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Abstract

For each integer k£ € [0, 9], we count the number of plane cubic curves defined over
a finite field I, that do not share a common component and intersect in exactly k IF,-
rational points. We set this up as a problem about a weight enumerator of a certain
projective Reed—Muller code. The main inputs to the proof include counting pairs of
cubic curves that do share a common component, counting configurations of points that
fail to impose independent conditions on cubics, and a variation of the MacWilliams
theorem from coding theory.

Keywords Cubic curves - Weight enumerators - Reed—Muller codes - Interpolation -
Cayley—Bacharach
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1 Introduction

The goal of this paper is to answer the following question:

Question 1.1 Bézout’s theorem implies that a pair of plane cubic curves that do not
share a common component intersect in at most 9 points. Let k € [0, 9] be an inte-
ger. How many pairs of plane cubic curves defined over ¥, do not share a common
component and intersect in exactly k F,-rational points?
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Note In this paper we use the phrase common component to mean common component
defined over IF,.

Let Fy[xo, ..., x,]qs denote the ("Zd)—dimensional vector space of homogeneous

degree d polynomials in F [xo, . . ., x,]. It does not make sense to evaluate a polyno-
mial f e F[xo, ..., x,]q at a point of P"(IF,), since for any o € F},

d
flaxg, axy, ..., ax,) = o f(x0, X1, ..., Xn).

However, it does make sense to ask whether f is zero at a point of P"(IF;) or not.
Therefore, we can rephrase Question 1.1 as follows.

Question 1.2 1. For each k € [0, 9], how many of the ¢ ordered pairs ( f, g) with
f.g € Fylx, y, z]3 have exactly k common zeroes in P? (Fy)?

2. More premsely, how many such pairs (f, g) do not have a common irreducible
factor over IF and have exactly k common zeroes in P2 Fy)?

This is the main question that we answer in this paper.

Theorem 1.3 Let I be a finite field of size g > 2. For each k € [0, 9], let ¢y denote
the number of pairs (f, g) with f, g € Fy4[x, y, zl3, both nonzero, that do not have a
common irreducible factor over IF_q and have exactly k common zeros in P? (Fy). We
have
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Remark 1.4 1. Each ¢ is a polynomial in ¢ of degree 20, except cg which is a poly-
nomial degree 19. The ¢?° coefficient of each ¢y is the proportion of elements in
the symmetric group Sy that have exactly k fixed points. These ‘main terms’ follow
from recent work of Entin [6], which we discuss in more detail below.

2. One could consider the general problem, counting the number of pairs (f, g) with
felFylx,y, zlgand g € Fy[x, y, z]. that have a given number of common zeros
in P (IF4). On the way to proving Theorem 1.3 we give analogous, but far simpler,
answers in the cases (d, ¢) = (2,2) and (d, ¢) = (3, 2).

In forthcoming work, we investigate the case where e = 2 and d is arbitrary,
and obtain polynomial formulas. The case of two cubics seems to be a kind of
boundary. We do not expect any case where d,e > 3 and (d,e) # (3, 3) for
which the number of polynomials with exactly de common zeros in P> (Fy)isa
polynomial in ¢g. We discuss this further in Sect. 8.

1.1 Relationship to previous work

The main terms that occur in the statement of Theorem 1.3, and in the analogous results
for (d, e) € {(2,2), (3, 2)}, follow from recent work of Entin [6]. Two projective plane
curves defined over I, that intersect transversely, one of degree d and one of a degree
e, give rise to a permutation in Sy, corresponding to the action of Frobenius, Frob,,
on the de intersection points of the two curves. The following result is a version of [6,
Corollary 1.3].

Theorem 1.5 (Entin) Let d and e be positive integers and let k € [0, de] be an
integer. Let ci(d, e) denote the number of pairs (f, g) with f € Fylx,y, z]lq and
g € Fylx, y, zle that have exactly k common zeros in P2 (Fy). Then

cx(d, e) = % q(d;2)+(e§2)(1 N Ode(q_l/z)),
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where 7w (k, de) is the number of permutations in Sy, with exactly k fixed points.

The approach taken in [6] is to show that the monodromy group relevant to this
problem is the symmetric group Sz.. The Frobenius action gives rise to all possible
permutations in this group, and applying the Chebotarev density theorem gives this
quantitative result. Because of the use of Chebotarev density, this approach cannot
give precise quantitative statements like the one in Theorem 1.3, and cannot distin-
guish between polynomial formulas and non-polynomial formulas for these kinds of
counting problems.

Remark 1.6 The statement of Theorem 1.5 does not include any assumptions about
transversality, since [6, Corollary 1.3] also implies that the number of pairs of polyno-
mials defining curves with non-transversal intersection can be absorbed into the error
term.

Theorem 1.3 fits into a body of literature on error-correcting codes that come from
families of genus 1 curves. For an introduction to these ideas, see the surveys of Hurt
[13], and Schoof [21]. There is an extensive discussion of classical algebraic geometry
codes arising from elliptic curves in [25, Section 4.4.2]. In Sect. 2 we review results
about the projective Reed—Muller code whose codewords come from plane cubic
curves. Using results of Deuring, Waterhouse, and Schoof [3,20,26], Elkies computes
the weight enumerator of this code in [5]. Kaplan studies the weight enumerator of
the dual of this code, and the Reed—Muller code that comes from affine plane cubic
curves in [14]. Van der Geer, Schoof, and Van der Vlugt [7], and Schoof and Van der
Vlugt [22], study Zetterberg and Melas codes whose codewords come from families of
elliptic curves in characteristics 2 and 3. Finally, Kaplan and Petrow study the quadratic
residue weight enumerator of a certain Reed—Solomon code in [15]. Computing this
weight enumerator involves counting isomorphism classes of elliptic curves with a
fixed number of F-points and with some additional structure related to the 2-torsion
of E(IFy).

There are many cases in which results from algebraic geometry and number theory
are used to study families of error-correcting codes. For just one reference, see the
book [25]. It is much less common to find examples where techniques from coding
theory are used to prove new results in arithmetic geometry. This is the perspective
we adopt in this paper, as one of the main inputs into the proof of Theorem 1.3 is a
generalization of a classical theorem of MacWilliams about weight enumerators of
linear codes and their duals. The main idea for this project is inspired by work of
Elkies [5].

1.2 Outline of the paper

In the next section we recall some coding-theoretic background and rephrase
Question 1.2 as a problem about the second weight enumerator of the projective
Reed-Muller code whose codewords correspond to plane cubic curves. We recall
some previous results about this code and its dual. In Sect. 3, we explain how low-
weight coefficients of weight enumerators of duals of Reed-Muller codes are related to
interpolation problems in algebraic geometry. We carefully analyze small collections

@ Springer



Counting plane cubic curves over finite fields with a prescribed number of rational intersection points

of points that fail to impose independent conditions on conics and cubics. In Sect. 4,
we prove analogues of Theorem 1.3 for intersections of plane conics, and in Sect. 5,
we prove the analogue of Theorem 1.3 for the intersection of a conic and a cubic. In
Sect. 6, we count pairs of cubic curves that share a common component. In Sect. 7, we
complete the proof of Theorem 1.3. Finally, in Sect. 8 we discuss questions for further
study. ! In Sect. 3, we use a theorem of Kaplan to compute the number of collections
of 9 points in P2 (IF4) such that there are two cubics intersecting at these points that
do not share a common component. The result that we cite contains the additional
restriction that the characteristic of F; is not 2 or 3. In Appendix A, we compute the
relevant quantity in a different way that works for any IF;, which shows that the first
part of [14, Theorem 3] does hold in characteristics 2 and 3.

2 Weight enumerators of Reed-Muller codes and their duals

In this section we recall some coding theory background and express Question 1.2 as
a problem about the second weight enumerator of a projective Reed—Muller code.

Definition 2.1 A subset C C IFg is called a code of length n over IFy . Itis a linear code
if it is a linear subspace of IF;. For x = (x1,x2,...,x,) and y = (y1, Y2, ..., ¥p) in
7, the Hamming distance between x and y is defined by

dx,y) =#{i € [l,n] | x; # yi}.
The Hamming weight of x € F/, denoted wt(x), is
wt(x) =#{i € [1,n] | x; #0}.
The Hamming weight enumerator of C is defined by
n
We(X,Y) =) Xy ™e = 3 g, xn iy,
ceC i=0

where

A =#{ceC|wt(c) =1i}.
The main problems we study are not about zeros of individual polynomials, but about

common zeros of pairs of polynomials. We make extensive use of the following vari-
ation of the Hamming weight enumerator.

U There is a large computational component to the results of this paper. All computations
were done in the computer algebra system Sage. We have made the programs used for this
project available at the website of the first author: https://www.math.uci.edu/~nckaplan/research_files/
intersections_of_cubics_sage_worksheets/.
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Definition 2.2 Let C C ]F; be a code. The second weight enumerator of C is

n
Wg](X, Y) = Z Xn—wt(cl,cg)th(cl,cz) — ZA,['z]Xn_iYi’

c1,c20€C i=0
where wt(cy, ¢») is the number of coordinates in which ¢; and ¢, are not both 0.

The support of an element x € F, denoted supp (x), is the set of coordinates in which
x is nonzero. Therefore, wt(x) = |supp(x)|.If S C F 5’ is alinear subspace, its support,
denoted supp (S), is the set of coordinates in which at least one element of S is nonzero.
The weight of S is wt(S) = |supp(S)|. Forxq, ..., xx € ]F;, let wt(xy, ..., xg) be the
weight of the subspace spanned by x1, . .., xg. This is consistent with the definition of
wt(cy, c2) given above. We also write supp(xy, ..., x;) for the union of the supports
of x1, ..., xg, which is the same as the support of the subspace spanned by x1, ..., xx.

There is a variation of the second weight enumerator for two codes that are not
necessarily the same.

Definition 2.3 Let C;, C; C JF(;‘ The second weight enumerator of Cy, C3 is

n
Wéz.],cz (X,Y) = Z Xn—wt(cl,cz) YW((CI,CQ) — Z Al[z]X"_iYi.

c1€Cy i=0
el

In the case C; = C», we write Wéz](X, Y) instead of Wéz]c (X,Y).

It is often useful to divide up the second weight enumerator of a code C C IF;‘ by the
dimension of the subspace of IF(;' spanned by the pair ¢y, ¢. There are g> — 1 ordered

pairs of vectors that span a chosen one-dimensional subspace of F q" and (¢2—1)(¢g>—q)
choices for an ordered pair that span a chosen two-dimensional subspace. Therefore,

2
WX, V) = X"+ @> - DWW X, V) + @7 - D@® - W (X, Y), (1)
where

W((jr)(X’ Y) = an—wt(S) th(S)7
SCC

and the sum is taken over all r-dimensional subspaces of C. We see that
We(X,Y) = X"+ (g — HW (X, 7).

2.1 Reed-Muller codes

We introduce the main class of codes that we study in this paper. For ease of notation,
let N = |P"(F,)| = (¢"t' —1)/(q — 1). Let p1, pa, ..., py be an ordering of the
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elements of P"(F,), and let p}, p, ..., p)y be a choice of affine representatives for
these points. We define the evaluation map:

ev: Fylxo, x1, ..., x]a > IF;V

f= (D F(P)).
It is not difficult to see that ev(a f +g) = a-ev(f) + ev(g), so the image of this

map is a linear subspace of IF;V . As long as there does not exist a degree d polynomial
vanishing at every point in P (IF;), which is the case for ¢ > d, this map is injective,

so the image of this map has dimension (";d). For the rest of the paper, we write Cy, 4
for ev(IFy [xo, X1, ..., Xx1a), and refer to it as a projective Reed—Muller code.

Remark 2.4 1. This definition depends on an ordering of the points of P"(FF,) and on
a choice of affine representatives for these projective points. These Reed—Muller
codes satisfy a strong form of equivalence. In particular, the weight enumerators
that we study in this paper do not depend on these choices. See [12, Section 1.7]
or [14, Remark 1].

2. Asin[14], the definition of projective Reed—Muller code given here is not the same
as the one given by Lachaud [17], but it equivalent to it if one makes a standard
choice of affine representatives.

3. Throughout this paper we focus on the code C» 3, which is 10-dimensional when
q > 2. Whenever we refer to C» 3 we will assume that g > 2, even if we do not
explicitly state this assumption.

