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Abstract There has been a strong need for simulation
environments that are capable of modeling deep interde-
pendencies between complex systems encountered during
natural hazards, such as the interactions and coupled effects
between civil infrastructure systems response, human
behavior, and social policies, for improved community
resilience. Coupling such complex components with an
integrated simulation requires continuous data exchange
between different simulators simulating separate models
during the entire simulation process. This can be imple-
mented by means of distributed simulation platforms or
data passing tools. In order to provide a systematic refer-
ence for simulation tool choice and facilitating the devel-
opment of compatible distributed simulators for deep
interdependent study in the context of natural hazards, this
article focuses on generic tools suitable for integration of
simulators from different fields but not the platforms that
are mainly used in some specific fields. With this aim, the
article provides a comprehensive review of the most
commonly used generic distributed simulation platforms
(Distributed Interactive Simulation (DIS), High Level
Architecture (HLA), Test and Training Enabling Archi-
tecture (TENA), and Distributed Data Services (DDS)) and
data passing tools (Robot Operation System (ROS) and
Lightweight Communication and Marshalling (LCM)) and
compares their advantages and disadvantages. Three
specific limitations in existing platforms are identified from
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the perspective of natural hazard simulation. For mitigating
the identified limitations, two platform design recommen-
dations are provided, namely message exchange wrappers
and hybrid communication, to help improve data passing
capabilities in existing solutions and provide some guid-
ance for the design of a new domain-specific distributed
simulation framework.

Keywords Civil infrastructure - Data passing

tools - Distributed simulation platforms - Hybrid
communication - Message exchange wrapper - Natural
hazards

1 Introduction

As in many other fields, numerical simulation models in
the natural hazards research area have primarily evolved
along separate disciplines. For example, in earthquake
engineering, several models have been developed to sim-
ulate various effects of an earthquake on civil infrastructure
(Xiong et al. 2016). An example in the fire propagation
area is National Institute of Standards and Technology
(NIST)’s Fire Dynamics Simulator (FDS) and Smokeview
(Kerber and Milke 2007). In hurricane research, there exist
some public models such as the Florida Public Hurricane
Loss Model (FPHLM) (Chen et al. 2009) and commercial
models from AIR Worldwide (AIR) (AIR Worldwide
2020), Applied Research Associates (ARA) (ARA 2021),
and Risk Management Solutions (RMS) (Risk Manage-
ment Solutions 2007). Similarly, several models exist in
hazard-related areas such as wind (Lin et al. 2018), tsunami
(Zobel et al. 2006), flood (Ginting and Mundani 2019),
power system (Wang et al. 2015), transportation (Barrett
et al. 2010), human response under disasters (Jain and
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McLean 2003; Bunea et al. 2016), and to a lesser extent,
evacuation plans (Xie et al. 2016), emergency response
training (Liu et al. 2007), and post-disaster recovery (Fie-
drich 2006).

However, extreme natural hazards, such as earthquakes,
tornadoes, floods, and hurricanes, often induce complicated
interdependencies between the built environment (for
example, buildings and bridges), critical infrastructure
systems (for example, roadways and communications), and
social and non-physical systems (for example, politics and
economics). As such, hazards simulation and disaster sci-
ence, more broadly, are highly multi-disciplinary research
areas. Many U.S. government documents (NRC
2011a, 2011b; NIST 2016a, 2016b) and researchers (Ko-
liou et al. 2017; Mitsova 2018) have called for the devel-
opment of comprehensive frameworks that can integrate
the efforts from different sub-fields and enhance interdis-
ciplinary  collaborations  between natural hazard
researchers.

In order to deal with this lack of compatibility, one
promising and practical strategy is to modularize each
discipline-specific computational model and then integrate
them with distributed simulation platforms such as Dis-
tributed Interactive Simulation (DIS) (D.S. Committee
2012), High Level Architecture (HLA) (HLA Working
Group 2010), Test and Training Enabling Architecture
(TENA) (Powell and Noseworthy 2012), and Distributed
Data Services (DDS) (OMG 2015), or data passing tools
such as Robot Operation System (ROS) (ROS.org 2018)
and Lightweight Communication and Marshalling (LCM)
(Huang et al. 2010). Addressing this problem using such an
approach is commonly referred to as distributed simulation.

The current state of affairs in this field is that since each
domain has been evolving separately, most of the existing
integrated simulations are developed upon and limited to
domain-specific simulation environments and lack the
benefits of interoperability, reusability, and scalability
provided by the generic simulation platforms listed above.
For example, in earthquake engineering, Integrated Earth-
quake Simulator (IES) (Hori and Ichimura 2008; Hori
2011) was originally developed to seamlessly integrate
analysis models and simultaneously analyze almost all
processes involved in earthquake disasters in Japan.
However, even for a similar simulation, a new version of
IES had to be developed separately for the Istanbul, Turkey
earthquake due to differences in numerical analysis meth-
ods and available urban information (Sahin et al. 2016).
Moreover, IES is sequential and thus inconvenient to be
integrated with other simulators with different simulation
resolutions such as dynamic debris and transportation
systems for timestep-wise coupling simulation (Sahin et al.
2016). Similarly, Miles and Chang conducted simulations
to study the interactions that occur between various entities
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during disasters (Miles and Chang 2006). However, the
proposed approaches do not support cascading or parallel
disaster events. In addition, without using distributed
simulation, these simulators need to run on a single
machine with limited processing power, which usually
limits the scale of the problem that can be simulated.

Some researchers have realized the necessities and
benefits of the distributed simulation platforms or tools and
started to use them in the hazards engineering field. For
example, Mandiak et al. developed a disaster monitoring
interface and integrated it into an HLA-based earthquake
simulation for post-disaster data fusion (Mandiak et al.
2005). Fiedrich proposed a distributed simulation system
based on HLA that focused on resource management issues
during disasters (Fiedrich 2006). To improve people’s
emergency response, Liu et al. demonstrated an emergency
training simulation achieved by HLA (Liu et al. 2007). Nan
and Eusgeld developed an HLA-compliant simulation
testbed and demonstrated that HLA is a viable option to
simulate and capture interdependencies among simulators
(Nan and Eusgeld 2011). More recently, Lin et al. proposed
to model interdependent effects in natural hazards and
implemented an example application in wind engineering
(Lin et al. 2018).

