizer for ~EðmÞ,
assuming positive-definite matrix H

K Matrix Diagonal approximation of Ha

~H Matrix Kþ Γ−1
prior

GMCMC FWI R17
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The data misfit vector ΔdðmkÞ ¼ ðdcalðmkÞ − dobsÞ ∈ Rn,
Ha ¼ JTΓ−1

noiseJ ∈ Rp×p represents the approximate Hessian, and
R ¼ ∂JT∕∂mTΓ−1

noiseðΔdðmkÞ : : :ΔdðmkÞÞ ∈ Rp×p represents terms
related to the second-order partial derivatives (Pratt et al., 1998).
Because ~EðmÞ is the local quadratic approximation of EðmÞ,

it can be written in quadratic form as

~EðmÞ ¼ 1

2
ðΔm − bÞTAðΔm − bÞ þ c; (11)

where c represents a constant number and b and A are the vector
and the matrix that need to be determined. By expanding equa-
tion 11 and matching terms with equation 7, we have

~EðmÞ ¼ 1

2
ðΔm −m�ÞTHðΔm −m�Þ þ c; (12)

where A ¼ H, b ¼ m� ¼ −H−1g, and m� ∈ Rp is the stationary
point where ∇ΔmEðm�Þ ¼ 0. Assuming that H is positive-definite,
m� minimizes ~EðmÞ. Substituting Δm and m� into equation 12,
we have

~EðmÞ ¼ 1

2
ðm − ðmk −H−1gÞÞTHðm − ðmk −H−1gÞÞ þ c:

(13)

Substituting equation 13 into equation 5, we obtain the local
approximation to πpostðmÞ as

πpostðmÞ ≈ ~πðmÞ

∝ exp

�
−
1

2
ðm − ðmk −H−1gÞÞTHðm − ðmk −H−1gÞÞ

�
:

(14)

Note that ~πðmÞ is a multidimensional normal distribution N ðmk −
H−1g;H−1Þ whenH is positive-definite. For cases in whichH is not
positive-definite, Martin et al. (2012) propose to use the low-rank
approximation of H, in which small and negative eigenvalues of H
are replaced with a positive threshold value. The posterior distribu-
tion at the vicinity of mk is now approximated by ~πðmÞ with the
local gradient and the local Hessian information. The mean value
of the proposal distribution is equivalent to the model after a New-
ton’s update frommk. When the forward mapping fðmÞ is linear or
weakly nonlinear, ~πðmÞ approximates the underlying πpostðmÞ.
When fðmÞ presents high nonlinearity, as in the case of FWI,
~πðmÞ is a local approximation to πpostðmÞ. Qi and Minka (2002),
Geweke and Tanizaki (2003), Martin et al. (2012), and Robert and
Casella (2013) suggest using ~πðmÞ as a proposal distribution to
draw samples from the posterior distribution. Nevertheless, directly
drawing samples according to equation 14 poses great computa-
tional challenges in high dimensions due to the high computational
cost related to the Hessian computation and manipulations (inverse
and square-root operation).

GMCMC sampling method

In this section, we propose a new proposal distribution that
is easy to construct and is computationally efficient for drawing
samples. The exact Hessian H (i.e., equation 9) consists of three

parts. (1) The term Ha represents the correlations for two partial-
derivative wavefields with respect to the parameters. Partial-
derivative wavefields are generally uncorrelated if the two model
parameters are far away from each other, and they are perfectly
self-correlated (Pratt et al., 1998). Therefore, Ha is mostly di-
agonally dominant. (2) The term R represents the changes of
partial-derivative wavefields with respect to the changes of model
parameters weighted by the data misfit. As pointed out by Tarantola
(2005), R is in general small if the data misfit is small or if changes
in model parameters cause few changes in the partial-derivative
wavefields (the second-order scattering effect is weak). (3) The term
Γ−1
prior contains a priori information without taking into account the

observed data.
Here, we approximate H with the diagonal of Ha,

H ≈ ~H ¼ Kþ Γ−1
prior; (15)

where K ∈ Rp×p is the diagonal matrix of Ha. Covariance matrix
Γ−1
prior is positive-definite, K has nonzero positive terms on diagonal

terms because of the autocorrelation, and ~H ∈ Rp×p is also positive-
definite. With the information encoded in K provided by the ob-
served data, we add more knowledge into the inference, leading
to reduced uncertainties compared to the prior. If the data provide
little information for the parameters, we gain no additional knowl-
edge in the model space.
With the diagonal approximate Hessian, we now define a new

proposal distribution based on equation 14. Because ~H is only
an approximation to the full Hessian, − ~H−1g does not give a full
Newton update. We scale − ~H−1gwith α to act as a step length along
the negative gradient direction from mk. With the same argument,
we scale ~H with 1∕β2 to obtain the covariance matrix for the pro-
posal distribution. Therefore, we have the new proposal distribution
defined as

qðmk;yÞ ¼ exp

�
−
1

2
ðy− ðmk −α ~H−1gÞÞT

~H
β2

ðy− ðmk −α ~H−1gÞÞ
�
;

(16)

which is a normal distribution N ðmk − α ~H−1g; β2 ~H−1Þ. Consider-
ing the decomposition of ~H−1 ¼ ~H−1∕2ð ~H−1∕2ÞT , we can draw sam-
ples from the multivariate proposal distribution according to Gentle
(2009),

y ¼ mk − α ~H−1gþ β ~H−1∕2r; (17)

where vector r ∈ Rp is a random vector drawn from N ð0; IÞ.
Equation 17 indicates that a sample is obtained by adding −α ~H−1g
and β ~H−1∕2r on the current model mk. It can be interpreted as a
model update using the preconditioned gradient (i.c., −α ~H−1g) plus
a constrained random perturbation term (i.c., β ~H−1∕2r). The precon-
ditioning and constraining terms come from ~H: large ~H values
would lead to low variances or more constraints, and small ~H values
would lead to high variances or fewer constraints. Drawing samples
with equation 17 can also be interpreted in the framework of the
Langevin MC method (Grenander and Miller, 1994; Roberts and
Tweedie, 1996; Stuart et al., 2004) or the one-step HMC method
(Neal, 2011). In Appendix A, we give a short comparison between

R18 Zhao and Sen

D
ow

nl
oa

de
d 

07
/0

8/
21

 to
 1

28
.6

2.
61

.2
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
19

-0
58

5.
1



the proposed sampling method and the Langevin MC and HMC
methods.
The values of α and β determine how far to go along the negative

gradient direction and how much the model is randomly perturbed.
They can be used as tunable parameters to adjust the acceptance
rate. We normalize ~H−1g and ~H−1∕2r to bring all values into the
range ½−1; 1� km/s so that the values of α and β can be easily tuned.
Tuning parameter α controls the step length for the preconditioned
gradient. Its value should be large enough to make the gradient con-
tribute meaningful information to the model update, but small
enough so that the sampling process is not dominated by the deter-
ministic information. Tuning parameter β controls the maximum
magnitude for the random walk. Its value should be large enough
to make sufficient jumps from the current position, but small
enough so that the gradient information is not completely masked
by the random walk. In fact, if β ¼ 0, equation 17 becomes the pre-
conditioned gradient-descent update. However, if α ¼ 0, equa-
tion 17 simulates a random walk MCMC algorithm with some
constraints given by ~H. The proposal distribution equation 16
clearly shows the connection between deterministic problems and
statistical problems. For acoustic waveform inversion, our experi-
ences suggest that α ¼ 0.05 ∼ 0.15 and β is 5α ∼ 10α, or β is
2σ ∼ 3σ, where σ is the expected standard deviation of the posterior
distribution, are good starting values for tuning the GMCMC.
Further analysis related to the tuning parameters can be found in
the “Discussion” section.
In the traditional MCMC methods, no local

geometric information is used in constructing the
proposal distribution, which might lead to a large
mismatch between the proposal distribution and
the posterior distribution, resulting in low accep-
tance rates and an inefficient sampling process.
In contrast, GMCMC exploits the derivative in-
formation to obtain the proposal distribution. The
proposal distribution carries a good local repre-
sentation of the underlying posterior distribution.
In this way, the sampling process can focus on
sampling regions matched closely with the pos-
terior distribution, leading to high convergence
rates and improved MCMC performance. In Fig-
ure 1, we plot three proposal distributions over-
laid with the Rosenbrock function where the red
contours represent high-probability regions of
the target distribution. The random walk MCMC
proposal distribution would explore the target
distribution in a very inefficient fashion. The pro-
posal distributions with local geometric informa-
tion match the target distribution well. Note that
the proposal distribution with only the diagonal
Hessian (Figure 1d) shows no correlations. In
other words, each parameter is independently
perturbed. However, the proposal distribution
with the full Hessian (Figure 1c) contains corre-
lation information.
With ~H−1 and ~H−1∕2 defined, we can draw a

sample y from the proposal distribution. The
sample is then subjected to the accept/reject
M-H criterion. Given that an MCMC chain is
long enough, the sampling process is able to

sufficiently explore the model space and accurately estimate the pos-
terior distribution. We demonstrate such a workflow in Algorithm 1,
and we call the proposed sampling method GMCMC.

