

Field evaluation of seven products to control cyanobacterial blooms in aquaculture

Riley P. Buley, Catie Adams, Angelea P. Belfiore, Edna G. Fernandez-Figueroa,

Matthew F. Gladfelter, Brynne Garner, and Alan E. Wilson*

Auburn University, School of Fisheries, Aquaculture, and Aquatic Sciences,

Auburn, Alabama 36849 USA

*Corresponding Author: wilson@auburn.edu; 334-246-1120

Keywords: hydrogen peroxide, peracetic acid, copper, clay, harmful algal blooms, chemical control.

14 **Abstract**

15 Harmful algal blooms negatively impact water quality in hypereutrophic systems that are
16 common in aquaculture. However, few algaecides are approved for use in food-fish aquaculture.
17 This study assessed the effectiveness of seven products, including hydrogen peroxide (as a
18 concentrated liquid or in granular form (PAK-27)), peracetic acid (as VigorOx SP-15 and
19 Peraclean), copper (as copper sulfate in unchelated (powder) or chelated (Captain) forms), and a
20 clay-based product (as Phoslock) on phytoplankton (including cyanobacteria) and zooplankton
21 biomass. Each product was tested in a 14-day laboratory and 35-day field experiment to assess
22 their short- and long-term performance. Although some products (i.e., copper-based and liquid
23 hydrogen peroxide) quickly reduced phytoplankton, effects were short-lived given that chlorophyll
24 concentrations returned to starting concentrations within 21 days. In contrast, all but one product
25 (i.e., concentrated liquid hydrogen peroxide) maintained low phycocyanin concentrations for 35
26 days. Zooplankton biomass trends showed large, negative effects for most algaecides; however
27 zooplankton rebounded for most treatments except for copper-based products. In general, copper-
28 based products remain the most efficient and cheapest choice to reduce total phytoplankton
29 biomass in aquaculture systems. However, peracetic acid-based products effectively and quickly
30 reduced cyanobacteria while having marginal effects on beneficial algae and zooplankton. Such
31 algaecides could be effective alternatives to copper-based products for aquaculture farmers.

32 **Declarations**

33 **Ethics approval and consent to participate:** This research followed the guidelines provided by
34 Auburn University for ethical research. Consent to participate was not applicable for this study.

35 **Consent for publication:** N/A

36 **Availability of data and materials:** The datasets used and/or analyzed during the current study
37 are available from the corresponding author on reasonable request.

38 **Competing interests:** The two peracetic acid-based products used in this study were provided
39 by Evonik (Peraclean®) and PeroxyChem (VigorOx®). Partial financial support in the form of
40 an unrestricted gift was provided by SePRO prior to the start of this study.

41 **Funding:** This study was supported by NSF grant DBI-1658694 and USDA grant 2017-70007-
42 27132, the Alabama Agricultural Experiment Station, the Hatch program of the National Institute
43 of Food and Agriculture, U.S. Department of Agriculture, and a small gift from SePRO.

44 **Authors' contributions:** Conceptualization: RPB and AEW; Methodology: RPB, CA, AEW;
45 Formal analysis and investigation: RPB, CA, APB, EGFF, MFG, BG, and AEW; Writing -
46 original draft preparation: RPB, APB, EGFF, MFG, and AEW; Writing - review and editing:
47 RPB, CA, APB, EGFF, MFG, BG, and AEW; Funding acquisition: AEW; Resources: AEW;
48 Supervision: AEW.

49 **Acknowledgments:** We thank the members of the Wilson laboratory for their assistance and two
50 anonymous reviewers who provided suggestions that improved an earlier version of this
51 manuscript. We thank SePRO, Evonik, and Peroxychem for their financial and/or product
52 support. This study was supported by NSF grant DBI-1658694 and USDA grant 2017-70007-
53 27132, the Alabama Agricultural Experiment Station, the Hatch program of the National Institute
54 of Food and Agriculture, U.S. Department of Agriculture, and a small gift from SePRO.

55 **Introduction**

56 Harmful algal blooms negatively impact water quality in freshwater, estuarine, and
57 marine systems around the world (Chislock et al. 2013a and b). Such events are more common,
58 extreme, and persistent in nutrient-rich systems like those found in aquaculture (Schrader et al.
59 2018; Tucker et al. 2020). Algal blooms often create anoxic or hypoxic conditions under
60 periods of low light or as cells decay associated with microbial degradation. In intensive
61 aquaculture systems, daily pond aeration is often required to maintain safe dissolved oxygen
62 concentrations, which increases production costs. Secondary metabolites of toxigenic
63 phytoplankton, such as microcystin which is a class of hepatotoxins produced by some genera
64 of cyanobacteria (blue-green algae), may affect the liver, spleen, and kidneys facilitating sub-
65 chronic issues (e.g., reduced growth and feeding, deformities, increased cortisol levels;
66 Malbrouck and Kestemont 2006), or, in extreme situations, induce acute die-offs (Zimba et al.
67 2000). Moreover, some cyanobacterial genera can produce off-flavor compounds (e.g., 2-
68 methylisoborneol (MIB), geosmin), which are non-harmful (Dionigi et al. 1993) but generate
69 unwanted taint in fish fillets. This issue costs the U.S. catfish aquaculture industry an estimated
70 \$23 million annually due to lower market prices, prolonged holding times, and extended
71 feeding (Hanson 2003).

72 To combat the issues generated by cyanobacterial blooms, aquaculture relies primarily
73 on the use of chemical controls due to their effectiveness in rapidly reducing phytoplankton
74 biomass (Bosma and Verdegem 2011; Schrader et al. 2005; Viriyatum and Boyd 2016). Past
75 research has shown that a number of algaecide types can control nuisance algal blooms in
76 environments similar to that of farm-pond aquaculture (Sinha et al. 2018; Schrader et al. 2005;
77 Barrington et al. 2013; Bishop and Richardson 2018). For example, copper sulfate (CuSO_4) can

78 reduce excessive algal growth in ponds with moderate risk to the farmed fish when used
79 appropriately, such as testing ambient alkalinity prior to treatment (Viriyatum and Boyd 2016).
80 Despite this, there is concern that chemicals, such as heavy metals like copper, may persist in
81 the environment for extended durations, have negative effects on non-target organisms, and
82 may require repeated applications to prevent bloom resurgences, thus increasing water quality
83 management costs and toxicity risks (Viriyatum and Boyd 2016). Only two algaecides are
84 approved for algal bloom control in aquaculture (i.e., CuSO₄*H₂O and Diuron (phenylurea-
85 based herbicide-turned-algaecide product; to be used specifically for the control of
86 cyanobacteria that produce MIB); EPA 2003). Such a limited variety of chemical controls is
87 possibly due to the requirements needed to receive the U.S. Environmental Protect Agency's
88 (EPA) approval under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA;
89 Laughinghouse et al. 2020). Further, copper sulfate is a cost-effective, low volume method to
90 reduce cyanobacteria, and issues of toxicity can be mitigated by utilizing lower concentration,
91 repeated doses (Tucker et al. 2005).

92 Despite the limited number of approved algaecides, recent research has identified
93 numerous chemicals that can effectively reduce cyanobacterial biomass, including chelated
94 copper (Bishop et al. 2017), granular (sodium carbonate peroxyhydrate) and liquid hydrogen
95 peroxide (Sinha et al. 2018; Yang et al. 2018), and peracetic acid (Enviro Tech 2003). Clay
96 compounds have also been identified as means to bind to cyanobacteria for removal (Lu et al.
97 2017) and/or by binding to phosphorus to reduce nutrient availability to blooms (Bishop and
98 Richardson 2018). Despite a large amount of literature on the subject, research on the
99 effectiveness of a specific algaecide is often context-specific considering each study is
100 conducted under disparate conditions with varying cyanobacterial genera dominating the

101 system, thus leading to a dissonance in findings between studies. Such variation in results is
102 more pronounced when experiments compare results across algaecides (Sinha et al. 2018) or
103 attempt to extend results from the lab to the field (Yang et al. 2018). For example, Yang et al.
104 (2018) observed that hydrogen peroxide (H₂O₂) in liquid form under uniform laboratory
105 conditions was effective at eliminating *Dolichospermum* (earlier known as *Anabaena*),
106 *Cylindrospermopsis*, and *Planktothrix*, but was less effective at reducing *Microcystis*.
107 Furthermore, the prolonged effectiveness of a treatment is questionable as many are assessed
108 for short durations (<7 days; Barrington et al. 2013; Greenfield et al. 2014). Such differences in
109 experimental design between published studies may lead to varying outcomes and subsequent
110 inaccurate perceptions of the effectiveness of a product to reduce nuisance cyanobacterial
111 blooms.