Due to the limitations in distributed simulation plat-
forms, the nontrivial gaps between the simulation tools and
domain knowledge, as well as the difficulty of handling
multiple disciplines, most models of disaster scenarios
have focused on the interactions that occur between two or,
at most, three related systems. During disasters, there are
usually more factors that interact with each other. In order
to facilitate the development of compatible domain simu-
lators and the large-scale simulation incorporating deep
interdependencies between multiple simulators, this article
surveys the main existing generic distributed simulation
platforms (DIS, HLA, TENA, and DDS) and data passing
tools (ROS and LCM) that are critical for interdependent
study in natural hazards engineering.

More broadly, these simulation tools can also benefit
various simulations in civil engineering (Kamat and Mar-
tinez 2002; Azar and Menassa 2010; Dong and Kamat
2010) by expanding the simulation scale and increasing
simulation resolution. By jointly using different sources of
models from researchers, model vendors, or individual
developers, they can also provide more detailed and addi-
tional types of information compared to the loss modeling
framework from the OASIS team (Team Oasis 2021) or the
Karen Clark & Company (2020) that is largely driven from
loss estimation requirements for insurance businesses.

The strengths and weaknesses of each representative
simulation tool are identified to guide researchers or sim-
ulation engineers to choose the appropriate tools for their
specific applications while being aware of the limitations.
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After the systematic review of the distributed simulation
tools, the key limitations to the current existing distributed
simulation tools are summarized to highlight the specific
needs in natural hazards engineering. Finally, based on a
synthesis of the gathered information, two platform design
recommendations are provided, namely message exchange
wrappers and hybrid communication, to help further
improve data passing capabilities in existing solutions and
provide some guidance for the design of a new simulation
framework.

2 Existing Distributed Simulation Platforms

Distributed computing emerged about 40 years ago when
the U.S. Department of Defense (DoD) started developing
communication protocols to enable interactive simulations
involving various types of weapon systems. Among the
distributed simulation platforms developed were DIS (D.S.
Committee 2012), HLA (HLA Working Group 2010), and
TENA (Powell and Noseworthy 2012). Besides military
training and simulation, they have also been utilized in
marine simulators (Yong and Jin 2000), space projects
(Arguello and Mir6 2000), infrastructure system simulation
(Grogan and De Weck 2015), and virtual testing (Dai et al.
2011). Independently driven by the challenges of con-
ducting real-time sensing, information fusion, and control
in robots, researchers in robotics engineering developed
low-latency data passing solutions. For example, ROS
(ROS.org 2018) and LCM (Huang et al. 2010) have been
developed and widely used in real-time robotics applica-
tions. Due to their ease of use and high efficiency,
researchers have started exploring their applications in
distributed simulations for modeling coupling interactions
between building energy consumption and human comfort
(Thomas et al. 2017) and interdependent effects in natural
hazards (Lin et al. 2018; Lin et al. 2019).

In recent years, due to the rising interest in the extension
of Internet connectivity, many solutions have been pro-
posed to address the emerging need for Internet-of-Things
(IoT) applications. Among such work, IoTivity (IoTivity
2018), which uses a constrained application protocol
(CoAP) as its software protocol, is mainly focused on
device-to-device connection. DDS (OMG 2015) is a more
general data communication protocol and standard devel-
oped by the Object Management Group (OMG), which is
suitable for all kinds of connections in IoT applications.
Even though DDS was developed for real-time operations,
it provides features such as API Standard, Data Modeling
Standard, Quality of Service, and Time Management,
which are comparable to HLA, and thus also suitable for
simulations. The remainder of this section reviews the two
categories of data passing tools for distributed simulation:

standards and standard-based solutions and standalone
tools.

2.1 Standards and Standard-Based Solutions

This section reviews the standards and standard-based
solutions, including DIS, HLA, TENA, and DDS.

2.1.1 Distributed Interactive Simulation (DIS)

The early efforts of the U.S. defense community to address
the need for networked multi-user simulation led to the
SIMNET (Simulation Networking) project (Miller and
Thorpe 1995). For about a decade, SIMNET formed the
technological foundation for many of its descendants and
was the origin of a sequence of IEEE standards. One of
SIMNET’s derivatives, the DIS protocol, was published as
an industry standard from 1993 to 1998 by IEEE (DIS
Steering Committee 1998). The standard was considered
dominant until a new standard (IEEE std 1278.1-2012
(D.S. Committee 2012)) was released. As related research
in hazards engineering, it was planned to be used in a
future version of evacuation simulation in fire disasters
(Ren et al. 2007). For legacy reasons, DIS is still used
today in some modern simulations.

The DIS protocol is designed to be a message passing
standard (not an existing software or package) that speci-
fies message types and the procedures to transmit the
messages across a network of different simulators. If it is
followed correctly, compliant simulations are capable of
sending and receiving messages to and from any other
compliant simulation, even if the local DIS implementa-
tions that run on different hosts are diverse. More specifi-
cally, DIS adopts a communication pattern for message
exchange with point-to-point communication via User
Datagram Protocol (UDP) as shown in Fig. 1. The message
format is well specified and referred to as protocol data unit

o
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Fig. 1 Point-to-point message exchange via user datagram protocol
(UDP) in distributed interactive simulation (DIS)
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(PDU), which consists of an entity ID, entity type, and any
expected values a simulation requires to function, repre-
sented in binary format. The standard defines exactly what
variables can be present. Values like “position,” “
tation,” and “collision” all take a certain number of bits
and have pre-defined limits to the range of values they can
contain.

It is presumed that each simulation is capable of
encoding and translating these values to binary format,
knowing in advance the exact location and number of bits
in which each value exists (as defined by the standard).
Therefore, a set of PDUs used in different fields for dif-
ferent purposes are predefined in the standard and only
these PDUs are available to simulation engineers. Such an
approach is very inflexible. If a custom type of PDU is
required, it has to be included in the standard first and only
then can it be used in simulations. For example, in order to
simulate the effect of wind on multiple buildings, a sce-
nario simulator needs to be set up first to send scenario
information to other simulators such as wind generator
simulator, structure analysis simulator, and damage simu-
lator. The scenario information needs to include building
location, geometry, and material types, and thus needs a
more complex data structure than what DIS provides in its
PDUs. Therefore, it is a significant challenge to create such
a simulation with DIS.