Figure 1. (a) Rosenbrock function fðx; yÞ ¼ ð1 − xÞ2 þ 100ðy − x2Þ2, the black dot
represents the current point in the model space, (b) proposal distribution of the random-
walk MCMC method, (c) proposal distribution of the stochastic Newton MCMC
method, and (d) proposal distribution of the GMCMC method. The blue contours
represent σ, 2σ, and 3σ of the proposal distribution. The red squares in (c and
d) are the point after the preconditioned gradient updates.

Algorithm 1. GMCMC algorithm to sample πpost�mjdobs�.

Choose m0, α, and β

Compute πpostðm0Þ, gðmÞ0, and ~Hðm0Þ
for k=0, : : : , N−1 do

Define qðmk; yÞ ¼ ~πðyÞ as in equation 16

Draw sample y from the proposal distribution qðmk; •Þ with
equation 17

Compute πpostðyÞ, gðyÞ, and ~HðyÞ
Compute γðmk; yÞ ¼ min

�
1; πpostðyÞqðy;mk;Þ

πpostðmkÞqðmk;yÞ

�
Draw random number u ∼μð½0; 1�Þ
if u < γðmk; yÞ then
Accept: Set mkþ1 ¼ y

else

Reject: Set mkþ1 ¼ mk

end if

end for
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FREQUENCY-DOMAIN SEISMIC WAVEFORM
INVERSION

In this section, we briefly describe several necessary components
for implementing the proposed GMCMC method in the frequency-
domain acoustic FWI settings. Only the velocity v is treated as the
model parameter for the inversion.
In the frequency domain, the constant-density acoustic wave

equation is (Pratt et al., 1998)

−
�

ω2

v2ðxÞ þ ∇2

�
uðxs; x;ωÞ ¼ fðωÞδðx − xsÞ; (18)

where ω is the angular frequency, v is the velocity,∇2 represents the
Laplacian operator, f is the source term, xs is the source location,
and x is the model parameter location. The gradient of the misfit
function is given by

gðxÞ ¼ R

�X
ω

X
xs

X
xr

ω2fðωÞGðx; xs;ωÞGðx; xr;ωÞ

× Γ−1
noiseðxs; xr;ωÞΔd�ðxs; xr;ωÞ

þ
X
xj

Γ−1
priorðx; xjÞðvðxjÞ − vpriorðxjÞÞ

�
; (19)

where Γ−1
noiseðxs; xr;ωÞ can be regarded as the weight,

Δdðxs; xr;ωÞ ¼ dobsðxs; xr;ωÞ − dcalðxs; xr;ωÞ, the superscript *
represents the complex conjugate, and Gðx; xs;ωÞ and Gðx; xr;ωÞ
are the source- and receiver-side Green’s functions, respectively.
Equation 19 is often implemented by the adjoint-state method. One
can also use the plane-wave domain gradient computation method
proposed by Zhao and Sen (2017) to improve the computational
efficiency.
The approximate Hessian Ha can be computed by

Haðxi; xjÞ ¼ R

�X
ω

X
xs

X
xr

ω4f2ðωÞG�ðxi; xs;ωÞ

× Gðxj; xs;ωÞΓ−1
noiseðxs; xr;ωÞ

× G�ðxi; xr;ωÞGðxj; xr;ωÞ: (20)

Taking the diagonal part of Ha and combining it with Γ−1
prior, we

obtain ~H as

~Hðxi; xjÞ ¼ Kðxi; xjÞ þ Γ−1
priorðxi; xjÞ; (21)

with

Kðxi; xjÞ ¼ R

�X
ω

X
xs

X
xr

ω4f2ðωÞG�ðxi; xs;ωÞ

× Gðxj; xs;ωÞΓ−1
noiseðxs; xr;ωÞ

× G�ðxi; xr;ωÞGðxj; xr;ωÞδij
�
; (22)

where δij is the delta function; it is nonzero only at locations i ¼ j.
Hence, K is a diagonal matrix. Computing K according to equa-
tion 22 can be computationally expensive when the number of
sources and receivers is large. Plessix and Mulder (2004) suggest
several approximations of K. We implement the “type 3” approxi-
mation (i.e., K3 in Plessix and Mulder, 2004) in the waveform in-
version. The off-diagonal terms of K3 are zeros, and the diagonal
terms of K3 can be written as

K3ðxi; xiÞ ¼ R

�X
ω

X
xs

ω4f2ðωÞG�ðxi; xs;ωÞGðxi; xs;ωÞ

× 1∕2ðΓ−1
noiseðxs; xmax

r ðxsÞ;ωÞ þ Γ−1
noiseðxs; xmin

r ðxsÞ;ωÞÞ

×
�
a sinh

�
xmax
r ðxsÞ − xiðxÞ

xiðzÞ
�
− a sinh

�
xmin
r ðxsÞ − xiðxÞ

xiðzÞ
���

;

(23)

where xmax
r ðxsÞ and xmin

r ðxsÞ are the maximum and minimum
receiver locations for shot xs, respectively, and xiðxÞ and xiðzÞ
are the horizontal and vertical location of xi, respectively. Here,
we take the average of Γ−1

noise for weighting.
Of note, ~H ¼ Kþ Γ−1

prior generally contains off-diagonal terms
due to Γ−1

prior; drawing samples with such ~H requires large matrix
manipulations, which can be computationally expensive in high
dimensions. Therefore, we drop the Γ−1

prior term for the covariance
matrix of the proposal distribution. As a result, a sample drawn from
the proposal distribution contains no correlation information from
the prior.

NUMERICAL EXAMPLES

We demonstrate the proposed GMCMC FWI method on the 2D
Marmousi model (shown in Figure 2). In the examples, the ob-
served data and estimated data are generated using different mod-
eling methods on different computational grids. The source wavelet
is assumed to be known for the inversion.

Inversion setup

Observed data generation

The grid size for generating the observed data is 460(nx0) × 150
(nz0), with grid spacing of 0.02 × 0.02 km. We use the time-domain
rapid expansion method (Pestana and Stoffa, 2010) to generate the
shot gathers. The spatial derivatives are computed by the pseudo-
spectral method. A Ricker wavelet with the peak frequency at 10 Hz
is used as the source. We simulate 92 shots with a 0.1 km shot
interval; each shot is recorded by 460 receivers with a 0.02 km
receiver interval. Noncorrelated Gaussian white noise is added toFigure 2. The 2D Marmousi velocity model.
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the observed data. One of the observed shot gathers is shown in
Figure 3.

Model parameterization and computation

The model parameters are set to be on a 245(nx) × 79(nz) regular
grid, with grid spacing of 0.0375 × 0.0375 km. So, there are 19,355
model parameters in total. The same grid is used to estimate dcal, g,
and ~H. The top 0.15 km of the model is replaced with the ground
truth, assuming that we have accurate shallow subsurface velocity
estimations. This part of the model is kept unchanged during the
inversion. The frequency-domain finite-difference method (Chen
et al., 2013) is used as the modeling engine in the inversion. We
simultaneously invert data for six frequencies ranging from 5.0 to
7.5 Hz with a 0.5 Hz interval. We use six cores on an Intel Xeon
E5-2690 CPU to run the numerical tests where each core processes
a single frequency. Each iteration, including computing the gra-
dient, the approximate diagonal Hessian, and drawing a sample,
takes approximately 1.1 s wall clock time. We run several chains
with 200,000 iterations, and each chain can finish running within
61 h.

Likelihood and prior information

With the noncorrelated Gaussian white noise, the likelihood
function is defined as

πlikeðdobsjmÞ ∝ exp

�
−
1

2
ðdcal − dobsÞ†Γ−1

noiseðdcal − dobsÞ
�
;

(24)

where † represents the complex conjugate transpose and the noise
covariance matrix Γ−1

noise is a diagonal matrix with constant vari-
ance σ ¼ 0.06.
We assume the model parameters to be smooth and specify as

little a priori knowledge as possible. The prior distribution is de-
fined as

πpriorðmÞ ∝
�
exp

�
− 1

2
mTΓ−1

priorm
�

if vminj ≤ ml ≤ vmaxj ∀ l;

0 otherwise;
(25)

where l ¼ i × nzþ j, i and j indicate the horizontal and vertical
locations, respectively, vminj and vmaxj are the minimum and
maximum velocity values for given j, respectively, and the
vminj and vmaxj values can be found in Figure 5b. The matrix
Γ−1
prior is defined as the second-order differential operator to penalize

the roughness of a sample.

