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Abstract

Harmful algal blooms negatively impact water quality in hypereutrophic systems that are
common in aquaculture. However, few algaecides are approved for use in food-fish aquaculture.
This study assessed the effectiveness of seven products, including hydrogen peroxide (as a
concentrated liquid or in granular form (PAK-27)), peracetic acid (as VigorOx SP-15 and
Peraclean), copper (as copper sulfate in unchelated (powder) or chelated (Captain) forms), and a
clay-based product (as Phoslock) on phytoplankton (including cyanobacteria) and zooplankton
biomass. Each product was tested in a 14-day laboratory and 35-day field experiment to assess
their short- and long-term performance. Although some products (i.e., copper-based and liquid
hydrogen peroxide) quickly reduced phytoplankton, effects were short-lived given that chlorophyll
concentrations returned to starting concentrations within 21 days. In contrast, all but one product
(i.e., concentrated liquid hydrogen peroxide) maintained low phycocyanin concentrations for 35
days. Zooplankton biomass trends showed large, negative effects for most algaecides; however
zooplankton rebounded for most treatments except for copper-based products. In general, copper-
based products remain the most efficient and cheapest choice to reduce total phytoplankton
biomass in aquaculture systems. However, peracetic acid-based products effectively and quickly
reduced cyanobacteria while having marginal effects on beneficial algae and zooplankton. Such

algaecides could be effective alternatives to copper-based products for aquaculture farmers.
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Introduction

Harmful algal blooms negatively impact water quality in freshwater, estuarine, and
marine systems around the world (Chislock et al. 2013a and b). Such events are more common,
extreme, and persistent in nutrient-rich systems like those found in aquaculture (Schrader et al.
2018; Tucker et al. 2020). Algal blooms often create anoxic or hypoxic conditions under
periods of low light or as cells decay associated with microbial degradation. In intensive
aquaculture systems, daily pond aeration is often required to maintain safe dissolved oxygen
concentrations, which increases production costs. Secondary metabolites of toxigenic
phytoplankton, such as microcystin which is a class of hepatotoxins produced by some genera
of cyanobacteria (blue-green algae), may affect the liver, spleen, and kidneys facilitating sub-
chronic issues (e.g., reduced growth and feeding, deformities, increased cortisol levels;
Malbrouck and Kestemont 2006), or, in extreme situations, induce acute die-offs (Zimba et al.
2000). Moreover, some cyanobacterial genera can produce off-flavor compounds (e.g., 2-
methylisoborneol (MIB), geosmin), which are non-harmful (Dionigi et al. 1993) but generate
unwanted taint in fish fillets. This issue costs the U.S. catfish aquaculture industry an estimated
$23 million annually due to lower market prices, prolonged holding times, and extended
feeding (Hanson 2003).

To combat the issues generated by cyanobacterial blooms, aquaculture relies primarily
on the use of chemical controls due to their effectiveness in rapidly reducing phytoplankton
biomass (Bosma and Verdegem 2011; Schrader et al. 2005; Viriyatum and Boyd 2016). Past
research has shown that a number of algaecide types can control nuisance algal blooms in
environments similar to that of farm-pond aquaculture (Sinha et al. 2018; Schrader et al. 2005;

Barrington et al. 2013; Bishop and Richardson 2018). For example, copper sulfate (CuSO4) can
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reduce excessive algal growth in ponds with moderate risk to the farmed fish when used
appropriately, such as testing ambient alkalinity prior to treatment (Viriyatum and Boyd 2016).
Despite this, there is concern that chemicals, such as heavy metals like copper, may persist in
the environment for extended durations, have negative effects on non-target organisms, and
may require repeated applications to prevent bloom resurgences, thus increasing water quality
management costs and toxicity risks (Viriyatum and Boyd 2016). Only two algaecides are
approved for algal bloom control in aquaculture (i.e., CuSO4+*H20 and Diuron (phenylurea-
based herbicide-turned-algaecide product; to be used specifically for the control of
cyanobacteria that produce MIB); EPA 2003). Such a limited variety of chemical controls is
possibly due to the requirements needed to receive the U.S. Environmental Protect Agency’s
(EPA) approval under the Federal Insecticide Fungicide and Rodenticide Act (FIFRA;
Laughinghouse et al. 2020). Further, copper sulfate is a cost-effective, low volume method to
reduce cyanobacteria, and issues of toxicity can be mitigated by utilizing lower concentration,
repeated doses (Tucker et al. 2005).