In point-to-point communication (Fig. 1), there is no
middleware or center server maintaining message
exchange. Instead, each message sender would manually
connect to its receivers using their network Internet Pro-
tocol (IP) addresses. This makes it only suitable for its
original focus, that is, individual weapon simulation for
military training and real-time wargaming but not scale
well for the aggregate level simulation of a battlefield.
Another problem is that although the standard describes in
great detail the format of data being sent over a network, it
does not specify how exactly network communication
should be implemented and is open to any implementation
(typically hidden to an end user). This further leads to the
following two disadvantages: (1) it is up to users to create
their own communication tools by following the standard;
and (2) users must be capable of creating the tool them-
selves or must be able to obtain a premade solution (open-
source or commercial) such as Open DIS (McGregor et al.
2008) and VR-Link (VT MAK 2018).

Knowledge of the data format in advance is the simplest
manner to maintain consistency across simulations. How-
ever, DIS puts full responsibility on the user to correctly
implement its standard. Inflexibility in the data format and
consequences for peer-to-peer network connections make it
scale poorly for different use cases and difficult to imple-
ment in the case scenarios involving multiple simultaneous
simulations that are quite common in a disaster scenario.

orien-
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Distributed Interactive Simulation also does not encompass
other important features, such as time management and
network management that would be desirable when mul-
tiple simulators are involved in a simulation. Newer stan-
dards attempted to address these drawbacks. Among them
are Common Training Instrumentation Architecture
(CTIA), Aggregate Level Simulation Protocol (ALSP),
HLA, and TENA. Among these, HLA and TENA are the
most widely known.

2.1.2 High Level Architecture (HLA)

HLA was developed by the U.S. DoD and the Defense
Modeling and Simulation Office (DMSO) in 1995 (Hol-
lenbach 2009) based on experience with DIS and the desire
to develop a high-level simulation architecture that would
facilitate interoperability and reusability of distributed
simulation components. It became a DoD standard in 1998
(The U.S. DoD HLA 1.3 specification) (Dahmann et al.
1998) and an IEEE standard in 2000 (HLA Working Group
2000), and then evolved again to its latest version in 2010
(HLA Working Group 2010), and continues to be an active
standard as of 2019. High Level Architecture was once
widely used in distributed simulations, including some
natural hazard simulations where it was utilized to model
interdependencies between critical infrastructure systems
(Fiedrich 2006; Eusgeld and Nan 2009; Eusgeld et al.
2011) and disaster responses (Liu et al. 2007; Hwang et al.
2016).

High Level Architecture has some advantages over DIS.
First, HLA-compliant software uses an application pro-
gramming interface (API), which in turn can be used by a
simulation member, called a federate application in HLA.
This facilitates connections between federates. The API
includes functionality to control time management and
syncing data exchange between different simulations.
Second, unlike DIS where the data structure has to be
predefined in the standard, by invoking the HLA Object
Model Template (OMT), a user is allowed to model data as
an object instance or an interaction (also called HLA
objects) that includes the data (attributes and parameters,
separately) to be exchanged among the federates in a fed-
eration execution at design time. This is clearly more
flexible than the DIS alternative for a disaster simulation
where an interaction instance can be conveniently used to
model an earthquake event, an evacuation event, or a
recovery event, and its effect can be reflected in some
object instances used to model buildings or lifelines. Third,
in terms of how data are exchanged, instead of using the
point-to-point communication in DIS (Fig. 1), HLA routes
data as HLA objects via a middleware (called runtime
infrastructure (RTI)) using a Publish/Subscribe (P/S) pat-
tern (Fig. 2). In this way, the sender and receiver federates
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Fig. 2 Mediator-based object exchange via user datagram proto-
col/transmission control protocol (UDP/TCP) in high level architec-
ture (HLA). RTI: runtime infrastructure.
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just need to declare what data they need and what data they
provide, without the requirement of knowing about other
federates. This feature further improves the reuse of each
federate by decreasing the coupling among different fed-
erates in a federation, and makes it scale better for systems
with a large number of simulations. In other words, the
federates each connects to a single point, rather than to
each other.

Although HLA is more general than DIS, it still suffers
from multiple flaws. It is defined as a simulation systems
architecture framework (HLA Working Group 2010), not a
software or an implementation. Therefore, HLA software
must be able to “connect” to the RTI. However, it does not
specify how the connection works, leaving the implemen-
tation up to the creator of the HLA compliant software.
Similarly, time-management is described as a function that
must exist, but how it functions can be unique in many
implementations. Indeed, its very existence is all that is
needed to be compliant. For example, if the wind-building
simulation mentioned in Sect. 2.1.1 is created in HLA with
different RTIs, the simulation’s efficiency can be quite
different depending on detailed RTI implementations. In
practice, users usually have to try different RTIs to get
satisfactory efficiency performance. Moreover, having to
compile a data format allows efficiency to be maintained as
to the number of bytes in each message but requiring
compilation on a user’s local machine every time that the
data format and content changes is onerous.

Commercial HLA software packages available for use
are CERTI (ONERA 2018), Portico (Calytrix Technologies
2018), MAK (MAK Technologies 2018), and Pitch (Pitch
Technologies 2018). While there are multiple open-source
solutions, as of 2019, many of them have been discontin-
ued or are unobtainable, or they are not 100% compliant
with HLA standards. It is not trivial to program HLA
software from scratch, as there are six separate manage-
ment systems (federation, declaration, object, ownership,
time, data distribution) (HLA Working Group 2010) that
have their own specification section, each lengthy, but
lacking in the detail required for systematic implementa-
tion. The benefit of the standard is that a prepared

simulation can be compatible with any compliant HLA
software. However, generally, only one vendor’s HLA
software can be used in a federation to allow compatibility
with the RTI and local federate’s APIL. In order to help
ensure compliance and encourage adoption, the U.S. DoD
offered a public service to check if a new implementation
met the HLA standard, but this service was later abandoned
when the original website shifted domains (Behner and
Lofstrand 2017).

High Level Architecture is still in use, but interest in it
has decreased since its inception. The standard’s ambiguity
and a lack of easily available implementations have made it
difficult for newcomers to utilize HLA in practice.

2.1.3 Test and Training Enabling Architecture (TENA)

Test and Training Enabling Architecture was introduced by
the U.S. DoD. Designed after HLA, TENA’s development
traces as far back as 1998 (Cozby 1998) and continues to
be maintained as of 2018. Similar to HLA, TENA allows
for the development of individual simulations interoperable
with each other for distributed systems, saving time and
money in the development process. As a tool, its func-
tionality is revised based on early user feedback, but its
core intentions drive its development.