Tuning parameters α and β

We first demonstrate the effect of α and β on generating a sample.
In Figure 4, we plot ~H, α ~H−1g, β ~H−1

2r, and α ~H−1gþ β ~H−1
2r for

a homogeneous model with v ¼ 2.25 km/s. Figure 4a shows ~H,
which is also recognized as the illumination compensation. The
cold colors, corresponding to small values, represent poorly illumi-
nated areas. Hence, applying ~H−1 and ~H−1

2 to g and r means that a
proposal sample takes the illumination compensation into consid-
eration. As a result, a new sample has mostly smaller updates for
small variance areas than that for large variance areas, as shown in
Figure 4c. In Figure 4d, we plot the total model update.

Figure 3. (a and b) Clean and noisy data in the time domain. (c and d) The corresponding data in the frequency domain.
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Starting from different models

We use four models shown in Figure 5a as the starting models to
test the behavior of Markov chains with different starting points.
Here, we set α ¼ 0.08; β ¼ 0.8. The models are: Vsmooth, a
smoothed version of the true velocity model; Vconstant, a constant
velocity model with v = 2.25 km/s; Vgradient, a 1D velocity model
in which the velocity values increase linearly with a small gradient;
and Vrandom, a random velocity model drawn from the defined prior
bounds. In Figure 5b, we plot vertical profiles at four locations for
the starting models versus the true model. Three of the four starting
models are deliberately chosen to be far away from the true model.
The Vconstant and Vgradient models overestimate the shallow parts of
the model and largely underestimate the deep parts of the model,

although the Vgradient model is closer to the true model in the shallow
parts. The Vrandom model overestimates most parts of the model,
especially the shallow parts, by more than 2 km/s.
We first initiate one chain for each starting model and test 50,000

samples for each chain. The L2 error curves for the tests are shown
in Figure 6. All curves reach the steady state and fluctuate approx-
imately 0.4–0.5, although with a different number of iterations. The
Vsmooth case has the smallest initial misfit, and it reaches the steady
state very fast. Because Vsmooth is very close to the true model, this
chain starts sampling high-probability regions of the posterior dis-
tribution at the early stage in this case. The Vgradient reaches the
steady state at approximately 3000 iterations, which is slower than
the Vsmooth case. Because the shallow parts of the Vgradient model
approximate the true model, it is easy for the chain to find the re-
gions of high posterior probability for the shallow parts. However,
the deep parts of this starting model are far away from the true
model, which makes the chain take more steps than the Vsmooth case
to reach the same steady state. The Vconstant model is a very unin-
formative starting model. As a result, the initial error is higher, and it
takes 6000 iterations for this chain to reach the steady state. The
Vrandom case has the largest initial error, and it takes more than
20,000 iterations for the chain to reach the steady state, suggesting
that the Vrandom model is located in a very low probability region
in the model space due to the very large deviations from the true
model. The chain spends a very long time exploring the model
space before identifying regions of high posterior probability.
We discard the first 10,000 samples for each chain after it reaches

the steady state because they are still at the early stage in the chains.
For each chain, we use the following 10,000 samples to generate the
mean model for each chain as shown in Figure 7. Note that we have
not shown the convergence for the chains, and likely they have not
converged, at least not for all of the locations. However, even
though the chains have not formally converged, by plotting the
mean models, we see that the mean models for the four chains
are overall close to each other and they all resemble the true model.
This indicates that all chains have reached the high posterior prob-
ability regions.

Final results

As demonstrated in the previous section, the initial model Vrandom

lies in the very low probability region of the model space, which
makes the chain spend too much time before sampling the high pos-
terior probability regions. Thus, the Vrandom model is excluded in the
following test. We keep the other three chains running to 200,000
iterations, and we initiate one more chain for each of the three mod-
els. Each new chain is set to run 200,000 iterations as well. A total
of 1,200,000 samples are tested for the six chains, and the accept
ratio is approximately 50%. The L2 error curves for the six chains
are plotted in Figure 8. All chains reach the same steady state.
We discard the first 20,000 samples in each chain, treating them

as the burn-in samples. Post burn-in samples are used to generate
the mean model and standard deviation map shown in Figure 9. We
also include an absolute difference map between the mean model
and the true model in Figure 9. Note that the mean model is mostly
close to the true model, with some differences at the edges and the
bottom of the model. The standard deviation map, which is very
similar to the inverse of the illumination map, suggests small devi-
ations (approximately 0.0–0.3 km/s) in the shallow parts of the
model, where we have good data coverage and good illumination.

Figure 4. Plots of (a) ~H, (b) ~H−1g, (c) ~H−1
2r, and

(d) α ~H−1gþ β ~H−1
2r, where α ¼ 0.08 and β ¼ 0.4.

R22 Zhao and Sen

D
ow

nl
oa

de
d 

07
/0

8/
21

 to
 1

28
.6

2.
61

.2
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
19

-0
58

5.
1



This can be verified by examining marginal PPDs, shown in
Figure 10, at x = 3.00, 4.31, 5.62, and 6.94 km. Small deviations
indicate that velocity values are well constrained in these areas and
the inversion results have less uncertainties. In contrast, the deep
parts and the edges of the model, especially the lower left and lower
right corners, have the largest variations (0.8 km/s and above) due to
poor data coverage and poor illumination, for example, marginal
PPDs at x = 1.12 km and x = 8.06 km in Figure 10. Inverted velocity
values are less constrained and are spread out over a wider range of
values, suggesting large uncertainties for the inverted values. Exam-
ining the marginal PPDs, we find that the mean model generally
predicts the true model very well, especially in areas with good data
constraints. In most parts of the model, the true velocity values fall
in the 90% probability intervals of marginal PPDs.

Convergence analysis

Here, we examine several characteristics of the chains to diag-
nose the convergence of the tests. We first plot marginal PPDs at
several locations at different stages in the chains after the burn-in
phase. Locations at the shallow, middle, and deep parts of the model
are selected, and their corresponding marginal PPDs are shown in
Figure 11. We see few differences in marginal PPDs at the same
location while increasing numbers of samples are included, an in-
dication of convergence to the stationary distributions for the se-
lected locations. Similar behavior is observed for marginal PPDs
at other locations as well. We examine the potential scale reduction
factor (PSRF) R̂, an MCMC convergence diagnostic tool proposed
by Brooks and Gelman (1998), at different locations. PSRF

Figure 5. (a) Four starting models for the inversion: a smoothed version of the true model, Vsmooth; homogeneous velocity model with
v = 2.25 km/s, Vconstant; a velocity model in which the velocity increases with depth, Vgradient; and a random starting model drawn from
the lower and upper bounds, Vrandom. (b) Vertical profiles comparing the four starting models with the true model and the lower and upper
bounds. The red, magenta, blue, yellow, and green curves represent the true model, Vsmooth, Vconstant, Vgradient, and Vrandom, respectively. The
solid black lines are the prior information, that is, the lower and upper velocity bounds.

GMCMC FWI R23

D
ow

nl
oa

de
d 

07
/0

8/
21

 to
 1

28
.6

2.
61

.2
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
19

-0
58

5.
1



Figure 7. The mean models of the 10,000 samples for each test, and the absolute error maps with respect to the true model. (a) Vsmooth test,
(b) Vconstant test, (c) Vgradient test, and (d) Vrandom test.

Figure 6. The normalized L2 error curves for the
four tests. The yellow, blue, red, and magenta
curves correspond to the Vsmooth, Vgradient, Vconstant,
and Vrandom cases, respectively. Because all chains
have stabilized toward the end of the iterations, we
truncate the display at the 40,000th iteration.
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compares within-chain variances to the variance computed from all
mixed chains for a parameter. Its value should be close to one if the
parameter is close to its posterior distribution. Often in practice,
one can consider the convergence for parameters of interest when
R̂ < 1.1 (Brooks et al., 2011). The formal definition of R̂ can be
found in Brooks and Gelman (1998). We select one well-illumi-
nated area and one poorly illuminated area, indicated by the white
lines in Figure 12a, to generate their R̂ values,
shown in Figure 12b. The R̂ values for the shal-
low part drop below the threshold value 1.1 very
quickly, whereas it takes a while before R̂ values
for the deep part become smaller than 1.1. It
takes more steps to achieve the stationary distri-
butions for poorly illuminated areas. This is due
to the nature of the surface seismic data inver-
sion, where shallow parts of a model tend to have
better data coverage and illumination, hence
better constraints than deep parts of the model.
Therefore, it usually takes fewer iterations for
the well-illuminated areas to reach stationary dis-
tributions. If poorly illuminated areas are of little
interest, one might be able to run shorter chains.
If the formal convergence for the entire model is
desired, however, longer chains are necessary.
The multivariate potential scale reduction fac-

tor (MPSRF), a convergence diagnostic tool for multiple parameters
(Brooks and Gelman, 1998), is used here to analyze the conver-
gence for a greater area. MPSRF compares within-chain covariance
matrix W with the pooled sample chain covariance matrix V̂, esti-
mated from all of the chains. It summarizes all PSRF sequences of
interest in a single sequence, which can be used to assess the con-
vergence for all interested parameters (Martin et al., 2012; Stuart
et al., 2019). MPSRF is defined as

