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Abstract

In this note we introduce a finite abelian group that can be associated with any
finite connected graph. This group can be defined in an elementary combinatorial
way in terms of chip-firing operations, and has been an object of interest in
combinatorics, algebraic geometry, statistical physics, and several other areas of
mathematics. We will begin with basic definitions and examples and develop a
number of properties that can be derived by looking at this group from different
angles. Throughout, we will give exercises, some of which are straightforward
and some of which are open questions. We will also highlight some of the many
contributions to this area made by undergraduate students.

Suggested Prerequisites The basic definitions and themes of this note should
be accessible to any student with some knowledge of linear algebra and group
theory. As we go along, deeper understanding of graph theory, abstract algebra,
and algebraic geometry will be of use in some sections.
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1 Critical Groups

The primary object of interest in this chapter will be a finite abelian group that is
associated with a graph. This group has been studied from a variety of different
perspectives, and as such it goes by several different names, including the sandpile
group, the component group, the critical group, or the Jacobian of a graph. We will
give definitions and some results about critical groups of graphs and pose some
questions that we think would be interesting for an undergraduate to tackle. For
additional background and motivation for this topic as well as a more in-depth
treatment, we recommend the books by Klivans [48] and Corry and Perkinson [32].

We will highlight several significant contributions to the study of critical
groups made by undergraduates—papers with at least one undergraduate author are
highlighted in red in the bibliography—and we will discuss some open problems
that would make excellent topics for future undergraduate research.

1.1 Definitions and Examples

Part of what makes the study of critical groups such a good topic for undergraduate
research is that the definitions are very concrete and one can get started computing
examples right away.

Let G be a connected, undirected graph with vertex set V (G) of finite size n and
edge set E(G). Choose an ordering of V (G) : v1, . . . , vn. We define the adjacency
matrix of the graph G to be the n × n matrix A where the entry ai,j in the ith row
and j th column of A is the number of edges between vi and vj . We also define the
matrix D to be the diagonal matrix where the entry di,i is equal to the degree of vi .
Finally, we let L(G) be the matrix D −A; this matrix is referred to as the Laplacian
matrix, or combinatorial Laplacian, of the graph G. We often write L for this matrix
when the graph is clear from context.

Note We defined the adjacency matrix A of G by saying that ai,j is the number of
edges between vi and vj , implying that this number can be greater than 1. For most
of this paper we focus on the case of simple graphs (at most one edge between any
pair of vertices), with no self-loops (edges from vi to vi), that are connected (for
any pair of vertices vi, vj there is a path from vi to vj in G), and where edges are
undirected. In this case we will denote an edge between vi and vj as vivj . Much of
the theory of critical groups carries over to more general settings, but we find that it
is most helpful to first focus on this simplest case.

Example 1 We will consider the graph below:
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v1

v2

v3

v4

One can see that the adjacency matrix, degree matrix, and Laplacian of this graph
are given by

A =

⎛
⎜⎜⎝

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

⎞
⎟⎟⎠ , D =

⎛
⎜⎜⎝

3 0 0 0
0 2 0 0
0 0 2 0
0 0 0 3

⎞
⎟⎟⎠ , L =

⎛
⎜⎜⎝

3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3

⎞
⎟⎟⎠ .

It follows from the definition of the Laplacian matrix of a graph that the entries
in any row or in any column sum to 0. This implies that the vector consisting of all
ones, 1, is in the null space of the matrix. In fact, we have the following result:

Theorem 1 For any finite connected graph G, the null space of the Laplacian
matrix of G is generated by the vector 1.

Proof Since 1 is in the null space, all multiples of it are as well. Let x =
(x1, . . . , xn) be a vector in the null space of L, so that Lx = 0, the all zero vector.
Note that this implies that xT Lx = 0. One can check that

xT Lx =
∑

vivj ∈E(G)

(xi − xj )
2.

Each of these terms is nonnegative so the entries of x corresponding to any pair of
neighboring vertices must be equal. Because G is connected we must have that for
any vector in the null space all of the entries in x are equal, concluding the proof.

More generally, we can determine the number of connected components of G in
terms of its Laplacian.

Proposition 1 For any finite graph G, the dimension of the null space of the
Laplacian matrix of G is the number of connected components of G.

Exercise 1 If G is a graph with c connected components, describe c linearly
independent vectors in the null space of L. Mimic the proof of Theorem 1 to show
that the dimension of the null space is, in fact, c.
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This result is the first of many results relating the Laplacian matrix of a graph
to other seemingly combinatorial properties of the graph. The eigenvalues of the
Laplacian turn out to be particularly interesting, and the area of spectral graph
theory is largely dedicated to studying this relationship. We refer the interested
reader to the survey article [67] or the book [22].

In order to discuss our main object of interest, we note that any n × n integer
matrix A can be thought of as a linear map A : Zn → Z

n. The cokernel of A,
denoted cok(A), is Z

n/Im(A). Theorem 1 implies that if L is the Laplacian of a
connected graph G then dim(Im(L)) = n − 1, so cok(L) ∼= Z ⊕ K for some finite
abelian group K . This group K is the critical group of the graph G. We will denote
it by either K or K(G) depending on whether the graph is understood by context.

The main goal of this article is to outline problems about critical groups. What
interesting information does K(G) tell us about G? In Sect. 1.5 we will see that the
order of K(G) tells us about the subgraphs of G, in particular, that |K(G)| is the
number of spanning trees of G. In the next section we will introduce divisors on G

and see that the structure of the finite abelian group K(G) tells us something about
how these divisors on G behave under chip-firing operations.

1.2 Divisors on a Graph and the Chip-Firing Game

We started by giving an algebraic description of the critical group as the torsion part
of the cokernel of the Laplacian matrix of G, but one can also approach it from a
more combinatorial point of view via the chip-firing game, which was originally
introduced by Biggs in [14]. In order to define this game, we set some notation. A
divisor on a graph G is a function δ : V (G) → Z, which we think of as assigning an
integer number of chips to each vertex of G. We can think of a divisor as an element
of Z|V (G)|. The degree of a divisor is defined by deg(δ) = ∑

v δ(v). We define an
addition of divisors by (δ1 + δ2)(v) = δ1(v) + δ2(v). In this way, we see that the
set of all divisors on G, denoted Div(G), is isomorphic to a free abelian group with
|V (G)| generators. We let Div0(G) denote the subgroup of all degree 0 divisors on
G. One can see that Div0(G) is isomorphic to a free abelian group with |V (G)| − 1
generators.

Exercise 2 Describe a set Δ of |V (G)| − 1 divisors on G so that Div0(G) is
isomorphic to the free abelian group on Δ.

We next define two types of transitions between divisors, which are called chip-
firing moves. In the first, we choose a vertex and borrow a chip from each of its
neighbors. The second is an inverse to the first, where we choose a vertex and fire
it, sending a chip to each one of its neighbors. We will treat these two as inverses
in an algebraic sense, so, for example, when we say “perform −2 borrowings at v”
one should think of it as the same as “perform 2 firings at v.” Note that each one
of these chip-firing moves preserves the degree of a divisor. Two divisors D1 and
D2 are equivalent if we can get from D1 to D2 by a sequence of chip-firing moves
(Fig. 1).
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Fig. 1 A divisor on the cycle
graph C3, followed by the
divisor obtained by first
“firing” at the lower-left
vertex and then “borrowing”
at the upper-left vertex

3

2 1

2

0 2

0

1 1

The set of divisors that are equivalent to the all zero divisor is exactly Im(L(G)).
Starting with a divisor δ, which we think of a column vector in Z

|V (G)|, firing
vi corresponds to subtracting the ith column of L(G) from this vector. Similarly,
borrowing at vi corresponds to adding ith column of L(G). This gives a second
interpretation of the critical group.

Proposition 2 Let G be a finite connected graph. The critical group K(G) is
isomorphic to Div0(G)/ ∼, the set of all degree 0 divisors of G modulo chip-firing
equivalence.