The classical, or affine, Reed—Muller code is defined as follows. Let Fy [x1, . .., xx]<a
denote the ("+d) dimensional vector space of polynomials in Fy[xy, ..., x,] with
degree at mostd. Let p1, p2, ..., pgn be an ordering of the elements of F”. We define

the evaluation map:

n
ev: Fylxr, ..., xulga = IE‘Z

f= (f(p), ..., f(pgm).

The image of this map is a linear subspace of IFZ , and the evaluation map is injective
when g — 1 > d. We write C,/?d forev(Fy[x1, ..., x4]<a), and refer to it as an affine
Reed—Muller code.

Remark 2.5 1. The affine Reed—Muller code C4 1.4 1s monomially equivalent to Cy g
punctured at the set of (¢ — 1)/(qg — 1) coordlnates corresponding to a choice of
hyperplane at infinity. See [14, Section 1] for details.

2. Coordinates of codewords of Reed—Muller codes and their duals correspond to
points. Throughout this paper, we will use the term ‘support’, to refer both to
subsets of coordinates of codewords, and also to the underlying collections of
points.

We now can state the main problem of this paper in this language of weight enumerators
of codes.
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Question 2.6 Let

q +q+1 s
[2] +q+1—iyi
C“(X Y) = ZAi X9 Fatl=iyi
i=0
What are the coefficients A2 Al 2]
2+q+1 -9 gl 4g+1-8 " gl g1 ”

The answer to this question is almost equivalent to the statement of Theorem 1.3.
One difference is that there is a contribution to Wé2213 (X, Y) from pairs of codewords

(c1, ¢2) such that ¢, ¢ span a linear subspace of IF" et of dimension at most 1.

Another difference is that there is a contribution from pairs (c1, ¢2) for which the
corresponding cubic curves are not equal, but share a common component.

2.2 The dual code of a linear code and the MacWilliams theorem

Definition 2.7 For x = (x1, x2, ..., x) and y = (y1, y2, ..., ¥») in IF” let

n
=) xiyi €F,.
i=1

LetC C IFq" be a linear code. The dual code of C, denoted CL, is

ct=1{y ey | (x,y) =0 forallx EIFq”}.

A theorem of MacWilliams says that the weight enumerator of a linear code determines
the weight enumerator of its dual.
Theorem 2.8 (MacWilliams) Let C C IF;’ be a linear code. Then

Wer(X,Y) = %WC(X-F(C]—])YX Y).

There is an extensive literature about variations of Theorem 2.8. See for example [19,
Chapter 5]. We will make extensive use of the following MacWilliams theorem for the
second weight enumerator of C1, Co C IF(;'. See for example, [23, Theorem 2] with
a=Xandb=c=d=Y

Theorem 2.9 Let Cy, C; C IF” be linear codes. We have

1
2] w2l
W X,Y)=— C C X+ (q DY, X—-Y
CIL’C%( ) |C1]-1Ca| I 2( ( ) )-
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2.3 Weight enumerators of Reed-Muller codes

Since each nonzero linear form on P” defines a hyperplane, it is easy to see that

n+l_q

"1 n
We, (X, Y) =X T + (g"T = X1 ye"

Itis also straightforward to compute W, , (X, Y) for any d, for example by noting that
C1,q isan MDS code [19, Chapter 11]. Elkies computes Wc, , (X, Y) and WCL (X,Y)

in [5]. Aubry gives additional results about weight enumerators of Reed— Muller codes
associated to quadric hypersurfaces in [1]. Elkies also computes the weight enumerator
of the code from plane cubics, Wc, ;(X, Y), and the weight enumerator of the code
from cubic surfaces, W, ; (X, Y) [5]. These are the only cases for which W¢, , (X, Y)
is known exactly. Many authors have studied minimum distances and other invariants
of affine and projective Reed—Muller codes. For example, see [2,8,11,17,24].

We recall expressions for We, ,(X, Y) and W, (X, Y) since we will need them
later. A nonzero f € Fy[x, y, z]> defines either a double line, a pair of I, -rational
lines, a pair of Galois-conjugate lines defined over I 2 but not over Fy, or a smooth
conic. A double line and a smooth conic each have g + 1 I, -rational points. A pair of
rational lines has 2¢g + 1 rational points. A pair of Galois-conjugate lines has 1 rational
point. Since there are g2 + g + 1 F,-rational lines and (g2 + ¢ + 1)(¢> — q)/2 pairs
of Galois-conjugate lines, it is straightforward to prove the following result.

Proposition 2.10 We have

Xq2+q+1 + (q2 +q+1)q(qg— 1)2 XYq2+q
2

+(@ = a*+ D@ +q+ g — DX

L@ Ha+D@+DI@ =D yogrygi—g
2

WCz‘z (X, Y) =

Remark 2.11 The irreducible cubic factor in the X9T1Y4" coefficient of this weight
enumerator comes from the fact that it is equal to the sum of two terms that factor
nicely. This is a common phenomenon that we will see throughout this paper.

We also recall WCA (X, Y).One can think of an affine conic as a projective conic minus

the points of the lme atinfinity L. For example, a smooth affine conic has eitherg—1, ¢,
or g + 1 F-rational points depending on # (C N L)(IF,), where C is the corresponding
projective conic. A straightforward calculation gives the following result.

Proposition 2.12 Let g > 2. We have

—1)(g® —q+2 - 1)%g?
Wc?z(X,Y)=X‘12+(q )(q2 g+ )Yqz+(c1 2)q xya-!
2.3
+ @—1 Z (q+1) xa-1ya*—a+1
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+@ — D@ =g +DXTYT

3.3
+ (g —1D7q Xq+1Yq2_q_1

2
L @=D@HDE 1y
2
LA@HDG=D? g
2

We recall the necessary background to state the formula for W, ,(X, Y) given by
Elkies [5]; see also [14]. We write

W,y (X, ¥) = WX, ¥) + WER (X, 1),

where Wg;f (X, Y) is the contribution to W, , (X, ¥) from cubic polynomials, includ-
ing the zero polynomial, that define singular cubic curves, and Wg‘znf"th(X ,Y) is the
contribution to Wc, ; (X, ¥) from cubic polynomials that define smooth cubic curves.

An expression for Wéiznf(X ,Y) is given as [14, Lemma 2].

Lemma 2.13 Let g > 3. We have

. 3 _ 3 _
Wi ox, ) = xr e @ D@0 gy

6
L@ D@D a0y
6
3 3 2 2
L= D@ =)@ =) yagi2p42g-1

2
+(@* = D@ +9) g — g+ DX Hy T
@°=aH@ =D 120 02-g1

+

2
L@ D6 =) e
2
3 5 3
n (¢ —1D(2q 2—61 —4+2D gtiye?
L@ D@ =@ = dD) g
2
@ =D’ =q)
+ M Xy4q 4
3
L @=D@ D@ =) g
3

In order to describe the contribution from W, ;(X, Y) from smooth cubic curves,
we need to count the number of smooth cubic curves with a given number of F,-
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points. This leads to counting elliptic curves defined over [F, with a given number of
F,-points. We closely follow the presentation in [14].

When we mention an elliptic curve E defined over I, we always implicitly mean
the isomorphism class of E. With this convention, let ¢ = {E£/F,} denote the set of
IF;-isomorphism classes of elliptic curves defined over ;. For a description of this set
along with # Aut , (E) for each curve, see [20, Proposition 5.7]. These counts imply

1
2 #Autp (E) T
EeC q

so the finite set € is a probability space where a singleton { £} occurs with probability

P,({E}) = q#Tth(E)'

Let ¢t € Z denote the trace of the Frobenius endomorphism associated to £. We have
tg =q + 1 —#E(F,) and by Hasse’s theorem t% < 4q. For an integer 7, let C(¢) be
the subset of € for which tg = ¢. The following is [14, Proposition 1].

Proposition 2.14 Let g > 3. Then

_ 2
WELHX.Y) = (@° = D@~ )’ = g7 g Y PeC@)XTH =y e+,
12<4q

We now need only give an expression for P, (C(#)). We recall some terminology related
to class numbers of imaginary quadratic fields.

Definition 2.15 Ford < 0 withd = 0, 1 (mod 4), let i1 (d) be the class number of the
unique imaginary quadratic order of discriminant d. Let

h(d)/3, if d = -3,
hd)/)2, if d = —4,
hd) if d<0,d=0,1(mod4), andd # —3, —4,

0 otherwise,

hw(d) =

and for A =0, 1 (mod 4) let

H(A) =) hy (%)

d?|A

be the Hurwitz—Kronecker class number. For a € 7Z and n a positive integer, the
Kronecker symbol (%) is defined to be the completely multiplicative function in n
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such that if p is an odd prime (%) is the quadratic residue symbol and if p = 2

0 if 2|a,
a
<_> — 11 ifa=41(mods)
—1 if a = 45 (mod 8).

The following is a weighted version of [20, Theorem 4.6], which builds on earlier
work of Deuring and Waterhouse [3,26].

Lemma2.16 ([16, Lemma 2]) Let t € 7Z. Suppose g = p' where p is prime and
v > 1. Then if q is not a square

1
Py (C(1) = 5~ H(t* = 4g) if t* <4qand ptt,
q
1
2q
1 2
= — if t“=2q and p =2,
4q
1 2
= — if t“=3q and p =3,
6q
and if q is a square
1
P, (C(1)) = o H(? — 4q) if > <4q and pit,
q

(-E) e
S0-G) e

p—1 2
= — [:4,
24g if q

and P, (C(t)) = 0 in all other cases.

Combining Proposition 2.14 and Lemma 2.16 gives an expression for Wé‘;‘;mh X,Y)
in terms of class numbers of orders in imaginary quadratic fields.

We move on to the computation of the weight enumerators for the dual codes.
We apply Theorem 2.8 to W¢,,(X,Y) to determine the low-weight coefficients
of Wer (X, Y). '

Proposition 2.17 Let
q2+q+1 5
_ L vq - tg+l—iyi
Wes (X.Y) = > Bix YL

i=0
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Then Bo =1, By = B = B3 =0, and

1
By=(q— 1><q2+q+1>("1r )

5 1

Bsz(<q2—1>—(4)<q—1>) <q2+q+1>(q§ )
B 3 6 2 6 _ 2 qg+1
Ba—((q D (5>(q 1)+<4>(q 1))(61 +q+l)< 6 )

s oo fa+1 INCEET RIS
+ (@ —Dgq q)( 6 )+(q 1)( ) ><3>

Applying Theorem 2.8 to WCZA2 (X, Y) gives the following result.

Proposition 2.18 Suppose q > 2. Let
Wieg o (6.1 = 3 B iyt
i=0

Then B =1, By = By = By = 0, and By = (¢ — 1(g” +)(})-

Applying Theorem 2.8 to our expression for W, ; (X, Y) determines the low-weight
coefficients of WCZLS (X, Y). The following result is given in a different form as the

first part of [14, Theorem 3].

Theorem 2.19 Let ¥ be a finite field of size g > 2, and

@*+q+1 5
_ vq tg+l—iyi
Wep (X.Y) = Z Bi X Y.
i=0
Then Bo =1, By = By = B3 = B4 =0, and
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+1
Bs=(q*1)(q2+q+1)<q5 )

6 1
Bs=<(q2—l)—<5>(q—l)> (q2+q+l)<qz )
PN AV N, 5 g+1
B7—<(q D (6)(q 1)+<5>(q 1))(11 +q+1)< . >
(o4 (8, 3 8\, o . (8), 2 g+1
Bs—((q 1) (7>(q 1)+<6>(q 1) <5>(q l)> (q +q+1)( 7 )

+1 Z+g+1 2
+(q71>(457q2)<48 >+(q71)<q 2q )(Z)

qg+1

39:<q_1)19(q)+<q5_q2)( 0

>(<q2 ~1)=9g-1)

+1
+(q2+q+l)(q9

2 2 2
9 +qg+1\(a\(qa\, > 9 +q+1\(a\" >
(T s (T e

)(qS —9¢* +36¢° — 84¢° + 126g — 70)

where

1
o) =5 (¢° +2¢° — 73¢* + 344> — 83847 + 17549 — 2030)
@+ g+ D@+ g —1*q—-2q"

We will explain the form of these dual code coefficients in the next section.