112 In general, few studies have tested multiple algaecides in a single study under uniform
113 conditions (refer to Sinha et al. 2018). The purpose of this study was to compare the
114 effectiveness of CuSO₄, as it is the only fully EPA approved algaecide for use in food-fish
115 aquaculture to six other algaecides to control blooms of phytoplankton, specifically
116 cyanobacteria, in the field. This study assessed the effectiveness of seven algaecides including,
117 CuSO₄, Captain® (chelated copper), PAK-27® (sodium carbonate peroxyhydrate, H₂O₂ -
118 based), liquid H₂O₂, VigorOx SP-15® (peracetic acid), Peraclean® (peracetic acid), and
119 Phoslock® (modified clay for phosphorus binding, not an algaecide as the others, but hereby
120 referred to as an ‘algaecide’ or ‘product’ to maintain uniformity) (online resource Table 1). The
121 products were initially tested across a broad range of concentrations in a 14-day laboratory-
122 based microcosm experiment to identify target concentrations for each algaecide in a

123 subsequent 35-day field mesocosm experiment where effects on phytoplankton and
124 zooplankton biomass were assessed.

125

126 **Methods**

127 *Laboratory experiment*

128 Shoreline pond water samples were collected in the morning using buckets from three
129 active catfish aquaculture ponds experiencing cyanobacterial blooms (dominated by *Microcystis*)
130 on the E.W. Shell Fisheries Center of Auburn University, AL during May 2019. The pond water
131 was combined in equal parts, returned to the lab, filtered through a 500 μm mesh to remove large
132 debris, and placed into an acid-washed bucket. To supplement phytoplankton densities, BG-11
133 media (Rippka et al. 1979) was stirred into the combined pond water such that the media
134 comprised 10% of the total volume. The tested phytoplankton community consisted mostly of
135 cyanobacteria (91.5% total biovolume that included *Microcystis* (79.1%), *Raphidiopsis* (11.3%),
136 and *Oscillatoria* (5.9%)) but also contained green algae (7.5%) and diatoms (1%). The mixture
137 was then distributed to 87, 500 mL glass jars to a volume of 435 mL. Jars were capped and
138 mixed before collecting A/E filtered samples for two algal pigments, chlorophyll (i.e.,
139 chlorophyll-*a*; a measure of total phytoplankton abundance) and phycocyanin content (measure
140 of cyanobacterial abundance), that were measured using fluorometry (Turner Designs Trilogy®).
141 Chlorophyll was determined by extracting filters in 90% ethanol for 24 hours at 4 °C (20 mL
142 pond water; Sartory and Grobbelaar 1984). Phycocyanin was measured by extracting filters in a
143 50 mM phosphate buffer (Ricca Chemical ®) for four hours in the dark (20 mL pond water;
144 Kasinak et al. 2014). After collecting initial algal pigment samples, 395 mL of pond water
145 remained in each jar.

146 Jars were then dosed with one of seven products (Table 1; online resource Table 1). Each
147 product was tested at four different treatment concentrations with three replicates for each
148 concentration. Control jars that received no chemical additions were also included. Secondary

149 stocks of each chemical were made with DI water at a concentration such that each jar received a
150 5 mL addition of the secondary stock to achieve the required chemical dosage (total jar volume
151 now 400 mL). Control jars received 5 mL of DI water containing no chemicals. Phoslock
152 treatments were based on the amount of total phosphorus present within a water body. As such,
153 total phosphorus was measured for the pond water and BG-11 mixture before the treatment using
154 a colorimetric assay spectrophotometry (Gross and Boyd 1998) and found to be 2.2 mg/L. After
155 the 5 mL of the secondary stocks were added, jars were then inverted three times, their caps
156 loosened, and incubated at 30 °C on an 8 hr light: 16 hr dark schedule (fluorescent lighting;
157 intensity = 80 $\mu\text{mol}/\text{m}^2/\text{s}$).

158 The laboratory experiment lasted for 14 days. Jars were mixed by inverting three times
159 and rotated within the incubator (Percival® model I-36VL) daily to minimize light variation
160 across jars. Algal pigment measurements were collected via pipette on days 0, 1, 3, 5, and 7 (20
161 mL for both chlorophyll and phycocyanin). A repeated-measures analysis of variance (RM-
162 ANOVA) using a restricted maximum log-likelihood (REML) method was used to assess
163 differences in total phytoplankton (chlorophyll) and cyanobacterial (phycocyanin) densities over
164 time. Tukey's multiple comparison tests were used to compare mean effects among treatments.
165 The analysis was performed using the *nlme* package in R (Pinheiro et al. 2020). The lowest
166 concentration of each product that clearly and effectively reduced total phytoplankton (using
167 chlorophyll values) and specifically cyanobacterial biomass (using phycocyanin values) to that
168 of the control was selected for use in the field experiment.

169

170 *Field experiment*

171 The field experiment was conducted during June 2019 in a 22-acre earthen aquaculture
172 pond containing hybrid catfish (blue x channel catfish; *Ictalurus punctatus* x *I. furcatus*) housed
173 within an in-pond raceway system at the E.W. Shell Fisheries Center of Auburn University, AL
174 (S1; Boyd and Sheldon 1984). Each product was tested in three, randomized replicate
175 mesocosms, and the control had four replicates (25 mesocosms in total). Mesocosms were
176 cylinder-shaped and made of greenhouse plastic (1310 L volume) that were sealed at the bottom
177 and open at the top and suspended to a floating dock positioned in the center of the pond (Fig. 1).
178 Mesocosms were filled with surrounding pond water after being sieved through 200 μm mesh to
179 exclude large debris but to include ambient zooplankton and phytoplankton. Prior to filling, the
180 pond was sampled for total nitrogen and phosphorus (both measured using persulfate digestion
181 and spectroscopy (Gross and Boyd 1998)). Based on these values, potassium phosphate
182 (K_2HPO_4) and potassium nitrate (KNO_3) were added to each mesocosm to reach concentrations
183 of 2.6 mg/L total nitrogen and 0.22 mg/L total phosphorus. Mesocosms were then left for 11
184 days to allow phytoplankton abundance to increase and stabilize.

185 On day 0 (11 days after filling and fertilizing), two integrated vertical water samples were
186 obtained using a rigid tube sampler (inside diameter = 51 mm) to a depth of 1 meter (4 L of
187 sample collected total). Samples were combined in a bucket and placed into a plastic cubitainer.
188 Water samples were returned to the lab to be processed for chlorophyll and phycocyanin
189 pigments, as well as for phytoplankton and zooplankton diversity and abundance. Phytoplankton
190 samples were preserved using 1% Lugol's iodine solution. The preserved samples were then
191 settled in a Hydro-bios® settling chamber and enumerated on an inverted microscope by
192 counting cells observed in 25 fields from 100-400x (Yang et al. 2018). Zooplankton from 2 L of
193 sample were collected on a 100 μm filter and preserved in 95% ethanol before enumeration in a

194 Sedgewick-Rafter chamber on a compound microscope by counting all zooplankton observed at
195 100x (Yang et al. 2018). Phytoplankton and zooplankton were identified using Edmondson
196 (1959). Phytoplankton were identified to the genus level. Zooplankton were identified to the sub-
197 order or genus. Dominant phytoplankton included green algae (*Staurastrum* and *Gloeocystis*) and
198 cyanobacteria (*Microcystis* and *Pseudanabaena*).

199 After sampling water quality for day 0 measurements, the mesocosms were either left
200 untreated (controls) or treated with a one of seven algaecides (Table 2). Mesocosms were
201 randomly assigned. Mesocosms were mixed with a tube sampler for 10 seconds after the
202 application of each product. Integrated water samples were then collected from each mesocosm
203 on days 1, 3, 7, 14, 21, 28, and 35. Chlorophyll and phycocyanin values were measured for all
204 sampled days. Phytoplankton and zooplankton samples were counted for day 0, 1, 7, and 35.

205 Products were assessed foremost on their ability to reduce cyanobacteria. Changes in the
206 total phytoplankton and zooplankton biomass were also assessed between product treatments. A
207 repeated-measures analysis of variance (RM-ANOVA) using a restricted maximum log-
208 likelihood (REML) method was used to assess these differences in total phytoplankton
209 (measured as chlorophyll and phytoplankton biovolume), cyanobacterial density (phycocyanin),
210 and zooplankton density between product treatments over time. Tukey's multiple comparison
211 tests were used to compare mean effects among treatments. The analysis was performed using
212 the *nlme* package in R (Pinheiro et al. 2020).