Despite the limited number of approved algaecides, recent research has identified
numerous chemicals that can effectively reduce cyanobacterial biomass, including chelated
copper (Bishop et al. 2017), granular (sodium carbonate peroxyhydrate) and liquid hydrogen
peroxide (Sinha et al. 2018; Yang et al. 2018), and peracetic acid (Enviro Tech 2003). Clay
compounds have also been identified as means to bind to cyanobacteria for removal (Lu et al.
2017) and/or by binding to phosphorus to reduce nutrient availability to blooms (Bishop and
Richardson 2018). Despite a large amount of literature on the subject, research on the
effectiveness of a specific algaecide is often context-specific considering each study is

conducted under disparate conditions with varying cyanobacterial genera dominating the
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system, thus leading to a dissonance in findings between studies. Such variation in results is
more pronounced when experiments compare results across algaecides (Sinha et al. 2018) or
attempt to extend results from the lab to the field (Yang et al. 2018). For example, Yang et al.
(2018) observed that hydrogen peroxide (H202) in liquid form under uniform laboratory
conditions was effective at eliminating Dolichospermum (earlier known as Anabaena),
Cylindrospermopsis, and Planktothrix, but was less effective at reducing Microcystis.
Furthermore, the prolonged effectiveness of a treatment is questionable as many are assessed
for short durations (<7 days; Barrington et al. 2013; Greenfield et al. 2014). Such differences in
experimental design between published studies may lead to varying outcomes and subsequent
inaccurate perceptions of the effectiveness of a product to reduce nuisance cyanobacterial
blooms.

In general, few studies have tested multiple algaecides in a single study under uniform
conditions (refer to Sinha et al. 2018). The purpose of this study was to compare the
effectiveness of CuSOs, as it is the only fully EPA approved algaecide for use in food-fish
aquaculture to six other algaecides to control blooms of phytoplankton, specifically
cyanobacteria, in the field. This study assessed the effectiveness of seven algaecides including,
CuSO0s, Captain® (chelated copper), PAK-27® (sodium carbonate peroxyhydrate, H20: -
based), liquid H202, VigorOx SP-15® (peracetic acid), Peraclean® (peracetic acid), and
Phoslock® (modified clay for phosphorus binding, not an algaecide as the others, but hereby
referred to as an ‘algaecide’ or ‘product’ to maintain uniformity) (online resource Table 1). The
products were initially tested across a broad range of concentrations in a 14-day laboratory-

based microcosm experiment to identify target concentrations for each algaecide in a
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Methods
Laboratory experiment

Shoreline pond water samples were collected in the morning using buckets from three
active catfish aquaculture ponds experiencing cyanobacterial blooms (dominated by Microcystis)
on the E.W. Shell Fisheries Center of Auburn University, AL during May 2019. The pond water
was combined in equal parts, returned to the lab, filtered through a 500 pm mesh to remove large
debris, and placed into an acid-washed bucket. To supplement phytoplankton densities, BG-11
media (Rippka et al. 1979) was stirred into the combined pond water such that the media
comprised 10% of the total volume. The tested phytoplankton community consisted mostly of
cyanobacteria (91.5% total biovolume that included Microcystis (79.1%), Raphidiopsis (11.3%),
and Oscillatoria (5.9%)) but also contained green algae (7.5%) and diatoms (1%). The mixture
was then distributed to 87, 500 mL glass jars to a volume of 435 mL. Jars were capped and
mixed before collecting A/E filtered samples for two algal pigments, chlorophyll (i.e.,
chlorophyll-a; a measure of total phytoplankton abundance) and phycocyanin content (measure
of cyanobacterial abundance), that were measured using fluorometry (Turner Designs Trilogy®).
Chlorophyll was determined by extracting filters in 90% ethanol for 24 hours at 4 °C (20 mL
pond water; Sartory and Grobbelaar 1984). Phycocyanin was measured by extracting filters in a
50 mM phosphate buffer (Ricca Chemical ®) for four hours in the dark (20 mL pond water;
Kasinak et al. 2014). After collecting initial algal pigment samples, 395 mL of pond water
remained in each jar.

Jars were then dosed with one of seven products (Table 1; online resource Table 1). Each
product was tested at four different treatment concentrations with three replicates for each

concentration. Control jars that received no chemical additions were also included. Secondary
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stocks of each chemical were made with DI water at a concentration such that each jar received a
5 mL addition of the secondary stock to achieve the required chemical dosage (total jar volume
now 400 mL). Control jars received 5 mL of DI water containing no chemicals. Phoslock
treatments were based on the amount of total phosphorus present within a water body. As such,
total phosphorus was measured for the pond water and BG-11 mixture before the treatment using
a colorimetric assay spectrophotometry (Gross and Boyd 1998) and found to be 2.2 mg/L. After
the 5 mL of the secondary stocks were added, jars were then inverted three times, their caps
loosened, and incubated at 30 °C on an 8 hr light: 16 hr dark schedule (fluorescent lighting;
intensity = 80 pmol/m?/s).

The laboratory experiment lasted for 14 days. Jars were mixed by inverting three times
and rotated within the incubator (Percival® model [-36VL) daily to minimize light variation
across jars. Algal pigment measurements were collected via pipette on days 0, 1, 3, 5, and 7 (20
mL for both chlorophyll and phycocyanin). A repeated-measures analysis of variance (RM-
ANOVA) using a restricted maximum log-likelihood (REML) method was used to assess
differences in total phytoplankton (chlorophyll) and cyanobacterial (phycocyanin) densities over
time. Tukey’s multiple comparison tests were used to compare mean effects among treatments.
The analysis was performed using the n/me package in R (Pinheiro et al. 2020). The lowest
concentration of each product that clearly and effectively reduced total phytoplankton (using
chlorophyll values) and specifically cyanobacterial biomass (using phycocyanin values) to that

of the control was selected for use in the field experiment.