Remark 2.20 1In[14, Theorem 3] there is an additional restriction that the characteristic
of F; isnot 2 or 3. It seems that the proof of this result does work without any changes
for all ¢ > 2. In the next section, we give a different proof of the formulas for B;
when i < 8 and also for By, except for the computation of I9(g). In Appendix A we
compute I9(g) in a different way that is independent of the characteristic of I, which
completes a separate proof of the formula for By.

3 Dual code coefficients and configurations of points that fail to
impose independent conditions

3.1 Statement of results

The goal of this section is to analyze the supports of low-weight codewords of Ciz

and C j?S and prove the following three results.
The first result will be used in Sect. 4 to prove an analogue of Theorem 1.3 for
intersections of plane conics.

Lemma 3.1 Let
4> +q+1 5
2] _ 21 yq2+g+1—i yi
WeL (XY = 2; B"x Y.
1=
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We have Bi = 1, BIY = B = BI? = 0, and BY”' = (¢*> — D(g* + g + D(*])).

The next result will be used in Sect. 5 to prove an analogue of Theorem 1.3 for the
intersection of a conic and a cubic.

Lemma 3.2 Suppose g > 2. Let

q*+q+1 2
Wi (X,Y) = Z B_2,2Xq +q+1—lyl’
C2_2 i
i=0
2
q +q+1 s
_ 23y rg+l—iyi
Wep (X.Y) = ) BX Y’
i=0
2
q +q+1

[2] [2] yq?+q+1—iyi
w X, Y) = B X1 ™ Y.
Cizvcfa( ) ; l

Then By =1, B* = B*' = B = 0, ana

21 _ p22
By =B,",

q+1
B = B3+ BY + (47 - (¢ - 1)( 5 )

+1
BY = Bg? + B + (@ — D@® — D(@® +q - 5)(‘] . )

The final result plays a key role in the proof of Theorem 1.3. Let

83(5) = (g — 1)

83(6) = (¢° +29 — 5)(q — 1),

83N = (¢" —2¢° —4q> — 12 + 15)(q — 1)°,

83®) = (¢° +3¢" —2¢° — 14¢* = 79 +35)(q — 1)’,

2309) = (¢° +2¢7 — 6¢° — 14¢° + 14¢* 4+ 404> — 112 +70)(g — 1)*

In Proposition 3.11 we will give a general formula for g3(m).

Lemma 3.3 Suppose g > 2. Let

q*+q+1 s
2] _ 2] yq2+q+1—i yi
Wcz%3(x’ Y) = 2; B7'X Y:,
=

q*+q+1 5
2,3 —ivi
WCng(X’ Y) = Z B x4 +qtl-iyi

i=0
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Then By =1, BI* = BIY = BIY = BIY = 0, ana
1

B =282 1 (> +q + 1)(" M
B =2B23 + (> + g+ 1) (?

g3(D),

BN =237 4 (g% + 4 + 1)<q
(q

oo+\1+0x

B =283 + (> +q+1)

> +q+1\[(q\ 2
+ (g ( )(q 1)+< ) )<4>(q71),

B = 2523 1 (g +q+1)( +1)g3(9)
+2<q +2q+1)<z ()(q4—8q2+12q—5)

+<q +"+1)<) g* —5¢% +6q —2),

+ (g < )q —11g? +18q78)+19(q)(q71)2.

83(8),

where Io(q) is given in Theorem 2.19.

3.2 Supports of dual codewords and points failing to impose independent
conditions

For any subset § € P" one can consider the subspace of Fy [xo, ..., x,]s defined by

Tsa={f €Fylxo,....xsla | f(p) =0forall p € S}.

Itis a well-known fact that I 4 has codimension at most # S. If equality holds for this
codimension then we say that S imposes independent conditions on degree d forms,
or equivalently, on degree d hypersurfaces, in P”; otherwise we say that S imposes
dependent conditions or fails to impose independent conditions. If S fails to impose
independent conditions, there exist b, € I, not all zero, such that ) pes by f(p)=0

for all f € IF;[xo, ..., x,]s. This produces a nonzero codeword in C nL 4 supported on
the coordinates corresponding to S. We conclude that supports of nonzero codewords
in Cl 4 come from sets of points in P" that fail to impose independent conditions on
degree d hypersurfaces.

The following classical result, which can be found in [4], is at the core of our
analysis of low-weight codewords of Ci - 1t gives a precise description for small sets
of points that fail to impose independent condition on degree d plane curves.

Lemma3.4 Let Q = {p1,..., pn} C P? be any collection of n < 2d + 2 distinct
points. The points of Q2 fail to impose independent conditions on curves of degree d
if only if either d + 2 points of the points of Q2 are collinear or n = 2d + 2 and 2 is
contained in a conic.
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Remark 3.5 This lemma implies that there are no nonzero codewords of weight less
thand + 2 in C3-,.

Using Lemma 3.4 we deduce the following geometric characterizations for the support
of low-weight codewords of Céﬁz and CZL’3.

Lemma3.6 Letc € Cj:z be nonzero with wt(c) = k. Then k > 4 and moreover:

e Ifk € {4, 5} the support of ¢ consists of k collinear points.
e [fk = 6 then the support of c is either:

— 6 collinear points,

— 6 points on a smooth conic, or

— 6 points on two lines, with 3 on each, and not including the intersection point
of the two lines.

Proof Lemma 3.4 implies that a nonzero codeword of Cj-z has weight at least 4. When
k = 4 the 4 points of the support must be collinear.

k = 5:Let {Py, ..., Ps} be the points of ]P’z(]Fq) in the support of ¢. Lemma 3.4
implies that at least 4 of these 5 points are collinear. Without loss of generality suppose
that Py, P», P, P4 are collinear. There is a ¢’ € CzL,z with wt(c’) = 4 supported on
Py, P, P53, P;. There exists an o € F; such that the coordinate corresponding to P
in ¢ — ac’ is equal to 0. Therefore, ¢ — ac’ is a nonzero codeword of weight at most
4 supported on P>, P3, P4, Ps. By the result for k = 4, these points are collinear.

k = 6: Let {Py, ..., Ps} be the support of c. By Lemma 3.4 we need only show
that if at least 4 of these points are collinear, then they are all collinear.

Without loss of generality, suppose that Py, P>, Pz, P4 are collinear. As in the case
k =5, thereisac’ e Ciz with wt(c’) = 4 supported on Py, P, P3, Py, and there is
an o € Iy such that the coordinate corresponding to P in ¢ — ac’ is equal to 0. We
see that ¢ — a¢’ is a nonzero codeword of weight at most 5 whose support includes Ps
and Pg. By the result for k < 5, the points of the support are collinear. Therefore, all
6 points are collinear. O

Lemma3.7 Letc € CZL’3 be nonzero with wt(c) = k. Then k > 5 and moreover:

e Ifk € {5, 6,7} the support of ¢ consists of k collinear points.
e [fk = 8 then the support of c is either:

— 8 collinear points,

— 8 points on a smooth conic, or

— 8 points on two lines, with 4 on each, and not including the intersection point
of the two lines.

e [fk =9 then the support of c is either:

— 9 collinear points,

— 9 points on a smooth conic,

— 9 points on two lines, with 5 points on the first line and 4 on the second line,
and not including the intersection points of the two lines,
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— 9 points ontwo lines consisting of the intersection point of the two lines together
with 4 additional points on each, or

— 9 points that are exactly the intersection points of two cubics, i.e., the two
cubics share no common component.

Remark 3.8 The fact that a collection of 9 points that are the intersection points of two
cubics fails to impose independent conditions on cubics is due to Chasles, although is
colloquially known as the Cayley—Bacharach theorem [4, Theorem CB3]. We give a
different form of this result in Proposition A.3 in Appendix A.

Proof Lemma 3.4 implies that a nonzero codeword of Czl’3 has weight at least 5. When
k = 5 the five points of the support must be collinear.

k = 6: Let {Py, ..., Ps} be the points of ]P’z(]Fq) in the support of ¢. Lemma 3.4
implies that 5 of these points are collinear. Without loss of generality suppose that
Py, ..., Psarecollinear. Thereisac’ e Ci3 withwt(c") = 5 supportedon {P; ... Ps}.
There exists an o € ]FZ such that the coordinate corresponding to Py in ¢ — ac’ is
equal to 0. Therefore, ¢ — ac’ is a nonzero codeword of weight at most 5 supported

on {P,, ..., Ps} whose support includes Pg. By the result for k = 5, these points are
collinear.

k = 7: Let {Py, ..., P} be the support of c. Lemma 3.4 implies that 5 of these
points are collinear. Without loss of generality suppose that Py, ..., Ps are collinear.
Thereisac’ € CzL,3 withwt(c’) = 5supportedon {Py, ..., Ps}. Thereexistsana € IE‘;
such that the coordinate corresponding to Py in ¢ —ac’ is equal to 0. Therefore, ¢ — a¢’
is a nonzero codeword of weight at most 6 supported on {P,, ..., P;} whose support

includes Pg and P;. By the result for k < 6, these points are collinear.

k = 8: Let {Py, ..., Pg} be the support of c. By Lemma 3.4 we need only show
that if at least 5 of these points are collinear, then they are all collinear.

Without loss of generality, suppose that Pp, ..., Ps are collinear. As in the case
k =7,thereisac' € Cj:3 with wt(c") = 5 supported on { Py, ..., Ps}, and there is an
a € IF; such that the coordinate corresponding to Pj in c —ac’ is equal to 0. We see that
¢ — ac’ is a nonzero codeword of weight at most 7 supported on {Ps, ..., Pg} whose
support includes Pg, P7, and Pg. By the result for k < 7, these points are collinear.

k =9:Let{Py, ..., Py} be the support of c. We break this argument into two cases.
In the first case, suppose that all subsets of 8 of these points impose independent con-
ditions on cubics. We will show that there must be distinct cubic curves that intersect
exactly at these 9 points. In the second case, we suppose that there exists a subset of
8 of these points that imposes dependent conditions on cubics. We will show that the
9 points must be in one of the other configurations given in the statement.

Case I: Take any subset of 8 points out of the 9 points, say { Py, ..., Pg}. They impose
independent conditions on cubics, so there is a 2-dimensional vector space of cubic
polynomials that vanish at these points. Let f7 and f> be a basis for this vector space.
Since { Py, ..., Py} fails to impose independent conditions on cubics, the dimension
of the vector space of cubic polynomials vanishing at these points is at least 2. We
conclude that this space has dimension 2, and { f1, f>} is a basis for it. Let C; be the
cubic defined by f1 and C; be the cubic defined by f>. We see that {Py, ..., Py} C
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C1NC,. Two cubic curves that share a common a pair of Galois-conjugate lines defined
over IF > but not over I intersect in at most 2 IF4 -points. Therefore, if C; and C; share
a common component, it must be either an [, -rational line or a (possibly reducible)
conic. If two distinct cubic curves intersect in at least 9 IF;-points and share a unique
[F;-rational line, then that line must contain at least of the 5 common IF;-points. If two
distinct cubic curves intersect in at least 9 I, -points and share a common conic, then
that conic must contain at least 8 of the common [F,-points. Therefore, if Cy and C;
share a common component, it cannot be the case that every subset of 8 of the 9 points
imposes independent conditions on cubics.

Case II: Suppose there is a subset of 8 points from { P, ..., Po} that fails to impose
independent conditions on cubics. Without loss of generality, suppose this subset is
{P1,..., Ps}. By Lemma 3.4, either all 8 points lie on a conic, or at least 5 of the
points are collinear.

Suppose that {P, ..., Pg} lie on a conic. We first consider the case where that
conic is smooth. There is a codeword ¢’ € Cjb of weight 8 supported on { Py, ..., Pg},
and there is an « € Fy such that the coordinate corresponding to Py in ¢ — ac’ is
equal to 0. Therefore, ¢ — ac’ is a nonzero codeword of weight at most 8 supported

on {P,, ..., Po} with support including Py. It is clear that no 4 points of { P>, ..., Py}
are collinear. By the result for k = 8, these points all lie on a smooth conic.