Example 2 Let G be the cycle on three vertices. Consider any divisor δ of degree
zero on G. Let δ̂ be the divisor attained after performing δ(v3) borrowing operations
at v1, so in particular δ̂(v3) = 0. Because the degree of δ̂ is zero we must have that
δ̂(v2) = −δ̂(v1) so in particular δ̂ is a multiple of the divisor δ1,2 which is defined
by setting δ1,2(v1) = 1, δ1,2(v2) = −1, and δ1,2(v3) = 0. This implies that every
element of Div0(G) is equivalent to a multiple of δ1,2. Therefore, K(G) is cyclic.
One can also show that 3δ1,2 is chip-firing equivalent to the zero divisor, but that
δ1,2 and 2δ1,2 are not. We conclude that K(C3) ∼= Z/3Z.

Remark 1 These definitions are in parallel with a family of ideas in algebraic
geometry, and many recent results in the field have come from trying to better
understand this analogy. In particular, given a curve C defined as the solution set
to a polynomial equation f (x, y) = 0, algebraic geometers define a divisor on
the curve to be a formal finite linear combination

∑
aiPi of points on the curve.

The degree of the divisor is defined to be the sum
∑

ai , and the set of divisors of
degree zero is denoted by Div0(C). The Jacobian of the curve is then defined to be
Div0(C)/ ∼, where two divisors δ1 and δ2 are said to be equivalent if δ1 − δ2 is the
divisor corresponding to a rational function on C. For more details about Jacobians
in algebraic geometry, we recommend [43].

Exercise 3 Show that if δ is a divisor of degree zero on the graph from Example 1,
then δ is equivalent after some number of firing/borrowing operations to a divisor
δ̂ so that δ̂(v3) = δ̂(v4) = 0. This result implies that every divisor of degree zero
is equivalent to a multiple of the divisor δ1,2 which is defined by setting δ1,2(v1) =
1, δ1,2(v2) = −1, and δ1,2(v3) = δ1,2(v4) = 0.

Next, show that the order of δ1,2 in K(G) is 8, proving that the critical group of
this graph is Z/8Z.
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1.3 Smith Normal Forms

We have defined the critical group of a connected graph G as the torsion part of the
cokernel of the Laplacian matrix of G, but it is not so clear how to determine the
structure of this finite abelian group. Linear algebra provides a nice solution.

Proposition 3 Let L be a n × n integer matrix of rank r . There exist matrices U

and V with integer entries so that det(U) = ± det(V ) = ±1 and S = ULV is a
diagonal matrix where sr+1,r+1 = sr+2,r+2 = · · · = sn,n = 0 and si,i | si+1,i+1 for
all 1 ≤ i < r . The matrix S is called the Smith Normal Form of L.

Moreover,

cok(L) ∼= cok(S) ∼= (
Z/s1,1Z

) ⊕ (
Z/s2,2Z

) ⊕ · · · ⊕ (
Z/sr,rZ

) ⊕ Z
n−r .

In particular, one can read off the critical group of G directly from the Smith
normal form of L(G). The hard part here is showing the existence of the invertible
matrices U and V . For a proof see [32, Theorem 2.33]. Once one knows that U

and V satisfying these properties exist, the fact that the cokernels are isomorphic
follows from the commutative diagram below. Note that the fact that U and V have
determinant ±1 means that they define isomorphisms Zn → Z

n.

1 Z
n−r

Z
n

Z
n cok(S) 1

1 Z
n−r

Z
n

Z
n cok(L) 1.

∼

S

U

L

V

Finally, it is straightforward to determine the cokernel of a diagonal matrix, so
the last claim follows.

Example 3 Consider the graph G below:

We can see that

L(G) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 −1 0 0
−1 4 −1 −1 −1 0
0 −1 2 0 −1 0

−1 −1 0 4 −1 −1
0 −1 −1 −1 4 −1
0 0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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and can write

ULV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 1 0 −1 0
0 0 1 0 −1 1
1 2 3 0 4 −7
1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

L

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 4 −1 10 10 1
0 1 0 2 3 1
0 0 0 1 2 1
0 0 1 −3 −1 1
0 0 0 0 1 1
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 3 0 0
0 0 0 0 18 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= S.

In particular, U and V both have determinant −1, so S is the Smith normal form
of L. This implies that the critical group of the graph is Z/3Z ⊕ Z/18Z.

How do we actually compute the Smith normal form of a matrix? One useful fact
(see, for example, [68, Theorem 2.4]) is the following:

Theorem 2 Let L be an n × n integer matrix of rank r whose Smith normal form
has nonzero diagonal entries s1, . . . , sr where si | si+1 for all 1 ≤ i < r . For each
i ≤ r , we have that s1s2 · · · si is equal to the greatest common divisor of all i × i

minors of L.

Example 4 Consider the complete graph Kn on n vertices. One sees that

L(Kn) =

⎛
⎜⎜⎜⎜⎜⎝

n − 1 −1 −1 · · · −1
−1 n − 1 −1 · · · −1
−1 −1 n − 1 · · · −1
...

...
...

. . .
...

−1 −1 −1 · · · n − 1

⎞
⎟⎟⎟⎟⎟⎠

.

The greatest common divisor of the entries of this matrix is 1, so s1 = 1. The 2 × 2
submatrices of this matrix are all of the following form:

(−1 −1
−1 −1

)
,

(
n − 1 −1
−1 −1

)
,

( −1 −1
n − 1 −1

)
,

(−1 −1
−1 n − 1

)
,

(−1 n − 1
−1 −1

)
,

(
n − 1 −1
−1 n − 1

)
.

In particular, the 2 × 2 minors are all in the set {0,±n, n2 − 2n}, and the greatest
common divisor of these values is n. This implies s2 = n, which in turn tells us that
n | si for all 2 ≤ i ≤ n− 1. The determinant of the (n− 1)× (n− 1) matrix that we
get by deleting the last row and column of L(Kn) is nn−2. We conclude that si = n

for each 2 ≤ i ≤ n − 1. This implies that the Smith normal form of the Laplacian is
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S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 n 0 · · · 0 0
0 0 n · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · n 0
0 0 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and therefore the critical group of the complete graph is (Z/nZ)n−2.

Exercise 4 Verify that the determinant of the (n − 1) × (n − 1) matrix that we get
by deleting the last row and column of L(Kn) is nn−2.

Theorem 2 gives an explicit (if not very effective) way to compute the Smith
normal form, and thus the critical group, of any graph by computing many
determinants of submatrices and their greatest common divisors. However, it can
also be used in other ways to tell us about the structure of the critical group.
For example, using the notation from Proposition 3, if G is a connected graph
with n vertices, then the product s1 · · · sn−2 is the greatest common divisor of the
(n − 2) × (n − 2) minors of L(G). So if any one of these minors is equal to 1, then
s1 · · · sn−2 = 1 and |K(G)| = sn−1. This gives the following result:

Corollary 1 Let G be a connected graph on n vertices. If there exists an (n − 2) ×
(n − 2) minor of L equal to 1, then the critical group of G is cyclic.

We have defined the critical group of a connected graph as the torsion part of
the cokernel of the Laplacian matrix, but it is often convenient to think of the
critical group as the cokernel of an invertible matrix. Let the reduced Laplacian
of a connected graph G be the matrix L0(G) (or just L0 when the graph is clear
from context) that we get from deleting the final row and column of L(G). Because
all of the rows and columns of L sum to 0, the torsion part of cok(L) is equal to
cok(L0). In fact, it is a special property of Laplacian matrices that one can remove
any row and column from L and the cokernels of the matrices will be isomorphic.
See [32, Section 2.2.1] or [13, Chapter 6] for more detail. The following result then
follows from Theorem 2.