Field experiment
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The field experiment was conducted during June 2019 in a 22-acre earthen aquaculture
pond containing hybrid catfish (blue x channel catfish; Ictalurus punctatus x I. furcatus) housed
within an in-pond raceway system at the E.W. Shell Fisheries Center of Auburn University, AL
(S1; Boyd and Sheldon 1984). Each product was tested in three, randomized replicate
mesocosms, and the control had four replicates (25 mesocosms in total). Mesocosms were
cylinder-shaped and made of greenhouse plastic (1310 L volume) that were sealed at the bottom
and open at the top and suspended to a floating dock positioned in the center of the pond (Fig. 1).
Mesocosms were filled with surrounding pond water after being sieved through 200 pm mesh to
exclude large debris but to include ambient zooplankton and phytoplankton. Prior to filling, the
pond was sampled for total nitrogen and phosphorus (both measured using persulfate digestion
and spectroscopy (Gross and Boyd 1998)). Based on these values, potassium phosphate
(K2HPO4) and potassium nitrate (KNO3) were added to each mesocosm to reach concentrations
of 2.6 mg/L total nitrogen and 0.22 mg/L total phosphorus. Mesocosms were then left for 11
days to allow phytoplankton abundance to increase and stabilize.

On day 0 (11 days after filling and fertilizing), two integrated vertical water samples were
obtained using a rigid tube sampler (inside diameter = 51 mm) to a depth of 1 meter (4 L of
sample collected total). Samples were combined in a bucket and placed into a plastic cubitainer.
Water samples were returned to the lab to be processed for chlorophyll and phycocyanin
pigments, as well as for phytoplankton and zooplankton diversity and abundance. Phytoplankton
samples were preserved using 1% Lugol’s iodine solution. The preserved samples were then
settled in a Hydro-bios® settling chamber and enumerated on an inverted microscope by
counting cells observed in 25 fields from 100-400x (Yang et al. 2018). Zooplankton from 2 L of

sample were collected on a 100 um filter and preserved in 95% ethanol before enumeration in a

Buley et al. Field test of seven algal control products page 10



194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

Sedgewick-Rafter chamber on a compound microscope by counting all zooplankton observed at
100x (Yang et al. 2018). Phytoplankton and zooplankton were identified using Edmondson
(1959). Phytoplankton were identified to the genus level. Zooplankton were identified to the sub-
order or genus. Dominant phytoplankton included green algae (Staurastrum and Gloeocystis) and
cyanobacteria (Microcystis and Pseudanabaena).

After sampling water quality for day 0 measurements, the mesocosms were either left
untreated (controls) or treated with a one of seven algaecides (Table 2). Mesocosms were
randomly assigned. Mesocosms were mixed with a tube sampler for 10 seconds after the
application of each product. Integrated water samples were then collected from each mesocosm
ondays 1, 3,7, 14, 21, 28, and 35. Chlorophyll and phycocyanin values were measured for all
sampled days. Phytoplankton and zooplankton samples were counted for day 0, 1, 7, and 35.

Products were assessed foremost on their ability to reduce cyanobacteria. Changes in the
total phytoplankton and zooplankton biomass were also assessed between product treatments. A
repeated-measures analysis of variance (RM-ANOVA) using a restricted maximum log-
likelihood (REML) method was used to assess these differences in total phytoplankton
(measured as chlorophyll and phytoplankton biovolume), cyanobacterial density (phycocyanin),
and zooplankton density between product treatments over time. Tukey’s multiple comparison
tests were used to compare mean effects among treatments. The analysis was performed using

the nlme package in R (Pinheiro et al. 2020).
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Results
Laboratory experiment

Seven algaecides were tested at four treatment concentrations over the 14-day laboratory
experiment by measuring changes in phytoplankton (measured as chlorophyll; Fig. 2a and c¢) and
cyanobacterial (measured as phycocyanin; Fig. 2b and d) abundances over time. Briefly, across
all products, there were large effects of treatment (p < 0.000001), time (p < 0.021), and the
treatment x time interaction (p < 0.000001) on chlorophyll and phycocyanin concentrations
(RM-ANOVA). The copper-based products, CuSOs and Captain, significantly reduced
phytoplankton and cyanobacteria with concentrations >0.2 mg/L as Cu (p < 0.05; Online
Resource Figs. 1 and 5). At these concentrations, cyanobacteria were fully removed from the jars
with both products by day three, while total phytoplankton biomass quickly declined and largely
remained <200 pg/L (compared to starting chlorophyll concentrations ~500 pg/L) in both copper
products for the duration of the trial. H2O2-based products, liquid H20O2 and granulated PAK-27,
both significantly reduced total phytoplankton and cyanobacteria at concentrations =5 mg/L as
H202 (Online Resource Figs. 2 and 6). Although biomass did decrease in the first three days,
both total phytoplankton and cyanobacteria again increased over the 14-day trial, but remained
lower than the control. Peracetic acid-based products, Peraclean and VigorOx SP-15,
significantly reduced phytoplankton and cyanobacteria with concentrations >2 mg/L as volume,
with the greatest effects observed at concentrations =10 mg/L (p < 0.05; Online Resource Fig. 3
and 7). Cyanobacteria remained at or near-to zero after day 1 in concentrations =5 mg/L.
Phytoplankton increased over the 14-day experiment in concentrations less than <5 mg/L. and
<12 mg/L in the Peraclean and VigorOx SP-15 treatments, respectively. However,