The architecture of TENA consists of TENA-compliant
applications and simulations, TENA Middleware, and
TENA Utilities, including a gateway accessible by non-
TENA systems. The middleware acts as a communication
channel, where data must be formatted according to a
TENA Object Model. One advantage of TENA over HLA
is that it allows data to be exchanged between custom
object models as long as they are used by two or more
simulators. However, custom object models in HLA usu-
ally risk being incompatible with other simulators that can
only recognize models from HLA’s predefined model set.

Different from HLA and other standards, TENA is not
intended to act as a professional standard document
(Powell and Noseworthy 2012), but as a standard tool.
Monitored closely by its development group, access to
TENA and its documentation requires applying for a free
account through an online portal. While this process is
open to all applicants, the existence of a screening process
that asks for contact information, project intentions, and
grant usage makes it difficult for researchers to test
TENA’s functionality to confirm it meets their require-
ments. In addition, since TENA places more emphasis on
real-time applications, it has only provided partial time
management ability compared with HLA, which makes it
less convenient for simulations that need complex time
synchronization. Therefore, even though TENA was made
explicitly to overcome some limitations in HLA, its inac-
cessibility and the fact that some of its functionality and
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design are still in development, make TENA a difficult
choice for practical use cases in the near future.

2.1.4 Data Distribution Service (DDS)

The DDS is a standard for data communication between
distributed machines and software for real-time systems
(OMG 2015). Unlike the previous solutions in this section
that are oriented for distributed simulation and created by
government entities, DDS was originally designed for real-
time distributed operational systems and developed by a
professional non-profit collective called Object Manage-
ment Group since 2004 (OMG 2004). The DDS is not a
single tool or software solution, so users must utilize
accessible documentation on the standard to prepare their
own, or must use existing solutions, including RTI Connext
(Real-time Innovations 2018) or OpenDDS (OMG 2018).
The intention is that all DDS solutions follow the specifi-
cation carefully, such that each user can use any vendor’s
DDS solution and be interoperable with each other on the
network. Professional demonstrations have been given to
show this interoperability to be possible with DDS software
from different vendors. It has been used for disaster man-
agement in natural hazards engineering (Lazarov et al.
2015; Ray et al. 2017).

Best suited for Internet-of-Things (IoT) applications,
DDS is flexible for use across a variety of domains jointly
with HLA or as a replacement. In DDS, data are pre-de-
fined as a message format in a struct-like file suffixed with
.idl and compiled with the DDS software to make it rec-
ognizable when it is written to or retrieved from the DDS
global data space with a DataWriter or a DataReader.
Using a specially designed topic-based P/S mechanism to
share data within a domain participant, DDS does not
depend on any global knowledge and supports fully
dynamic discovery and matching of different DataWriters
and Data Readers, which is more flexible than HLA that
still requires static declaration in Federation Object Model
(FOM) even though different publishers and subscribers
can be matched dynamically. It also provides richer (22
versus 2 in HLA) quality of service (QoS) policies that help
to control local and end-to-end properties of DDS entities.
Conversely, since it was originally designed for real-time
application in distributed operational systems, the main
disadvantage of DDS is that it does not explicitly provide
time management mechanisms for different types of time
advancement controls as HLA does.

While DDS is not as feature-complete as HLA, its
simplified standard makes it more accessible for users. Not
requiring a single access point (like HLA’s RTI) makes it
less prone to slow-down from the RTI’s perspective when
adding more simulations, and the complexity of connec-
tions is handled internally without the user’s concern.
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Compiling a data format ahead of time is still a limitation
that TENA sought to overcome but doing so enables DDS
to maintain optimal speed in data communication.

With each of these solutions, the need to study lengthy
standards and rules together with the need to deal with the
compatibility of legacy standards, often make them diffi-
cult to use. However, these solutions provide instructions
that others can follow, putting the responsibility on indi-
vidual users to ensure that their own local simulation is
built correctly to be compliant without worrying about how
other simulations might function.

2.2 Standalone Tools

This section reviews two standalone data passing tools,
ROS and LCM.

2.2.1 Robot Operation System (ROS)

Unlike the approaches listed above, which are either
designed for distributed simulation or distributed opera-
tional systems, ROS is a robotics middleware that provides
services including hardware abstraction, low-level device
control, package management, message passing, and so on
(ROS.org 2018). Such a design makes it possible for
robotic engineers to quickly and conveniently build up a
robot by taking advantage of many existing hardware dri-
vers and implemented algorithms distributed as ROS
packages (Xu et al. 2018; Xu et al. 2019).

While ROS is best suited for applications in robotics, its
message passing design based on a Publish/Subscribe
communication can be applied to simulation applications in
natural hazards scenarios with some benefits. More
specifically, the three different patterns of data exchange
supported by ROS all have their corresponding applications
in distributed simulations. In most cases, the output of one
node needs to take as input the runtime outputs of some
other nodes and in turn, its output can be used as part of the
input for other nodes. Such input and output information
generally needs to be exchanged continuously at a small
timestamp and can be modeled as messages in ROS.

A message in ROS is a data structure that can be defined
flexibly in a .msg file by following a syntax similar to C
structs. Most messages have a header field that is filled with
a simulation timestamp by ROS and is used for time
management. Once a message is compiled with ROS, by
importing or including its bindings, a node can encode and
retrieve information into and from the corresponding
message automatically with ROS. Another type of data
exchange is conducted in the Request/Response way where
the data structures in a request and a response are formatted
together as service in ROS and are defined in a .srv file by
following similar syntax to ROS messages. In this pattern,
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by agreeing upon the same srv, a client provides the
required input for the request and requests a server to give a
response based on the request. The returned response
depends on the implementation on the server side.

For a distributed disaster simulation, this is suitable for
acquiring the global configuration (such as the scenario
information in the wind-building example in Sect. 2.1.1)
from the server or for commanding some other nodes to
behave in a specific way. However, for the latter use, if the
server takes a significant amount of time to perform the
requested action or does not respond to the request, the
client would not receive any feedback and thus know
nothing about the status of the server. This lack of
knowledge of the status of the server can be solved by
using the actionlib pattern. This pattern specifies the for-
mats of the goal (the result and the feedback message) in an
action file in a similar way to ROS msg and ROS srv. In
this way, after a client sends out an action request to a
server, it can keep listening to the feedback from the server
and make further decisions based on the feedback. This
approach is extremely useful for distributed disaster sim-
ulations whose nodes are simulating reality at different
time scales (such as an earthquake node and a recovery
node). Those nodes that run faster can request the others to
catch up via an action request.