Corollary 2 Let G be a graph on n vertices. For any i, j satisfying 1 ≤ i, j ≤ n,
let Li,j be the (n − 1) × (n − 1) matrix that we get by deleting the ith row and j th

column of L(G). Then K(G) ∼= cok(Li,j ). In particular, the order of K(G) is equal
to the determinant of the reduced Laplacian Li,j .

As mentioned earlier, the algorithm suggested by Theorem 2 is not very efficient.
There are much more efficient algorithms for computing Smith normal forms that
proceed similarly to how one row reduces matrices into reduced echelon form in a
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linear algebra class. In particular, one can put any n×n integer matrix into a unique
matrix in Smith normal form by a sequence of the following operations:

1. Multiply rows or columns by −1,
2. Swap two rows,
3. Swap two columns,
4. Add any integer multiple of one row to another row, or
5. Add any integer multiple of one column to another column.

Just as when putting matrices into reduced echelon form there are many choices
one makes along the way which may speed up or slow down the process. For details
of how to optimize this procedure, we refer the reader to [39] and [69]. There are
efficient implementations of these algorithms in most computer algebra systems
including Sage, Maple, and Mathematica.

Example 5 Consider again the graph from Example 1. Let us use row and column
reduction in order to find the Smith normal form of the Laplacian of this graph.

⎛
⎜⎜⎝

3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3

⎞
⎟⎟⎠

r1↔r2−−−−−→
r4−r3−−−−−→

⎛
⎜⎜⎝

−1 2 0 −1
3 −1 −1 −1

−1 0 2 −1
0 −1 −3 4

⎞
⎟⎟⎠

r2+3r1−−−−−→
r3−r1−−−−−→

⎛
⎜⎜⎝

−1 2 0 −1
0 5 −1 −4
0 −2 2 0
0 −1 −3 4

⎞
⎟⎟⎠

r2+2r3−−−−−→
−r1−−−−−→

⎛
⎜⎜⎝

1 −2 0 −1
0 1 3 −4
0 −2 2 0
0 −1 −3 4

⎞
⎟⎟⎠

r3+2r2−−−−−→
r4+r2−−−−−→

⎛
⎜⎜⎝

1 −2 0 1
0 1 3 −4
0 0 8 −8
0 0 0 0

⎞
⎟⎟⎠

c2+2c1−−−−−→
c4−c1−−−−−→

⎛
⎜⎜⎝

1 0 0 0
0 1 3 −4
0 0 8 −8
0 0 0 0

⎞
⎟⎟⎠

c3−3c2−−−−−→
c4+4c2+c3−−−−−→

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 8 0
0 0 0 0

⎞
⎟⎟⎠ .

It is often interesting to look at specific families of graphs and ask how to
compute their critical groups. As an example, the complete bipartite graph Km,n

has vertex set {x1, . . . , xm, y1, . . . , yn} and edge set consisting of the edges between
each xi and yj and no others.

Exercise 5 Find the critical group of K3,3 by computing the Smith normal form of
its Laplacian matrix. How would your results generalize to other complete bipartite
graphs Km,n?

We note that a formula for the critical groups of all complete multipartite graphs is
given in [45].
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Fig. 2 The circulant graphs
C6(1, 2) and C12(2, 3)

Many authors have worked on problems about computing critical groups for
other special families of graphs. For example, the critical groups of wheel graphs
are described in [14, §9], rook graphs are considered in [35], and Paley graphs in
[20]. Much of this work has been done by undergraduate students, and there are
many families of graphs that one could still explore!

We close this section by discussing one family of graphs where there are still
many open questions about the critical groups, the circulant graphs. To be explicit,
the circulant graph Cn(a1, . . . , ak) is formed by placing n points on a circle and
drawing the edges from each vertex to the vertices that are a1, a2, . . . , ak positions
further in the clockwise direction. Two examples are given in Fig. 2. Some graphs
of this form have been analyzed in several papers, [40,44,59,60], where results like
the following are shown:

Theorem 3 Let Fn be the nth Fibonacci number and let d = gcd(n, Fn). Then the
critical group of Cn(1, 2) is isomorphic to Z/dZ ⊕ Z/FnZ ⊕ Z/(nFn/d)Z.

Exercise 6 Write down the Laplacian matrix for the graph C6(1, 2). Verify that the
critical group of this graph is Z/6Z ⊕ (Z/13Z)2.

An unpublished note [26] argues that in general the critical group of the circulant
graph Cn(a, b) can be generated by at most 2b − 1 elements. The authors also
describe explicit calculations giving a library of the critical groups of all circulant
graphs with at most 27 vertices.

Research Project 1 Compute the critical groups of Cn(1, 3) for n ≤ 10,
either by hand or using a computer algebra system. Try to find patterns.
Compare your results to [59, Theorem 2].

What kinds of patterns can you find for other families of circulant graphs?
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1.4 Elements of the Critical Group

In the previous section we saw how to determine the critical group of a graph by
computing the Smith normal form of the Laplacian of G. We also have seen how
equivalence classes of divisors on a graph give elements of the critical group.

Question 1 How do we write down representatives for the elements of K(G)? In
particular, we know that K(G) is isomorphic to the group of all classes of degree 0
divisors on G under chip-firing equivalence. How do we make a “good choice” of
one divisor from each class? How do we determine if two divisors are in the same
class?

There are several different approaches to choosing a representative from each
class, and we will give one here. Let δ ∈ Div(G) and v ∈ V (G). We say that v is
in debt if δ(v) < 0. We fix a vertex q ∈ V (G) and define a divisor δ ∈ Div(G) to
be q-reduced if δ(v) ≥ 0 for all v 	= q and, moreover, for every nonempty set of
vertices A ⊆ V (G) \ {q}, if one starts with the divisor δ and simultaneously fires
every vertex in A, then some vertex in A goes into debt.

Example 6 Once again we consider the graph from Example 1. We denote the
upper-left vertex as q = v1, the lower-left as v2, the upper-right as v3, and the lower-
right as v4. In order for a divisor δ to be q-reduced, one first notes that δ(v) < deg(v)

for all v 	= q to account for the situation when A is a single vertex. On the other
hand, if we fire all three of the vertices in A = {v2, v3, v4}, then δ decreases by one
at each of these vertices, so if firing at each vertex of A causes one of the vertices to
go into debt we know that the value of δ is zero for at least one of them (Fig. 3).

Firing both vertices in A = {v2, v3} decreases the value of the divisor at each of
these vertices by two, which will already make both of the values negative by our
above reasoning. If A = {v2, v4}, then firing both vertices in A decreases δ(v2) by
one and δ(v4) by two. In particular, if δ(v4) = 2, then δ(v2) = 0 and if δ(v2) = 1,
then δ(v4) = 0 or 1. Considering A = {v3, v4} gives the analogous results for v3.

Combining these facts, one can see that there are eight q-reduced divisors of
degree zero on this graph, given by the 4-tuples (δ(v1), δ(v2), δ(v3), δ(v4)):

1

1

0 1

1

1

Fig. 3 Two divisors on the graph from Example 1. The first is q-reduced, as one can see by firing
each of the seven nonempty subsets of {v1, v2, v3}. The second is not q-reduced, as one can see by
noting that firing all of the vertices in {v1, v2, v3} will not put any of these vertices into debt
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{(0, 0, 0, 0), (−1, 1, 0, 0), (−1, 0, 1, 0), (−1, 0, 0, 1),

(−2, 1, 1, 0), (−2, 1, 0, 1), (−2, 0, 1, 1), (−2, 0, 2, 0)}.

Exercise 7 Show that if we had chosen q to be the vertex v2 instead of v1 that there
would still be eight q-reduced divisors of degree zero.

As was suggested by the previous example, the number of q-reduced divisors
does not depend on the choice of vertex q, even though the specific set of divisors
certainly does. In fact, a much stronger result is true:

Theorem 4 ([7, Prop 3.1]) Let G be a finite connected graph and q ∈ V (G). Then
every divisor class in K(G) contains a unique q-reduced divisor.