R̂p ¼ max
a

aTV̂a
aTWa

¼ n − 1

n
þ mþ 1

m
λ1; (26)

where n is the number of iterations, m is the number of chains, and
λ1 is the eigenvalue of the matrix W−1B∕n. Definitions for W, V̂,
and B can be found in Brooks and Gelman (1998). The value of R̂p

should approach one as the chains converge. Here, we compute
MPSRF values at different stages in the chains, i.e., Figure 13,
for parameters within the range of x = [1.1258.0625] km and
z = [0 2.4375] km. The edges and the bottom of the model are ex-
cluded because they are typically of little interest. When computing
R̂p, we use every other point on the inversion grid to reduce the cost
of computing the large matrices W, V̂, and B. Otherwise, it would
be computationally expensive to perform the convergence analysis
for this high-dimensional problem (Brooks and Gelman, 1998).
In Figure 13, R̂p drops rapidly from large values and it approaches
one as the chains evolve. Because R̂p is not computed using every
parameter within the target range, we infer that the chains achieve at
least approximate convergence. Of note, we do recommend always
running chains longer than might be necessary to ensure the con-
vergence. Because none of the convergence diagnostic methods is
free of deficiencies, the theoretically full convergence might only be
achieved asymptotically. Here, we believe that our analyses are
adequate for our FWI problem.

DISCUSSION

In MCMC sampling methods, it is necessary to sample the pos-
terior distribution adequately to sufficiently approximate its dis-
tribution. In large-scale inverse problems, the computational cost
is very high due to the high model dimensions. As shown in the
numerical tests, the computational cost related to implementing

Figure 8. The normalized L2 error curves for the six chains. Because all chains have
stabilized toward the end of the iterations, we truncate the display at the 100,000th
iteration.

Figure 9. The mean model, the standard deviation map for samples
after the burn-in phase, and the absolute difference between the true
model and the mean model. The dashed white lines indicate the
locations for plotting the marginal PPDs as shown in Figure 10.

GMCMC FWI R25

D
ow

nl
oa

de
d 

07
/0

8/
21

 to
 1

28
.6

2.
61

.2
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
19

-0
58

5.
1



GMCMC for 2D frequency-domain acoustic FWI is very high com-
pared to local optimization-based methods that typically run no
more than 1000 gradient updates. However, we do show that it is
still computationally affordable to run the proposed method for a
high-dimensional nonlinear sampling problem with only one CPU.
With faster forward solvers, better code implementations, and faster
CPUs, the computing time of GMCMC FWI can be further reduced,
although it is still very computationally demanding. Realistic 3D
FWI problems will pose challenges to any available MCMC algo-
rithms. Therefore, we recommend several strategies to tackle the
computational challenges, especially for the large-scale 3D prob-
lems. (1) Optimizing code implementations for wave equation solv-
ers can improve computational efficiencies. Etienne et al. (2014)
present several strategies by which the computational cost for
time-domain 3D FWI can be reduced by more than an order of
magnitude. (2) Using fast computing units, for instance, graphic
computing units, can speed up calculations. (3) Using sparse rep-
resentation methods can reduce model dimensions. Several re-
searches (Sajeva et al., 2016; Ray et al., 2017; Hunziker et al.,
2019) show the effectiveness of this dimension reduction strategy
for FWI with different MCMC algorithms. Additionally, one can
carry out MCMC FWI in a layer-stripping fashion to first estimate
the posterior distribution for the shallow parts of a model and then
use the obtained distributions as prior knowledge to constrain the
sampling for the deep parts of the model. (4) Using advanced sam-
pling methods can improve the efficiency for sampling the posterior

distribution, for instance, the full HMC method. Well-designed
sampling methods can efficiently explore the model space, resulting
in improved convergence rates.
The a priori knowledge has a significant impact on inversion

results. Too general a priori information providing little useful in-
formation can significantly increase the computational effort. Too
restricted prior knowledge might lead to inversion results biased
toward specific information. In the numerical examples, we delib-
erately make the inversion difficult by using uninformative prior
knowledge and poor starting models. As shown in the Vsmooth case,
starting with an accurate background model helps to sample the re-
gions of high posterior probability from the early stage, resulting in
very short burn-in phases. Furthermore, informative and geologi-
cally meaningful prior constraints also help in regularizing samples
that resemble plausible earth models. In real applications, models
representing subsurface velocity trends, tomography results, and
existing wells are good prior knowledge for constructing the starting
point and the prior distribution.

Figure 10. Selected marginal PPDs at the six locations labeled in
Figure 9. Marginal PPDs at the locations 1.12 and 8.06 km represent
poorly illuminated areas, whereas other marginal PPDs represent
areas with better illumination. The blue, green, and red curves re-
present the mean, median, and the true values, respectively. The
darker and lighter colors of the cloud plots correspond to the high
and low probability densities, respectively. The black dotted curves
represent the 5% and 95% probability interval bounds. The solid
black lines are the lower and upper velocity bounds.

Figure 11. From left to right are the marginal PPDs at different
stages in the chains for (x = 3.975, z = 0.375) km, (x = 3.975,
z = 1.5) km, and (x = 3.975, z = 2.625) km: (a) 40,000 samples
per chain, of the total 240,000 samples, (b) 50,000 samples per
chain, of the total 300,000 samples, (c) 60,000 samples per chain,
of the total 360,000 samples, and (d) 70,000 samples per chain, of
the total 420,000 samples. Chains are thinned by jumping over
every other sample to save storage space.
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In the numerical tests, parameters are defined on the same grid as
that used for computing the data residual and the gradient. One
might choose to define parameters on different grid settings.
A sparse inversion grid leads to reduced model dimensions; as a
result, faster convergence rates might be achieved at the expense
of the spatial resolution. From the optimization-based FWI point
of view, changes of velocity values on a sparse grid might have
more impacts on the traveltime for wavefields. A sparse inver-
sion grid might be beneficial for low-wavenumber components/
traveltime update, which might reduce the time to identify regions
with high posterior probability, resulting in a shorter burn-in phase.
On the contrary, when parameters are defined on a very dense grid,
the details of subsurface structures can be better described. How-
ever, the MCMC sampling process would take longer to converge
to the posterior distribution due to the increased model dimensions.
An alternative to the fixed inversion grid, which fixes the number of
parameters, is the transdimensional inversion strategy (Bodin and
Sambridge, 2009; Biswas and Sen, 2017; Ray et al., 2017) in which
the number of model parameters is regarded as an inversion param-
eter. In this way, the number of model parameters is determined by the
observed data and the uncertainty associated with the number of
parameters would also be taken into consideration.
When defining the proposal distribution, we drop several com-

ponents contributing to the off-diagonal terms of the covariance
matrix, i.e., equation 16, including R, Γ−1

prior, and off-diagonal parts

of Ha, to only retain K, which makes the sampling process com-
putationally efficient. As a result, a sample drawn from this proposal
distribution contains no correlation information between different
parameters. This proposal distribution is a good local approxima-
tion to the target distribution in cases in which parameters exhibit
little correlations. However, if strong correlations exist between
parameters, mismatches between the proposal distribution and the
underlying target distribution would increase, which might have
negative impacts on the convergence rate. Therefore, when param-
eters are highly correlated, one might want to include off-diagonal
terms for the covariance matrix to construct the proposal distribu-
tion that better matches the posterior distribution. For instance,
in Figure 14, the proposal distribution constructed with the full
Hessian simulates the positive correlation between the two param-
eters, hence better representing the target distribution than that

Figure 12. (a) The illumination map for the final mean model. The
hot and cold colors represent good and poor illumination, respec-
tively. The white lines indicate a well-illuminated area and a poorly
illuminated area. There are 10 locations evenly distributed on each
of the white lines whose R̂ values are plotted in (b). (b) The 20 R̂
curves computed for the locations indicated by the white lines. The
blue lines represent R̂ values at the depth z ¼ 0.6525 km, and or-
ange lines represent R̂ values at the depth z ¼ 2.4375 km. The red
line indicates the threshold R̂ ¼ 1.1.

Figure 13. Plot of R̂p, MPSRF values, at different stages in the
chains. The red line indicates the value one.