Suppose that {Pq, ..., Pg} lie on a conic, but not on a smooth conic, and no 5 of
these points are collinear. These 8 points must lie on two lines with 4 on each, and
not including the intersection point. Without loss of generality suppose P, ..., P4
are collinear and Ps, ..., Pg are collinear. There is a codeword ¢’ € Cj’3 of weight
8 supported on {Pq, ..., Pg}, and there is an o € IF(’; such that the coordinate corre-
sponding to P; in ¢ — ac’ is 0. Therefore, ¢ — ac’ is a codeword of weight at most 8
supported on {P,, ..., Py} with support including Py. By the result for k < 8, either

5 of these points are collinear, or these 8 points lie on two lines with 4 on each, and
not including the intersection point. In this second case, P>, Pz, P4 and Py must be
collinear, so { Py, ..., Po} contains 5 collinear points.

Now suppose that 5 points of {Py, ..., Py} are collinear. We show that either all
of the points are collinear, or the points lie on two lines with at least 4 points on
each. Suppose Py, ..., Ps are collinear. There is a codeword ¢’ € Czl,3 of weight 5
supported on {Pq, ..., Ps}, and there is an o € ]FZ such that the coordinate corre-
sponding to Py in ¢ — ac’ is equal to 0. Therefore, ¢ — ac’ is a nonzero codeword of
weight at most 8 supported on {P,, ..., Po} with support including Pg, P7, Pg, and
Pgy. Since P, ..., Ps are collinear, the result for £ < 8 implies that Pg, ..., Py are
collinear. Either P», ..., Py are all collinear, which implies all 9 points are collinear,
or Pb,..., Psand P, ..., Py lie on two different lines, not including the intersection
point. In this case, Pj, ..., P9 lie on two lines with at least 4 points on each. O

3.3 Counting codewords with given support
As we see in the statements of Lemmas 3.6 and 3.7, many of the low-weight codewords

of C2 , and C2 5 come from collections of collinear points. In this section we count
the number of Welght k codewords supported on a set of collinear points.
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Proposition 3.9 Let V,; ,,, be the vector space of codewords in Czl’d supported on a
collection of m < g + 1 collinear points. Then dim(Vy ) = max(m —d — 1, 0).

Proof Let Py, ..., P, be the collection of collinear points defining Vy ,.

The statement for m < d + 1 is immediate from Lemma 3.4, so we assume m >
d + 2. We prove this proposition by induction on m.

Let m = d + 2. By Lemma 3.4, there is a nonzero ¢; € Vj, supported on
Py, ..., Py and for every nonzero element of V; ,, the coordinate corresponding each
P; is nonzero. Suppose that ¢ € Vy ,, where ¢ and ¢; are linearly independent. Since
¢ must be nonzero, the coordinate corresponding to P; in ¢ is nonzero. There is an
a € IF, such that the coordinate corresponding to P in ¢ — acz is 0. Since ¢ — ac
is a codeword supported on a set of at most d + 1 collinear points, Lemma 3.4 implies
that it is the zero codeword. This contradicts the assumption that ¢, ¢, were linearly
independent.

For the induction step, suppose that P, is on the same line as {Py, ..., Py,}.
Obviously Vg, € Vami1.Let@: Vg i1 — Fy be the map that takes an element of
Va.m+1 to the coordinate corresponding to Py,;. It is clear that ker (¢) = V4 . We
need only show that ¢ is surjective, which is equivalent to saying that ¢ is nonzero.
By Lemma 3.4, there is a nonzero ¢ € Cid supported on Py, ..., Pyy1, Put1, SO
wt(c) = d + 2. This implies ¢(c) # 0. We conclude that Vg 1/ Vam = Fy,
and thus

dm(Vgmy1) =dim(Vy ) +1l=m—-d—-1+1=m+1)—-d—1. O

Proposition 3.10 Letd +2 < m < g + 1. The number of ¢ € V4, with wt(c) = m
is

m—

d—2
fatm) = Y (q" 7~ 1)(’?) (=D’
=0

i

Proof The proof follows from an inclusion-exclusion argument. Let Py, ..., Py, be the
collinear points defining V; ,,. Let A; be the set of codewords for which the coordinate
corresponding to P; is zero. By Proposition 3.9,

fa(m) =g 471 —

We have

= D D

Sc{1,2,..m}
SED

ﬂAj'.

jes
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There is a natural identification

(A) = Vam-is),
JjeS

so applying Proposition 3.9 completes the proof. O

To prove the results stated at the beginning of Sect. 3, we need to count pairs of
codewords ¢y, ¢p such that wt(cy, ¢2) is fixed.

Proposition 3.11 Letd +2 < m < g + 1. The number of (ordered) pairs (c1, c2) with
c1, c2 € Vg m both nonzero with wt(cy, c2) = m is

gam) = Y (Z)<b+5_m>fd(a)fd(b)~

d+2<a,b<m
a+b>m

This explains the values of g3(m) given before the statement of Lemma 3.3.

Proof Let Py, ..., P, be the collection of collinear points defining Vy ,,. Suppose
c1,c2 € Vg satisfy wt(cy, c2) =m.Let A C {Py, ..., P,} be the support of ¢, and
B C {Py, ..., Py} be the support of ¢;. By assumption AU B = {Py, ..., Py}.
Suppose |A| =a and |B| = b,s0d +2 < a,b < manda+b > m. There are ('Z)
choices for A. We see that B must contain the m — a points of {Py, ..., P,}\ A, and
also b — (m — a) points of A. Applying Proposition 3.10 completes the proof. O

We now turn from counting codewords supported on a set of collinear points, to
counting codewords supported on a set of noncollinear points.

Lemma 3.12 Let S be a set of 6 noncollinear points that fail to impose independent
conditions on conics. Let Vg be the vector space of codewords in Cj‘z supported on

S.

e If' S consists of 6 points on a smooth conic, then Vg is 1-dimensional and every
nonzero element of Vs has weight 6.

o If S is a collection of 6 points on two F-rational lines, with 3 on each line and
not including the intersection point, then Vs is 1-dimensional and every nonzero
element of Vs has weight 6.

Proof We prove the two statements together. For each such set S, pick one of the points
P € § and consider the natural map ¢p: Vs — F, that takes a codeword to its value
at the coordinate corresponding to P.

Let ¢ € Vg be such that ¢p(c) = 0. Then wt(c) < 5, and Lemma 3.6 implies that
¢ is the all zero codeword. Therefore, @p is injective. Lemma 3.4 implies that S fails
to impose independent conditions on conics, so there is a nonzero element of V. This
implies that ¢p is surjective. O

We now explain the form of the coefficients of Wcziz (X, Y) given in Proposition 2.10.
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e Lemma 3.6 and Proposition 3.10 imply that every ¢ € Czl’2 with wt(c) = 4 is
supported on 4 collinear points. Given any 4 collinear points there are exactly
q — 1 weight 4 codewords supported on them.

e Similarly, every c € C ffz with wt(c) = 5 is supported on 5 collinear points. Given

any 5 collinear points there are exactly g — 1 — (i) (g — 1) weight 5 codewords
supported on them.

e Lemma 3.6 implies that every ¢ € Ciz with wt(c) = 6 is supported either on a set
of 6 collinear points, on a set if 6 points on a smooth conic, or on a set contained in
two I, -rational lines, with 3 on each line and not including the intersection point.
Applying Proposition 3.10 and Lemma 3.12 along with some elementary counting
implies that the number of ¢ € Ciz with wt(c) = 61s

1 1
<q2+q+1>(q+ )f2<6>+<q (’“ )(q—1>+(q a )( )( “.

We now prove the analogue of Lemma 3.12 for sets of noncollinear points that fail
to impose independent conditions on cubics. We consider codewords of weight 8 and
weight 9 separately.

Lemma 3.13 Let S be a set of 8 noncollinear points that fail to impose independent

conditions on cubics. Let Vg be the vector space of codewords in Cj:3 supported on
S.

e If'S consists of 8 points on a smooth conic, then Vg is 1-dimensional and every
nonzero element of Vs has weight 8.

o If S is a collection of 8 points on two F,-rational lines, with 4 on each line and
not including the intersection point, then Vs is 1-dimensional and every nonzero
element of Vs has weight 8.

The proof of this lemma is very similar to the proof of Lemma 3.12, so we omit it.
We use Lemma 3.13 to explain the form of the Bg coefficient given in Theorem 2.19.
Ifc € Cjb has wt(c) = 8 then S = supp(c) is either a set of 8 collinear points, or
one of the two configurations given in the statement of Lemma 3.13. Proposition 3.10
together with this lemma imply that the number of these weight 8 codewords is

1 1
(q72+q+1)<q+ )f3(8)+(q )(q+ )(q—1>+(" T )( )( — .

We next give the analogous statement for codewords of Cj-3 of weight 9.

Lemma 3.14 Let S be a set of 9 noncollinear points that fail to impose independent
conditions on cubics. Let Vg be the vector space of codewords in CZL3 supported on
S.

e If S consists of 9 points on a smooth conic, then Vg is 2-dimensional and every
nonzero element of Vs has weight 8 or 9.

e [f'Sisa collection on 9 points on two lines with at least 4 points on each, then Vg
is 2-dimensional and every nonzero element of Vs has weight 5, 8, or 9.
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e If S is a collection of 9 points that are exactly the intersection points of two cubics,
i.e., the two cubics share no common component, then Vs is 1-dimensional and
every nonzero element of Vs weight 9.

Proof In each of the cases described above, we choose a subset S’ C S of size 8.

e If S is a collection of 9 points on a smooth conic, then S’ is 8 points on a
smooth conic.

e If S is a collection on 9 points on two lines with at least 4 points on each, then
choose S’ to be a subset with 4 points on each line, not including the intersection
point.

o In the final case in the statement of the lemma, choose S’ C S to be any subset of
8 points. By Lemma 3.7, S” imposes independent conditions on cubics.

In each case, let P denote the point of S\ S".

Let Vg denote the vector space of codewords of CZL’3 supported on §’. Clearly
Vs € Vs. Consider the map ¢p: Vs — F, that takes a codeword to the value of the
coordinate corresponding to P. It is clear that ker (¢p) = Vg. Lemma 3.13 implies
that in the first two cases, dim (V) = 1, and in the final case Vg consists of only the
zero codeword, so ¢p is an isomorphism. O

We use Lemma 3.14 to explain the form of the Bg coefficient given in Theorem 2.19.
Ifc e Czl’3 has wt(c) = 9 then S = supp(c) is either a set of 9 collinear points, or one
of the three configurations given in the statement of Lemma 3.13.

e Suppose S consists of 9 points on a smooth conic. Lemma 3.13 implies that Vg
is 2-dimensional. We claim that there are 9(¢ — 1) nonzero codewords of weight
less than 9 in V. For any collection of 8 points of S, there are ¢ — 1 codewords of
weight 8 supported on them. Lemma 3.7 implies that these are the only nonzero
codewords of weight less than 9 in V.

e Suppose S consists of 9 points on two lines, with 5 points on one and 4 points

on the other, not including the intersection point. Lemma 3.13 implies that Vg is
2-dimensional. We claim that there are 6(¢ — 1) nonzero codewords of weight less
than 9 in V.
Let S’ be a subset of size 8 that we get from removing one point from the line
containing 5 points of S. There are g — 1 elements of Vg of weight 8 supported on
S’. There are also ¢ — 1 codewords of weight 5 in Vg supported on the 5 collinear
points of S. Lemma 3.7 implies that these are the only nonzero codewords of
weight less than 9 in V.

e Suppose S consists of 9 points on two lines, the intersection point together with

4 additional points on each. Lemma 3.13 implies that Vg is 2-dimensional. We
claim that there are 3(¢ — 1) nonzero codewords of weight less than 9 in V.
For each of the two subsets of 5 collinear points in S there are ¢ — 1 codewords
of weight 5 supported on these points. There are also ¢ — 1 codewords of weight
8 supported on the subset of 8 points of S not including the intersection point.
Lemma 3.7 implies that these are the only nonzero codewords of weight less than
9in Vgs.
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Proposition 3.10 together with the observations above imply that the number of ¢ €
Cy5 with wt(c) = 91is

1
(q2+q+1)(q; >f3(9)+<q5 ( )q—1—9(q—1>)

A

q
5
1
+<61 +q+ )() ¢ —1-3(@— 1)+ (g — Dl(q),

where Io(g) is the number of collections of 9 points in P? () that are the intersec-
tion points of two cubics that do not share a common component. Comparing this
expression to the one given in Theorem 2.19 proves the following.