phytoplankton and cyanobacteria still remained lower than that of the control throughout the
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entire experiment after treatment. For Phoslock, only the ratio of 50:1 (kg phoslock:kg
waterbody phosphorus) reduced phytoplankton abundance when compared to the control (Online
Resource Fig. 4) while the 200:1 Phoslock treatment was the only treatment to reduce
cyanobacteria relative to the control (Online Resource Fig. 8).

From the various concentrations that the seven algaecides were tested, it was determined
that the following concentrations were to be tested in the field experiment: 0.4 mg/L of CuSO4
and Captain, 10.2 mg/L of liquid H202 and PAK-27, 10 mg/L of VigorOx SP-15 and Peraclean,
and 200:1 ratio for Phoslock (Table 2). Between these products, all had at least one concentration
that significantly reduced both total phytoplankton (Fig. 2a and c) or cyanobacteria (Fig. 2b and

d) over the 14-day experiment when compared to the control.

Field experiment

A 35-day field mesocosm experiment evaluated seven algal control products on
phytoplankton (as chlorophyll and biovolume), cyanobacteria (as phycocyanin), and
zooplankton biomass relative to a control. Although some treatments caused large, rapid
declines in chlorophyll (starting values averaged ~56 ng/L), all treatments returned to near
initial conditions within 21 days (Figs. 3a and 3c). Significant effects of treatment (p =
0.00170) and time (p < 0.001) in the field experiment were observed, but treatment x time
interaction was not significant (p = 0.293) on chlorophyll (RM-ANOVA). Only CuSO4
decreased chlorophyll more than the control across the entire 35 day experiment (p < 0.05;
Fig. 3a). In the first seven days, Captain and CuSOs4 significantly reduced phytoplankton
before increasing over time (Figs. 3a and 3c). Liquid H20:2 also reduced chlorophyll, but this

reduction was short-lived considering that chlorophyll peaked on day 7 in this treatment (Figs.
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3a and 3c). Chlorophyll concentrations for liquid H202 and the controls were statistically
similar (Fig. 3a). Several treatments, including Peraclean, VigorOx SP-15, Phoslock, and
PAK-27, had similar chlorophyll concentrations relative to the control the entire experiment
(Figs. 3a and 3c).

Initial cyanobacterial concentrations (as phycocyanin) averaged ~15 pg/L at the start
of the experiment (Fig. 3b and d). Although there were significant effects of treatment (p <
0.00001) and a treatment x time interaction (p < 0.00001) in the field experiment, time was
not significant (p = 0.425) on phycocyanin (RM-ANOVA). All products reduced
cyanobacterial densities after 1 day except for Phoslock. Interestingly, liquid H20:2 increased
in cyanobacteria relative to the control by day 7 (Figs. 3b and 3d). In total, all products except
for liquid H202 had a significantly lower cyanobacterial concentration than that of the control

during the 35-day experiment (p < 0.05, Figs. 3b and 3d).

Phytoplankton biovolume

Phytoplankton biovolume was estimated for all mesocosms for days 0, 1, 7, and 35 of the
field experiment. Average starting phytoplankton biovolume averaged ~1.17 x 107 pm*/mL
across all products (Fig. 4a). Chlorophytes were the dominant phytoplankton, averaging 9.89 x
10° pm*/mL (55.9% of starting biovolume) between all enclosures. Cyanobacteria next
dominated the mesocosms, averaging 1.66 x 10° pm*/mL (9.4% of starting biovolume) between
all enclosures (Fig. 5a). Additional phytoplankton groups observed included cryptophytes,
dinoflagellates, euglenoids, and diatoms, but the presence of these taxa were generally not

substantial (Fig. 5a).
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Across all products during the 35-day experiment, there were significant effects of
treatment (p < 0.000001), time (p = 0.0448), and treatment x time interaction (p = 0.0022) on
phytoplankton biovolume (RM-ANOVA). All products, except Phoslock, reduced
phytoplankton biovolume during the experiment first day, however phytoplankton rebounded
to initial concentrations over the duration of the experiment (Fig. 4a). Phytoplankton
biovolume in the two copper-based treatments (Captain and CuSO4) were the only products to
remain significantly lower to that of the control across the 35-day experiment (p < 0.05; Fig.
4a). The final ratio of cyanobacteria to total phytoplankton varied greatly between product
treatments with Captain, CuSO4, and H202 having >50% of their total biovolume comprised of
cyanobacteria (Fig. 5a). Although some variation in findings did occur, phytoplankton

biovolume generally mirrored the trends observed in the algal pigment data (Fig. 3).