Checking whether or not a divisor is q-reduced directly from the above definition
is difficult for large graphs as there are exponentially many subsets A one needs
to check. However, there is a fast algorithm due to Dhar known as the Burning
Algorithm that verifies whether a divisor is q-reduced by checking only a linear
number of firing sets. We will not give the details of this algorithm but refer the
interested reader to [48, Section 2.6.7]. It is worth noting that q-reduced divisors
were independently developed under the name of G-parking functions in order to
generalize what are now called classical parking functions; for more details about
this story, we refer the reader to [48, Section 3.6].

1.5 Spanning Trees and theMatrix Tree Theorem

A spanning tree of a connected graph G is a subgraph T consisting of all of the
vertices of G and a subset of the edges of G so that the graph T is connected and
contains no cycles. It follows from elementary results in graph theory that if G (and
hence T ) has n vertices then T will have n − 1 edges.

Example 7 Consider the cycle on n vertices, Cn. We get a spanning tree by deleting
any single edge. Thus, Cn has n spanning trees.

The graph from Example 1 consists of 4 vertices and 5 edges, so any spanning
tree will be obtained by deleting two of the edges from the graph. However, in this
case we cannot just delete any two edges; for example, deleting the edges v1v2
and v2v4 will leave us with a graph that is both disconnected and contains a cycle
(see Fig. 4). In particular, if we delete the edge v1v4, then we can delete any of
the remaining edges as our second edge. Otherwise, we must delete exactly one edge
from {v1v2, v2v3} and one from {v1v3, v3v4}. In particular, there are eight spanning
trees of this graph.

In general, it might appear to be a difficult question to ask for the number of
spanning trees a given graph, but there is a nice answer given in terms of the
Laplacian of the graph. The result is often attributed to Kirchhoff based on work
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Fig. 4 Three subgraphs of the graph from Example 1 which each have three edges. The first one
is not a spanning tree but the other two are

he did as an undergraduate in the 1840s. Many different proofs have been given
over the years. For a discussion of the history of this theorem as well as a proof and
some related results, see [47] and [13, Chapter 6]. Recall that the reduced Laplacian
Li,j (G) of a graph G is the matrix we get by deleting the ith row and j th column
from L(G).

Theorem 5 (Matrix Tree Theorem) The number of spanning trees of G is equal
to | det(Li,j (G))| for any i, j .

Combining this theorem with the discussion in Sect. 1.3 gives us the following
result which we will make use of repeatedly:

Corollary 3 The order of the critical group K(G) is the number of spanning trees
of G.

In fact, Cori and Le Borgne give an explicit bijection between spanning trees of
a graph and reduced divisors in the critical group in [27]. In [9], Baker and Shokrieh
reformulate the question in terms of minimizing energy potential to generalize these
results further. We will not discuss these refinements here.

Corollary 3 immediately tells us that any tree has trivial critical group, a fact
that we will give a different proof of in Corollary 5. It also tells us that the critical
group of a cycle on n vertices has order n and that the critical group of the graph in
Example 1 has order 8, although it does not help us pin down the group exactly. We
will return to critical groups of cycles in the next section.

Exercise 8 Consider the “house graph” pictured here:
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Show that there are 11 different spanning trees of this graph, and conclude that the
critical group must be Z/11Z. More generally, what can we say about the critical
group of the graph consisting of two cycles sharing a common edge?

At the beginning of Sect. 1.4 we noted that there are several approaches to
choosing one divisor from each divisor class and then discussed the example of
q-reduced divisors. Another interesting choice comes from the theory of break
divisors, which are defined in terms of the spanning trees of G. An, Baker,
Kuperberg, and Shokrieh use these divisors to give a decomposition of Picg(G),
the set of all divisors of degree d on G modulo chip-firing equivalence [3]. This
leads to a “geometric proof” of Theorem 5.

1.6 HowDoes the Critical Group Change Under Graph
Operations?

To this point, we have used techniques from linear algebra to compute critical
groups. One can also often use combinatorial properties of graphs to help with these
computations. In this section, we will consider several such approaches.

The Dual of a Planar Graph A graph G is planar if it can be drawn on a sheet
of paper without any edges crossing. The dual graph Ĝ is defined as follows.
Choose a drawing of G. The vertices of Ĝ are in bijection with the planar regions
of the drawing. There is an edge connecting two vertices of Ĝ precisely when the
corresponding regions of the drawing of G share an edge. Two examples are given
in Fig. 5. We note that the dual of a planar simple graph may have multiple edges
between two vertices.

This definition of the dual depends on a choice of embedding into the plane. In
particular there are graphs where different embeddings into the plane lead to non-
isomorphic dual graphs. That said, we have the following result of Berman [12,
Proposition 4.1] that was rediscovered by Cori and Rossin [28, Theorem 2], and by
Bacher, de la Harpe, and Nagnibeda [6, Proposition 8].

Theorem 6 If G is a planar graph and Ĝ is its dual graph, then K(G) ∼= K(Ĝ).

Fig. 5 Two planar graphs
and their duals. The vertices
of the original graphs are
given in gray and the edges
are solid. The vertices of the
dual graphs are given in black
and the edges are dashed
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Corollary 4 The critical group of the cycle graph Cn is Z/nZ.

Proof The dual graph to Cn consists of two vertices (one representing the inside of
the cycle and one representing the outside) with n edges between them, as illustrated
in Fig. 5. Therefore,

L(Ĉn) =
(

n −n

−n n

)
.

We easily deduce that K(Ĉn) ∼= Z/nZ. The result follows from Theorem 6.

In this argument we took the dual graph of a cycle and got a graph that had n

distinct edges between our pair of vertices. As we noted earlier, standard facts about
critical groups work in this more general multigraph setting– it is a good exercise to
check that you believe us!

There is a construction similar to the dual graph known as the line graph of a
graph G. In particular, the line graph of G is the graph GL whose vertices are in
bijection with the edges of G and two vertices in GL have an edge between them
if and only if the corresponding edges share a vertex. For information on critical
groups of line graphs see [11].

The Wedge of Two Graphs Let G1 and G2 be two finite graphs with designated
vertices v1 ∈ G1 and v2 ∈ G2. The wedge of G1 and G2 is the graph G consisting
of the two graphs G1 and G2 with the vertices v1 and v2 identified.

Example 8 Let G be the wedge of two triangles, as shown below.

One can check that

L(G) =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 4 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2

⎞
⎟⎟⎟⎟⎟⎠

.

Deleting the third row and third column of L(G), gives block matrix consisting of
two copies of the 2 × 2 matrix

( 2 −1
−1 2

)
. It is straightforward to see that each of

these blocks is the reduced Laplacian of a single triangle graph, and therefore the
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reduced Laplacian of the original graph can be reduced through row and column
operations to

⎛
⎜⎜⎝

1 0 0 0
0 3 0 0
0 0 1 0
0 0 0 3

⎞
⎟⎟⎠ .

By Corollary 2, the critical group of G is Z/3Z ⊕ Z/3Z.

This example generalizes, as shown in the following theorem:

Theorem 7 Let G1 and G2 be two finite graphs and let G be the wedge of G1 and
G2. Then K(G) ∼= K(G1) ⊕ K(G2).

Exercise 9 Give a proof of Theorem 7 in the spirit of the previous example. In
particular, if G is the wedge of G1 and G2, determine the relationship between
L(G), L(G1), and L(G2) and use this to compute the cokernel of L(G) in terms of
cok(L(G1)) and cok(L(G2)).

The following result follows immediately from Corollary 3, but we will give an
additional proof illustrating the ideas of this section.

Corollary 5 Let G be any tree. Then the critical group K(G) is trivial.

Proof If H is the graph consisting of two vertices and a single edge, then L(H) =( 1 −1
−1 1

)
. In particular it is clear that K(H) is trivial. Any tree can be constructed as

the successive wedges of graphs isomorphic to H and therefore the critical group of
a tree is itself trivial.