Corollary 3.15 We have that 19(q) equals

o (¢° +2¢° — 73¢* + 34447 — 838¢% + 1754¢ — 2030)(¢” — )(g + D)(g — (g — 2)¢*
Remark 3.16 The computation of the X9°+9+1=9¥9 coefficient of WCJ_ (X,Y) given

in [14, Theorem 3] has the additional restriction that the characterlstlc of F, is not 2
or 3. In Appendix A, we compute I9(g) in a different way that is 1ndependent of the
characteristic of IF;, which shows that Corollary 3.15 holds in these additional cases.

3.4 Proofs of Lemmas 3.1, 3.2, and 3.3

Proof of Lemma 3.1 Lemma 3.6 implies that Cj:z has no nonzero codewords of weight
less than 4 and that every codeword of weight 4 is supported on a set of 4 collinear
points. Proposition 3.10 implies that there are ¢ — 1 weight 4 codewords supported
on any chosen set of 4 collinear points.

Ifci,cp € Cj:z and wt(cy, ¢3) = 4, then at least one of ¢y, ¢, must have weight 4,
and the other codeword is supported on the same set of 4 collinear points. There are
@ +q+ 1)(']11) ways to choose the support of (¢, ¢2) and g> — 1 choices of an
ordered pair of codewords supported on these points where at least one is nonzero. O

Proof of Lemma 3.2 Lemma 3.6 implies that Ciz has no nonzero codewords of weight
less than 4. Lemma 3.7 implies that Czl’3 has no nonzero codewords of weight less
than 5. Therefore, it is clear that B([)z] =1 and BF] = B£2] = Bgz] = 0. For each
i €[4, 6], the Biz’2 term given in the formula for Bi[z] accounts for pairs (¢, 0) where
c € Cj-z with wt(cp) = i. Foreachi € [5, 6], the 32’3 term given in the formula for
B[z] accounts for pairs (0, c3) where ¢3 € C2 5 with wt(c3) = i. Therefore, we need

only consider the contribution from pairs (cz, c3) where ¢ € C2 ,and c3 € C2 5 are
both nonzero. In this case, if wt(c2, c3) < 6, then wt(c3) is equal to 5 or 6. Lemma 3.7
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implies that c3 is supported on a set of 5 or 6 collinear points, so supp(cz, ¢3) must be
a set of 5 or 6 collinear points.

Suppose that wt(c2, ¢3) = 5. This implies that supp(c2, c¢3) is a set of 5 collinear
points. Let S be a set of 5 collinear points. Proposition 3.10 implies that there are
g% — 1 nonzero ¢; € ijz supported on S and ¢ — 1 nonzero c3 € Ci3 supported on
S. Every such pair has wt(c2, c3) = 5. Putting this together completes the calculation
of Bgz].

Now suppose that wt(c», c3) = 6. This implies that supp(cz, ¢3) is a set of 6
collinear points Let S be a set of 6 collinear points. Proposition 3.10 implies that
there are ¢ — 1 nonzero ¢, € C2 , supported on § and g% — 1 nonzero ¢3 € C2 3
supported on S. We subtract the number of pairs where wt(ca, c3) = 5. We see that

the contribution to B6 2] from palrs where ¢3, ¢3 are both nonzero is

1 6
(@*+q+ 1)(‘”6r ) ((cﬁ ~D(g*—1) - (5)(q2 — (g - 1)) :

This completes the proof. O

Proof of Lemma 3.3 Lemma 3.7 implies that Czl’3 has no nonzero codewords of weight
less than 5 and that every nonzero codeword of weight at most 7 is supported on a set
of collinear points. Therefore, it is clear that B([)z] = 1and BF] = B£2] = Bgz] =0=
BA[LZ] = 0. Foreach i € [5, 9], the ZBi2 3 term given in the formula for Bl.[z]

for pairs (c, 0) and (0, c) where ¢ € CZL’3 with wt(c) = i. Therefore, we need only

accounts

consider the contribution from pairs (cy, ¢2) with c1, ¢y € CzL,3 both nonzero and
wt(cy, c2) € [5,9]. Proposition 3.11 implies that the number of such pairs where
supp(ci, ¢2) is a set of k collinear points is g3 (k).

We need only count pairs with wt(c,c2) = 8 and wt(ci,c2) = 9 where
supp(ci, ¢2) is not a set of collinear points. We first consider pairs with wt(cy, c2) = 8.
We divide the count into cases based on supp(ci, ¢2). By Lemma 3.7, if ¢ € Cé:?, has
weight at most 8 then supp(c) is either a set of collinear points, 8 points on a smooth
conic, or 8 points on two I, -rational lines, 4 on each, and notincluding the intersection
point.

e If wt(cy, c3) = 8 and the support of one of these codewords is a set of 8 points on
a smooth conic, then the other codeword is also supported on these same 8 points.
Lemma 3.13 implies that given 8 points on a smooth conic, there are ¢ — 1 nonzero
¢ € C5- supported on them. This case contributes (¢ — 1)*(¢° —¢*)(“3") to B

e If wt(cy, c2) = 8 and the support of one of these codewords is a set of 8 points on
of two ]Fq -rational lines, 4 on each, and not including the intersection point, then
the other codeword is also supported on these 8 points. Lemma 3.13 implies that
given such a collection of 8 points, there are ¢ — 1 nonzero ¢ € C 2% supported on

them. This case contributes (g — 1)(? +qul)(Z)z to BE[;Z].

This completes the analysis of Bézl.
We now consider pairs with wt(cy, c2) = 9. By Lemma 3.7, if ¢ € Czi’3 has
wt(c) < 9 then supp(c) is either a set of collinear points, 8 or 9 points on a smooth
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conic, 8 or 9 points on two [F, -rational lines with at least 4 points on each, or 9 points
that are the intersection of two cubics that do not share a common component. In this
last case, every subset of 8 of the points imposes independent conditions on cubics.

e If wt(cy, c2) = 9 and the support of one of these codewords is contained in 9
points of a smooth conic, then supp(ci, ¢2) is a set of 9 points of a smooth conic.
Lemma 3.14 implies that given 9 points of a smooth conic, there are g — 1 nonzero
c € Cj:3 supported on them. There are (¢g> — 1)? pairs of nonzero ¢y, ¢ € Cj:3
with support contained in these 9 points. By Lemma 3.13, (g) (g — 1)? of these

. . . 1
pairs have wt(cy, c2) = 8. Therefore, this case contributes (¢° — ¢2) (q;r )((g* -
1)? —9(g — D) to BY.

e If wt(cy, c2) = 9 and one of these codewords is supported on a collection of 9

points that are the intersection of two cubics that do not share a common compo-

nent, then the other codeword must also be supported on these 9 points. Lemma
3.14 implies that given 9 such points, there are ¢ — 1 nonzero ¢ € Cj-3 supported

on them. Therefore, the contribution to B(Ez] from this case is (¢ — D21y (g), where
I9(q) is given in Corollary 3.15.

e Inevery other case where wt(cy, c2) = 9, supp(c1)Usupp(c2) is 9 points contained
in two [F-rational lines, with at least 4 points on each. We consider two cases.

1. Suppose that supp(c1, ¢2) is a set of 9 points on two [, -rational lines, with 5
points on one line and 4 points on the other line, not including the intersection
point. There are (g2 + g + 1)(¢> + ¢)(%)(§) ways to choose 9 points of this
type. Lemma 3.14 implies that given 9 such points, there are g> — 1 nonzero
c e Cjﬁ supported on them. Therefore, there are (> — 1)? pairs of nonzero

c1,c0 € Cé-?, with support contained in these 9 points. There are (g — 1) pairs

where c1, ¢y are supported on the 5 collinear points. There are (i) (g — 1)?
pairs where c1, ¢ are each supported on the same subset of 4 of the 5 collinear
points together with the 4 points of the other line. Noting that

> = 1D?—6(q — 1)* = (¢* — 84> + 12 — 5)

completes the analysis in this case.

2. Suppose that supp(cy, c2) is aset of 9 points on two I -rational lines consisting
of the intersection point together with 4 other points on each line. There are
("2+2q 1 (f")2 ways to choose 9 points of this type. Lemma 3.14 implies that
given 9 such points, there are g> — 1 nonzero ¢ € Cj:3 supported on them.

Therefore, there are (¢> — 1)? pairs of nonzero ¢y, c; € Cj-3 with support
contained in these 9 points. These 9 points contain two subsets of 5 collinear
points. For each of these subsets, there are (¢ — 1) pairs with ¢y, ¢ supported
on these 5 points. There are also (g — 1)? pairs where c1, ¢ are both supported
on the subset of 8 of these 9 points that does not include the intersection point.
Noting that

@* =12 =3 - 1)*=(¢* —5¢° + 69 — 2)
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completes the analysis in this case. O

4 Intersections of two conics

The goal of this section is to prove a version of Theorem 1.3 for intersections of
projective conics. The proof is much less intricate than the proof of Theorem 1.3, but
contains many of the same ideas.

Theorem 4.1 We have

409G+ 1D?@+a+1) 241,47
2

2
+(q - D23+ D% +q+ DHxat2ya !

2
w2 (x.y) = xa*+a+t 4 ¢

Can

2
+(@ =@+ D@ +q+DC¢% —¢% — g+ DXy
L@ DY@ D@+ D 23

24
L a=D"q +21)2<q2 +a+ ) 30200
L= e+ e’ +Z + D@ =27 +79 =4 12424
L@ -0@ =D+ gzq“ +5¢° 1647 —64+3) | g21g
L @=Dt @+ D@ +a+ DG+ 2igin

8
Starting from the expression for Wcé_z (X, Y) givenin Lemma 3.1, we prove Theorem
4.1 in two steps. '
1. We determine the contribution to W[Z] (X , Y) from conics that share a common
component. This determines all but 5 coefﬁcients of W([jzz]2 (X,Y).

2. We apply Theorem 2.9 to Wézz]z (X, Y). This gives 5 linear equations that must be
satisfied by the 5 unknown coefficients. A linear algebra calculation completes the
proof.

Recall from equation (1) that

WE (X.Y) = XTI 4 (g + 1)(We,, (X, ¥) — XTHIH)

+(q* = D@ = WE (X, Y).

Since we have already computed Wc,,(X,Y) in Proposition 2.10, to determine

Wsz(X Y) we need only consider the contribution to WC (X,Y) from linearly
independent pairs of elements in Cs 2, or equivalently, from dlstlnct nonzero plane
conics.

By Bézout’s theorem, two conics that intersect in more than 4 points share acommon
component. If two distinct conics share a common component, that component must

@ Springer



N. Kaplan, V. Matei

be an [F;-rational line. We have two possibilities: either one conic is a double line L
and the other is L together with another [F-rational line, or both conics are pairs of
[, -rational lines, with one of those lines in common. In this last case we have two
pairs of lines {L, L'} and {L, L"}, and the number of [F,-intersection points of these
pairs depends on whether L’ N L” lies on L or not. Adding these cases together proves
the following.

Lemma4.2 Let W COm(X Y) denote the contribution to W (X Y) from pairs of

nonzero polynomtals ( [ &) that define distinct conics that share a common component.
Then

2_
WELM(X,Y) = (q% + 9+ D(@” +9)q7 (g — D> X9y
2
+(¢% = D(g® = @)@ +q + Dig + DXy,
and

2 2 2],
Wéz]‘z(x’ Y)=(q+1)Wc,,(X,Y) —gX1? ety Wézl.zcom(x’ Y)
+C4X4Yq2+q—3 +C3X3Yq2+q—2 +02X2Yq2+q—1

2 2
+ e XY 4 gy Tt

for some values cy, c1, ¢z, €3, C4.
We are now ready to prove Theorem 4.1.

Proof Recall the expression for W[Z] (X Y) given in Lemma 3.1. We apply Theorem

2.9 to the expression given in Lemma 4.2. Let M be the 5 x 5 matrix with rows and
columns labeled from O to 4 and (i, j) entry equal to the X4 “+a+1-iyi coefficient of
X+@>-DHY)i(x— Y)4*+4+1=J Let ¢ be the column vector with entries co, . . . , c4.