Zooplankton dry biomass

Zooplankton biomass was estimated for all mesocosms on days 0, 1, 7, and 35 of the field
experiment. The average starting zooplankton dry biomass was ~602 ng/L across all treatments
(Fig. 4b). Mesocosms contained a mixture of cladoceran and copepod taxa, comprising of 38%
and 62% of the total biomass, respectively, at the start of the experiment. Starting densities of
these genera varied. On average, mesocosms contained Ceriodaphnia (1% of total starting
biomass), Diaphanosoma (10%), Bosmina (25%), copepod nauplii (15%), calanoid copepods
(46%), and cyclopoid copepods (4%).

There were large effects of treatment (p < 0.000001), time (p < 0.000001), and treatment
X time interaction (p < 0.000001) on zooplankton dry biomass (RM-ANOVA) during the 35-day

experiment. Only CuSQOs4, Captain, and PAK-27 treatments were significantly lower than the
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control for zooplankton biomass (p < 0.05; Fig. 4b) while the four other products, although
oscillating in value over time, were not significantly different to that of the control. CuSO4
zooplankton biomass remained the lowest over the 35 days. Interestingly, liquid H202 contained
the lowest zooplankton biomass of any product after day 1, but steadily rebounded in number
over the next 35 days. Final (day 35) relative biomass between zooplankton groups were
Ceriodaphnia (2% of final biomass), Diaphanosoma (47%), Bosmina (3%), copepod nauplii
(3%), calanoid copepods (44%), and cyclopoid copepods (0.4%), although diversity and

abundance in biomass varied between products (Fig. 5b).
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314  Discussion

315 This study utilized both a short, microcosm laboratory and five-week, field mesocosm
316  experiment to evaluate seven algal control products in an aquaculture pond. In doing so, both the
317  short- and long-term effectiveness of each product was assessed. The effects of each product on
318 algal pigments representing phytoplankton and cyanobacteria, phytoplankton biovolume, and
319  zooplankton biomass will be described in the following sections, with the focus of this

320  discussion on to the findings of the field experiment. As the chlorophyll pigment and total

321  phytoplankton biovolume data are both assessments of total phytoplankton densities in the field
322 experiment, the results of these two assessments will be described within a single section.

323

324 Effects on phytoplankton (using chlorophyll and phytoplankton biovolume data)

325 Phytoplankton communities in the mesocosms at the start of the experiment were

326  dominated by green algae (Fig. 5). Cyanobacteria were the next largest taxa present. Of the

327  products tested, Captain and CuSOa best reduced phytoplankton abundance in the field

328  experiment (Figs. 3 and 4). When assessing the chlorophyll data, both Captain and CuSO4

329  significantly reduced chlorophyll within the first 7 days of the experiment, and CuSO4 was the
330  only product to significantly lower chlorophyll levels to that of the control for the duration of the
331  35-days (Fig. 3). Similarly, phytoplankton biovolume data in Captain and CuSOs treatments were
332 significantly lower than the control (Fig. 4).

333 The broad-spectrum toxicity and extended duration of select copper products have been
334  observed in prior studies (Murray-Gulde 2002; Viriyatum and Boyd 2016). The efficiency of
335  copper does vary and can often be attributed to the form it is applied. For instance, Viriyatum

336 and Boyd (2016) observed that a single treatment of CuSO4 encapsulated in a slow-release
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coating had an equally comparable reduction in phytoplankton over four months when compared
to ponds treated with basic CuSOas applied weekly. Although differences between Captain and
CuSO4 were observed in this study, both products were found to be the most efficient at reducing
phytoplankton over time (when assessing chlorophyll and algal biovolume data).

VigorOx SP-15 and Peraclean reduced phytoplankton similar to that of the copper-based
products in the laboratory experiment (Fig. 2) but caused negligible effects on phytoplankton in
the field (Figs. 3 and 4). Indeed, it was observed in the field experiment that phytoplankton of
both products increased from day 0 to 1 (Figs. 3 and 4). On one hand, this significant difference
between the laboratory and field studies is likely due to contact time, species assemblages, and
more ideal conditions in the laboratory. Such discrepancies between lab and field-based studies
may indicate how short-term, laboratory studies poorly reflect what happens in nature. On the
other hand, VigorOx SP-15 and Peraclean reduced cyanobacteria while having small effects on
other algae, including beneficial green algae. Such findings would benefit farmers as they seek to
balance the presence of algae to support dissolved nutrient removal and promote oxygenation
within ponds while selecting against cyanobacteria.

Granulated PAK-27 and liquid H20:2 produced similar reductions of phytoplankton in the
laboratory and field study. However, unlike PAK-27, liquid H202 produced an immediate
decline in phytoplankton that quickly rebounded to values greater than that of the control in the
following days and weeks. Interestingly, only the granulated H2O2-based product selectively
reduced cyanobacteria. The effectiveness of H2O:z as an algaecide has been noted to vary between
cyanobacterial species and phytoplankton taxa for both PAK-27 (Sinha et al. 2018) and liquid
H202 (Yang et al. 2018) and may be of use to keep some amount of algae present within farm

ponds.
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Phoslock did not significantly reduce phytoplankton relative to the control in the
laboratory or field experiment. Phoslock targets phosphorus by binding and removing it to the
sediments (Bishop et al. 2018). The efficiency of this product is meant for the long-term control
of phosphorus in systems leading to the eventual change in nutrient ratios and thereby a
reduction in phytoplankton density. This is likely the reason for its undetectable effect in the
short-term in the laboratory experiment as well as small effects in the field experiment. The
constant addition of nutrients to the water column by way of feed and fish waste-products may
further reduce the success of Phoslock in intensive aquaculture. However, the long-term effect of

Phoslock on removing cyanobacteria showed promise in this study (to be discussed).