For its wide use in the robotics community, ROS is well
documented, and it is easy to access help from different
technological forums. Despite the above advantages it also
has some drawbacks. Since it was not specially designed
for simulation purposes, it lacks implementation of time
management and quality of service (QoS) policies com-
pared to other simulation-oriented approaches. Besides, it
does not provide a convenient way to set up connections
among different nodes. Each node needs to explicitly
specify the topics the node subscribes to and the way the
node wants to receive the messages on these topics.
Therefore, when a node is used together with a simulator,
the code for message communication is usually inter-
spersed with the code for simulator functions. This lack of
convenient communication interface makes it scale poorly
as the number of nodes increases, limiting its suitability for
large-scale simulations.

2.2.2 Lightweight Communication and Marshaling (LCM)

Lightweight Communication and Marshaling is another
data passing tool oriented for real-time robotics applica-
tions (Huang et al. 2010). It has been applied to disaster
simulations (Lin et al. 2018; Lin et al. 2019) recently owing
to its beneficial features including low-latency, platform
and language independence, and publish/subscribe data
transmitting scheme. As a lightweight solution, it is mainly
comprised of three functionalities—message type

specification, message marshaling, and message commu-
nication—and, despite what its name suggests, some
analysis tools. In LCM, the data to be transmitted over a
network need to be first structured as a message type, by
following its specific type specification language whose
syntax is very similar to C structs.

After the message type is well defined, the provided
lcm-gen tool is invoked to generate its language-specific
bindings that can be further included or imported in custom
simulators to use the corresponding message. Such bind-
ings can be generated to support multiple languages (C,
C++, C#/.NET, Java, Lua, and Python) on different plat-
forms (Linux, OS X, Windows, and any POSIX-1.2001
system), which is very convenient for simulator developers
with different preferences. In the actual communication, a
message is marshaled by attaching to it a fingerprint
derived from its channel name and message type and
routed from its sender to its receivers with a Publish/Sub-
scribe pattern. LCM uses multicast UDP based peer-to-peer
communication, in which there is no mediator and each
simulator is both a sender and a receiver.

In LCM, messages are routed to all the LCM subscribers
that are in the same multicast group and each subscriber
further selects the messages it is expecting based on the
channels to which it has subscribed. As shown in Fig. 3, for
any simulator #i in the multicast UDP group, its LCM
subscribers receive all the messages published within the
same group. After receiving these messages, its subscribers
automatically select the messages published to the channels
that they have subscribed to by dropping all the other
messages, such that the simulator #i can work with the
messages it is interested in by just subscribing to the
appropriate channels.

Compared to ROS, LCM also provides some useful
tools (logging, replaying, and inspecting traffic) to help
with debugging during development as well as help inspect
and analyze the simulation during testing. As a pure data
passing tool, LCM provides great flexibility for further
development of different features by users. However, as a
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Fig. 3 Message exchange via multicast user datagram protocol
(UDP) in lightweight communication and marshaling (LCM)
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robotics tool, it inevitably lacks the specific features ded-
icated to simulation, such as time management and QoS
policies. Moreover, due to reasons similar to ROS, it does
not scale well.

Compared to the approaches in the last section,
approaches from the robotics community include a ready-
to-use library and provide well-documented instructions,
which make them easier to use for skilled programmers.
The main problem with these methods is the lack of a
systemic way to deal with scalability issues. It is the users’
responsibility to make sure that the connections among
different simulators and time management for each simu-
lator are set up correctly by adding corresponding code to
the simulators. This mixture of code for connection and
simulator functionality makes it hard to manage the sim-
ulators when their numbers greatly increase and thus limits
these approaches to small or medium-scale problems.

3 Limitations

Based on the review in Sect. 2, in this section, three main
limitations are recognized from the perspective of user
experience when trying to create a complex coupling dis-
tributed simulation conveniently and efficiently from
scratch in the fields related to natural hazards.

3.1 Lack of Easy-to-Use and Standard Solutions

Among the standards and standard-based solutions, both
DIS and TENA have to use pre-defined sets of messages,
which is not flexible for information exchange between
different natural hazard simulators (as explained in the
wind-building example in Sect. 2.1.1). Moreover, they can
only build real-time simulations that run in wall-clock
time. This makes the simulation of a recovery process, a
typical simulator involved in a disaster-related simulation,
very prolonged and inefficient.

Compared with DIS and TENA, HLA and DDS are
more suitable for disaster simulations. As standards, they
levy many requirements on the design of API, and some
implementations have been designed by following such
specifications. However, it is still difficult for a novice to
rapidly build a functional simulation and, for experienced
users, non-trivial to achieve desired simulation perfor-
mance. On one side, with the aim of allowing an interop-
erability level of integration across areas in distributed
simulations by defining common data types and specifying
APIs, they have become formidably long standards that are
quite hard to follow and adhere to. Therefore, it is common
that some implementations just follow and support part of
the API specifications and it is necessary for users to be
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aware of the deviations from the standards in addition to a
basic understanding of HLA or DDS concepts.

While HLA and DDS include the detailed requirement
for API, they do not specify exactly what algorithms need
to be used and how the API function should be imple-
mented, which leaves the flexibility to API implementers.
This flexibility for the implementers leads to diverse API
implementations with different vendor-specific features
and advantages, and it is important for users to be able to
choose the appropriate implementations to achieve their
custom simulation performance goals. In practice, achiev-
ing custom simulation performance goals requires the users
to know about different implementations and the differ-
ences between them, since these differences are generally
non-trivial and experience from one implementation cannot
be directly applied to another.

Unlike tools built on standards, ROS (and LCM) can be
thought of as a standalone tool providing much less, but
necessary, APIs for data sharing, which is particularly well
suited to users who need to quickly build up a small-scale
application-specific simulation and distribute it over a
network. While this approach provides a flexible and
convenient way of constructing simulations, the issue for
this category of tools is that different simulators have to
agree on the structure of the shared message due to lack of
standardization, even though it is not difficult to come up
with simple specifications on the data structure for appli-
cation-specific problems.