Then M - ¢ must be equal to the column vector with 5 entries, labeled from O to 4,
whose i entry is the X9'+4+1=1yi coefficient of
IZWH (X, Y) — (g +DWe,, (X + (g2 = DY, X~ Y)
2
—q(X +(g* = DY) T L WEL (X 4 (g2 — DY, X — V),

A linear algebra computation in Sage shows that

1
co=<(q+D@ -3+ Dg*+q+1),

8
1
cr=cg+g- D2¢%(g* +q + D(2¢° + ¢* — 2¢° + 5¢% + 69 — 6),
1
7@ =D+ 1@ +q+D(g* —24° +7q - 4),
1

@+ D*q - D¢ @ +q+ D),

N
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1
=10+ D3(q — D*q*(@* +q + D). .

In an argument that depends on a calculation, it is natural to be a little skeptical. As a
check, we give a separate more geometric argument for the calculation of c4.

Proof [Second Proof for the Computation of c4] If two conics intersect in 4 points
and do not share a common component, then no 3 of the intersection points are
collinear. Let S be a set of 4 points in P (Fy) with no 3 collinear. There are

@*+q+D@*+ 9 q*q—1)?
41

ways to choose 4 such points. Let I's » be as in the beginning of Sect. 3.2. Since
|S| = 4,Lemma 3.4 implies that these points impose independent conditions on conics.
Therefore, |T's.2| = g2 There are (¢> — 1)? pairs of nonzero quadratic polynomials
vanishing on S. For (¢> — 1)(q — 1) of these pairs, the two polynomials define the
same conic. For every other pair, the two polynomials define conics that intersect in
S and do not share a common component. O

4.1 Intersections of affine conics

We compute ng (X, Y) following the strategy used for Wézzlz (X, Y). We first count
2,2 y

affine conics that share a common component. Two distinct affine conics that share a
common component must have a common F-rational line. Considering the possibil-
ities for this pair of conics gives the analogue of Lemma 4.2.

Lemma 4.3 Supposeq > 2. Let Wézj‘com (X, Y) denote the contribution to Wézj (X,7)
2,2 2,2
from pairs of nonzero polynomials (f, g) that define distinct affine conics that share

a common component. Then

2
WELM(X, ¥) = Qg + D(g + D (g — DPg* XY 9
2,2
2
+(q+ (g — 1) xatlys a7l
and
[2] _ q? [2], com
W (X, Y) = (g + DWea (X, ¥) —gXT + W2 (X, Y)
2,2 2,2 3o
L eaX* YO 4 X373 4o x2y a2
F o XY 4 er?,

for some values cy, c1, c2, c3, C4.

An analysis of low-weight codewords of (Cf"z)l analogous to the one for Cj:z
shows that (Cé“’z)L contains no nonzero codewords of weight less than 4, and has
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(g — D(g*+ q)(j) codewords of weight 4, exactly g — 1 for each set of 4 collinear
points in the affine plane over F,,. It is then easy to show that if we write

2
2] 2 2 i
W[ A)l(x Y) = ZB} Ixa—iyi
i=0

then B =1, B = B = B = 0, and B” = (¢> — 1)(¢*> + ¢)(4).

We apply Theorem 2.9 to the expression given in Lemma 4.3. Let M be the 5 x 5
matrix with rows and columns labeled from 0 to 4 and (i, j) entry equal to the X¢ iyi
coefficient of (X 4 (g2 — 1)Y)/ (X — Y)7°~J. Let ¢ be the column vector with entries
o, - .., ca. Then M - ¢ must be equal to the column vector with 5 entries, labeled from

0 to 4, whose i™ entry is the X9=iyi coefficient of
Wl (X Y) = (@ + DWer (X + (@2 = DY, X =)
(C35) 2,2

— (X +(@* = DT+ WEL MK + (g2 - )Y, X~ V).
2,2

A linear algebra computation in Sage proves the following.

Theorem 4.4 Using the notation of Lemma 4.3,

8 7 19 14 59 8 8
D — 1 8,8 7,7 6 5 4,9 3 8 2, 8)
o q(q+ (g )<q+9q+3q FI AR A 34 13
5 29 15 27
1 (@+1(g— 1% 3<q +2¢° - 2q4 5 @+ = ) q2—7q+3>,

@+ D% - D’q* (¢ —2¢% + 149 — 11),

c3

u\t\) Jk\»—‘ L»\v—- oo\w

(q - 7>(q +1)%(g - D%

—_

=57+ D%q— D q? -3 +3).

We will use this resultin Sect. 6 when we count pairs of cubics that share an I, -rational
line.

5 Intersections of a conic and a cubic

In this section we explain how to use the strategy of Sect. 4 to determine the number of
pairs of f € Fy[x, y,z]> and g € Fy[x, y, z]3 that have a given number of common
zeros in ]P’2(IE‘q). Throughout the rest of this section suppose that g > 2.

By Bézout’s theorem, a conic and a cubic that intersect in more than 6 points
must share a common component. We determine the contribution to W&]z’cz R (X,Y)
from pairs that share a common component. This leaves 7 unknown coefficients of

[2]
WCM’CM(X, Y).
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Lemma 5.1 Let Wgz];g;} (X, Y) denote the contribution to Wézz],z,cm (X,Y) from

pairs of nonzero polynomials (f, g) defining a nonzero conic and a nonzero cubic
that share a common component. Then

2

W[ZJ, com (X,Y) = q9-—4q

2.2 2y va2tq
C22.Ca3 5 (g —Dg"+q+1D°XY

1 2
+54(g+ g = 12Xy

1 2_
+ 5@ +a+ D+ Dig -1 xIHFyT 2
2
+2(q° +q +Dig + D(g = D¢ X4y !
1 2
+ 5@ +a+ D= D*(g7 +5¢° + 49" +2¢7 +29 +2)XTH YT

and

2 2 1 2],
Wg;z’cl}(x, Y) = Weon (X, ¥) 4 Wy (X, Y) — XT T Wg;;g; (X,Y)

+ coXOY IS 4 es xSy et
+ C4X4Yq2+q—3+ 63X3 Yq2+q—2

e XY o XYy oyt

for some values cy, c1, c2, ¢3, C4, C5, C6.

Proof If a conic and a cubic share a common component, that component must either
be: a pair of Galois-conjugate lines defined over FF 2> but not over I, a smooth conic,
a pair of distinct [F;-rational lines, or a single I, -rational line.

e If a conic and a cubic share a pair of Galois-conjugate lines defined over F >
but not over I, then the conic is this pair of lines, and the cubic is this pair of
lines together with an additional FF-rational line. The only [F,-rational point in
the intersection of such a conic and cubic, is the single rational point of the pair of
Galois-conjugate lines. There are (g% 4¢q + 1) (g —q)/2 pairs of Galois-conjugate
lines, g% + ¢ + 1 choices for the additional line of the cubic. We include a factor
of (g — 1)? to account for scaling.

e There are ¢° — g2 smooth conics defined over F,. The number of nonzero cubic

polynomials vanishing on a given smooth conic is g* — 1.

e There are (q2+2q +1) pairs of distinct IF;-rational lines. The number of nonzero cubic
polynomials vanishing on a given pair of lines is g° — 1.

e There are (g — 1)(g> + ¢ + 1) quadratic polynomials that define a double line.
There are ¢® — 1 nonzero cubic polynomials vanishing on a given line.

In every other case in which a conic and a cubic share a common component, the
conic factors as a product of a pair of distinct IF;-rational lines, and the cubic contains
one, but not both, of those lines. The number of I, -points of the intersection depends
on how the cubic intersects the second line.

We focus on the particular case where the conic is defined by the polynomial xz,
and the cubic contains the line x = 0 but not z = 0. At the end of the calculation we
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multiply by (¢% + ¢ + 1)(¢* + ¢) to account for the choice of a pair of lines and the
choice of the shared line.
A cubic polynomial that vanishes on the line x = 0 is of the form

f3(x,y.2) = x(aox® + a1xy + azxz + azy® + asyz + asz>).

Since the cubic does not contain the line z = 0 at least one of ag, ai, a3 is nonzero. We
want to count the number of zeros of this polynomial on the line z = 0 away from the
point [0 : 1: 0]. Therefore, we need only count the number of zeros of ag + a1y + a3 y2
on the affine line with coordinate y. Note that this does not depend on a3, a4, or as,
which leads to a factor of ¢> at the end of the count.

There are q3 — 1 choices of (ag, ai, a3):

1. There are (¢ — 1)(3) choices that give a quadratic polynomial with distinct -
rational roots.

. There are (¢ — 1)g choices that give a quadratic polynomial with a double root.

. If a3 = 0 and a; # O we get a linear polynomial with a single [, -rational root.

. Ifaz = a; = 0and ap # 0 we get a constant polynomial with no [F;-rational roots.

[V B ROV I )

2
. There are (¢ — 1)% choices that give an irreducible quadratic polynomial.
Combining these observations completes the proof. For example note that

@—1D@ =g —D+@q—-D@*+q+Dg® -1

> —q
2

+(q - 1>(q2+q+1)<q2+q)q3<<q -1 +(q — 1))

1
- E(q%rq + (g —D*(q" +5¢° +4¢* +2¢° +2g +2). O

We are now ready to prove the following result.

Theorem 5.2 Using the notation of Lemma 5.1,

53 36 o s 49 3 21, 58 R
= — —1 1 _ =0 - -2,
o 144(q g (q“+q+ (g’ +¢ +53q +53q +534 =
1
Cl=%q4(‘]—1)2(q2+q+1)(q+1)
1 5 20 31 159 15 30
7, 6,2 5, 4 1 3 2, 29U
<q+44q+11q+11q TRAREP7IE AR T 11>’
3 2 25,2 s 2.4 355 70 , 160 32
=2 (g-1 1 (g5 == A= X
%) 16(q )Y (q+D%q°(g"+q+Digq 9? t 54 g t5 13

1 9 3 39 79
C3=E(q+1)(q—1)3q5(612+q+1)(q5+§q4+§q3+7q2+7q—9),

1
c4= 12 @+ 1@~ D’0°@* +q+D(g* +13¢° +269 - 48),

1
es= 5 (g +1ig - D*¢%(q* +q+ D@® +2q - 5),

1
¢6 = 725 (4 = 2)(q + (g — D*4%@? + g + (g +39 - ).
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Proof We apply Theorem 2.9 to the expression given in Lemma 5.1. Let M be the
7 x 7 matrix with rows and columns labeled from O to 6 and (i, j) entry equal to the
XOH+a+1=iyi coefficient of (X + (g2 — 1)Y)/ (X — ¥)4°+9+1=J Let ¢ be the column
vector with entries co, . .., cg. Then M - ¢ must be equal to the column vector with 7
entries, labeled from 0 to 6, whose ith entry is the X4 Hq+1—i Y! coefficient of

2
q16W[ ] N (X, Y)

1
C2,2’C2.3

- (WCZ_Z(X +(@> = DY, X —Y) + We,, (X + (¢° = DY, X —Y)

— (X + (g2 = DY@ L wBhem (x4 g2 — 1y, X — Y)).

The X9°+4+1=iyi coefficient of We,; (X + (¢ — DY, X — Y) is a polynomial in
q for each i € [0, 9] [14, Section 4]. For the same reason, for each i € [0, 9] the
X2 +a+1=1yi coefficient of We,,(X + (¢> — 1Y, X — Y) is also a polynomial in g.

A linear algebra calculation in Sage completes the proof. O

Just as we did following the proof of Theorem 4.1, we include a separate more geo-
metric argument for the computation of one of the weight enumerator coefficients.

Proof [Second Proof for the Computation of cg] If a conic and a cubic intersect in 6
points and do not share a common component, then no 4 of these points are collinear.
By Lemma 3.4, such a collection of points imposes independent conditions on cubics.
If 3 of the points are collinear, then the conic must contain this line. If a conic contains
6 points with no 4 on a line, and 3 of those points are collinear, then the remaining 3
points must also be collinear and none of the 6 points is the intersection point of the
two lines.

Suppose S is a collection of 6 points in ]P’Z(IF({) with no 4 collinear. Since S imposes
independent conditions on cubics, there are g* — 1 nonzero cubic polynomials van-
ishing on §. We divide the count into two cases.