Figure 14. Two proposal distributions overlaid with the target dis-
tribution, Rosenbrock function as shown in Figure 1. The black dot
is the current location. The blue and green contours represent σ, 2σ,
and 3σ of the proposal distributions with only the diagonal Hessian
and the full Hessian, respectively. The proposal distribution con-
structed with the full Hessian reflects the positive correlation be-
tween the parameters. It better represents the target distribution
at the current step, whereas the proposal distribution constructed
with only the diagonal Hessian shows no correlation.
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constructed with only the diagonal terms of the Hessian. Sampling
from the proposal distribution constructed with the full Hessian
would improve the convergence rate in this scenario. For FWI
problems in which the off-diagonal terms of H are strong, using
a proposal distribution that considers the correlations between
parameters might speed up the convergence. Nevertheless, one
should also note that sampling from a proposal distribution that con-
tains off-diagonal terms in the covariance matrix might require large
matrix manipulations for large-scale problems, which increases the
computational cost for sampling.
Tuning parameters α and β are important to the performance of

the sampling process. Parameter α acts as the step length in gra-
dient-descent methods. Its value should be similar to the one used
in gradient-based local optimization methods, so that the linearized
Taylor expansion is still locally valid. Parameter β controls the
maximum variance of the proposal distribution. A too small β
would make the chain move too slowly, whereas a too large βwould
make proposed samples be rejected too often. A good initial trial for
choosing β is to set it close to 2σ or 3σ, where σ is the expected
standard deviation of the posterior distribution. Poorly chosen α
and β values would result in chains that converge too slowly to
the posterior distribution. Good combinations of α and β would
make the chains explore the model space efficiently and sufficiently,
rendering reasonable convergence rates. Indeed, it is difficult, espe-
cially in high dimensions, to manually find the optimal values for α
and β. The adaptive algorithms (Haario et al., 2001; Atchadé and
Rosenthal, 2005; Atchadé, 2006), in which proposal distributions
are automatically adjusted during the sampling process, might be
beneficial to the proposed method.

CONCLUSION

We have presented a GMCMC sampling method based on the
Bayesian inference framework to solve the ill-posed inverse prob-
lem in high dimensions. The main idea of the method is to construct
a proposal distribution that is locally a good approximation to the
posterior distribution. We show that, with the help of the local gra-
dient and the diagonal approximate Hessian information, such a
proposal distribution is easy to construct, and samples can be drawn
from the proposal distribution efficiently. Drawing samples from
such a proposal distribution can be regarded as updating the current
model parameters with the preconditioned gradient plus a con-
strained random perturbation term. The preconditioned gradient
guides the misfit going toward a “better” point, whereas the random
perturbation term explores model space to avoid entrapment in a
local region. The resultant GMCMC method samples the posterior
distribution more efficiently. We implement the proposed method
for the acoustic FWI problem in the frequency domain. In the syn-
thetic example, we demonstrated that the mean and median values
of the inverted statistical results well represent the ground truth even
with different starting points that contain no informative prior in-
formation. It suggests that the proposed GMCMC method has the
potential to make FWI a fully automatic process. Unlike traditional
local optimization-based FWI methods, the results of the proposed
GMCMC FWI provide statistical assessments by which the un-
certainties related to the inversion can be estimated. We showed
that within the 2D frequency-domain acoustic waveform inver-
sion framework, the computational cost of the GMCMC method is
affordable for high-dimensional problems.
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APPENDIX A

COMPARISON BETWEEN GMCMC WITH
LANGEVIN MC AND HMC

Similarity can be drawn between the proposed sampling method
with Langevin MC (Grenander and Miller, 1994; Roberts and
Tweedie, 1996; Stuart et al., 2004) and HMCmethods (Neal, 2011).
We rewrite equation 19 as

y ¼ mk − α ~H−1gþ β ~H−1
2r: (A-1)

In Langevin MC, samples are produced according to the reversible
Langevin diffusion process Xt that satisfies the stochastic differen-
tial equation

dXt ¼
σ2

2
∇ log πnðXÞdtþ σWt; (A-2)

where πnðXÞ is the n-dimensional posterior distribution, with
variance σ2, and W is the standard independent n-dimensional
Brownian motion. Discretizing the diffusion, the sample of the next
time step can be drawn by (Roberts and Tweedie, 1996; Stuart et al.,
2004)

xtþ1 ¼ xt þ
σ2

2
∇ log πnðxtÞ þ σW: (A-3)

One can precondition the update by a positive-definite matrix A as
(Stuart et al., 2004)

xtþ1 ¼ xt þ A∇ log πnðxtÞ þ
ffiffiffi
2

p
A1∕2W: (A-4)

We can clearly draw the connection between equations A-1 and A-3
or A-4. Dropping the tuning factors, equation A-1 can be interpreted
as a preconditioned Langevin MC with the preconditioning
matrix ~H−1.
If we set ~H−1 ¼ I and choose α ¼ ffiffiðp

2βÞ, we recover the first
leapfrog step of HMC. In fact, Neal (2011) recognizes Langevin
MC as a special case of HMC and makes a detailed comparison.

REFERENCES

Aleardi, M., and A. Mazzotti, 2017, 1D elastic full-waveform inversion and
uncertainty estimation by means of a hybrid genetic algorithm-Gibbs sam-
pler approach: Geophysical Prospecting, 65, 64–85, doi: 10.1111/1365-
2478.12397.

Atchadé, Y. F., 2006, An adaptive version for the metropolis adjusted
Langevin algorithm with a truncated drift: Methodology and Computing
in Applied Probability, 8, 235–254, doi: 10.1007/s11009-006-8550-0.

R28 Zhao and Sen

D
ow

nl
oa

de
d 

07
/0

8/
21

 to
 1

28
.6

2.
61

.2
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
19

-0
58

5.
1

http://dx.doi.org/10.1111/1365-2478.12397
http://dx.doi.org/10.1111/1365-2478.12397
http://dx.doi.org/10.1111/1365-2478.12397
http://dx.doi.org/10.1111/1365-2478.12397
http://dx.doi.org/10.1007/s11009-006-8550-0
http://dx.doi.org/10.1007/s11009-006-8550-0


Atchadé, Y. F., and J. S. Rosenthal, 2005, On adaptive Markov chain
Monte Carlo algorithms: Bernoulli, 11, 815–828, doi: 10.3150/bj/
1130077595.

Biswas, R., and M. K. Sen, 2017, 2D full-waveform inversion and uncer-
tainty estimation using the reversible jump Hamiltonian Monte Carlo:
87th Annual International Meeting, SEG, Expanded Abstracts, 1280–
1285, doi: 10.1190/segam2017-17680416.1.

Bodin, T., and M. Sambridge, 2009, Seismic tomography with the reversible
jump algorithm: Geophysical Journal International, 178, 1411–1436,
doi: 10.1111/j.1365-246X.2009.04226.x.

Brooks, S., A. Gelman, G. Jones, and X.-L. Meng, 2011, Handbook of
Markov chain Monte Carlo: CRC press.

Brooks, S. P., and A. Gelman, 1998, General methods for monitoring con-
vergence of iterative simulations: Journal of Computational and Graphical
Statistics, 7, 434–455, doi: 10.2307/1390675.

Brossier, R., S. Operto, and J. Virieux, 2009, Seismic imaging of complex
onshore structures by 2D elastic frequency-domain full-waveform in-
version: Geophysics, 74, no. 6, WCC105–WCC118, doi: 10.1190/1
.3215771.

Bui-Thanh, T., O. Ghattas, J. Martin, and G. Stadler, 2013, A computational
framework for infinite-dimensional Bayesian inverse problems — Part 1:
The linearized case, with application to global seismic inversion: SIAM
Journal on Scientific Computing, 35, A2494–A2523, doi: 10.1137/
12089586X.

Bunks, C., F. M. Saleck, S. Zaleski, and G. Chavent, 1995, Multiscale seis-
mic waveform inversion: Geophysics, 60, 1457–1473, doi: 10.1190/1
.1443880.

Chen, Z., D. Cheng, W. Feng, and T. Wu, 2013, An optimal 9-point finite
difference SCHEME for the Helmholtz equation with PML: International
Journal of Numerical Analysis and Modeling, 10, 389–410.

Chib, S., and E. Greenberg, 1995, Understanding the metropolis-Hastings
algorithm: The American Statistician, 49, 327–335, doi: 10.1080/
00031305.1995.10476177.

Duijndam, A., 1988, Bayesian estimation in seismic inversion — Part 1:
Principles 1: Geophysical Prospecting, 36, 878–898, doi: 10.1111/j
.1365-2478.1988.tb02198.x.

Ely, G., A. Malcolm, and O. V. Poliannikov, 2018, Assessing uncertainties in
velocity models and images with a fast nonlinear uncertainty quantifica-
tion method: Geophysics, 83, no. 2, R63–R75, doi: 10.1190/geo2017-
0321.1.