Effects on cyanobacterial biomass

Captain and CuSOu4 both effectively reduced cyanobacteria in the laboratory and field
experiments (Fig. 2 and 3) reflecting the results documented in prior studies (Murray-Gulde
2002; Viriyatum and Boyd 2016). Although a concentration of 0.4 mg/L as copper was used in
this study, others have used smaller, repeated doses to remove cyanobacterial genera capable of
producing off-flavors in farm ponds (Schrader et al. 2005). Moreover, treatments comparable to
that used in this study have been shown to reduce cyanobacterial genera capable of producing
microcystin (Greenfield 2014). Off-flavors and microcystin were too low to be detectable in the
collected water samples of this study, and therefore not reported. Kansole and Lin (2017) found
that hydrogen peroxide (20 mg/L) could degrade microcystin compounds while CuSO4 (2 mg/L)
could not and that both treatments had a deleterious effect on bacterial populations that could
degrade microcystin naturally. Such reports reflect ability of copper to reduce phytoplankton, but

not cyanotoxins, at environmentally relevant concentrations. In addition, It was observed that
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Captain and CuSOs enclosures both were both dominated by cyanobacteria by the end of the 35-
day field experiment (Fig. 5). Although phytoplankton in Captain and CuSOs treatments were
the lowest observed across the tested products, such a shift in the dominant phytoplankton taxa

could promote cyanobacterial blooms in the future.

Similar to that of the copper-based algaecides, VigorOx SP-15 and Peraclean (peracetic
acid-based) significantly reduced cyanobacteria in both the laboratory and field experiments.
Yet, both products did not significantly reduce phytoplankton in the field experiment, which
were dominated by green algae (Fig. 2 and 3). This selective effectiveness has been observed for
other algaecides, such as H2O2 (Yang et al. 2018), which is a chemical also present in VigorOx
SP-15 and Peraclean. Reasons for this selectiveness may be attributed to the lack of a cell wall in
prokaryotes (e.g., cyanobacteria; Yang et al. 2018), the proximity of the photosynthetic
apparatuses to the plasma membrane (Yang et al. 2018), or the overall ability to degrade
bacterial cell membranes (Mikula et al. 2012). Once hydrogen peroxide enters into the cell of
cyanobacteria, it induces oxidative stress, damaging proteins, genes, and photosystems (Liu et al.
2005; Latifi et al. 2008), and can be compounded by UV light exposure (Drabkova et al. 2012)
and/or the presence of iron (Zepp et al. 1992). The selective effect of H2O2 against cyanobacteria
was observed in the field experiment for most treatments, except liquid H202. However the
selectivity of peracetic acid among phytoplankton taxa is understudied and should be further

researched.

Liquid H202 and PAK-27 had similar reductions in cyanobacterial densities in the
laboratory experiment (Figs. 2 and 5). However, substantial differences were observed between

both the findings of laboratory and field experiments as well as between the two products in the
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field (Figs. 2, 3, and 5b). It was observed in the field experiment that liquid H20z first reduced
cyanobacteria, but phycocyanin then increased greater than the control. In contrast, granulated
H202 kept densities well below that of the control for the duration of the experiment (Fig. 3b and
d). Such differences again reflect the dissonance between laboratory and field studies. It should
be noted in the field experiment that both liquid H202 and PAK-27 reduced cyanobacteria for the
first three days of the experiment. This finding may support that H2O2-based products are
effective at quickly removing toxic and problematic cyanobacterial species, as has been
suggested in prior studies (Barrington et al. 2013; Sinha et al. 2018; Yang et al. 2018), but
repeated treatments may be required for the continual suppression of a bloom (as suggested by
Barrington et al. 2013). Prior research has also observed that hydrogen peroxide may degrade
cyanotoxins, negating their negative effects once released from the cells of cyanobacteria
(Barrington et al. 2013; Kansole and Lin 2017); however, concentrations needed to achieve this
are relatively high (e.g., 20 mg/L Kansole and Lin 2017) and may not be economically feasible
for fish farmers to utilize (to be discussed) or may directly harm farmed fish.

Similar to the H202- and peracetic acid-based products, Phoslock was also found to have
a significant effect on cyanobacteria in the field experiment, but not on phytoplankton in general
(Fig. 3). Such a reduction was likely due to the removal of phosphorus out of the water column
as the decrease of cyanobacteria was gradual in the field experiment (Van Oosterhout and
Liirling 2013). However, in the laboratory experiment, the removal of cyanobacteria was much
more rapid and did not have a similar effect on other phytoplankton taxa (Fig. 2). This finding
may suggest that Phoslock bound and removed cyanobacteria upon its application into the jars
and that its removal is taxon-specific. Phoslock and other clay compounds have been shown to

bind directly with phytoplankton (including cyanobacteria) and remove them from the water
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column (Pan et al. 2011; Van Oosterhout and Liirling 2013). The selectivity of such clays on

their possible selectivity against cyanobacteria is understudied and should be further studied.