213

214 **Results**

215 *Laboratory experiment*

216 Seven algaecides were tested at four treatment concentrations over the 14-day laboratory
217 experiment by measuring changes in phytoplankton (measured as chlorophyll; Fig. 2a and c) and
218 cyanobacterial (measured as phycocyanin; Fig. 2b and d) abundances over time. Briefly, across
219 all products, there were large effects of treatment ($p < 0.000001$), time ($p \leq 0.021$), and the
220 treatment x time interaction ($p < 0.000001$) on chlorophyll and phycocyanin concentrations
221 (RM-ANOVA). The copper-based products, CuSO₄ and Captain, significantly reduced
222 phytoplankton and cyanobacteria with concentrations ≥ 0.2 mg/L as Cu ($p \leq 0.05$; Online
223 Resource Figs. 1 and 5). At these concentrations, cyanobacteria were fully removed from the jars
224 with both products by day three, while total phytoplankton biomass quickly declined and largely
225 remained < 200 μ g/L (compared to starting chlorophyll concentrations ~ 500 μ g/L) in both copper
226 products for the duration of the trial. H₂O₂-based products, liquid H₂O₂ and granulated PAK-27,
227 both significantly reduced total phytoplankton and cyanobacteria at concentrations ≥ 5 mg/L as
228 H₂O₂ (Online Resource Figs. 2 and 6). Although biomass did decrease in the first three days,
229 both total phytoplankton and cyanobacteria again increased over the 14-day trial, but remained
230 lower than the control. Peracetic acid-based products, Peraclean and VigorOx SP-15,
231 significantly reduced phytoplankton and cyanobacteria with concentrations ≥ 2 mg/L as volume,
232 with the greatest effects observed at concentrations ≥ 10 mg/L ($p \leq 0.05$; Online Resource Fig. 3
233 and 7). Cyanobacteria remained at or near-to zero after day 1 in concentrations ≥ 5 mg/L.
234 Phytoplankton increased over the 14-day experiment in concentrations less than ≤ 5 mg/L and
235 ≤ 12 mg/L in the Peraclean and VigorOx SP-15 treatments, respectively. However,
236 phytoplankton and cyanobacteria still remained lower than that of the control throughout the

237 entire experiment after treatment. For Phoslock, only the ratio of 50:1 (kg phoslock:kg
238 waterbody phosphorus) reduced phytoplankton abundance when compared to the control (Online
239 Resource Fig. 4) while the 200:1 Phoslock treatment was the only treatment to reduce
240 cyanobacteria relative to the control (Online Resource Fig. 8).

241 From the various concentrations that the seven algaecides were tested, it was determined
242 that the following concentrations were to be tested in the field experiment: 0.4 mg/L of CuSO₄
243 and Captain, 10.2 mg/L of liquid H₂O₂ and PAK-27, 10 mg/L of VigorOx SP-15 and Peraclean,
244 and 200:1 ratio for Phoslock (Table 2). Between these products, all had at least one concentration
245 that significantly reduced both total phytoplankton (Fig. 2a and c) or cyanobacteria (Fig. 2b and
246 d) over the 14-day experiment when compared to the control.

247

248 *Field experiment*

249 A 35-day field mesocosm experiment evaluated seven algal control products on
250 phytoplankton (as chlorophyll and biovolume), cyanobacteria (as phycocyanin), and
251 zooplankton biomass relative to a control. Although some treatments caused large, rapid
252 declines in chlorophyll (starting values averaged ~56 µg/L), all treatments returned to near
253 initial conditions within 21 days (Figs. 3a and 3c). Significant effects of treatment (p =
254 0.00170) and time (p < 0.001) in the field experiment were observed, but treatment x time
255 interaction was not significant (p = 0.293) on chlorophyll (RM-ANOVA). Only CuSO₄
256 decreased chlorophyll more than the control across the entire 35 day experiment (p < 0.05;
257 Fig. 3a). In the first seven days, Captain and CuSO₄ significantly reduced phytoplankton
258 before increasing over time (Figs. 3a and 3c). Liquid H₂O₂ also reduced chlorophyll, but this
259 reduction was short-lived considering that chlorophyll peaked on day 7 in this treatment (Figs.

260 3a and 3c). Chlorophyll concentrations for liquid H₂O₂ and the controls were statistically
261 similar (Fig. 3a). Several treatments, including Peraclean, VigorOx SP-15, Phoslock, and
262 PAK-27, had similar chlorophyll concentrations relative to the control the entire experiment
263 (Figs. 3a and 3c).

264 Initial cyanobacterial concentrations (as phycocyanin) averaged ~15 µg/L at the start
265 of the experiment (Fig. 3b and d). Although there were significant effects of treatment ($p <$
266 0.00001) and a treatment x time interaction ($p < 0.00001$) in the field experiment, time was
267 not significant ($p = 0.425$) on phycocyanin (RM-ANOVA). All products reduced
268 cyanobacterial densities after 1 day except for Phoslock. Interestingly, liquid H₂O₂ increased
269 in cyanobacteria relative to the control by day 7 (Figs. 3b and 3d). In total, all products except
270 for liquid H₂O₂ had a significantly lower cyanobacterial concentration than that of the control
271 during the 35-day experiment ($p \leq 0.05$, Figs. 3b and 3d).

272

273 *Phytoplankton biovolume*

274 Phytoplankton biovolume was estimated for all mesocosms for days 0, 1, 7, and 35 of the
275 field experiment. Average starting phytoplankton biovolume averaged $\sim 1.17 \times 10^7 \mu\text{m}^3/\text{mL}$
276 across all products (Fig. 4a). Chlorophytes were the dominant phytoplankton, averaging $9.89 \times$
277 $10^6 \mu\text{m}^3/\text{mL}$ (55.9% of starting biovolume) between all enclosures. Cyanobacteria next
278 dominated the mesocosms, averaging $1.66 \times 10^6 \mu\text{m}^3/\text{mL}$ (9.4% of starting biovolume) between
279 all enclosures (Fig. 5a). Additional phytoplankton groups observed included cryptophytes,
280 dinoflagellates, euglenoids, and diatoms, but the presence of these taxa were generally not
281 substantial (Fig. 5a).

282 Across all products during the 35-day experiment, there were significant effects of
283 treatment ($p < 0.000001$), time ($p = 0.0448$), and treatment x time interaction ($p = 0.0022$) on
284 phytoplankton biovolume (RM-ANOVA). All products, except Phoslock, reduced
285 phytoplankton biovolume during the experiment first day, however phytoplankton rebounded
286 to initial concentrations over the duration of the experiment (Fig. 4a). Phytoplankton
287 biovolume in the two copper-based treatments (Captain and CuSO₄) were the only products to
288 remain significantly lower to that of the control across the 35-day experiment ($p \leq 0.05$; Fig.
289 4a). The final ratio of cyanobacteria to total phytoplankton varied greatly between product
290 treatments with Captain, CuSO₄, and H₂O₂ having $\geq 50\%$ of their total biovolume comprised of
291 cyanobacteria (Fig. 5a). Although some variation in findings did occur, phytoplankton
292 biovolume generally mirrored the trends observed in the algal pigment data (Fig. 3).

293

294 *Zooplankton dry biomass*

295 Zooplankton biomass was estimated for all mesocosms on days 0, 1, 7, and 35 of the field
296 experiment. The average starting zooplankton dry biomass was $\sim 602 \mu\text{g/L}$ across all treatments
297 (Fig. 4b). Mesocosms contained a mixture of cladoceran and copepod taxa, comprising of 38%
298 and 62% of the total biomass, respectively, at the start of the experiment. Starting densities of
299 these genera varied. On average, mesocosms contained *Ceriodaphnia* (1% of total starting
300 biomass), *Diaphanosoma* (10%), *Bosmina* (25%), copepod nauplii (15%), calanoid copepods
301 (46%), and cyclopoid copepods (4%).

302 There were large effects of treatment ($p < 0.000001$), time ($p < 0.000001$), and treatment
303 x time interaction ($p < 0.000001$) on zooplankton dry biomass (RM-ANOVA) during the 35-day
304 experiment. Only CuSO₄, Captain, and PAK-27 treatments were significantly lower than the

305 control for zooplankton biomass ($p \leq 0.05$; Fig. 4b) while the four other products, although
306 oscillating in value over time, were not significantly different to that of the control. CuSO₄
307 zooplankton biomass remained the lowest over the 35 days. Interestingly, liquid H₂O₂ contained
308 the lowest zooplankton biomass of any product after day 1, but steadily rebounded in number
309 over the next 35 days. Final (day 35) relative biomass between zooplankton groups were
310 *Ceriodaphnia* (2% of final biomass), *Diaphanosoma* (47%), *Bosmina* (3%), copepod nauplii
311 (3%), calanoid copepods (44%), and cyclopoid copepods (0.4%), although diversity and
312 abundance in biomass varied between products (Fig. 5b).

313

314 **Discussion**

315 This study utilized both a short, microcosm laboratory and five-week, field mesocosm
316 experiment to evaluate seven algal control products in an aquaculture pond. In doing so, both the
317 short- and long-term effectiveness of each product was assessed. The effects of each product on
318 algal pigments representing phytoplankton and cyanobacteria, phytoplankton biovolume, and
319 zooplankton biomass will be described in the following sections, with the focus of this
320 discussion on to the findings of the field experiment. As the chlorophyll pigment and total
321 phytoplankton biovolume data are both assessments of total phytoplankton densities in the field
322 experiment, the results of these two assessments will be described within a single section.

323

324 *Effects on phytoplankton (using chlorophyll and phytoplankton biovolume data)*

325 Phytoplankton communities in the mesocosms at the start of the experiment were
326 dominated by green algae (Fig. 5). Cyanobacteria were the next largest taxa present. Of the
327 products tested, Captain and CuSO₄ best reduced phytoplankton abundance in the field
328 experiment (Figs. 3 and 4). When assessing the chlorophyll data, both Captain and CuSO₄
329 significantly reduced chlorophyll within the first 7 days of the experiment, and CuSO₄ was the
330 only product to significantly lower chlorophyll levels to that of the control for the duration of the
331 35-days (Fig. 3). Similarly, phytoplankton biovolume data in Captain and CuSO₄ treatments were
332 significantly lower than the control (Fig. 4).