Engquist, B., and B. D. Froese, 2013, Application of the Wasserstein metric
to seismic signals: arXiv preprint arXiv:1311.4581.

Etienne, V., T. Tonellot, P. Thierry, V. Berthoumieux, and C. Andreolli,
2014, Speeding-up FWI by one order of magnitude: EAGE Workshop
on High Performance Computing for Upstream, cp-426.

Fang, Z., C. Da Silva, R. Kuske, and F. J. Herrmann, 2018, Uncertainty
quantification for inverse problems with weak partial-differential-
equation constraints: Geophysics, 83, no. 6, R629–R647, doi: 10.1190/
geo2017-0824.1.

Fang, Z., F. J. Herrmann, and C. D. Silva, 2014, Fast uncertainty quantifi-
cation for 2D full-waveform inversion with randomized source subsam-
pling: 76th Annual International Conference and Exhibition, EAGE,
Extended Abstracts, doi: 10.3997/2214-4609.20140715.

Fichtner, A., B. L. Kennett, H. Igel, and H.-P. Bunge, 2008, Theoretical
background for continental-and global-scale full-waveform inversion in
the time-frequency domain: Geophysical Journal International, 175,
665–685, doi: 10.1111/j.1365-246X.2008.03923.x.

Fichtner, A., and S. Simutė, 2018, Hamiltonian Monte Carlo inversion of
seismic sources in complex media: Journal of Geophysical Research,
Solid Earth, 123, 2984–2999, doi: 10.1002/2017JB015249.

Fichtner, A., and J. Trampert, 2011, Resolution analysis in full waveform
inversion: Geophysical Journal International, 187, 1604–1624, doi: 10
.1111/j.1365-246X.2011.05218.x.

Fichtner, A., J. Trampert, P. Cupillard, E. Saygin, T. Taymaz, Y. Capdeville,
and A. Villasenor, 2013, Multiscale full waveform inversion: Geophysical
Journal International, 194, 534–556, doi: 10.1093/gji/ggt118.

Fichtner, A., A. Zunino, and L. Gebraad, 2018, Hamiltonian Monte Carlo
solution of tomographic inverse problems: Geophysical Journal Inter-
national, 216, 1344–1363, doi: 10.1093/gji/ggy496.

Gentle, J. E., 2009, Computational statistics: Springer.
Geweke, J., and H. Tanizaki, 1999, On Markov chain Monte Carlo methods
for nonlinear and non-Gaussian state-space models: Communications
in Statistics-Simulation and Computation, 28, 867–894, doi: 10.1080/
03610919908813583.

Geweke, J., and H. Tanizaki, 2003, Note on the sampling distribution for the
Metropolis-Hastings algorithm: Communications in Statistics-Theory and
Methods, 32, 775–789, doi: 10.1081/STA-120018828.

Gilks, W. R., S. Richardson, and D. Spiegelhalter, 1995, Markov chain
Monte Carlo in practice: Chapman and Hall/CRC.

Gouveia, W. P., and J. A. Scales, 1998, Bayesian seismic waveform inver-
sion: Parameter estimation and uncertainty analysis: Journal of Geophysi-
cal Research, Solid Earth, 103, 2759–2779, doi: 10.1029/97JB02933.

Grenander, U., and M. I. Miller, 1994, Representations of knowledge
in complex systems: Journal of the Royal Statistical Society: Series B
(Methodological), 56, 549–581, doi: 10.2307/2346184.

Haario, H., E. Saksman, and J. Tamminen, 2001, An adaptive Metropolis
algorithm: Bernoulli, 7, 223–242, doi: 10.2307/3318737.

Hastings, W. K., 1970, Monte Carlo sampling methods using Markov chains
and their applications: Biometrika, 57, 97–109, doi: 10.1093/biomet/57.1
.97.

Hunziker, J., E. Laloy, and N. Linde, 2019, Bayesian full-waveform tomog-
raphy with application to crosshole ground penetrating radar data: Geo-
physical Journal International, 218, 913–931, doi: 10.1093/gji/ggz194.

Kaipio, J., and E. Somersalo, 2006, Statistical and computational inverse
problems: Springer Science and Business Media.

Keilis-Borok, V., and T. Yanovskaja, 1967, Inverse problems of seismology
(structural review): Geophysical Journal International, 13, 223–234, doi:
10.1111/j.1365-246X.1967.tb02156.x.

Lailly, P., 1983, The seismic inverse problem as a sequence of before stack
migrations: Conference on Inverse Scattering, Theory and Application,
Expanded Abstracts, Society for Industrial and Applied Mathematics,
206–220.

Luo, Y., and G. T. Schuster, 1991, Wave-equation traveltime inversion:
Geophysics, 56, 645–653, doi: 10.1190/1.1443081.

Martin, J., L. C. Wilcox, C. Burstedde, and O. Ghattas, 2012, A stochastic
Newton MCMC method for large-scale statistical inverse problems with
application to seismic inversion: SIAM Journal on Scientific Computing,
34, A1460–A1487, doi: 10.1137/110845598.

Menke, W., 2018, Geophysical data analysis: Discrete inverse theory:
Academic Press.

Métivier, L., R. Brossier, Q. Merigot, E. Oudet, and J. Virieux, 2016, An
optimal transport approach for seismic tomography: Application to 3D
full waveform inversion: Inverse Problems, 32, 115008, doi: 10.1088/
0266-5611/32/11/115008.

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E.
Teller, 1953, Equation of state calculations by fast computing machines:
The Journal of Chemical Physics, 21, 1087–1092, doi: 10.1063/1.1699114.

Mosegaard, K., and M. Sambridge, 2002, Monte Carlo analysis of inverse
problems: Inverse Problems, 18, R29, doi: 10.1088/0266-5611/18/3/201.

Mosegaard, K., and A. Tarantola, 1995, Monte Carlo sampling of solutions
to inverse problems: Journal of Geophysical Research, Solid Earth, 100,
12431–12447, doi: 10.1029/94JB03097.

Mosegaard, K., and A. Tarantola, 2002, Probabilistic approach to inverse
problems: International Geophysics Series, 81, 237–268.

Neal, R. M., 2011, MCMC using Hamiltonian dynamics, in S. Brooks, A.
Gelman, G. L. Jones, and X.-L. Meng, eds., Handbook of Markov chain
Monte Carlo: Chapman and Hall/CRC, 113–162.

Operto, S., A. Miniussi, R. Brossier, L. Combe, L. Métivier, V. Monteiller,
A. Ribodetti, and J. Virieux, 2015, Efficient 3-D frequency-domain
mono-parameter full-waveform inversion of ocean-bottom cable data:
Application to Valhall in the visco-acoustic vertical transverse isotropic
approximation: Geophysical Journal International, 202, 1362–1391, doi:
10.1093/gji/ggv226.

Pestana, R. C., and P. L. Stoffa, 2010, Time evolution of the wave equation
using rapid expansion method: Geophysics, 75, no. 4, T121–T131, doi:
10.1190/1.3449091.

Petra, N., J. Martin, G. Stadler, and O. Ghattas, 2014, A computational
framework for infinite-dimensional Bayesian inverse problems — Part
2: Stochastic Newton MCMC with application to ice sheet flow inverse
problems: SIAM Journal on Scientific Computing, 36, A1525–A1555,
doi: 10.1137/130934805.

Plessix, R.-E., and W. Mulder, 2004, Frequency-domain finite-difference
amplitude preserving migration: Geophysical Journal International, 157,
975–987, doi: 10.1111/j.1365-246X.2004.02282.x.

Pratt, R. G., C. Shin, and G. Hick, 1998, Gauss-Newton and full Newton
methods in frequency-space seismic waveform inversion: Geophysical
Journal International, 133, 341–362, doi: 10.1046/j.1365-246X.1998
.00498.x.

Pratt, R. G., and R. M. Shipp, 1999, Seismic waveform inversion in the fre-
quency domain — Part 2: Fault delineation in sediments using crosshole
data: Geophysics, 64, 902–914, doi: 10.1190/1.1444598.

Press, F., 1968, Earth models obtained by Monte Carlo inversion: Journal of
Geophysical Research, 73, 5223–5234, doi: 10.1029/JB073i016p05223.

Qi, Y., and T. P. Minka, 2002, Hessian-based Markov Chain Monte Carlo
algorithms: Proceedings of the First Cape Cod Workshop on Monte Carlo
Methods.

Ravaut, C., S. Operto, L. Improta, J. Virieux, A. Herrero, and P. Dell’Aver-
sana, 2004, Multiscale imaging of complex structures from multifold
wide-aperture seismic data by frequency-domain full-waveform tomogra-
phy: Application to a thrust belt: Geophysical Journal International, 159,
1032–1056, doi: 10.1111/j.1365-246X.2004.02442.x.