3.2 Lack of Scalability and Extensibility
for Building Large-Scale Simulations

Generally, standards do not specify the scale of simulation
that an API needs to and should support, and in theory,
users can try to connect as many simulators as they want in
one simulation. However, in practice, the scalability of the
standard-based methods is greatly impacted by the detailed
API implementations, and the practical performance can
vary greatly as the size of the simulation changes. When
the simulation scale is small, such as a simulation of
interdependencies between natural hazards with several
buildings, peer-to-peer communication is preferred since
mediator-based communication would need one extra
message copy for each subscriber of a message and thus
need more bandwidth and result in more latency.

As the simulation scale increases to the middle scale,
such as a city-scale simulation of natural hazard interde-
pendency, mediator-based communication becomes
preferable. The reason is that the overhead resulting from
additional message copies becomes less important com-
pared to the total message routing time, and mediator-
based communication also provides other benefits such as
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monitoring of individual simulators and more flexible
central time management.

However, when the scale increases to a large scale (for
example, state level) the performance bottleneck of the
simulation is usually the power of the processor where the
mediator runs since the mediator has to route a great
number of different types of messages and conduct corre-
sponding time management for a large number of simula-
tors. Therefore, it generally needs additional algorithms to
distribute the work of the mediator over multiple proces-
sors, which increases the complexity of the simulation.
Since both the standard-based tools and standalone tools
reviewed above use a fixed message delivery method, it is
difficult for them to always obtain the best performance for
different simulation scales.

For extensibility, DIS and TENA are seriously limited
since they can only use fixed sets of messages. Other
standard-based tools such as HLA and DDS support cus-
tom messages, which make them convenient for extending
the information shared between different simulators. For
standalone tools, new information to be shared has to be
defined as new messages or added to the old message
definitions, and the created or modified message definitions
have to be recompiled to make sure they can be recognized
by different simulators. This process almost always
includes modification of the relevant simulators to make
sure they can send and receive the pre-compiled messages.
This process is not convenient and sometimes even difficult
for experienced users.

3.3 Inability to Rapidly Build and Integrate
Application-Specific Simulators

The most important goals of standards and standard-based
tools are to improve reusability and interoperability and
make simulators usable across fields. The benefits are
significant when users have easy access to many choices of
simulators that have been developed by people from dif-
ferent fields for different purposes. However, in practice,
these benefits are limited for two reasons. First, it is still
challenging to integrate simulators developed by others
without any knowledge of them, even if they are compat-
ible with the same standard. Such knowledge includes
simulator time resolution, simulator mode (time-driven,
event-driven, or hybrid), and time management option,
which users may have to modify to make the simulators
work correctly. Therefore, simulators’ reusability and
interoperability are mainly achieved in some relevant
simulations that are developed by the same group of people
who developed the simulators.

The second reason is that the complexity of utilizing the
simulation tools to develop reusable and interoperable
simulators limits the number of available simulators.

Skilled simulation engineers are good at achieving
reusability and interoperability of simulators when they are
given functional simulators from different domains. How-
ever, it is usually difficult for them to develop simulators
from scratch without enough domain knowledge. Instead, it
is the people with good domain knowledge that are more
suitable to develop domain-specific simulators for specific
applications. However, the complexity of standard-based
simulation solutions creates a non-trivial gap between
domain knowledge and a simulator compatible with the
same simulation solutions.

It is also difficult to rapidly get started with building a
functional simulation for domain expertise with limited
simulation background. Users need to at least have some
knowledge of the standard, the usage of the API imple-
mentation they have selected, and some programming
skills to configure and compile the standard-based tool on
their custom computers, which entails a steep learning
curve. In this regard, standalone tools are also inappropri-
ate. For these tools, time management has to be imple-
mented additionally and it is difficult to separate message
exchanging code and simulator code for scalability (do-
main users may care more about scalability than simulation
efficiency). These are all challenging to achieve for users
without much programming experience.

4 Recommendations

This section aims to improve the recognized limitations as
listed in Sect. 3 with two improvement recommendations.
In a simulation involving multiple analysis models, it is
usually natural and straightforward to implement a simu-
lator as a separate module that interacts with other modules
and implement a sub-simulator as a separate component
that interacts with other components within the same
simulator. For example, in a simulation of interactions
between sequential earthquakes and corresponding recov-
ery processes, it is natural to define a seismic simulator
separately to model the earthquake and its impact on the
infrastructure in the environment, and a recovery simulator
to model the recovery effort and how infrastructure func-
tionalities are recovered. The seismic simulator can include
several sub-simulators that work together to complete its
tasks, such as a sub-simulator to model the effect of the
earthquake on the ground surface and other sub-simulators
to model how such effects further interact with and damage
buildings, transportation systems, and other infrastructure.
Similarly, the recovery simulator can include a group of
sub-simulators to model how the recovery process evolves
with the interaction among resources such as first respon-
ders, equipment and material, recovery strategy, and as-is
recovery status. There can be any number of simulators and
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sub-simulators, and interaction frequency between them
depends on the simulation resolution. Correspondingly a
varying number of messages need to be delivered and
exchanged. Considering such changes in simulation scale
and complexity and the limitations discussed in Sect. 3, a
recommended data passing platform is proposed for sim-
ulation problems in hazards engineering, which is depicted
in Fig. 4. The system design is proposed to take respective
advantages of a standard-based method and a standalone
tool (such as HLA and LCM).

In the design, two main improvements are made to
ensure its benefits. First, in order to make it easy to develop
and convenient to extend a distributed simulation, a mes-
sage wrapper is developed to receive and send out infor-
mation for simulator functions. In this way, simulators can
be developed with only domain knowledge and, if neces-
sary, some knowledge of the settings controlling the reso-
lution of the simulation. The implementation of a message
wrapper can be looked at as an improvement upon a
standalone tool.

Second, in order to improve scalability, an improvement
is made in which mediator-based communication and peer-
to-peer communication are jointly used to exchange mes-
sages between simulators and sub-simulators via message
wrappers. A simulation platform based on a single com-
munication approach does not adapt well with the scaling
of the simulation in terms of efficiency and time manage-
ment as discussed previously. The mediator-based com-
munication between simulators allows for convenient time
management and error recovery, and the peer-to-peer
communication between sub-simulators can help reduce
the load of the mediator and make the solution adapt well
with simulation scale. This improvement can be looked

upon as an improvement on a standard-based tool such as
the RTI of HLA.