333 The broad-spectrum toxicity and extended duration of select copper products have been
334 observed in prior studies (Murray-Gulde 2002; Viriyatum and Boyd 2016). The efficiency of
335 copper does vary and can often be attributed to the form it is applied. For instance, Viriyatum
336 and Boyd (2016) observed that a single treatment of CuSO₄ encapsulated in a slow-release

337 coating had an equally comparable reduction in phytoplankton over four months when compared
338 to ponds treated with basic CuSO₄ applied weekly. Although differences between Captain and
339 CuSO₄ were observed in this study, both products were found to be the most efficient at reducing
340 phytoplankton over time (when assessing chlorophyll and algal biovolume data).

341 VigorOx SP-15 and Peraclean reduced phytoplankton similar to that of the copper-based
342 products in the laboratory experiment (Fig. 2) but caused negligible effects on phytoplankton in
343 the field (Figs. 3 and 4). Indeed, it was observed in the field experiment that phytoplankton of
344 both products increased from day 0 to 1 (Figs. 3 and 4). On one hand, this significant difference
345 between the laboratory and field studies is likely due to contact time, species assemblages, and
346 more ideal conditions in the laboratory. Such discrepancies between lab and field-based studies
347 may indicate how short-term, laboratory studies poorly reflect what happens in nature. On the
348 other hand, VigorOx SP-15 and Peraclean reduced cyanobacteria while having small effects on
349 other algae, including beneficial green algae. Such findings would benefit farmers as they seek to
350 balance the presence of algae to support dissolved nutrient removal and promote oxygenation
351 within ponds while selecting against cyanobacteria.

352 Granulated PAK-27 and liquid H₂O₂ produced similar reductions of phytoplankton in the
353 laboratory and field study. However, unlike PAK-27, liquid H₂O₂ produced an immediate
354 decline in phytoplankton that quickly rebounded to values greater than that of the control in the
355 following days and weeks. Interestingly, only the granulated H₂O₂-based product selectively
356 reduced cyanobacteria. The effectiveness of H₂O₂ as an algaecide has been noted to vary between
357 cyanobacterial species and phytoplankton taxa for both PAK-27 (Sinha et al. 2018) and liquid
358 H₂O₂ (Yang et al. 2018) and may be of use to keep some amount of algae present within farm
359 ponds.

360 Phoslock did not significantly reduce phytoplankton relative to the control in the
361 laboratory or field experiment. Phoslock targets phosphorus by binding and removing it to the
362 sediments (Bishop et al. 2018). The efficiency of this product is meant for the long-term control
363 of phosphorus in systems leading to the eventual change in nutrient ratios and thereby a
364 reduction in phytoplankton density. This is likely the reason for its undetectable effect in the
365 short-term in the laboratory experiment as well as small effects in the field experiment. The
366 constant addition of nutrients to the water column by way of feed and fish waste-products may
367 further reduce the success of Phoslock in intensive aquaculture. However, the long-term effect of
368 Phoslock on removing cyanobacteria showed promise in this study (to be discussed).

369

370 *Effects on cyanobacterial biomass*

371 Captain and CuSO₄ both effectively reduced cyanobacteria in the laboratory and field
372 experiments (Fig. 2 and 3) reflecting the results documented in prior studies (Murray-Gulde
373 2002; Viriyatum and Boyd 2016). Although a concentration of 0.4 mg/L as copper was used in
374 this study, others have used smaller, repeated doses to remove cyanobacterial genera capable of
375 producing off-flavors in farm ponds (Schrader et al. 2005). Moreover, treatments comparable to
376 that used in this study have been shown to reduce cyanobacterial genera capable of producing
377 microcystin (Greenfield 2014). Off-flavors and microcystin were too low to be detectable in the
378 collected water samples of this study, and therefore not reported. Kansole and Lin (2017) found
379 that hydrogen peroxide (20 mg/L) could degrade microcystin compounds while CuSO₄ (2 mg/L)
380 could not and that both treatments had a deleterious effect on bacterial populations that could
381 degrade microcystin naturally. Such reports reflect ability of copper to reduce phytoplankton, but
382 not cyanotoxins, at environmentally relevant concentrations. In addition, It was observed that

383 Captain and CuSO₄ enclosures both were both dominated by cyanobacteria by the end of the 35-
384 day field experiment (Fig. 5). Although phytoplankton in Captain and CuSO₄ treatments were
385 the lowest observed across the tested products, such a shift in the dominant phytoplankton taxa
386 could promote cyanobacterial blooms in the future.

387
388 Similar to that of the copper-based algaecides, VigorOx SP-15 and Peraclean (peracetic
389 acid-based) significantly reduced cyanobacteria in both the laboratory and field experiments.
390 Yet, both products did not significantly reduce phytoplankton in the field experiment, which
391 were dominated by green algae (Fig. 2 and 3). This selective effectiveness has been observed for
392 other algaecides, such as H₂O₂ (Yang et al. 2018), which is a chemical also present in VigorOx
393 SP-15 and Peraclean. Reasons for this selectiveness may be attributed to the lack of a cell wall in
394 prokaryotes (e.g., cyanobacteria; Yang et al. 2018), the proximity of the photosynthetic
395 apparatuses to the plasma membrane (Yang et al. 2018), or the overall ability to degrade
396 bacterial cell membranes (Mikula et al. 2012). Once hydrogen peroxide enters into the cell of
397 cyanobacteria, it induces oxidative stress, damaging proteins, genes, and photosystems (Liu et al.
398 2005; Latifi et al. 2008), and can be compounded by UV light exposure (Drábková et al. 2012)
399 and/or the presence of iron (Zepp et al. 1992). The selective effect of H₂O₂ against cyanobacteria
400 was observed in the field experiment for most treatments, except liquid H₂O₂. However the
401 selectivity of peracetic acid among phytoplankton taxa is understudied and should be further
402 researched.

403
404 Liquid H₂O₂ and PAK-27 had similar reductions in cyanobacterial densities in the
405 laboratory experiment (Figs. 2 and 5). However, substantial differences were observed between
406 both the findings of laboratory and field experiments as well as between the two products in the

407 field (Figs. 2, 3, and 5b). It was observed in the field experiment that liquid H₂O₂ first reduced
408 cyanobacteria, but phycocyanin then increased greater than the control. In contrast, granulated
409 H₂O₂ kept densities well below that of the control for the duration of the experiment (Fig. 3b and
410 d). Such differences again reflect the dissonance between laboratory and field studies. It should
411 be noted in the field experiment that both liquid H₂O₂ and PAK-27 reduced cyanobacteria for the
412 first three days of the experiment. This finding may support that H₂O₂-based products are
413 effective at quickly removing toxic and problematic cyanobacterial species, as has been
414 suggested in prior studies (Barrington et al. 2013; Sinha et al. 2018; Yang et al. 2018), but
415 repeated treatments may be required for the continual suppression of a bloom (as suggested by
416 Barrington et al. 2013). Prior research has also observed that hydrogen peroxide may degrade
417 cyanotoxins, negating their negative effects once released from the cells of cyanobacteria
418 (Barrington et al. 2013; Kansole and Lin 2017); however, concentrations needed to achieve this
419 are relatively high (e.g., 20 mg/L Kansole and Lin 2017) and may not be economically feasible
420 for fish farmers to utilize (to be discussed) or may directly harm farmed fish.

421 Similar to the H₂O₂- and peracetic acid-based products, Phoslock was also found to have
422 a significant effect on cyanobacteria in the field experiment, but not on phytoplankton in general
423 (Fig. 3). Such a reduction was likely due to the removal of phosphorus out of the water column
424 as the decrease of cyanobacteria was gradual in the field experiment (Van Oosterhout and
425 Lürling 2013). However, in the laboratory experiment, the removal of cyanobacteria was much
426 more rapid and did not have a similar effect on other phytoplankton taxa (Fig. 2). This finding
427 may suggest that Phoslock bound and removed cyanobacteria upon its application into the jars
428 and that its removal is taxon-specific. Phoslock and other clay compounds have been shown to
429 bind directly with phytoplankton (including cyanobacteria) and remove them from the water

430 column (Pan et al. 2011; Van Oosterhout and Lürling 2013). The selectivity of such clays on
431 their possible selectivity against cyanobacteria is understudied and should be further studied.

432

433 *Effects on zooplankton biomass*

434 The seven algal control products revealed varying effects on zooplankton biomass during
435 the field experiment (Fig. 4b). Although zooplankton biomass was reduced by most treatments
436 relative to the controls, zooplankton returned to values similar to that of the control in the
437 Phoslock, liquid H₂O₂, Peraclean, and VigorOx SP-15 treatments (Fig. 4b). In contrast, CuSO₄,
438 Captain, and PAK-27 each significantly reduced zooplankton densities below that of the control
439 over the 35 days (Fig. 4b). Significant reductions of zooplankton after a treatment of copper-
440 based algaecides have been observed in prior studies. McIntosh and Kevern (1974) reported that
441 treatments of 3 mg/L of CuSO₄-5H₂O significantly reduced copepods and cladocerans in field
442 treatments. However, it has also been observed that water quality factors such as dissolved
443 organic matter will “buffer” the toxicity of copper to zooplankton (De Schamphelaere et al.
444 2004). These factors may influence the effect when copper is applied to cyanobacterial blooms in
445 more productive systems than that used in this study, although such variables were not measured
446 in our field experiment.