Ray, A., S. Kaplan, J. Washbourne, and U. Albertin, 2017, Low frequency
full waveform seismic inversion within a tree based Bayesian framework:
Geophysical Journal International, 212, 522–542, doi: 10.1093/gji/ggx428.

GMCMC FWI R29

D
ow

nl
oa

de
d 

07
/0

8/
21

 to
 1

28
.6

2.
61

.2
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
19

-0
58

5.
1

http://dx.doi.org/10.3150/bj/1130077595
http://dx.doi.org/10.3150/bj/1130077595
http://dx.doi.org/10.3150/bj/1130077595
http://dx.doi.org/10.1190/segam2017-17680416.1
http://dx.doi.org/10.1190/segam2017-17680416.1
http://dx.doi.org/10.1190/segam2017-17680416.1
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04226.x
http://dx.doi.org/10.2307/1390675
http://dx.doi.org/10.2307/1390675
http://dx.doi.org/10.1190/1.3215771
http://dx.doi.org/10.1190/1.3215771
http://dx.doi.org/10.1190/1.3215771
http://dx.doi.org/10.1137/12089586X
http://dx.doi.org/10.1137/12089586X
http://dx.doi.org/10.1137/12089586X
http://dx.doi.org/10.1190/1.1443880
http://dx.doi.org/10.1190/1.1443880
http://dx.doi.org/10.1190/1.1443880
http://dx.doi.org/10.1080/00031305.1995.10476177
http://dx.doi.org/10.1080/00031305.1995.10476177
http://dx.doi.org/10.1080/00031305.1995.10476177
http://dx.doi.org/10.1080/00031305.1995.10476177
http://dx.doi.org/10.1080/00031305.1995.10476177
http://dx.doi.org/10.1111/j.1365-2478.1988.tb02198.x
http://dx.doi.org/10.1111/j.1365-2478.1988.tb02198.x
http://dx.doi.org/10.1111/j.1365-2478.1988.tb02198.x
http://dx.doi.org/10.1111/j.1365-2478.1988.tb02198.x
http://dx.doi.org/10.1111/j.1365-2478.1988.tb02198.x
http://dx.doi.org/10.1111/j.1365-2478.1988.tb02198.x
http://dx.doi.org/10.1190/geo2017-0321.1
http://dx.doi.org/10.1190/geo2017-0321.1
http://dx.doi.org/10.1190/geo2017-0321.1
http://dx.doi.org/10.1190/geo2017-0321.1
http://dx.doi.org/10.1190/geo2017-0824.1
http://dx.doi.org/10.1190/geo2017-0824.1
http://dx.doi.org/10.1190/geo2017-0824.1
http://dx.doi.org/10.1190/geo2017-0824.1
http://dx.doi.org/10.3997/2214-4609.20140715
http://dx.doi.org/10.3997/2214-4609.20140715
http://dx.doi.org/10.3997/2214-4609.20140715
http://dx.doi.org/10.1111/j.1365-246X.2008.03923.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03923.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03923.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03923.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03923.x
http://dx.doi.org/10.1111/j.1365-246X.2008.03923.x
http://dx.doi.org/10.1002/2017JB015249
http://dx.doi.org/10.1002/2017JB015249
http://dx.doi.org/10.1111/j.1365-246X.2011.05218.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05218.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05218.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05218.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05218.x
http://dx.doi.org/10.1111/j.1365-246X.2011.05218.x
http://dx.doi.org/10.1093/gji/ggt118
http://dx.doi.org/10.1093/gji/ggt118
http://dx.doi.org/10.1093/gji/ggy496
http://dx.doi.org/10.1093/gji/ggy496
http://dx.doi.org/10.1080/03610919908813583
http://dx.doi.org/10.1080/03610919908813583
http://dx.doi.org/10.1080/03610919908813583
http://dx.doi.org/10.1081/STA-120018828
http://dx.doi.org/10.1081/STA-120018828
http://dx.doi.org/10.1029/97JB02933
http://dx.doi.org/10.1029/97JB02933
http://dx.doi.org/10.2307/2346184
http://dx.doi.org/10.2307/2346184
http://dx.doi.org/10.2307/3318737
http://dx.doi.org/10.2307/3318737
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/biomet/57.1.97
http://dx.doi.org/10.1093/gji/ggz194
http://dx.doi.org/10.1093/gji/ggz194
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02156.x
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02156.x
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02156.x
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02156.x
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02156.x
http://dx.doi.org/10.1111/j.1365-246X.1967.tb02156.x
http://dx.doi.org/10.1190/1.1443081
http://dx.doi.org/10.1190/1.1443081
http://dx.doi.org/10.1190/1.1443081
http://dx.doi.org/10.1137/110845598
http://dx.doi.org/10.1137/110845598
http://dx.doi.org/10.1088/0266-5611/32/11/115008
http://dx.doi.org/10.1088/0266-5611/32/11/115008
http://dx.doi.org/10.1088/0266-5611/32/11/115008
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1088/0266-5611/18/3/201
http://dx.doi.org/10.1088/0266-5611/18/3/201
http://dx.doi.org/10.1029/94JB03097
http://dx.doi.org/10.1029/94JB03097
http://dx.doi.org/10.1093/gji/ggv226
http://dx.doi.org/10.1093/gji/ggv226
http://dx.doi.org/10.1190/1.3449091
http://dx.doi.org/10.1190/1.3449091
http://dx.doi.org/10.1190/1.3449091
http://dx.doi.org/10.1137/130934805
http://dx.doi.org/10.1137/130934805
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02282.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1046/j.1365-246X.1998.00498.x
http://dx.doi.org/10.1190/1.1444598
http://dx.doi.org/10.1190/1.1444598
http://dx.doi.org/10.1190/1.1444598
http://dx.doi.org/10.1029/JB073i016p05223
http://dx.doi.org/10.1029/JB073i016p05223
http://dx.doi.org/10.1111/j.1365-246X.2004.02442.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02442.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02442.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02442.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02442.x
http://dx.doi.org/10.1111/j.1365-246X.2004.02442.x
http://dx.doi.org/10.1093/gji/ggx428
http://dx.doi.org/10.1093/gji/ggx428


Robert, C., and G. Casella, 2013, Monte Carlo statistical methods: Springer
Science & Business Media.

Roberts, G. O., A. Gelman, and W. R. Gilks, 1997, Weak convergence and
optimal scaling of random walk Metropolis algorithms: The Annals of
Applied Probability, 7, 110–120, doi: 10.1214/aoap/1034625254.

Roberts, G. O., and R. L. Tweedie, 1996, Exponential convergence of
Langevin distributions and their discrete approximations: Bernoulli, 2,
341–363, doi: 10.2307/3318418.

Sajeva, A., M. Aleardi, E. Stucchi, N. Bienati, and A. Mazzotti, 2016,
Estimation of acoustic macro models using a genetic full-waveform in-
version: Applications to the Marmousi model genetic FWI for acoustic
macro models: Geophysics, 81, no. 4, R173–R184, doi: 10.1190/
geo2015-0198.1.

Sambridge, M., and K. Mosegaard, 2002, Monte Carlo methods in geophysi-
cal inverse problems: Reviews of Geophysics, 40, 3-1–3-29, doi: 10.1029/
2000RG000089.

Santosa, F., W. Symes, and G. Raggio, 1987, Inversion of band-limited re-
flection seismograms using stacking velocities as constraints: Inverse
Problems, 3, 477–499, doi: 10.1088/0266-5611/3/3/015.

Scales, J. A., M. L. Smith, and T. L. Fischer, 1992, Global optimization
methods for multimodal inverse problems: Journal of Computational
Physics, 103, 258–268, doi: 10.1016/0021-9991(92)90400-S.

Sen, M. K., and R. Biswas, 2017, Transdimensional seismic inversion using
the reversible jump Hamiltonian Monte Carlo algorithm: Geophysics, 82,
no. 3, R119–R134, doi: 10.1190/geo2016-0010.1.

Sen, M. K., and P. L. Stoffa, 1996, Bayesian inference, Gibbs’ sampler and
uncertainty estimation in geophysical inversion: Geophysical Prospecting,
44, 313–350, doi: 10.1111/j.1365-2478.1996.tb00152.x.

Sen, M. K., and P. L. Stoffa, 2013, Global optimization methods in geo-
physical inversion: Cambridge University Press.

Sirgue, L., and R. G. Pratt, 2004, Efficient waveform inversion and imaging:
A strategy for selecting temporal frequencies: Geophysics, 69, 231–248,
doi: 10.1190/1.1649391.

Stuart, A. M., J. Voss, and P. Wilberg, 2004, Conditional path sampling of
SDEs and the Langevin MCMC method: Communications in Mathemati-
cal Sciences, 2, 685–697, doi: 10.4310/CMS.2004.v2.n4.a7.