Adding/Subtracting an Edge The fundamental theorem of finite abelian groups
tells us that any finite abelian group H can be written uniquely as a direct sum

H ∼= Z/n1Z ⊕ Z/n2Z ⊕ · · · ⊕ Z/nrZ,

where ni | ni+1 for all i and nr > 1. The ni are the invariant factors of H , and the
integer r is the rank of H , the minimum size of a generating set of H . Let G be a
finite connected graph and G′ be a graph on the same set of vertices where we have
added one additional edge. Lorenzini shows that the rank of K(G) and the rank of
K(G′) differ by at most 1 [54, Lemma 5.3].

Lorenzini uses this result to give an upper bound for the rank of the critical group
of a connected graph G. Since K(G) is isomorphic to the cokernel of an (n − 1) ×
(n − 1) matrix, it is clear that the rank of K(G) is at most n − 1. This bound is in
general not good, and in fact we will see evidence in Sect. 1.9 that most graphs have
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cyclic critical groups. Recall that the genus of a graph is the number of independent
cycles that the graph contains; in particular, it can be computed as g(G) = |E(G)|−
|V (G)| + 1.

Theorem 8 ([54, Proposition 5.2]) Let G be a connected graph and let h(G)

denote the rank of K(G). Then h(G) ≤ g(G).

One can see that this bound is sharp by considering the graph formed as the
wedge of k copies of the triangle C3. This graph has genus k and critical group
(Z/3Z)k . In general, finding a minimal set of generators is an open problem. We
will return to this question in Sect. 1.8.

Subdividing an Edge Let G be a graph with v1, v2 ∈ V (G) and v1v2 ∈ E(G).
Let G′ be the graph whose vertex set is the same as G except with the edge v1v2
replaced with a path of k edges. We see that V (G′) consists of V (G) together with
k − 1 new vertices along this path.

Subdividing a single edge of a graph can have all kinds of different effects on
the critical group; If you subdivide an edge on a path, then it does not change the
critical group, as it will still be trivial, but if you subdivide an edge on the cycle
Cn, replacing it with a path of length 2, it changes the critical group from Z/nZ to
Z/(n + 1)Z. Subdividing an edge can change not only the order of K(G), but can
also change whether or not this group is cyclic, as illustrated in Fig. 6.

The following result from [21] shows that after a suitable choice of subdivisions
one can always make the critical group cyclic.

Theorem 9 Let G be a graph of genus g ≥ 1. Then there is a choice of at most
g − 1 subdivisions after which the critical group becomes cyclic.

Exercise 10 Show that Theorem 9 is true in the case where G is the wedge of
two cycle graphs Cm and Cn. In particular, this graph has genus two so you should
show that either K(G) is already cyclic or K(G) can be made cyclic after a single
subdivision. Can you generalize this argument to the wedge of three or more cycles?

Fig. 6 Pictured above is (a) a graph with critical group Z/4Z ⊕ Z/4Z, (b) a graph with critical
group Z/4Z ⊕ Z/5Z ∼= Z/20Z obtained by subdividing the previous graph, and (c) a graph with
the noncyclic critical group Z/4Z ⊕ Z/6Z obtained by another subdivision
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In a different vein, one can explicitly describe what happens after simultaneously
subdividing all edges. We begin with an example:

Example 9 Let G be the graph consisting of the wedge of the cycles C3 and C4.
We have already seen that the critical group of G is K(G) ∼= Z/3Z ⊕ Z/4Z. Note
that if we subdivide each edge of G into k edges then the new graph Gk will be
the wedge of the cycles C3k and C4k and therefore has critical group K(Gk) ∼=
Z/3kZ ⊕ Z/4kZ.

It turns out that the previous example generalizes in a natural way. Recall that
Theorem 8 tells us that if g is the genus of a graph G, then the critical group of G

can be written as Z/m1Z⊕ . . .⊕Z/mgZ, where it may be the case that some of the
mi = 1. We can use this decomposition to get the following result:

Theorem 10 ([56, Proposition 2]) Let Gsub(k) be the graph obtained by subdivid-
ing each edge of G into k edges. Then, writing

K(G) ∼= Z/m1Z ⊕ . . . ⊕ Z/mgZ

as above we see that

K(Gsub(k)) ∼= Z/km1Z ⊕ . . . ⊕ Z/kmgZ.

Exercise 11 Let G be the graph from Example 1 and let Gsub(2) be the graph
obtained by subdividing each edge of G into two edges. Compute the critical group
of Gsub(2) both by using Theorem 10 and by using results about the Laplacian matrix
of Gsub(2).

The Cone Over a Graph The join of two graphs G and H consists of disjoint
copies of G and H together with edges uv for all pairs u ∈ V (G) and v ∈ V (H).
The nth cone over G, denoted Gn, is the join of G and the complete graph Kn.
Several authors have studied how the critical group of Gn is related to the critical
group of G [1,19]. The following result of Goel and Perkinson builds on these earlier
efforts.

Theorem 11 ([41, Theorem 1]) Let G be a connected graph on k vertices, n ≥ 2
be a positive integer, and Gn be the nth cone over G. Let 1 denote the k × k matrix
whose entries are all 1.

1. We have

K(Gn) ∼= (Z/(n + k)Z)n−2 ⊕ cok (nIk + L(G) + 1) .

2. The group cok (nIk + L(G) + 1) has a subgroup isomorphic to Z/(n + k)Z.
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3. We have

|K(Gn)| = |pL(G)(−n)|
n

(n + k)n−1,

where pL(G) is the characteristic polynomial of L(G).

The last of these statements is Corollary B in [19].

Example 10 Let G be the path graph on two vertices. One can see that L(G) =( 1 −1
−1 1

)
, so that pL(G)(t) = t2 − 2t . The third statement of this theorem therefore

implies that |K(Gn)| = (n+2)n for all choices of n. This does not tell us the specific
group structure, although in this case we can see from the first statement that

K(Gn) ∼= (Z/(n + 2)Z)n−2 ⊕ cok
(

n+2 0
0 n+2

) ∼= (Z/(n + 2)Z)n .

When the graph is more complicated, Theorem 11 is more useful in determining
the order of the critical group of the cone of a graph than in determining its group
structure, something which [19, Question 1.2] asks about in a slightly different form.
Goel and Perkinson show that this involves understanding when Z/(n + k)Z is a
direct summand of cok(nIk + L(G) + 1). This question is analyzed for the path on
4 vertices in [41, Example 5].

Research Project 2 How much more can one say about the structure of
K(Gn) for a general graph G and positive integer n, where Gn is the nth

cone over G?

Functions Between Graphs There are various results that look at the functorial
properties of the critical groups of graphs. One particularly nice example is given
by Harmonic morphisms between graphs, which Baker and Norine use to prove a
graph-theoretic analogue of the Riemann–Hurwitz formula from algebraic geometry
[8]. These morphisms induce different kinds of functorial maps between divisors on
graphs and between their critical groups. Reiner and Tseng examine the situation
where one has a map between two graphs φ : G → H that satisfies certain technical
conditions and show that this induces a surjection of the critical groups K(G) �
K(H) whose kernel can be understood [64]. Other papers look at graphs that admit
automorphisms and what one can say about either |K(G)| or the structure of K(G)

in relation to its quotients. For examples related to reflective symmetry see [23] and
for dihedral group actions see [40].
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1.7 Which Finite Abelian Groups Occur as the Critical Group of a
Graph?

Up to this point, we have primarily been concerned with the situation where we are
given a graph G and try to determine K(G). One could also ask how to construct
graphs that have a given critical group. Combining Theorems 4 and 7 implies that
we can construct a graph with critical group

Z/m1Z ⊕ . . . ⊕ Z/mdZ

by taking the wedge of cycles Cm1, Cm2 , . . . , Cmd
.