447 VigorOx SP-15 and Peraclean had minimal effects on zooplankton biomass in this study.
448 As with copper-based products, the toxicity of peracetic acid to zooplankton has been found to
449 be dependent on water quality variables (e.g., dissolved organic matter, salt; Liu et al 2015).
450 Interestingly, Liu et al. (2015) found that the toxicity of peracetic acid products to zooplankton
451 will increase with the amount of H₂O₂ that a product also contains. Of the H₂O₂-based products
452 used in this study, PAK-27 also significantly reduced zooplankton biomass, and liquid H₂O₂

453 greatly reduced biomass after the initial treatment by day 1, but the densities in the liquid H₂O₂
454 treatment rebounded by the end of the 35-day experiment. The toxicity of H₂O₂ to zooplankton
455 has been assessed on numerous occasions (Barrington et al. 2013; Reichwaldt et al. 2012; Yang
456 et al. 2018), and findings of these past studies are aligned with the results from our field
457 experiment.

458 Lastly, the effect of Phoslock on zooplankton biomass was minimal. Lürling and Tolman
459 (2010) observed that the active ingredient (lanthanum) of Phoslock was not toxic to *Daphnia* at
460 concentrations up to 1000 µg/L. It is likely that the rapid removal of Phoslock out of the water
461 column or limited toxicity (relative to that of the other products tested) reduced its effectiveness
462 on the zooplankton biomass in this study.

463

464 *Costs per product treatment*

465 The average cost to treat a 20 acre-foot pond were calculated based on an example
466 dosage of each product used in this study as well as prices for these products as of April 2020
467 (Table 3). Copper sulfate had a remarkably lower cost and application volume than any other
468 product. This relatively low price likely reflects the wide availability and popularity of
469 CuSO₄, and the relatively lower application volume contributes to the use of copper for fish
470 farmers. Conversely, PAK-27 had the highest cost. It should be noted that all costs are subject
471 to change and may be lower if a product is purchased at a larger quantity. Further, prices may
472 be influenced if an algaecide gains USEPA approval for use in food-fish aquaculture. At this
473 time, CuSO₄ is the only product fully allowed by the EPA. However, PAK-27, Captain, and
474 Phoslock are approved to control nuisance algae and cyanobacterial blooms in some states.

475

476 *Disclaimers*

477 An algaecide must first receive USEPA approval before its use in food fish aquaculture in
478 the U.S., requiring significant effort and costs. It should be noted that some algaecides are
479 approved for use to combat nuisance plants and algae in non-aquaculture ponds. Such approvals
480 vary from state to state. In general, “any product or device that is used or implied to control algae
481 (including cyanobacteria) must be registered by the USEPA under FIFRA” (Laughinghouse et al.
482 2020). Moreover, guidelines and directions provided by the vendor on the labeled instructions
483 should be explicitly followed. The objectives of these experiments were to compare efficacy in a
484 demonstration/research environment and not to endorse the use of any specific product. Local,
485 state and federal authorities should be consulted before any chemical is applied to surface waters.

486 The assessment of oxygen during the night hours or amounts levels of ammonia were not
487 checked during this study to minimize contamination between enclosures and treatments. Such
488 factors can be major issues to fish after major a phytoplankton or plant die-off as oxygen
489 concentrations will be depleted through microbial disposition (Chislock et al 2013a) and
490 ammonia concentrations may increase through the breakdown of organic material (Farnsworth-
491 Lee and Bake 2000) or through the lack of uptake by phytoplankton (Boyd et al. 1975).
492 Moreover, both off-flavors and microcystin can be released from cyanobacteria as their cells
493 rupture, an issue that can be promoted by algaecide applications (Jones and Orr 1994; Jüttner and
494 Watson 2007). Applicators should monitor their ponds for these parameters after an application
495 of algaecide to avoid serious issues.

496

497

498 **Conclusions**

499 This study utilized both a laboratory and field study to compare algal control products to
500 one routinely used (CuSO_4) in farm-pond aquaculture as well as a treatment-less control. Our
501 findings indicate that copper-based products, Captain and CuSO_4 , had the greatest reduction of
502 phytoplankton and cyanobacteria in both the laboratory and field studies. Copper sulfate also had
503 the lowest treatment costs relative to the other algaecides tested and is the only algaecide
504 approved for use in food-fish aquaculture to date. However, it was observed that copper-based
505 products had significant adverse effects on zooplankton densities and its broad-spectrum toxicity
506 may not be useful in all situations.

507 Peracetic-acid based products, VigorOx SP-15 and Peraclean, as well as a granulated
508 H_2O_2 -based product (PAK-27), significantly removed cyanobacteria while having small effects
509 on other phytoplankton, specifically beneficial green algae, during the field experiment.
510 Moreover, peracetic acid-based products had small effects on zooplankton when compared to the
511 control treatment. Surprisingly, liquid H_2O_2 showed to have short-lasting effects on
512 phytoplankton abundance while also promoting cyanobacteria by the end of the field experiment.
513 In addition, large negative effects of both H_2O_2 -based products on zooplankton was observed.
514 The cost of the peracetic acid- and H_2O_2 -based products ranged from moderate-to-high relative
515 to the others tested.

516 The clay product, Phoslock, showed little significant effect on phytoplankton in the field
517 experiment, but significantly reduced cyanobacterial abundance. Given that the mechanism that
518 Phoslock exploits to control phytoplankton is by binding phosphorus and making it unavailable
519 for phytoplankton, it may take some time for this treatment to show effects relative to true
520 algaecides tested in this study. In the laboratory experiment, cyanobacterial densities were

521 immediately reduced upon the application of Phoslock and may indicate its ability to bind and
522 selectively remove cyanobacteria from the water column. The cost of Phoslock was the second
523 highest treatment used in this study, but perhaps may be circumvented if fewer applications are
524 needed.

525 In this study, it was made clear that extended results from the tightly controlled lab
526 studies to the field should be done with caution. Also, the effects of most algaecides on
527 phytoplankton are short-lived. As this study was performed in floating mesocosms, we
528 encourage the use of full-scale pond trials to rigorously test multiple algaecides under uniform
529 conditions to evaluate their efficacy. Aspects such as mixing, sedimentation, and application
530 methods may influence treatment effectiveness and longevity.

531

532 **Literature Cited**

533 Barrington DJ, Reichwaldt ES, Ghadouani A (2013) The use of hydrogen peroxide to remove
534 cyanobacteria and microcystins from waste stabilization ponds and hypereutrophic
535 systems. *Ecological Engineering* 50:86–94. <https://doi.org/10.1016/j.ecoleng.2012.04.024>

536 Bosma, RH, Verdegem, MCJ (2011) Sustainable aquaculture in ponds: principles, practices and
537 limits. *Livestock Science* 139: 58-68. <https://doi:10.1016/j.livsci.2011.03.017>

538 Boyd CE, Prather EE, Parks RW (1975) Sudden mortality of a massive phytoplankton bloom.
539 *Weed Science* 23(1):61-67. <http://www.jstor.org/stable/4042459>

540 Boyd CE, Shelton JL (1984) Observations on the hydrology and morphometry of ponds on the
541 Auburn University fisheries research unit. Alabama Agricultural Experiment Station.
542 558.

543 Bishop WM, Lynch CL, Willis BE, Cope WG (2017) Copper-based aquatic algaecide adsorption
544 and accumulation kinetics: influence of exposure concentration and duration for
545 controlling the cyanobacterium *Lyngbya wollei*. *Bull Environ Contam Toxicol* 99: 365-
546 371. <https://doi.org/10.1007/s00128-017-2134-2>

547 Bishop WM, Richardson RJ (2018) Influence of Phoslock® on legacy phosphorus, nutrient
548 ratios, and algal assemblage composition in hypereutrophic water resources. *Environ Sci
549 Pollut Res* 25:4544–4557. <https://doi.org/10.1007/s11356-017-0832-2>

550 Chislock M, Doster E, Zitomer RA, Wilson AE (2013a) Eutrophication: causes, consequences,
551 and controls in aquatic ecosystems. *Nature*.
552 <https://www.nature.com/scitable/knowledge/library/eutrophication-causes-consequences-and-controls-in-aquatic-102364466/>. Accessed 9 Oct 2020

554 Chislock MF, Sarnelle O, Olsen BK, et al (2013b) Large effects of consumer offense on
555 ecosystem structure and function. *Ecology* 94:2375–2380. <https://doi.org/10.1890/13-0320.1>

556

557 De Schampheleere KAC, Vasconcelos FM, Tack FMG, et al (2004) Effect of dissolved organic
558 matter source on acute copper toxicity to *Daphnia magna*. *Environ Toxicol Chem*
559 23:1248–1255. <https://doi.org/10.1897/03-184>

560 Dionigi CP, Lawlor TE, McFarland JE, Johnsen PB (1993) Evaluation of geosmin and 2-
561 methylisoborneol on the histidine dependence of TA98 and TA100 *Salmonella*
562 *typhimurium* tester strains. *Water Research* 27(11): 1615-1618.
563 [https://doi.org/10.1016/0043-1354\(93\)90125-2](https://doi.org/10.1016/0043-1354(93)90125-2)

564 Drábková M, Admiraal W, Marsálek B (2007) Combined exposure to hydrogen peroxide and
565 light-selective effects on cyanobacteria, green algae, and diatoms. *Environ. Sci. Technol.*
566 41, 309–314. <https://doi.org/10.1021/es060746i>

567 Edmondson WT (1959) Freshwater biology. 2nd edition. John Wiley and Sons.

568 Envirotech Chemicals (2003) Control of pond algae utilizing peracetic acid. Envirotech.
569 <http://envirotech.com/wp-content/uploads/2015/12/Control-Pond-Algae.pdf> Accessed 9
570 Oct 2020.