Stuart, G., W. Yang, S. Minkoff, and F. Pereira, 2016, A two-stage Markov
chain Monte Carlo method for velocity estimation and uncertainty quan-
tification: 86th Annual International Meeting, SEG, Expanded Abstracts,
3682–3687, doi: 10.1190/segam2016-13865449.1.

Stuart, G. K., S. E. Minkoff, and F. Pereira, 2019, A two-stage Markov chain
Monte Carlo method for seismic inversion and uncertainty quantification:
Geophysics, 84, no. 6, R1003–R1020, doi: 10.1190/geo2018-0893.1.

Tape, C., Q. Liu, A. Maggi, and J. Tromp, 2010, Seismic tomography of the
southern California crust based on spectral-element and adjoint methods:

Geophysical Journal International, 180, 433–462, doi: 10.1111/j.1365-
246X.2009.04429.x.

Tarantola, A., 1984, Inversion of seismic reflection data in the acoustic
approximation: Geophysics, 49, 1259–1266, doi: 10.1190/1.1441754.

Tarantola, A., 2005, Inverse problem theory and methods for model param-
eter estimation: SIAM.

Tierney, L., 1994, Markov chains for exploring posterior distributions: The
Annals of Statistics, 22, 1701–1728, doi: 10.1214/aos/1176325750.

Ulrych, T. J., M. D. Sacchi, and A. Woodbury, 2001, A Bayes tour of in-
version: A tutorial: Geophysics, 66, 55–69, doi: 10.1190/1.1444923.

Vigh, D., K. Jiao, D. Watts, and D. Sun, 2014, Elastic full-waveform inver-
sion application using multicomponent measurements of seismic data col-
lection: Geophysics, 79, no. 2, R63–R77, doi: 10.1190/geo2013-0055.1.

Virieux, J., and S. Operto, 2009, An overview of full-waveform inversion in
exploration geophysics: Geophysics, 74, no. 6, WCC1–WCC26, doi: 10
.1190/1.3238367.

Warner, M., and L. Guasch, 2016, Adaptive waveform inversion: Theory:
Geophysics, 81, no. 6, R429–R445, doi: 10.1190/geo2015-0387.1.

Wu, R.-S., J. Luo, and B. Wu, 2014, Seismic envelope inversion and modu-
lation signal model: Geophysics, 79, no. 3, WA13–WA24, doi: 10.1190/
geo2013-0294.1.

Xue, Z., N. Alger, and S. Fomel, 2016, Full-waveform inversion using
smoothing kernels: 86th Annual International Meeting, SEG, Expanded
Abstracts, 1358–1363, doi: 10.1190/segam2016-13948739.1.

Zhao, Z., andM. Sen, 2017, Fast double plane wave full-waveform inversion
using the scattering-integral method in frequency domain: 87th Annual
International Meeting, SEG, Expanded Abstracts, 1324–1329, doi: 10
.1190/segam2017-17790005.1.

Zhao, Z., and M. K. Sen, 2019, A multi-scale full waveform inversion
method — Staging wavenumber components and layer-stripping: 89th
Annual International Meeting, SEG, Expanded Abstracts, 1470–1474,
doi: 10.1190/segam2019-3216581.1.

Zhu, H., E. Bozdağ, D. Peter, and J. Tromp, 2012, Structure of the European
upper mantle revealed by adjoint tomography: Nature Geoscience, 5, 493,
doi: 10.1038/ngeo1501.

Zhu, H., and S. Fomel, 2016, Building good starting models for full-wave-
form inversion using adaptive matching filtering misfit: Geophysics, 81,
no. 5, U61–U72, doi: 10.1190/geo2015-0596.1.

Zhu, H., S. Li, S. Fomel, G. Stadler, and O. Ghattas, 2016, A Bayesian ap-
proach to estimate uncertainty for full-waveform inversion using a priori
information from depth migration: Geophysics, 81, no. 5, R307–R323,
doi: 10.1190/geo2015-0641.1.

Biographies and photographs of the authors are not available.

R30 Zhao and Sen

D
ow

nl
oa

de
d 

07
/0

8/
21

 to
 1

28
.6

2.
61

.2
36

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
S

E
G

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 T
er

m
s 

of
 U

se
 a

t h
ttp

://
lib

ra
ry

.s
eg

.o
rg

/p
ag

e/
po

lic
ie

s/
te

rm
s

D
O

I:1
0.

11
90

/g
eo

20
19

-0
58

5.
1

http://dx.doi.org/10.1214/aoap/1034625254
http://dx.doi.org/10.1214/aoap/1034625254
http://dx.doi.org/10.2307/3318418
http://dx.doi.org/10.2307/3318418
http://dx.doi.org/10.1190/geo2015-0198.1
http://dx.doi.org/10.1190/geo2015-0198.1
http://dx.doi.org/10.1190/geo2015-0198.1
http://dx.doi.org/10.1190/geo2015-0198.1
http://dx.doi.org/10.1029/2000RG000089
http://dx.doi.org/10.1029/2000RG000089
http://dx.doi.org/10.1029/2000RG000089
http://dx.doi.org/10.1088/0266-5611/3/3/015
http://dx.doi.org/10.1088/0266-5611/3/3/015
http://dx.doi.org/10.1016/0021-9991(92)90400-S
http://dx.doi.org/10.1016/0021-9991(92)90400-S
http://dx.doi.org/10.1190/geo2016-0010.1
http://dx.doi.org/10.1190/geo2016-0010.1
http://dx.doi.org/10.1190/geo2016-0010.1
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1111/j.1365-2478.1996.tb00152.x
http://dx.doi.org/10.1190/1.1649391
http://dx.doi.org/10.1190/1.1649391
http://dx.doi.org/10.1190/1.1649391
http://dx.doi.org/10.4310/CMS.2004.v2.n4.a7
http://dx.doi.org/10.4310/CMS.2004.v2.n4.a7
http://dx.doi.org/10.4310/CMS.2004.v2.n4.a7
http://dx.doi.org/10.4310/CMS.2004.v2.n4.a7
http://dx.doi.org/10.4310/CMS.2004.v2.n4.a7
http://dx.doi.org/10.4310/CMS.2004.v2.n4.a7
http://dx.doi.org/10.1190/segam2016-13865449.1
http://dx.doi.org/10.1190/segam2016-13865449.1
http://dx.doi.org/10.1190/segam2016-13865449.1
http://dx.doi.org/10.1190/geo2018-0893.1
http://dx.doi.org/10.1190/geo2018-0893.1
http://dx.doi.org/10.1190/geo2018-0893.1
http://dx.doi.org/10.1111/j.1365-246X.2009.04429.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04429.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04429.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04429.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04429.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04429.x
http://dx.doi.org/10.1111/j.1365-246X.2009.04429.x
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1190/1.1441754
http://dx.doi.org/10.1214/aos/1176325750
http://dx.doi.org/10.1214/aos/1176325750
http://dx.doi.org/10.1190/1.1444923
http://dx.doi.org/10.1190/1.1444923
http://dx.doi.org/10.1190/1.1444923
http://dx.doi.org/10.1190/geo2013-0055.1
http://dx.doi.org/10.1190/geo2013-0055.1
http://dx.doi.org/10.1190/geo2013-0055.1
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/1.3238367
http://dx.doi.org/10.1190/geo2015-0387.1
http://dx.doi.org/10.1190/geo2015-0387.1
http://dx.doi.org/10.1190/geo2015-0387.1
http://dx.doi.org/10.1190/geo2013-0294.1
http://dx.doi.org/10.1190/geo2013-0294.1
http://dx.doi.org/10.1190/geo2013-0294.1
http://dx.doi.org/10.1190/geo2013-0294.1
http://dx.doi.org/10.1190/segam2016-13948739.1
http://dx.doi.org/10.1190/segam2016-13948739.1
http://dx.doi.org/10.1190/segam2016-13948739.1
http://dx.doi.org/10.1190/segam2017-17790005.1
http://dx.doi.org/10.1190/segam2017-17790005.1
http://dx.doi.org/10.1190/segam2017-17790005.1
http://dx.doi.org/10.1190/segam2019-3216581.1
http://dx.doi.org/10.1190/segam2019-3216581.1
http://dx.doi.org/10.1190/segam2019-3216581.1
http://dx.doi.org/10.1038/ngeo1501
http://dx.doi.org/10.1038/ngeo1501
http://dx.doi.org/10.1190/geo2015-0596.1
http://dx.doi.org/10.1190/geo2015-0596.1
http://dx.doi.org/10.1190/geo2015-0596.1
http://dx.doi.org/10.1190/geo2015-0641.1
http://dx.doi.org/10.1190/geo2015-0641.1
http://dx.doi.org/10.1190/geo2015-0641.1