Research Project 3 Let H be a finite abelian group. We know that there is
some graph G with K(G) ∼= H . This G is clearly far from unique. What is
the graph G with the smallest number of vertices and given critical group?

This is related to a problem of Rosa, which asks for the smallest number of vertices
of a graph with a given number of spanning trees. Even this simpler sounding
problem is not well understood. See [65] for partial results.

There is a technical detail related to our discussion so far. If any of the mi are
equal to 2, this construction taking a wedge of cycles Cmi

does not result in a simple
graph. In fact, it is not difficult to show that there is no simple graph G with K(G) ∼=
Z/2Z. Suppose G were such a graph and let T be one of its spanning trees. There
must be some e ∈ E(G) so that T ∪{e} contains a cycle. Since G is a simple graph,
this cycle has at least three edges. Removing any edge in this cycle gives a spanning
tree of G. Therefore, G has at least three spanning trees, so |K(G)| ≥ 3. In [38],
the authors significantly strengthen these ideas, and prove that there are no simple
connected graphs with any of the following critical groups:

Z/2Z ⊕ Z/4Z, (Z/2Z)2 ⊕ Z/4Z,Z/2Z ⊕ (Z/4Z)2, or (Z/2Z)k for any k ≥ 1.

Moreover, they show the following:

Theorem 12 Let H be any finite abelian group. There exists some positive integer
kH so that there are no connected simple graphs with critical group H ⊕ (Z/2Z)k

for any k ≥ kH .

Research Project 4 Let H ∼= Z/8Z. For what values of k is there a
connected simple graph with critical group Z/8Z ⊕ (Z/2Z)k?

(continued)
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More generally, for other finite abelian groups H , what can we say about
the value of kH ? One approach to constructing such graphs might be to find
graphs of a given genus and critical group and then subdividing each edge
into two edges and using Theorem 10.

So far in this section we have asked only about the existence of a simple graph
with a given critical group. We can ask stronger questions about the existence of
graphs with additional properties and given critical group. For example, a graph G

has connectivity at least κ if G remains connected even if one deletes any set of
κ − 1 vertices and all edges incident to a vertex in this set. In particular, a graph is
said to be biconnected if it remains connected after deleting any single vertex and
all edges incident to it. The authors of [38] show that if a graph is biconnected and
has maximum vertex degree δ, then the critical group must contain some element
whose order is at least δ. This result is one of the ingredients in proving that there
are no simple graphs with critical group (Z/2Z)k . These observations lead them to
make the following conjecture.

Research Project 5 Is it true that for any positive integer n, there exists kn

such that if k > kn, there is no biconnected graph G with critical group
(Z/nZ)k?

1.8 Generators of Critical Groups

In Sect. 1.9, we will study properties of critical groups of random graphs and see
that we often expect these critical groups to be cyclic. The simplest possible nonzero
divisor on G is of the form δxy where x, y ∈ V (G), δxy(x) = 1, δxy(y) = −1 and
δxy(v) = 0 at all other vertices.

Question 2 Let G be a connected finite graph with K(G) cyclic. When does K(G)

have a generator of the form δxy?

In [10], the authors give a number of examples of graphs with cyclic critical groups
and generators of this form, and also give examples of graphs with K(G) cyclic that
do not have a generator of this form. They propose a general criterion for when a
graph G has such a generator. This conjecture was proven in [17].

Theorem 13 Let x and y be vertices on a finite connected graph G and let G′ be
the graph obtained by adding xy if xy 	∈ E(G) and deleting xy if xy ∈ E(G). Let
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δxy be defined as above and let S ⊆ K(G) be the subgroup of the critical group of
G generated by δxy . Then we have the following relationships:

• [K(G) : S] divides gcd(|K(G)|, |K(G′)|)
• gcd(|K(G)|, |K(G′)|) divides [K(G) : S]2.

In particular, δxy is a generator of K(G) if and only if gcd(|K(G)|, |K(G′)|) = 1.

Research Project 6 Theorem 13 gives a way of testing whether a given pair
of vertices x, y gives a divisor δxy that generates K(G). Is there a simple
way to test whether there exists a pair of vertices x, y such that δxy generates
K(G)?

For example, the wedge of a triangle, square, and pentagon has critical
group Z/60Z, but there is no pair of vertices x, y such that δxy generates
K(G).

Research Project 7 What happens when the critical group of G is not
cyclic? For example, is there a way of testing whether two divisors δx1y1 and
δx2y2 generate K(G)?

1.9 Critical Groups of RandomGraphs

In Sect. 1.7, we saw that every finite abelian group occurs as the critical group of
a graph if we allow multiple edges between vertices, and that every finite abelian
group of odd order occurs as the critical group of a simple graph. Instead of asking
whether a group occurs as K(G) for at least one graph G, we could ask about which
kinds of groups occur often as the critical group of a graph. Throughout this section
we restrict our attention to simple graphs.

Question 3 What can we say about critical groups in families of “random graphs”?

Here is one way to make this question precise. There are
(
n
2

)
possible edges

between vertices v1, . . . vn, so there are 2(n
2) labeled simple graphs on this vertex

set. As a warmup, we can ask the following.

Question 4 How many of these 2(n
2) graphs are connected and have trivial critical

group?
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Corollary 3 implies that a connected graph has trivial critical group if and only if
it is a tree. It follows from Example 4 that the number of labeled trees of n vertices
is nn−2. So the proportion of graphs on n vertices that are connected and have trivial
critical group is nn−2/2(n

2), which goes to zero as n goes to infinity. This tells us that
the size of K(G) is not often equal to 1, but does not tell us how large we should
expect it to be.

In order to determine the average size of the critical group of a graph on n

vertices, we introduce some ideas from probabilistic combinatorics. There are nn−2

trees on n vertices, and each tree has exactly n−1 edges. Fix a choice of a spanning
tree T on n vertices. The number of graphs on n vertices containing T as a
subgraph will be 2(n

2)−(n−1) since, for each edge not in T , we can choose whether
it is present in our graph. This implies that the probability that T is contained in
a random graph is 1/2n−1. It then follows from linearity of expectation that the
expected number of spanning trees of a graph on n vertices is nn−2/2n−1. It is easy
to check this formula in small cases.

Example 11 There are 8 graphs with vertex set {v1, v2, v3}, and 4 of these are
connected: the complete graph K3, which has 3 spanning trees, and 33−2 = 3 trees,
which have 1 spanning tree each. We conclude that the average number of spanning
trees of a graph on 3 vertices is 3/4.

A graph G on n vertices is not connected if and only if it does not contain any of
the nn−2 spanning trees of the complete graph with vertex set V (G).

Exercise 12 Show that as n goes to infinity, the proportion of graphs on n vertices
that are connected goes to 1.

Here is one approach: A graph G with n vertices is connected if every one of
the

(
n
2

)
pairs of vertices vi, vj ∈ V (G) share a common neighbor. What is the

probability that vk is a common neighbor of both vi and vj ? What is the probability
that vi and vj do not share a common neighbor?

For the rest of this section, when we ask about the proportion of graphs G on
n vertices for which K(G) satisfies some property, what we really mean is the
proportion of graphs G that are connected and such that K(G) has this property.
By Exercise 12, as n goes to infinity the proportion of connected graphs goes to 1,
so we do not need to keep writing this extra assumption.

Since nn−2/2n−1 goes to infinity with n, we see that the average size of K(G)

gets large as |V (G)| gets large. In fact, something stronger is true:

Proposition 4 LetX be a positive integer. The proportion of graphs G on n vertices
for which |K(G)| ≤ X goes to 0 as n goes to infinity.

Note that if G has at most X spanning trees, then we can make G disconnected by
removing at most X edges, so X has edge connectivity at most X. We leave the proof
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of this proposition as an exercise, but refer the interested reader to [37, Chapter 4]
for results on connectivity of random graphs.