571 Farnsworth-Lee L, Baker LA (2000) Conceptual model of aquatic plant decay and ammonia
572 toxicity for shallow lake. *J Environ Eng.* 126(3):199-207.
573 [https://doi.org/10.1061/\(ASCE\)0733-9372\(2000\)126:3\(199\)](https://doi.org/10.1061/(ASCE)0733-9372(2000)126:3(199))

574 Greenfield DI, Duquette A, Goodson A, et al (2014) The effects of three chemical algaecides on
575 cell numbers and toxin content of the cyanobacteria *Microcystis aeruginosa* and

576 *Anabaenopsis* sp. Environ Manage 54:1110–1120. <https://doi.org/10.1007/s00267-014-0339-2>

577

578 Gross A, Boyd CE (1998) A digestion procedure for the simultaneous determination of total
579 nitrogen and total phosphorus in pond water. Journal of the World Aquaculture Society
580 29:300–303. <https://doi.org/10.1111/j.1749-7345.1998.tb00650.x>

581 Hanson T (2003) Economic impact of off-flavor to the US catfish industry. In: Rimando AM,
582 Schrader, KK (ed) Off-flavors in aquaculture. ACS Publications, pp 13–29.
583 <https://pubs.acs.org/doi/abs/10.1021/bk-2003-0848.ch002/> Accessed 9 Oct 2020.

584 Jones GJ, Orr PT (1994) Release and degradation of microcystin flowing algicide treatment of a
585 *Microcystis aeruginosa* bloom in a recreational lake, as determined by HPLC and protein
586 phosphatase inhibition assay. Water Research 28(4) 871-876.
587 [https://doi.org/10.1016/0043-1354\(94\)90093-0](https://doi.org/10.1016/0043-1354(94)90093-0)

588 Jüttner F, Watson SB (2007) Biochemical and ecological control of geosmin and 2-
589 methylisoborneol in source waters. Applied and Environmental Microbiology 73(14):
590 4395-4406. <https://doi.org/10.1128/AEM.02250-06>

591 Kansole MMR, Lin TF (2017) Impacts of hydrogen peroxide and copper sulfate on the control of
592 *Microcystis aeruginosa* and MC-LR and the inhibition of MC-LR degrading bacterium
593 *Bacillus* sp. Water 9 (255). <https://doi.org/10.3390/w9040255>

594 Kasinak JM, Holt BM, Chislock MF, Wilson AE (2014) Benchtop fluorometry of phycocyanin
595 as a rapid approach for estimating cyanobacterial biovolume. Journal of Plankton
596 Research 37:248–257. <https://doi.org/10.1093/plankt/fbu096>

597 Laughinghouse IV DH, Berthold DE, Bishop WM (2020) Approaches to managing
598 cyanobacterial blooms and altering water quality. *Aquatics: Florida Aquatic Plant*
599 Management Society. 42: 13-16.

600 Latifi A, Ruiz M, Zhang CC (2008) Oxidative stress in cyanobacteria. *FEMS Microbiol Rev* 33:
601 258-278. doi: 10.1111/j.1574-6976.2008.00134.x

602 Liu D, Straus DL, Pedersen LF, Meinelt T (2015) Comparison of the toxicity of wofasteril
603 peracetic acid formulations E400, E250, and Lspez to *Daphnia magna*, with emphasis on
604 the effect of hydrogen peroxide. *North American Journal of Aquaculture* 77:128–
605 135. <https://doi.org/10.1080/15222055.2014.976682>

606 Liu XG, Zhao JJ, Wu QY (2005) Oxidative stress and metal ions effects on the cores of
607 phycobilisomes in *Synechocystis* sp. PCC 6803. *FEBS Letters*.
608 <https://doi.org/10.1016/j.febslet.2005.07.020>

609 Lu G, Song X, Yu Z, Cao X (2017) Application of PAC-modified kaolin to mitigate
610 *Prorocentrum donghaiense*: effects on cell removal and phosphorus cycling in a
611 laboratory setting. *J Appl Phycol* 29:917–928. <https://doi.org/10.1007/s10811-016-0992-3>

613 Lürling M, Tolman Y (2010) Effects of lanthanum and lanthanum-modified clay on growth,
614 survival and reproduction of *Daphnia magna*. *Water Research* 44:309–319.
615 <https://doi.org/10.1016/j.watres.2009.09.034>

616 Malbrouck C, Kestemont P (2006) Effects of microcystins on fish. *Environmental Toxicology*
617 and Chemistry 25:72–86. <https://doi.org/10.1897/05-029R.1>

618 McIntosh AW, Kevern NR (1974) Toxicity of copper to zooplankton. *Journal of Environmental*
619 *Quality*. 3: 166-170. <https://doi.org/10.2134/jeq1974.00472425000300020018x>

620 Mikula P, Zezulka S, Jancula D, Marsalek B (2012) Metabolic activity and membrane integrity
621 changes in *Microcystis aeruginosa* – new findings on hydrogen peroxide toxicity in
622 cyanobacteria. 47(3): 195-206. <https://doi.org/10.1080/09670262.2012.687144>

623 Murray-Gulde CL, Heatley JE, Schwartzman AL, Rodgers Jr. JH (2002) Algicidal effectiveness
624 of clearigate, cutrine-plus, and copper sulfate and margins of safety associated with their
625 use. Arch Environ Contam Toxicol 43:19–27. <https://doi.org/10.1007/s00244-002-1135-1>

626 Pan G, Chen J, Anderson DM (2011) Modified local sands for the mitigation of harmful algal
627 blooms. Harmful Algae 10:381–387. <https://doi.org/10.1016/j.hal.2011.01.003>

628 Pinheiro JC, Bates DM, DebRoy SS, Sarkar D (2020) Nlme: Linear and Nonlinear Mixed Effects
629 Models. <https://CRAN.R-project.org/package=nlme> . Accessed 28 Aug 2020.

630 Reichwaldt ES, Zheng L, Barrington DJ, Ghadouani A (2012) Acute toxicological response
631 of *Daphnia* and *Moina* to hydrogen peroxide. J Environ Eng. 138:607–611.
632 [https://doi.org/10.1061/\(ASCE\)EE.1943-7870.0000508](https://doi.org/10.1061/(ASCE)EE.1943-7870.0000508)

633 Rippka R, Deruelles J, Waterbury J, et al (1979) Generic assignments, strain histories and
634 properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
635 <https://doi.org/10.1099/00221287-111-1-1>

636 Sartory D, Grobbelaar J (1984) Extraction of chlorophyll a from freshwater phytoplankton for
637 spectrophotometric analysis. Hydrobiologia 114:177–187.
638 <https://doi.org/10.1007/BF00031869>

639 Schrader KK, Tucker CS, Brown TW, Whitis GN (2018) Earthy and musty off-flavor episodes
640 in catfish split-pond aquaculture systems. North American Journal of Aquaculture 80:26–
641 41. <https://doi.org/10.1002/naaq.10005>

642 Schrader KK, Tucker CS, Hanson TR, et al (2005) Management of musty off-flavor in channel
643 catfish from commercial ponds with weekly applications of copper sulfate: North
644 American Journal of Aquaculture 67(2):138-147. <https://doi.org/10.1577/A04-051.1>

645 Sinha A, Eggleton M, Lochmann R (2018) An environmentally friendly approach for mitigating
646 cyanobacterial bloom and their toxins in hypereutrophic ponds: Potentiality of a newly
647 developed granular hydrogen peroxide-based compound. Science of the Total
648 Environment 637–638:524-537. <https://doi.org/10.1016/j.scitotenv.2018.05.023>

649 Tucker CS, Hanson TR, Kingsbury SK (2005) Management of Off-flavors in pond-cultured
650 channel catfish with weekly applications of copper sulfate. North American Journal of
651 Aquaculture 63: 118-130. [https://doi.org/10.1577/1548-8454\(2001\)063<0118:MOOFIP>2.0.CO;2](https://doi.org/10.1577/1548-8454(2001)063<0118:MOOFIP>2.0.CO;2)

653 Tucker CS, Schrader KK (2020) Off-flavors in pond-grown *ictalurid* catfish: Causes and
654 management options. Journal of the World Aquaculture Society 51:7–92.
655 <https://doi.org/10.1111/jwas.12672>

656 Van Oosterhout F, Lürling M (2013) The effect of phosphorus binding clay (Phoslock®) in
657 mitigating cyanobacterial nuisance: a laboratory study on the effects on water quality
658 variables and plankton. Hydrobiologia 710:265–277. <https://doi.org/10.1007/s10750-012-1206-x>

660 Viriyatum R, Boyd CE (2016) Slow-release coated copper sulfate as an algicide for aquaculture.
661 Journal of the World Aquaculture Society 47:667–675.
662 <https://doi.org/10.1111/jwas.12331>

663 Yang Z, Buley RP, Fernandez-Figueroa EG, et al (2018) Hydrogen peroxide treatment promotes
664 chlorophytes over toxic cyanobacteria in a hyper-eutrophic aquaculture pond.
665 Environmental Pollution 240:590–598. <https://doi.org/10.1016/j.envpol.2018.05.012>
666 Zepp RG, Faust BC, Hoigne J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8)
667 of iron(II) with hydrogen peroxide: the photo-Fenton reaction. Environ. Sci. Technol. 26,
668 313–319. <https://doi.org/10.1021/es00026a011>.
669 Zimba P, Khoo L, Carmichael W, Gaunt P (2000) Confirmation of catfish mortalities resulting
670 from microcystin produced during *Microcystis* blooms. J Phycol 36:72–
671 73. <https://doi.org/10.1046/j.1529-8817.1999.00001-215.x>
672

1 **Figure legends**

2 Fig. 1. Floating dock that held the mesocosms for the field experiment. Additional mesocosms
3 pictured here were not used as part of this study.