1. Suppose S is a set of 6 points on a smooth conic. There are ¢ — 1 nonzero quadratic
polynomials vanishing on S, so there are (¢ — 1) (¢* —1) pairs of a nonzero quadratic
polynomial and a nonzero cubic polynomial such that the corresponding conic and
cubic contain § in their intersection. In (¢ — 1)(q3 — 1) of these cases, the cubic
consists of this conic together with an additional line.

2. Suppose S is a set of 6 points on two [F-rational lines, with 3 points on each, not
including the intersection point. There are ¢ — 1 nonzero quadratic polynomials
vanishing on S, so there are are (g — 1)(¢* — 1) pairs of a nonzero quadratic
polynomial and a nonzero cubic polynomial such that the corresponding conic and
cubic contain S in their intersection. By Bézout’s theorem, a cubic that contains a
line and also contains 3 collinear points that do not lie on that line, must contain
the second line as well. Therefore, there are (g — 1)(¢> — 1) pairs such that the
conic and cubic share a common component.
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Noting that

1
@ — "z )(q D —1-@ =)

2 1 2
(TN @ et -1-@ =)

1

= 5@ =@+ - 1)*q%(q> +q + 1D(g> + 39 — 8)

completes the proof. O

6 Cubic curves that share a common component

The goal of this section is to prove analogues for a pair of cubics of Lemmas 4.2, 4.3,
and 5.1.

Proposition 6.1 Let Wgz]’:om(X, Y) denote the contribution to Wg]3 (X, Y) frompairs
of nonzero polynomials (f, g) that define distinct cubic curves that share a common
component. Then

WELOM(X,¥) = e XYTH 4 ay XPYTHI gy X2+ y a7

q+5
2 . 2 .
+a2q+2qu+2Yq 7q71 + Z ain Yq +q+]7l’
i=g+1
where
a = + (g = D22 (g% - 1
172(11 ) (g”+q+ D" —q)q+ g,
a —1( —1)2(g? (q? — 9)(¢* 1
2=5104 ) (@ +q+ D@ —q9)q” +q)g+ Dgq,
1
aq+1 =5 @ +q+1Qq + (g — D*q*(q + D2
1
2

a2 = 5 @ +q+Dqg - D@ +9*@* - 9.
1
ag1 = 55 (99 +8¢7 +21¢° — 197 + 669" + 594> — 4847 + 24)

“(@®+q+ D@+ Dig - D%q,

1
ag42 = ¢ (24° +24* = 7¢° + 424 = 33¢ + 6)(@” + 4 + Dig + D (g — 4
1
ag43 =7 (4° —2¢° + 14g — 11)(¢*> + g + D(g + D*(g — 1) ¢*,
1
ag4 = ¢ @* 4+ g+ Ddqg —5)(q + D(g — D*¢*
1

ag+s = 55 @ = DY @+ 2@ +q+Dg” ~3g+3).
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We have

2 2 2
Wéz]ﬁ(x’ Y)=(@q+DWc,;,(X,Y) — g X1 AEARE Wéz],;com(X, Y)
9
jya*+a+1—j
+ 3 eixIy et
j=0

for some values cg, c1, . . ., Co.

Proof Since we only consider pairs of polynomials (f, g) that define distinct cubic
curves, we may assume that g is not a scalar multiple of f. Bézout’s theorem implies
that two distinct cubic curves that intersect in more than 9 points share a common
component. There are several possibilities for two distinct cubics that share a common
component:

o The two cubics share a common pair of Galois-conjugate lines defined over F >
but not over IF,. In this case, each cubic consists of this pair of conjugate lines
together with an additional [, -rational line.

e The two cubics share a common smooth conic. In this case, each cubic consists of
this conic together with an [F;-rational line.

o The two cubics share a common pair of distinct IF; -rational lines. In this case, each
cubic consists of these two lines together with another line, where we note that
this third line might make one of the common lines into a double line.

e The two cubics share a unique [, -rational line. In this case there are many pos-
sibilities for how each cubic decomposes. The important fact to note is that the
number of intersection points of such a pair of cubics isin [¢g + 1, g + 5].

The proof consists of case analysis.

1. We compute the contribution from polynomials that define cubic curves that share
a pair of Galois-conjugate lines defined over I > but not over I4. The number of

pairs of such lines is (g2 + ¢ + 1)(¢g*> — ¢)/2. Each cubic contains an additional
IF;-rational line. Since the cubics are distinct, these lines must be different. Such
a pair of cubics either intersects in exactly 1 F,-point, which is the case when the
two rational lines contain the Fy-point of the pair of Galois-conjugate lines, or
2 [F,-points, which is the case when the two rational lines intersect at any of the
g? + g other points of P? (IF;). There are (g + 1)q ordered pairs of distinct lines
containing a chosen point. We include a factor of (¢ — 1)? to account for scaling
each polynomial. This completes the computation of a; and as.

2. We compute the contribution from polynomials that define cubic curves that share

a pair of F,-rational lines. There are (q2+2’1 1) such pairs. Each cubic consists
of these two common lines and another line, where that line may be one of the
common lines. These two additional lines intersect in a unique I, -point. There are
2g + 1 points on the two shared lines and g2 — ¢ points not on these lines. There
are (¢ + 1)g ordered pairs of distinct lines containing a chosen point. We include
a factor of (¢ — 1)? to account for scaling each polynomial. This completes the

computation of azy 11 and azg42.
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3. We compute the contribution from polynomials that define cubic curves that share
a smooth conic. There are g° — ¢ choices for the conic. Each cubic contains this
common conic and an additional line. These lines intersect in a unique [, -point.
There are g + 1 points on the conic and g2 points not on the conic. There are
(g + 1)g ordered pairs of distinct lines containing a chosen point. We include a
factor of (g — 1)? to account for scaling each polynomial. So the contribution in
this case is

@® — g+ Dalq — D>((g + DXIH Y9 4 g2x9+2ya ),

4. We compute the contribution from polynomials that define cubic curves that share
a unique [, -rational line. There are g% + g + 1 choices for the line. Each cubic
consists of this common line together with a plane conic that may be reducible.
We need to count the number of [F,-rational intersection points of these conics
not on the common line. This is equivalent to counting the number of I, -rational
intersection points of the pair of affine conics we get from taking the common line
as the ‘line at infinity’ in P2 That 18, the contribution from this case is

4
(¢ +q+ 1)(2 cz-XW*l‘Yqz"),

i=0

where the values of cg, c1, ¢2, ¢3, and ¢4 are given in Theorem 4.4. We do not need
to include a factor of (¢ — 1)? to account for scaling each polynomial because this
scaling is already included in the result of Theorem 4.4.

Combining these cases completes the proof of the theorem. O

As an additional check, we explain how to compute the contribution from this final
case in a different way. Two cubics that share a unique [F;-rational line consist of that
common line together with a pair of projective conics. The number of F,-points in the
intersection of these conics is in [0, 4]. If this pair of cubics intersect in g + 5 rational
points, then the conics must intersect in 4 IF; -points, and the shared line cannot contain
any of them. We first choose the pair of conics and then choose the line.

The number of pairs of projective conics intersecting in 4 IF,-points is given as c4
at the end of the proof of Theorem 4.1. If two conics that do not share a component
intersect in 3 or 4 F,-points, then no 3 of these intersection points are collinear.
Therefore, the number of lines not containing any of these 4 intersection points is
> +q+1- (4(q +1) - (‘21)) This gives another proof that

1
Agis =27 +2+q+Dig+ 2(q — *q*(g* =3¢ +2).

We can verify the other computations from this final case using this method but do not
give the details here.
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7 Intersections of two cubics: the proof of Theorem 1.3

We are now ready to prove Theorem 1.3.

Proof We recall the expression for the low-weight coefficients of Wézj (X,Y)givenin
Lemma 3.3. We apply Theorem 2.9 to the expression given in Prop()zéSition 6.1. Let M
be the 10 x 10 matrix with rows and columns labeled from O to 9, and (i, j) entry equal
to the X9°+9+1=i yi coefficient of (X + (g2 — 1Y)/ (X — Y)?°+4+1=J. Let ¢ be the
column vector with entries co, .. ., cg. Then M - ¢ must be equal to the column vector
with 10 entries, labeled from 0 to 9, whose i ™ entry is the X4 q+1—i Y? coefficient of

wWgl (X, 1)
2,3
B (<X + (g — Hy)T !

+ (g + D(Wers (X + (@2 = DY, X —Y) = (X + (g% — DY)4 FaH)

+ WELOMX +(@* — DY, X — Y)>.

A linear algebra computation in Sage completes the proof. O

8 Further questions

One could try to follow the strategy of the proof of Theorem 1.3 to study intersections
of curves of higher degree.

Question 8.1 Let d and e be positive integers and let k € [0, de] be an integer. How
d+2 e+2

many of the (¢(3) — 1)(¢(2) — 1) ordered pairs (£, g) with f € Fy[x, y, zls and

g € Fylx, y, z]., both nonzero, define curves that intersect in exactly k I, -points and

do not share a common component?

In this paper, we answer this question when (d, e) € {(2, 2), (3,2), (3, 3)}. As men-
tioned in Remark 1.4, in forthcoming work we study the case where e = 2 and d is
arbitrary, and get a polynomial formula for each k. For any (d, e), the main term as
g — o0 is due to Entin [6]; see Theorem 1.5 in the introduction. We believe that the
case (d,e) = (3, 3) is a kind of boundary for this problem. In this final section, we
discuss two approaches to Question 8.1.

We consider analogues of the main steps of the proof of Theorem 1.3 for general
(d,e).

1. Determine the contribution to Wézz:!d,CZ_e(X’ Y) from pairs (f, g) that define a
degree d curve and a degree e curve that do share a common component.
If we are able to complete this step, this leaves de + 1 unknown coefficients of
W0 X1
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2. Determine the de + 1 lowest-weight coefficients of ngd’ ct (X,Y) by counting

configurations of up to de points that fail to impose independent conditions on
curves of degree d, and on curves of degree e.

If we are able to complete this step, we get de + 1 linear conditions that must be
satisfied by the de + 1 unknown coefficients of Wgz]d’ Cre (X, Y). We would hope
that these conditions uniquely determine these coefficients.

We briefly discuss two difficulties with this approach.
8.1 Traces of Hecke operators and coefficients of WCZLz X,

Suppose that e = 3 and d is arbitrary. We want to determine the 3d + 1 lowest-weight
coefficients of le] Ch, (X, Y). The contribution to the X9 *+a+1-jyJ coefficient

of this weight enumerator from pairs of the form (0, c) where ¢ € Cm is the
XT*+a+1=iyJ coefficient of Wed, (X,Y).

Theorem 2.19 states that for each j < 9, the X *+a+1-jyJ coefficient of
WCJ_ (X,7Y) is a polynomial in ¢g. Once j > 10, the corresponding coefficient is
not a polynomial in ¢, but involves a contribution from the trace of the Hecke oper-
ator 7, acting on spaces of cusp forms of weight at most j + 2 for SL>(Z). See [14,
Section 4] for a more detailed discussion of how these non-polynomial terms arise
in these weight enumerator coefficients. For a precise statement of the X 7*+q-9y10
coefficient of WCL (X,Y) when g > 5 is prime see [14, Theorem 3]. We conclude

that when d > 4, one should not expect the first 3d + 1 lowest-weight coefficients of

WEE ct (X, Y) to be polynomial in ¢g. When both d, e are greater than 3 we expect
2,d>~2,3

similar, but even more complicated, behavior for these coefficients of these weight
enumerators.

8.2 Counting points that fail to impose independent conditions on curves of
degree d
For the rest of this section, suppose that k < (szrz)'

A key to answering the kinds of questions about intersections of curves that we
study in this paper is understanding the number of collections of k points in P2 (Fy)
that fail to impose independent conditions on curves of degree d. This question has
been extensively studied (see [4,9,18]), but we do not have a complete characterization
for every degree d and every k. Let X4 ; be the space {(C, p1, ..., pr)} where C is
a plane curve of degree d and py, ..., px are distinct points of C. Let Conf*(P?)
denote the configuration space of unordered k-tuples of distinct points in P%. We have
a projection map 7 : X4 — Conf*(P?). Since a generic set of k points in P> will
impose independent conditions on degree d curves, the fiber over a point of Conf * (P?)

. . . . (d+2)_1_k
is generically isomorphic to P\ « .