A consequence of Proposition 4 is that for any particular finite abelian group
H , the probability that K(G) ∼= H goes to 0 as |V (G)| goes to infinity. Instead
of asking for K(G) to be isomorphic to a particular group, we can ask for the
probability that this group has some chosen property.

Question 5 What proportion of the 2(n
2) graphs on n vertices have K(G) cyclic?

This question has been the subject of much recent research including work of
Wagner [70], Lorenzini [57], and Wood [72]. One nice thing about this type of
question is that it is not so difficult to do large experiments using a computer algebra
system, for example Sage, and to get a sense for what to expect. Building on work
of [25], the authors of [24] make the following conjecture.

Conjecture 1 We have

lim
n→∞

#{Connected graphs G with |V (G)| = n and K(G) cyclic}
2(n

2)

= ζ(3)−1ζ(5)−1ζ(7)−1ζ(9)−1ζ(11)−1 · · · ≈ .7935212.

In this conjecture, ζ(s) = ∑∞
n=1 n−s denotes the Riemann zeta function. Wood

has proven that this conjectured value is an upper bound for the probability that the
critical group of a random graph is cyclic [72, Corollary 9.5]. Showing that equality
holds appears to be quite difficult.

It is also interesting to ask questions about other properties of the order of the
critical group, such as the following:

Question 6 What proportion of the 2(n
2) graphs on n vertices have |K(G)| odd?

That is, we would like to understand the following limit:

lim
n→∞

#{Connected graphs G with |V (G)| = n and |K(G)| odd}
2(n

2)
. (1)

One of the main ideas that goes into the study of these questions is that a finite
abelian group H decomposes as a direct sum of its Sylow p-subgroups. Recall
that the Sylow p-subgroup of a finite abelian group H is the subgroup of all of its
elements of p-power order. We denote this subgroup by Hp. We can interpret many
questions about K(G) in terms of the Sylow p-subgroups K(G)p. For example, a
connected graph G has a cyclic critical group if and only if K(G)p is cyclic for
each prime p. Similarly, G has an odd number of spanning trees if and only if
K(G)2 is trivial. This suggests that a good starting place is to try to understand how
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the Sylow p-subgroups of critical groups of random graphs behave. The following
result of Wood answers this question.

Theorem 14 ([72, Theorem 1.1]) Let p be a prime andH a finite abelian p-group.
Then

lim
n→∞

#{Connected graphs G with |V (G)| = n and K(G)p ∼= H }
2(n

2)

= #{symmetric, bilinear, perfect pairings φ : H × H → C
∗}

|H ||Aut(H)|
∏
k≥0

(1 − p−2k−1).

We will discuss pairings on finite abelian p-groups and this theorem in more
detail in Sect. 1.10. In the meantime, taking p = 2 and H equal to the trivial group,
we see that the probability that a random graph has an odd number of spanning trees
is

∏∞
k≥0(1 − 2−2i−1) ≈ 0.4194, answering Question 6.

Critical Groups of Random Graphs and Cokernels of Random Integer Matri-
ces Questions about critical groups of random graphs are closely connected to
questions about random symmetric integer matrices. When R is equal to either Z
or Z/pZ, we let Symn(R) denote the set of n × n symmetric matrices with entries
in R. To see the connection between random graphs and matrices, we note that half
of the 2(n

2) graphs G with V (G) = {v1, . . . , vn} have vivj ∈ E(G). So choosing

one of these 2(n
2) graphs uniformly at random is the same as flipping a coin for each

of the
(
n
2

)
potential edges of the graph to decide whether to include it. This implies

that choosing a random graph on n vertices and computing its critical group is the
same as the following process:

1. Choose a random matrix A ∈ Symn(Z) with all diagonal entries equal to 0 by
taking each pair 1 ≤ i < j ≤ n and setting ai,j = 0 with probability 1/2 and
ai,j = 1 with probability 1/2.

2. Compute the diagonal matrix D with (i, i)-entry equal to the negative of the sum
of the entries in the ith row of A. Let L0 be the (n − 1) × (n − 1) matrix that we
get by deleting the last row and column of D − A.

3. Take the cokernel of L0.

Many questions about properties of random graphs can be phrased as questions
about this family of random integer matrices. For example, we have seen that a graph
G is connected if and only if L0(G) has rank n−1, so the proportion of graphs with
n vertices that are connected is the same as the probability that a random matrix L0
chosen by the procedure above has rank n − 1.

We will use the fact that K(G)p only depends on the entries of L0(G) modulo
powers of p.
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Exercise 13 Let G be a connected graph.

(a) Prove that K(G)p is trivial if and only if p � det(L0(G)).
(b) Conclude that K(G)p is trivial if and only if we reduce the entries of L0(G)

modulo p and get a matrix with entries in Z/pZ of rank n − 1.

How often should we expect K(G)p to be trivial? Exercise 13 suggests that a good
first step is to compute the proportion of all matrices in Symn−1(Z/pZ) that have
rank n − 1.

Theorem 15 ([58, Theorem 2]) The number of invertible matrices in
Symn−1 (Z/pZ) is

p(n
2)

� n−1
2 �∏

j=1

(1 − p1−2j ).

We leave the proof as a nice exercise in linear algebra over finite fields.
As we take n to infinity, Theorem 15 implies that the proportion of invertible

matrices in Symn−1(Z/pZ) approaches
∏∞

k≥0(1 − p−2i−1). This is the same
probability that we get by taking the trivial group in Theorem 14, the probability that
the number of spanning trees of a large random graph is not divisible by p. Wood’s
theorem demonstrates a deep type of universality for cokernels of random matrices.
Even though the reduced Laplacian of a random graph does not give a uniformly
random element of Symn−1(Z/pZ), as n goes to infinity the probability that the
reduced Laplacian modulo p is an invertible matrix is the same as the proportion of
matrices in Symn−1(Z/pZ) that are invertible.

In order to understand the Sylow p-subgroup of cok(L0(G))p, we must consider
not only the entries of L0(G) modulo p, but also modulo higher powers of p. There
is a nice algebraic setting for these questions. Instead of thinking about L0(G) as
a matrix with integer entries, we think of it as a matrix with entries in the p-adic
integers, which we denote by Zp. A p-adic integer consists of an element of Z/pk

Z

for each k that is compatible with the canonical surjections Z/pk
Z � Z/pk−1

Z.
For any prime p, Z ⊂ Zp since the integer n corresponds to choosing the residue
class n (mod pk) for each k. There is a nice description of how to choose a random
matrix with p-adic entries that comes from the existence of Haar measure for Zp.
We do not give details here. For an accessible introduction to p-adic numbers, we
recommend Gouvea’s book [42].

Clancy, Leake, and Payne performed large computational experiments about
critical groups of random graphs and made conjectures based on their data [25].
Motivated by these conjectures, these authors together with Kaplan and Wood
determine the distribution of cokernels of random elements of Symn(Zp) as n

goes to infinity [24]. Theorem 14 is a consequence of a much stronger result of
Wood about cokernels of families of random p-adic matrices [72]. Wood proves
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that for a large class of distributions on the entries of such a matrix the distribution
of the cokernels does not change. This class is large enough to include reduced
Laplacians of random graphs, so even though these matrices are very far from being
uniformly random modulo powers of p, the distribution of their cokernels matches
the distribution in the uniformly random setting.

Choosing a Random Graph So far in this section we have chosen a random graph
by choosing one of the 2(n

2) graphs on n vertices uniformly at random. It is common
in the study of random graphs to allow the probability of choosing a particular
graph to be weighted by its number of edges. Let 0 < q < 1. An Erdős–Rényi
random graph on n vertices, G(n, q), is a graph on n vertices v1, . . . , vn where
we independently include the edge vivj with probability q. That is, G(n, q) is a
probability space on graphs with n vertices in which a graph with m edges is chosen
with probability

qm(1 − q)(
n
2)−m.