4

5 Fig. 2. Dynamics of phytoplankton (as chlorophyll ($\mu\text{g}/\text{L}$)) or cyanobacteria (as phycocyanin
6 ($\mu\text{g}/\text{L}$)) across a 14-day laboratory, microcosm (0.4 L) experiment where seven algaecides were
7 tested relative to an algaecide-less control (0.0 mg/L). Only data for the targeted concentration
8 used in the field experiment for each algaecide are shown. Data for other algaecides
9 concentrations are available in the Supplementary Materials. The Phoslock application rate was
10 calculated as 200 units (μg) of Phoslock for every unit (μg) of total phosphorus in a waterbody
11 given an estimated volume. Panels A and B show absolute data, while panels C and D show
12 relative concentrations (calculated as (product treatment mean – control mean)/control mean) for
13 each sampling day. Error bars in panels A and B represent one standard error. Letters in brackets
14 after each product are results from Tukey's multiple comparison tests. Products sharing the same
15 letter are not statistically different ($p \geq 0.05$) using repeated measures ANOVA.

16

17 Fig. 3. Dynamics of phytoplankton (as chlorophyll ($\mu\text{g}/\text{L}$)) or cyanobacteria (as phycocyanin
18 ($\mu\text{g}/\text{L}$)) across a 35-day field mesocosm (1,310 L) experiment where seven algaecides were
19 tested relative to an algaecide-less control (0.0 mg/L or no Phoslock added). The Phoslock
20 application rate was calculated as 200 units (μg) of Phoslock for every unit (μg) of total
21 phosphorus in a waterbody given an estimated volume. Panels A and B show absolute data,
22 while panels C and D show relative concentrations (calculated as (product treatment mean –
23 control mean)/control mean) for each sampling day. Error bars in panels A and B represent one

24 standard error. Letters in brackets after each product are results from Tukey's multiple
25 comparison tests. Products sharing the same letter are not statistically ($p \geq 0.05$) different using
26 repeated measures ANOVA.

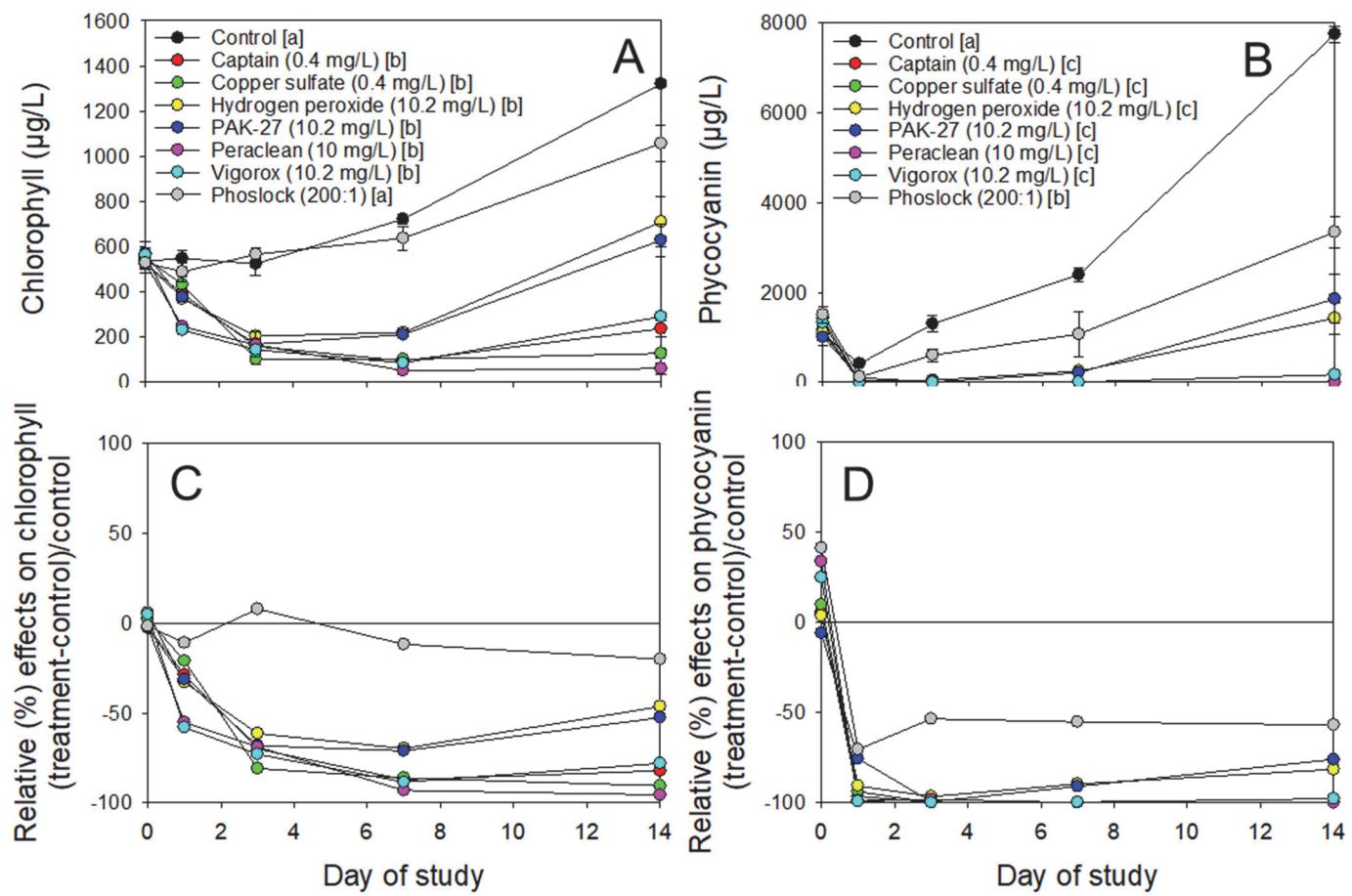
27

28 Fig. 4. Dynamics of (A) phytoplankton biovolume ($\mu\text{m}^3/\text{ml}$) and (B) zooplankton dry biomass
29 ($\mu\text{g}/\text{L}$) across a 35-day field mesocosm (1,310 L) experiment where seven algaecides were tested
30 relative to an algaecide-less control (0.0 mg/L or no Phoslock added). The Phoslock application
31 rate was calculated as 200 units (μg) of Phoslock for every unit (μg) of total phosphorus in a
32 waterbody given an estimated volume. Error bars in panels A and B represent one standard
33 error. Letters in brackets after each product are results from Tukey's multiple comparison tests
34 using \log_{10} -transformed data. Products sharing the same letter are not statistically ($p \geq 0.05$)
35 different using repeated measures ANOVA.

36

37 Fig. 5. Trends in (A) phytoplankton and (B) zooplankton community structure across four
38 sampling days (0 (pre-treatment), 1, 7, and 35) of a 35-day field mesocosm (1,310 L) experiment
39 where seven algacides were tested relative to an algicide-less control (0.0 mg/L or no Phoslock
40 added). The Phoslock application rate was calculated as 200 units (μg) of Phoslock for every unit
41 (μg) of total phosphorus in a waterbody given an estimated volume.