Effects on zooplankton biomass

The seven algal control products revealed varying effects on zooplankton biomass during
the field experiment (Fig. 4b). Although zooplankton biomass was reduced by most treatments
relative to the controls, zooplankton returned to values similar to that of the control in the
Phoslock, liquid H202, Peraclean, and VigorOx SP-15 treatments (Fig. 4b). In contrast, CuSOs,
Captain, and PAK-27 each significantly reduced zooplankton densities below that of the control
over the 35 days (Fig. 4b). Significant reductions of zooplankton after a treatment of copper-
based algaecides have been observed in prior studies. McIntosh and Kevern (1974) reported that
treatments of 3 mg/L of CuSOs-5H20 significantly reduced copepods and cladocerans in field
treatments. However, it has also been observed that water quality factors such as dissolved
organic matter will “buffer” the toxicity of copper to zooplankton (De Schamphelaere et al.
2004). These factors may influence the effect when copper is applied to cyanobacterial blooms in
more productive systems than that used in this study, although such variables were not measured
in our field experiment.

VigorOx SP-15 and Peraclean had minimal effects on zooplankton biomass in this study.
As with copper-based products, the toxicity of peracetic acid to zooplankton has been found to
be dependent on water quality variables (e.g., dissolved organic matter, salt; Liu et al 2015).
Interestingly, Liu et al. (2015) found that the toxicity of peracetic acid products to zooplankton
will increase with the amount of H20:z that a product also contains. Of the H202-based products

used in this study, PAK-27 also significantly reduced zooplankton biomass, and liquid H202
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greatly reduced biomass after the initial treatment by day 1, but the densities in the liquid H202
treatment rebounded by the end of the 35-day experiment. The toxicity of H202 to zooplankton
has been assessed on numerous occasions (Barrington et al. 2013; Reichwaldt et al. 2012; Yang
et al. 2018), and findings of these past studies are aligned with the results from our field
experiment.

Lastly, the effect of Phoslock on zooplankton biomass was minimal. Liirling and Tolman
(2010) observed that the active ingredient (lanthanum) of Phoslock was not toxic to Daphnia at
concentrations up to 1000 pg/L. It is likely that the rapid removal of Phoslock out of the water
column or limited toxicity (relative to that of the other products tested) reduced its effectiveness

on the zooplankton biomass in this study.

Costs per product treatment

The average cost to treat a 20 acre-foot pond were calculated based on an example
dosage of each product used in this study as well as prices for these products as of April 2020
(Table 3). Copper sulfate had a remarkably lower cost and application volume than any other
product. This relatively low price likely reflects the wide availability and popularity of
CuSO0s4, and the relatively lower application volume contributes to the use of copper for fish
farmers. Conversely, PAK-27 had the highest cost. It should be noted that all costs are subject
to change and may be lower if a product is purchased at a larger quantity. Further, prices may
be influenced if an algaecide gains USEPA approval for use in food-fish aquaculture. At this
time, CuSOu is the only product fully allowed by the EPA. However, PAK-27, Captain, and

Phoslock are approved to control nuisance algae and cyanobacterial blooms in some states.
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Disclaimers

An algaecide must first receive USEPA approval before its use in food fish aquaculture in
the U.S., requiring significant effort and costs. It should be noted that some algaecides are
approved for use to combat nuisance plants and algae in non-aquaculture ponds. Such approvals
vary from state to state. In general, “any product or device that is used or implied to control algae
(including cyanobacteria) must be registered by the USEPA under FIFRA” (Laughinghouse et al.
2020). Moreover, guidelines and directions provided by the vendor on the labeled instructions
should be explicitly followed. The objectives of these experiments were to compare efficacy in a
demonstration/research environment and not to endorse the use of any specific product. Local,
state and federal authorities should be consulted before any chemical is applied to surface waters.

The assessment of oxygen during the night hours or amounts levels of ammonia were not
checked during this study to minimize contamination between enclosures and treatments. Such
factors can be major issues to fish after major a phytoplankton or plant die-off as oxygen
concentrations will be depleted through microbial disposition (Chislock et al 2013a) and
ammonia concentrations may increase through the breakdown of organic material (Farnsworth-
Lee and Bake 2000) or through the lack of uptake by phytoplankton (Boyd et al. 1975).
Moreover, both off-flavors and microcystin can be released from cyanobacteria as their cells
rupture, an issue that can be promoted by algaecide applications (Jones and Orr 1994; Jiittner and
Watson 2007). Applicators should monitor their ponds for these parameters after an application

of algaecide to avoid serious issues.
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Conclusions

This study utilized both a laboratory and field study to compare algal control products to
one routinely used (CuSOs4) in farm-pond aquaculture as well as a treatment-less control. Our
findings indicate that copper-based products, Captain and CuSOs4, had the greatest reduction of
phytoplankton and cyanobacteria in both the laboratory and field studies. Copper sulfate also had
the lowest treatment costs relative to the other algaecides tested and is the only algaecide
approved for use in food-fish aquaculture to date. However, it was observed that copper-based
products had significant adverse effects on zooplankton densities and its broad-spectrum toxicity
may not be useful in all situations.