@ Springer



Counting plane cubic curves over finite fields with a prescribed number of rational intersection points

Consider F} 4 C Conf *(IP?), the subset consisting of collections of k distinct points
that fail to impose independent conditions on degree d curves. We can define J% 4
algebraically as follows. Choose an affine representative for each point of P? and
consider the standard set of (d-gz) monomials, x'y/zX where i + j + k = d. By
evaluating this basis of monomials, an ordered collection of k points in P? gives
(d42—2) x k matrix A. The set of points imposes independent conditions on degree d
curves if and only if the rank of the matrix is equal to k. Note that the rank does not
depend on a choice of ordering of the points. In this way, we see that F 4 can be

defined by the simultaneous vanishing of a set of k x k minors.

Question 8.2 1. What can we say about # F; 4(IF;)? In cases where we cannot get an
exact answer, what can we say about asymptotic behavior as ¢ — 00?

2. Can one obtain information about the singular cohomology of J% 4? Can one use
this information along with tools from étale cohomology to deduce consequences
for # Fy a(Fy)?

A better understanding of the cohomology of J s would likely shed light on the ques-
tion of when the kinds of counting problems we discuss in this paper have polynomial
or non-polynomial answers.

Appendix A. The number of collections of 9 points in ]P’Z(IFq) that are
the intersection of two cubics

The goal of this appendix is to prove the following result.

Theorem A.1 Let I9(q) be the number of collections of 9 points in P> (Fy) such that
there exist two cubic curves intersecting at these 9 points that do not share a common
component. Then,

1
Ioq) =g (¢° +2¢° — 73¢" + 344¢° — 838¢% + 1754q — 2030)

(P Hg+DG+1g - D2 -2

Remark A.2 In Sect. 3 we analyzed codewords of CZL’3 of weight 9. Comparing these
calculations to an earlier result of Kaplan proved this result, except that [ 14, Theorem
3] contains the additional assumption that the characteristic of [, is not 2 or 3. In
this appendix we give a proof of Theorem A.1 that works in all characteristics, and
moreover, makes no reference to results from coding theory.

Suppose { Py, ..., Py} is acollection of 9 points such that there exist two cubic curves
containing these points that do not share a common component. No 4 of these 9 points
lie on a line, since a cubic that contains 4 collinear points contains that line. No 7 of
these 9 points lie on a conic, since a cubic that contains 7 points on a conic contains
that conic.

We next recall a version of what is often called the Cayley—Bacharch theorem, but
is more accurately due to Chasles.
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Proposition A.3 ([10, Chapter V, Corollary 4.5]) Given 8 distinct points Py, ..., Pg
in the plane, no 4 collinear, and no 7 lying on a conic, there is a uniquely determined
Py (possibly an infinitely near point) such that every cubic through P, ..., Pg also
passes through Py.

We focus on the case where Py is distinct from the first 8 points.

Proposition A.4 Using the notation of Proposition A.3, Py is infinitely near to one of
the first 8 points if and only if one of the following cases holds after relabeling the
points:

1. Py, ..., Pg lie on an absolutely irreducible singular cubic with one of the points
being the singular point.
2. Py, ..., Pglie on a smooth conic, and the line containing P; and Pg also contains

exactly one of the first 6 points.

3. Pi, Py, P3are collinear, and Py, Ps, Pg are collinear, where none of these 6 points
is the intersection point of these two lines, and the line containing P; and Pg
contains exactly one of the first 6 points.

We thank Igor Dolgachev for helpful suggestions related to the argument below.

Proof We first show that if Pj..., Pg are in one of the three configurations in the
statement, then Py is infinitely near to one of the P;.

1. Suppose Py, ..., Pg are as in the first case of the statement. Let C be an absolutely
irreducible cubic containing them with a singular point at one of the points. Without
loss of generality, suppose C is singular at P;. Let C’ be any other cubic containing
Py, ..., Ps. The cubics C and C’ already intersect at multiplicity 9, so it is not
possible for C and C’ to intersect at any points not in { Py, ..., Pg}, or for C and
C’ to intersect at multiplicity greater than 1 at any of P, ..., Pg.

2. Suppose P, ..., Pg are in the second case of the statement. Let C be the union
of the conic through Py, ..., Pg and the line containing P7 and Pg. Let C’ be any
other cubic containing P, ..., Pg. The rest of the argument is identical to the
previous case.

3. Suppose Py, ..., Pg are in the third case of the statement. Let C be the be the
union of the lines through Py, P,, P3, through P4, Ps5, Pg, and through P7, Pg. Let
C’ be any other cubic containing Py, ..., Pg. The rest of the argument is identical
to the previous case.

Let Py, ..., Pg be distinct points in the plane, no 4 collinear, and no 7 lying on a
conic. By Proposition A.3, there is a uniquely determined P9 such that every cubic
through Py, ..., Pg also passes through Pg. Suppose that Py is infinitely near to one of
the first 8 points. Without loss of generality, suppose that Py is infinitely near to P;. We
now prove that Py, ..., Pg arein one of the three configurations given in the statement.

The space of cubic polynomials containing 8 points in the plane has dimension at
least 2. Let f, g € Fy[x, v, z]3 be linearly independent polynomials that define cubic
curves vanishing at Pp, ..., Pg with tangent direction at P; specified by Py. Then
it is clear that there exists A € I such that f — Ag is a nonzero cubic containing
Py, ..., Pg thatis singular at P;.
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Suppose that S = {Py, ..., Pg} is a set of distinct points in the plane with no 4
collinear and no 7 on a conic and there is a cubic containing these points with a sin-
gular point at Pj. If this cubic is absolutely irreducible we are in the first case of the
proposition.

Suppose that the cubic is reducible. Every reducible cubic defined over I, either
factors as a smooth conic defined over IF, together with an [F,-rational line, or as a
union of three lines.

1. If the cubic factors as a smooth conic C and a line L, then P; € C N L. It is not
possible to have 3 of the remaining 7 points of S lie on L and it is not possible to
have 6 of the remaining points of S on C. Therefore, |[CN S| =6, |LNS| = 3,
and P is the only point of § in C N L. After relabeling the points, we see that we
are in the second case of the proposition.

2. Suppose the cubic factors as the union of 3 lines, L1, L, L3. Since the union of
these 3 points contains at least 8 IF,-points and none of these lines contains more
than 3 IF,-points, we see that the L; are distinct and F;-rational. The only singular
points of the cubic are the intersection points of pairs of the lines. Without loss of
generality, P is the intersection point of L1 and L,. We see that each of L1 and L»
contains at most 2 additional points from S, so L1 U L, contains at most 5 points
of S. Since L3 contains at most 3 points from S, we see that [(L1ULy)NS| =5
and L3 contains exactly the 3 remaining points of S. After relabeling the points,
we see that we are in the third case of the proposition. O

Proposition A.5 Ler Jg(q) be the number of collections of 8 points in P2(Fq) such
that:

1. No 4 points are collinear and no 7 points lie on a conic.

2. It is not the case that the 8 points lie on an absolutely irreducible singular cubic
with the singular point at one of the 8.

3. It is not the case that 6 of the points lie on a smooth conic and the line containing
the remaining 2 contains exactly one of the other 6.

4. It is not the case that 6 of the points lie on two Fy-lines, with 3 points on each
and not containing the intersection point, and the line containing the remaining 2
contains exactly one of the other 6.

Then 19(q) = Js3(q)/9-

Proof This follows from Propositions A.3, A.4, and the observation thatif Py, ..., Py
are 9 points such that there are two cubics containing them that do not share a common
component, then applying Proposition A.3 to any subset of 8 of the points gives this

same set of 9. |

LemmaA.6 The number of collections of 8 points in P? (Fy) with at least 7 on a smooth

conic is
C>7(q) = (@ —¢*) ((q ;r 1) + (q J7r 1)612) :
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The number of collections of 8 points in P2 (Fy) with at least 4 on a line is

+1 +1 +1\(4?
L>4(q)=(q2+q+1)<<q8 >+<q7 >q2+<q6 )(q2>
g +1\ (4 | (a+1\(4
() ()
) 2 q\ (4

(N () o
2 4 2 3)

The number of collections of 8 points in JP’Z(IFq) with no 4 points collinear and no 7
points on a conic is

2
qg - +q+1
( g ) —C>7(q9) — L>a(q).
Proof The number of subsets of 8 points in P*(F,) is (q2+8q +1). There are ¢° — ¢
smooth plane conics, so the computation of C»7(q) is clear. There are > +q+1 Fy-
rational lines in P2 (Fy). The number of subsets of 8 points in ]P’z(]Fq) with at least 5
points on a line is therefore,

()3 () ()

There are (g2 +¢+1) (qj;l) (‘142) ways to choose a subset S of 8 points in the plane with
exactly 4 points on a chosen line L and 4 other points. However, it may be the case
that this collection of 8 points contains 5 collinear points, or two subsets of 4 collinear
points. The first case occurs if and only if the 4 other points lie on aline L’ and LN L’
is one of the 4 chosen points of L. The number of ways to choose 8 such points is the
number of choices of L times the number of choices of L’ times the number of ways
to choose 3 additional points of L and 4 additional points of L’.

The set S contains exactly two subsets of 4 collinear points if and only if one of the
following conditions holds:

1. S consists of 4 points each on two lines L, L/, not containing the intersection point.
2. S consists the intersection point of two lines L, L” and 3 additional points on each
line, along with 1 additional point not on L U L'.

2
There are (¢ 771) (ﬁ{)2 ways to choose a subset of the first type. Since two F,-rational

lines contain 2q + 1 I, -points, there are 9> —q IF,-points not contained in two chosen

. 2 2
lines. Therefore, there are (" 77 *1)(4)7 (¢ — ¢) subsets of the second type.
It is clear that if a collection of 8 points has at least 4 on a line, it cannot have 7 on
a smooth conic. O
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LemmaA.7 The number of collections of 8 points in P> (Fy) that lie on an absolutely
irreducible singular cubic with one of the 8 points as the singular point is

3_ .2 —1
@*+q+ (g —q)q2<q) +@P+g+ D - T =L (q )

7 2 7
3 2
- +1
+(42+q+1)(q3—q)q 2q (q7 )

Proof There are 3 isomorphism classes of absolutely irreducible singular cubic curves:

1. Cuspidal cubics, which have g + 1 F;-points.
2. Split nodal cubics, which have g F,-points.
3. Non-split nodal cubics, which have g + 2 F,-points.

For the number of polynomials defining each type of cubic, see [14, Lemma 1]. We
divide each term given there by ¢ — 1 to account for the fact that we count plane curves
rather than cubic polynomials. O

Lemma A.8 The number of collections of 6 points on a smooth conic together with 2
points not on that conic such that the line through those 2 contains exactly one of the
other 6 points is

() oo (1) o)

Proof Suppose Py, ..., Pg are points of a smooth conic. There are 6(q —4) I, -rational
lines through exactly 1 of these 6 points. There are 6 lines tangent to the conic and
6(¢ — 5) lines not tangent to the conic. A tangent line contains ¢ points not on the
conic and a non-tangent line contains ¢ — 1 points not on the conic. O

Lemma A.9 The number of collections two collinear triples Py, P>, Pz and Py, Ps, Pe,
where the intersection point is not included among these 6 points, and two additional
points P;7, Pg such that the line containing them passes through exactly 1 of the first

6 points is
@ +q+1\(q\’ q—1
3(g -3 .
()6 ()

Proof The number of choices for two collinear triples Py, P, Psz and Py, Ps, Ps, where
the intersection point is not included among these 6 points is

P 4q+1\(q\*
()6)
Suppose Py, P>, P3 lie on the line L and Py, Ps, Pg lie on the line L. There are g + 1
lines through each of the 6 points. Of these ¢ + 1, there is 1 line that contains two
additional points from these 6 and 3 lines that contain 1 additional point from these 6.
So, there are ¢ — 3 lines that do not contain any additional points from this set of 6.
For each such line, there are ¢ — 1 points that are not contained in L U L".

We divide by 2 to account for the fact that the choice of which line to label L and
which line to label L’ was arbitrary. O
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Combining Proposition A.5 with Lemmas A.6, A.7, A.8, and A.9 completes the proof
of Theorem A.1. As a consequence, we see that Theorem 2.19 does hold for any g > 2,
even when the characteristic of I, is 2 or 3.
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