Even though the design is driven by distributing com-
putation across multiple computing devices with limited
processing power, it can also benefit from existing cyber-
infrastructure. For example, DesignSafe cyberinfrastruc-
ture provides convenient cloud-based tools to access data
deports and high-performance computing (HPC) (Rathje
et al. 2017; Pinelli et al. 2020; Rathje et al. 2020). In this
case, simulator (or sub-simulator) functions can run on
HPC to utilize its computation ability and message wrap-
pers can run on a local device to handle data exchange
including retrieving data from cloud or other simulators,
feeding data to its associated simulator functions, retrieving
simulated results, and providing data to other simulators.
The design provides the flexibility, such that users can
implement message wrapper and simulator functions with
the programming languages and APIs supported by the
cyberinfrastructure. The following sections discuss the
design of the message wrapper and the data passing
between such message wrappers in detail.

4.1 Proposed Design of a Message Wrapper

LCM was previously used as the data passing platform in
our previous simulation of wind-building interaction (Lin
et al. 2018, 2019). Here we standardize such a simulation
for general coupling analyses in hazards engineering and
propose an LCM-based disturbed coupling analysis
framework for distributed analyses. As shown in Fig. 5,
simulation developers only need to follow a couple of fixed
steps to create a complex coupling analysis involving
multiple analysis simulators. With the benefit of LCM,
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Fig. 5 A lightweight communication and marshalling (LCM)-based distributed coupling analysis framework

different simulators can be developed with different lan-
guages and run on different operating systems listed in
Sect. 2.2.2. In this framework, different simulators can be
developed separately and connected with LCM-based
message passing. In each simulator, it first initializes LCM
and subscribes to the message channels from which it can
get the messages that the simulator depends on. Light-
weight Communication and Marshalling can help receive
the available messages from the subscribed channels, and
the current simulator needs to decide if a received message
is one that is currently expected.

There are two things to check—message type and
expected timestep—for this type of message. After all the
expected messages are received, this simulator will con-
tinue for one timestep, update simulator results, update
expected timestep for each expected type of message, and
update the current timestep in the simulator. After getting
new simulator results, the simulator will immediately
publish it with the current timestep value. It should be
noted that a simulator still needs to keep publishing sim-
ulator results even in situations where failure is encoun-
tered in the process of checking if a message is an expected
message or if all the expected messages are received. The

reason is that the messages are live data on the channels,
and the same message needs to be sent repeatedly in order
to make sure the message can be received by the simulators
that need it to proceed. Different simulators can be
developed separately by following the same steps and then
they will automatically work together to make up a com-
plete distributed analysis. Compared with standards and
standard-based solutions, this framework is more flexible
and more convenient to quickly create a small-scale anal-
ysis with domain knowledge.

In addition, as shown in our work in Lin et al. (2018)
and Lin et al. (2019), even though simulators and sub-
simulators were not differentiated from each other and all
the separate components were implemented as separate
simulators, LCM still worked efficiently to pass messages
between different simulators benefiting from the fact that it
uses UDP multicast as its transport and does not use a
mediator to route the messages or broker connections
between models. This LCM-based model communication
scales well with the number of the involved models and is
also extensible. However, the code dealing with receiving
and sending messages was implemented together with the
simulator functions, and thus it requires simulator
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developers to know basic usage of LCM. Moreover, this
coding work becomes more complex and error-prone as the
number of simulators increases and the interaction between
simulators becomes complex. This drawback further limits
scalability and extensibility in practice and makes it only
suitable for relatively small-scale analyses.

Ideally, simulator developers should not be required to
have deep knowledge about the distributed analysis plat-
form being used. Instead, they should be able to focus their
attention on developing simulators in their domains and
specifying how they want their simulators to communicate
with each other. In order to achieve this benefit, a message
wrapper design is proposed to work together with the
simulator functions and receive and send messages from
and to the channels for them. The term “channel” is
inherited from LCM and is used to illustrate the new
concept design of a message wrapper. As shown in Fig. 6,
the proposed message wrapper acts as a bridge connecting
message channels and a simulator function. It subscribes to
the channels from which the simulator function gets input
data, decodes messages when required messages are
received, calls the simulator function to update the outputs
of the simulator, encodes output messages, and publishes
them to the specified channels.

Figure 7 shows the procedures of developing a simulator
with a message wrapper. This general design can work with
any standalone data passing tools such as LCM, ROS, or
other custom data passing platforms. For convenience,
LCM is used as an example here to show the detailed
implementation of the files in Fig 7. Simulator developers
first need to prepare two files: a simulator configuration file
and a message definition file. The simulator configuration

file includes all the settings about the simulator, including
simulator name, the channels this simulator needs to sub-
scribe to, the channels it needs to publish on, time step
relationship between the current simulator and the mes-
sages it depends on, the simulator’s dependency on his-
torical data, and whether the simulator needs to publish
initial data for other simulators to start working.

The message definition file includes the name of the
variables in each message and the corresponding data
types. It should be noted that even though LCM can decode
the message and its variable types automatically, these
variables need to be stored as local variables in the wrapper
and thus the variable types still have to be provided in the
message definition file. In the case of LCM, it is straight-
forward to prepare these two files by drawing a commu-
nication network and referring to the LCM message
definitions. When these two files are ready, a simulator
function prototype generator (Fig. 7) is used to generate the
function prototype of the simulator function.

This function prototype generator is implemented in a
simple way that all the variables included in the input
messages are listed as input arguments, all the variables in
the output messages are listed as return values, and the
simulator name is used as the function name. Therefore,
only the information about simulator name, channels to
subscribe to, and channels to publish on in the simulator
configuration file are used to generate the function proto-
type. Then simulator developers need to complete the
created simulator function with only domain knowledge.
After completing the simulator function, the message
wrapper can be run to handle message exchange when it
works with the same simulator configuration file, the same

Simulator function |

X
Decodes and calls simulator function | Encodes output messages
Input Input Input Output Output Output
message] [Imessagel ... |message] message||message| ... [message)
#1 #2 #m #1 #2 #n
| Receives messages Publishes output messages
T * Message wrapper

Message channel *

Fig. 6 The concept of a message wrapper
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Figure 8 shows how a message wrapper computes output
messages based on the input messages and publishes the
output messages on the specified channels. This process is
very similar to those in the simulators depicted in Lin et al.
(2019), the only difference is that the simulator function
and the code for message exchange are now completely
separated with the proposed message wrapper. Therefore,
domain users just need a little effort to develop a simulator
since all they need to know is the domain knowledge to
complete the simulator function and the relationship
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between different simulators. Besides, in the process of
completing the simulator function, it is flexible for users to
use any useful software and/or hardware to facilitate sim-
ulator development and/or accelerate the simulation.