Peracetic-acid based products, VigorOx SP-15 and Peraclean, as well as a granulated
H202-based product (PAK-27), significantly removed cyanobacteria while having small effects
on other phytoplankton, specifically beneficial green algae, during the field experiment.
Moreover, peracetic acid-based products had small effects on zooplankton when compared to the
control treatment. Surprisingly, liquid H202 showed to have short-lasting effects on
phytoplankton abundance while also promoting cyanobacteria by the end of the field experiment.
In addition, large negative effects of both H20O2-based products on zooplankton was observed.
The cost of the peracetic acid- and H202-based products ranged from moderate-to-high relative
to the others tested.

The clay product, Phoslock, showed little significant effect on phytoplankton in the field
experiment, but significantly reduced cyanobacterial abundance. Given that the mechanism that
Phoslock exploits to control phytoplankton is by binding phosphorus and making it unavailable
for phytoplankton, it may take some time for this treatment to show effects relative to true

algaecides tested in this study. In the laboratory experiment, cyanobacterial densities were
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immediately reduced upon the application of Phoslock and may indicate its ability to bind and
selectively remove cyanobacteria from the water column. The cost of Phoslock was the second
highest treatment used in this study, but perhaps may be circumvented if fewer applications are
needed.

In this study, it was made clear that extended results from the tightly controlled lab
studies to the field should be done with caution. Also, the effects of most algaecides on
phytoplankton are short-lived. As this study was performed in floating mesocosms, we
encourage the use of full-scale pond trials to rigorously test multiple algaecides under uniform
conditions to evaluate their efficacy. Aspects such as mixing, sedimentation, and application

methods may influence treatment effectiveness and longevity.
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Figure legends
Fig. 1. Floating dock that held the mesocosms for the field experiment. Additional mesocosms

pictured here were not used as part of this study.

Fig. 2. Dynamics of phytoplankton (as chlorophyll (ng/L)) or cyanobacteria (as phycocyanin
(ng/L)) across a 14-day laboratory, microcosm (0.4 L) experiment where seven algaecides were
tested relative to an algaecide-less control (0.0 mg/L). Only data for the targeted concentration
used in the field experiment for each algaecide are shown. Data for other algaecides
concentrations are available in the Supplementary Materials. The Phoslock application rate was
calculated as 200 units (pg) of Phoslock for every unit (ug) of total phosphorus in a waterbody
given an estimated volume. Panels A and B show absolute data, while panels C and D show
relative concentrations (calculated as (product treatment mean — control mean)/control mean) for
each sampling day. Error bars in panels A and B represent one standard error. Letters in brackets
after each product are results from Tukey’s multiple comparison tests. Products sharing the same

letter are not statistically different (p > 0.05) using repeated measures ANOVA.

Fig. 3. Dynamics of phytoplankton (as chlorophyll (ug/L)) or cyanobacteria (as phycocyanin
(ng/L)) across a 35-day field mesocosm (1,310 L) experiment where seven algaecides were
tested relative to an algaecide-less control (0.0 mg/L or no Phoslock added). The Phoslock
application rate was calculated as 200 units (ng) of Phoslock for every unit (ug) of total
phosphorus in a waterbody given an estimated volume. Panels A and B show absolute data,
while panels C and D show relative concentrations (calculated as (product treatment mean —

control mean)/control mean) for each sampling day. Error bars in panels A and B represent one
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standard error. Letters in brackets after each product are results from Tukey’s multiple
comparison tests. Products sharing the same letter are not statistically (p > 0.05) different using

repeated measures ANOVA.

Fig. 4. Dynamics of (A) phytoplankton biovolume (um?/ml) and (B) zooplankton dry biomass
(ng/L) across a 35-day field mesocosm (1,310 L) experiment where seven algaecides were tested
relative to an algaecide-less control (0.0 mg/L or no Phoslock added). The Phoslock application
rate was calculated as 200 units (ng) of Phoslock for every unit (ug) of total phosphorus in a
waterbody given an estimated volume. Error bars in panels A and B represent one standard
error. Letters in brackets after each product are results from Tukey’s multiple comparison tests
using logio-transformed data. Products sharing the same letter are not statistically (p > 0.05)

different using repeated measures ANOVA.

Fig. 5. Trends in (A) phytoplankton and (B) zooplankton community structure across four
sampling days (0 (pre-treatment), 1, 7, and 35) of a 35-day field mesocosm (1,310 L) experiment
where seven algacides were tested relative to an algacide-less control (0.0 mg/L or no Phoslock
added). The Phoslock application rate was calculated as 200 units (ng) of Phoslock for every unit

(ng) of total phosphorus in a waterbody given an estimated volume.
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