42


43

44 **Figures**

45 **Fig. 1**

46 **Fig. 2**

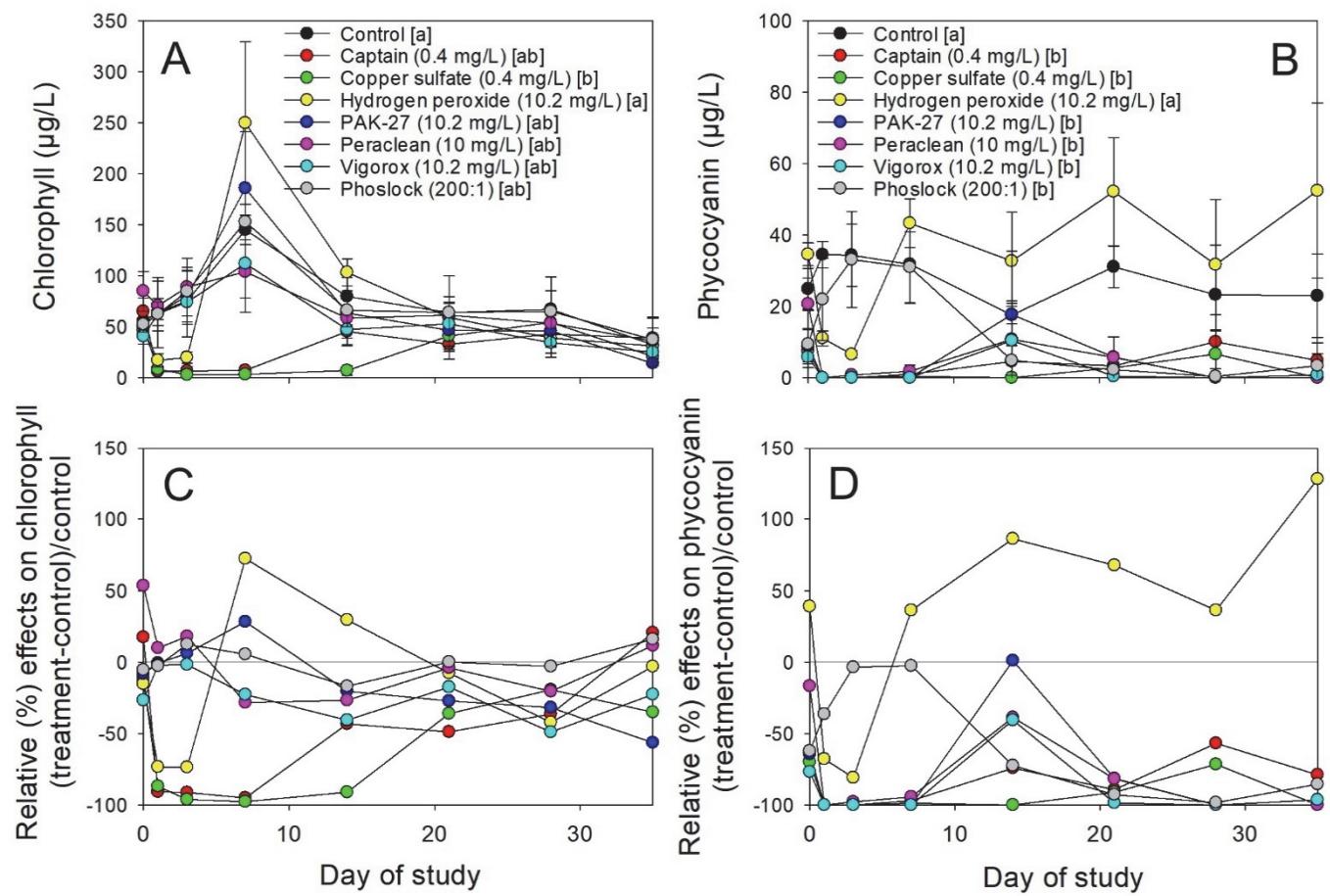
47

48

49

50

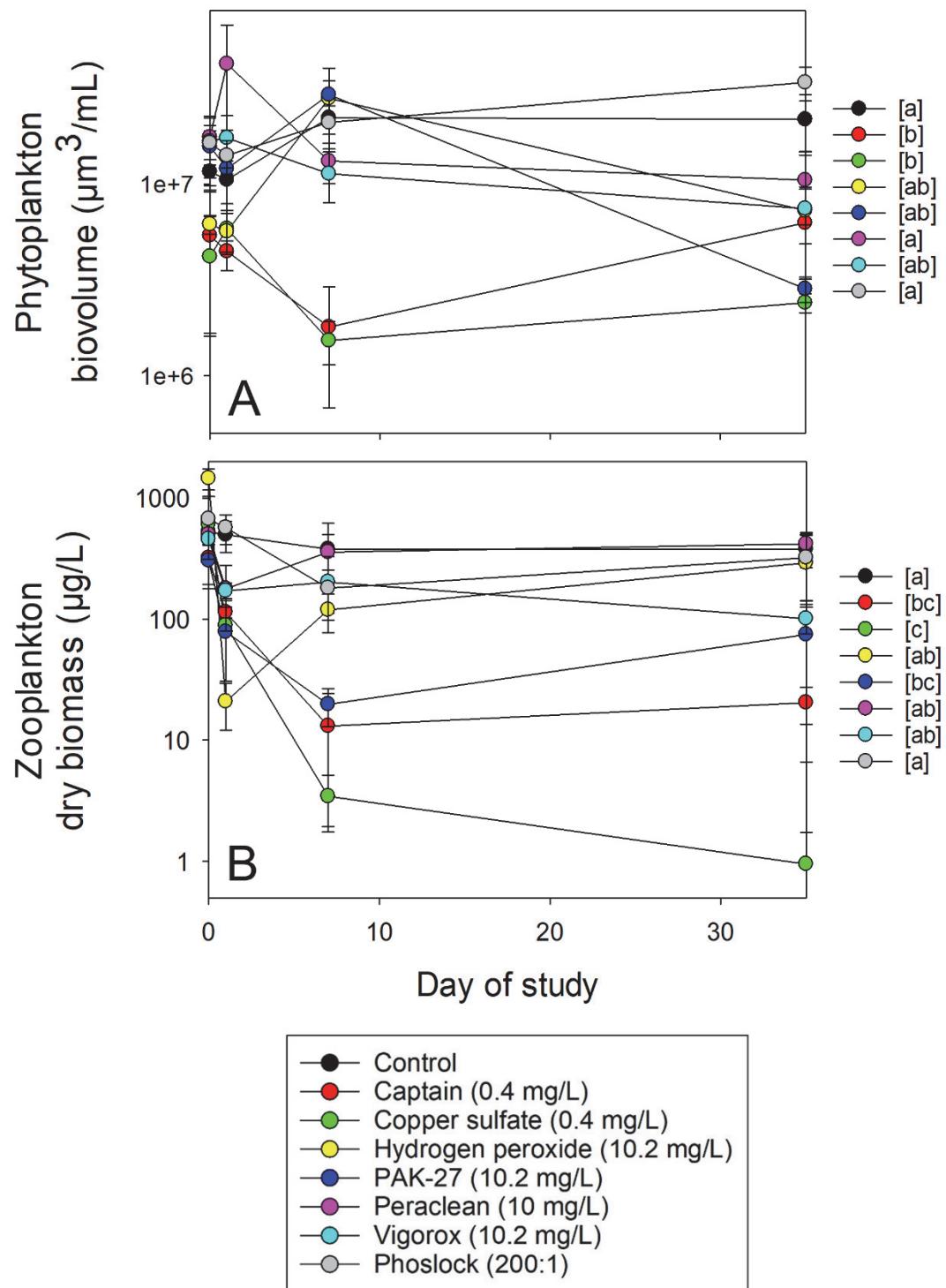
51


52

53

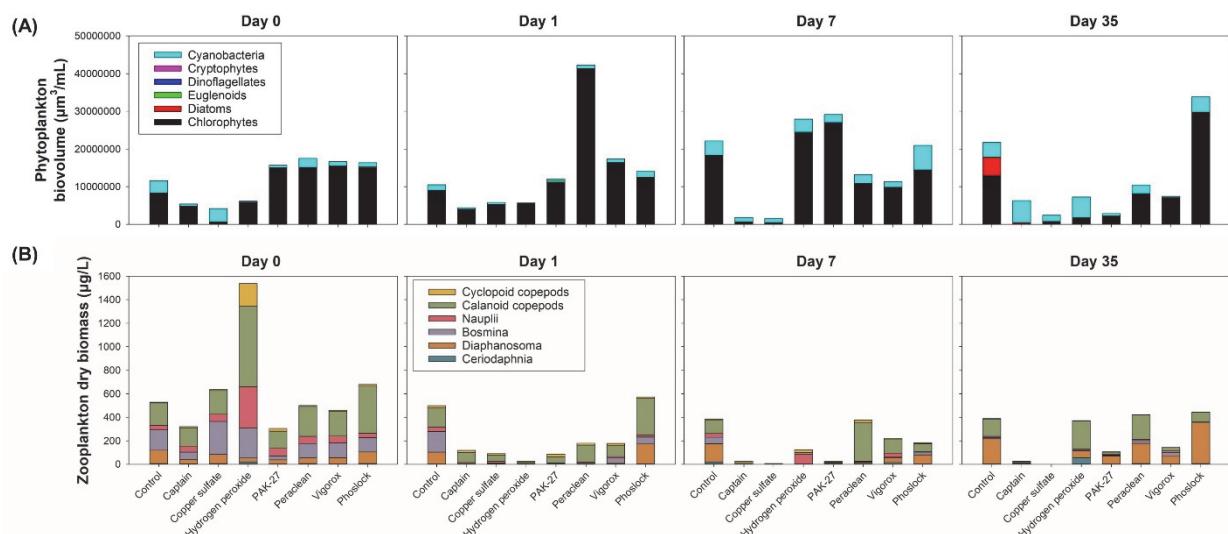
54

55


56 **Fig. 3**

57

58 **Fig. 4**


59

60

61

62 **Fig. 5**

63