Our previous work (Lin et al. 2018; Lin et al. 2019; Lin
and El-Tawil 2020) showed the effectiveness of the pro-
posed coupling analysis. Here, in order to further verify the
design of the message wrapper, the wrapper-enhanced
framework is used to replicate the active control algorithm
introduced in Reinhorn et al. (1987) and restated in Fig. 9.
The components in Fig. 9 are then formalized as three
simulators in Fig. 10, where P(t) represents the force

Fig. 8 An example
implementation of the message
wrapper for lightweight
communication and marshalling
(LCM)

1. Initialize LCM.

the simulator.

2. Configure the channels to subscribe to and the channels to publish on.
3. Configure the parameters to control receiving of messages and the
timestep of the simulator.

4. Scan and decode the expected messages.

If all the expected messages are received, go to Step 5, else go to Step 7.
5. Call the associated simulator function to update simulation results of

6. Update control parameters and the current timestep.
7. Publish current simulation results with the current timestep.
Go to Step 4 and repeat the above steps.
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Fig. 9 The active control algorithm introduced in Reinhorn et al. (1987)
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Fig. 10 Distributed analysis design of an active control algorithm

caused by a wind excitation. D(¢), V(t), and A(¢) represent
structure displacement, velocity, and acceleration at time ¢
respectively and together compose response vector U(?),
and F(z) is the active control force at time 7. Wind exci-
tation can be generated with different models, and here we
adopted the model we used in Lin et al. (2019). For
structure dynamics, one single building with stiffness K is
assumed, and response U;;; was found as follows from
response U; and time interval Ar for this single degree of
freedom (SDOF) system.

Dit 1
Ugr= | Vin | = | a1 | K 'Fip1 + QU;
Ainr ag
] 1 0 0
= | |k Fa+ |0 2 0o
4 0 — -1
A2 At

In this equation, the second column of Q can be written
as:

O 0
Q= |0n| = :};
O A

For the adaptive control function, acceleration was
selected to be controlled with the following control strategy
proposed in Reinhorn et al. (1987),
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where M is the mass of the building, and Ay, is the
acceleration magnitude to be limited. Two analysis results
with and without active control are shown in Fig. 11 and
Fig. 12.

It can be observed that with active control, acceleration
was successfully limited to the range of [— 1.5, +1.5] m/s2,
and the displacement and the velocity responses were
impacted correspondingly. The results demonstrated that
the framework and the wrapper help discover the interde-
pendency between the structure dynamics model and the
adaptive control model. With domain knowledge from
wind engineering and structural engineering, this dis-
tributed analysis model can be constructed conveniently by
following the fixed steps introduced in this section without
knowing how to use LCM to exchange messages.

However, it should be noted that even though the mes-
sage wrapper can be used as an extension to any data
passing platform and help improve the scalability and
extensibility in terms of implementation, current widely
used mediator-based data passing platforms generally suf-
fer from scalability problems in message communication.
For those that adapt well with the simulation scale, such as
LCM, they still lack the necessary time management and
error-recovery mechanism for robust simulation. This
challenge leads to the second proposed improvement that
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jointly uses mediator-based

communication.

peer-to-peer  and

4.2 Hybrid Data Passing Between Message
Wrappers

As shown in the recommended design in Fig. 4, peer-to-
peer communication is adopted to handle communication
between different sub-simulators in each simulator and the
simulator itself via message wrappers. This local commu-
nication generally needs more frequent and more extensive
message exchange as compared to the simulator-simulator
communication and is suggested to be implemented with
UDP multicast that was also the transport utilized in LCM.
The benefit to this approach is that there are no additional
copies of messages that otherwise would increase linearly
with the number of subscribers and result in a large over-
head if the number of subscribers is large. Moreover, even
though LCM was originally designed for real-time robotic
applications, based on previous experience (Lin et al. 2018;
Lin et al. 2019), it was shown to work efficiently in time-
step based simulation. However, mediator-based commu-
nication between simulators is suggested to be imple-
mented with TCP transport that provides reliable and
ordered information delivery.

For the two types of communication, different mar-
shaling methods can be chosen according to the tradeoff
between transmission efficiency and marshaling cost. The
message wrapper of a simulator can be designed to decode
the marshaled messages from its sub-simulators and mar-
shal them in a different way and communicate them via the
mediator. Generally, in order to simplify the platform
design, the same message marshaling format would be
shared between the two ways of communication with LCM
marshaling being a good example. With the benefit of UDP
multicast in LCM, the lcm-spy tool can be used to inspect
traffic without additional cost. A similar traffic inspection
tool can be developed for communication between local
sub-simulators. However, for the inspection of communi-
cation between simulators, the inspection tool needs to be
implemented as a separate simulator that subscribes to all
the channels and thus adds additional inspection cost.

For a platform only based on mediator-based commu-
nication, the load of the mediator increases with the
number of messages that need to be delivered at any time
and is usually the bottleneck of a large-scale simulation.
With the proposed hybrid communication, this issue can be
greatly improved since all the sub-simulators will be han-
dled by peer-to-peer communication that does not need the
mediator and can be implemented efficiently. In addition,
the mediator in the proposed solution is no different from
the mediator in an RTI for HLA and can easily take
advantage of the time management methods in HLA. The
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platform can be also integrated with some error recovery
mechanism by using a certain number of historical mes-
sages from the simulators kept in the mediator. In this
regard, the hybrid communication design jointly uses the
ideas of LCM and HLA and capitalizes on their respective
advantages.

5 Discussion and Conclusion

Distributed simulation platforms are essential to implement
coupling simulations and identify deep interdependencies
among different simulators. This article provides a sys-
tematic review of existing platforms for natural hazard
simulation, identifies the limitations in the existing solu-
tions for hazard simulations, and proposes some recom-
mendations on improving the design of data passing tools
for coupling simulations. This survey study offers a refer-
ence for researchers in hazards engineering when selecting
distributed simulation platforms and data passing tools.
Moreover, this article serves as a guiding document
towards developing a general-purpose distributed simula-
tion platform for natural hazard applications by identifying
the current limitations and providing feasible recommen-
dations for future studies.
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