We see that our earlier model of choosing a random graph corresponds to G(n, 1/2),
in which each graph is chosen with equal probability.

The conjectures in [24, 25] and the results of [72] apply in this more general
Erdős–Rényi random graph setting. That is, if we choose an Erdős–Rényi random
graph G on n vertices with edge probability equal to some fixed constant q (for
example, 1/2, or 2/3, or 10−100), as n goes to infinity the probability that K(G)p is
isomorphic to a particular finite abelian p-group H is given by the right-hand side
of Theorem 14, no matter what value of q we choose. Again, this is a consequence
of Wood’s universality results for cokernels of random matrices [72].

An active area of current research involves allowing the edge probability q to
change with n. Linearity of expectation implies that the expected number of edges
of a random graph G(n, q) is

(
n
2

)
q. Therefore, if we allow q to go to 0 as n goes to

infinity, but not too fast, this random graph will still have an increasing number of
edges.

Exercise 14 Show that the probability that an Erdős–Rényi random graph
G(n, n−1/2) is connected goes to 1 as n goes to infinity, even though n−1/2 goes
to 0.

This exercise is more challenging than Exercise 12. We again refer the interested
reader to [37, Chapter 4].

It is likely that a version of Theorem 14 holds when q is allowed to go to 0 or
1 as n goes to infinity, as long as it does not approach 0 or 1 too fast. Determining
the threshold where the behavior of the critical group changes is an interesting, and
likely very challenging, open problem. For work in this direction see the recent
paper of Nguyen and Wood [63].
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Question 7 What can we say about Sylow p-subgroups of critical groups in other
families of random graphs?

We give two concrete examples to show what Question 7 is all about. A graph
G is bipartite if we can divide its vertex set V (G) into disjoint sets V1 and V2 so
that every edge in G connects a vertex in V1 to a vertex in V2. We can choose a
random bipartite graph with vertex set V (G) = V1 ∪ V2 as follows. Fix 0 < q < 1.
Independently include each of the |V1||V2| possible edges between a vertex in V1
and a vertex in V2 with probability q.

Research Project 8 Consider a random bipartite graph with edge probability
q and |V1| = |V2| = n. As n goes to infinity, how are the Sylow p-subgroups
of the critical groups of these graphs distributed?

Koplewitz shows that if the sizes of the vertex sets V1 and V2, are too
“unbalanced,” that is |V1|/|V2| < 1/p, then the resulting distribution of Sylow p-
subgroups of the critical groups of these random bipartite graphs does not match the
distribution given in Theorem 14 [51].

To give a second example, a graph G is d-regular if every v ∈ V (G) has degree
d. Fix a positive integer d ≥ 3. Choose a d-regular graph on n vertices uniformly at
random. Mészáros has recently shown that as n goes to infinity, the distribution of
Sylow p-subgroups of critical groups of random d-regular graphs is the same as the
one given by Theorem 14, except when p = 2 and d is even, in which case we get
a different distribution [61].

These are just two examples of a large family of problems to investigate.

Research Project 9 Choose your favorite graph property P . Is it true that
the distribution of Sylow p-subgroups of large random graphs with property
P matches the distribution of Sylow p-subgroups of all random graphs? For
example, what is the distribution of Sylow p-subgroups of large random
planar graphs? What about random triangle-free graphs?

1.10 TheMonodromy Pairing on Divisors

The expression on the right side of Theorem 14 contains a term that involves the
number of symmetric, bilinear, perfect pairings on a finite abelian group H . This
is because the critical group of a graph comes with extra algebraic structure. More
precisely, our goal is to explain a result of Bosch and Lorenzini [16] that the critical
group of a connected graph comes equipped with a symmetric, bilinear, perfect
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pairing. In order to explain this result, we introduce some additional material about
divisors on graphs closely following Shokrieh’s presentation in [66].

We first show that the group of degree zero divisors on G comes with a pairing,
that is, a function 〈·, ·〉 : Div0(G) × Div0(G) → Q, and then, that this pairing
descends to a pairing defined on K(G). Much of the following terminology for
divisors on graphs is motivated by the analogy with divisors on algebraic curves
that we first mentioned in Remark 1.

Recall that a divisor on a graph G is a function δ : V (G) → Z. Let M (G) denote
the abelian group consisting of integer-valued functions defined on V (G), that is,
M (G) = Hom(V (G),Z). Let f ∈ M (G). For v ∈ V (G), we define

ordv(f ) =
∑

w∈V (G)
vw∈E(G)

(f (v) − f (w)) .

The divisor of the function f , denoted div(f ), is defined by setting (div(f ))(v) =
ordv(f ) for any v ∈ V (G). Every div(f ) has degree 0, but not every degree 0
divisor is the divisor of a function f . We say that a divisor is principal if it is equal
to div(f ) for some f ∈ M (G) and denote the group of principal divisors on G by
Prin(G).

Example 12 Consider the graph consisting of a cycle on three vertices {u, v,w}. For
any function f ∈ M (G) we see that ordu(f ) = 2f (u) − f (v) − f (w), ordv(f ) =
2f (v) − f (u) − f (w), and ordw(f ) = 2f (w) − f (v) − f (u). It is clear that these
three numbers sum to zero for any choice of f . On the other hand, if we set δ to be
the divisor of degree zero with δ(u) = 0, δ(v) = 1, δ(w) = −1 then in order for δ

to be principal, there would have to be an integer-valued function so that

2f (u) − f (v) − f (w) = 0

2f (v) − f (u) − f (w) = 1

2f (w) − f (v) − f (u) = −1.

It is a simple exercise in linear algebra to see that this cannot happen.

Exercise 15 For the cycle from the previous example, describe which divisors of
degree zero are principal and which are not.

Exercise 16 More generally, let G be any connected graph. If we identify Div(G)

with column vectors of length |V (G)| that have integer entries, we have seen
that a divisor D is chip-firing equivalent to the all zero divisor if and only if it
is in the image of L(G). Show that D is chip-firing equivalent to the all zero
divisor if and only if it is principal. Use this characterization to see that K(G) ∼=
Div0(G)/Prin(G).
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We now describe the monodromy pairing on divisors on the critical group of
a connected graph G, which is a graph-theoretic analogue of a notion called the
Weil pairing on the Jacobian of an algebraic curve. Let D1,D2 ∈ Div0(G) and let
m1,m2 be integers such that m1D1 and m2D2 are principal. (Such integers must
exist because K(G) is finite.) In particular, there will be functions f1, f2 ∈ M (G)

such that m1D1 = div(f1) and m2D2 = div(f2).

Exercise 17 Show that

1

m2

∑
v∈V (G)

D1(v)f2(v) = 1

m1

∑
v∈V (G)

D2(v)f1(v).

We define a pairing 〈·, ·〉 : Div0(G) × Div0(G) → Q by

〈D1,D2〉 = 1

m2

∑
v∈V (G)

D1(v)f2(v).

By the previous exercise, 〈D1,D2〉 = 〈D2,D1〉 for all D1,D2 ∈ Div(G), that is,
this pairing is symmetric. It is also not difficult to check that it is bilinear, meaning
that 〈aD1 + bD2,D3〉 = a〈D1,D3〉 + b〈D2,D3〉 for all divisors D1,D2,D3 and
all rational numbers a, b.

A symmetric bilinear pairing on a finite abelian group H is non-degenerate if the
group homomorphism defined by h → 〈h, ·〉 is injective. If it is an isomorphism,
the pairing is called perfect. We write D for an element of K(G) if D is the divisor
class of D in K(G). The following theorem of Bosch and Lorenzini states that the
pairing on Div0(G) descends to a well-defined perfect pairing on K(G) [16]. For
consistency with our notation in this section, we give the statement of this result
from [66, Theorem 3.4].

Theorem 16 The pairing 〈·, ·〉 : K(G) × K(G) → Q/Z defined by

〈D1,D2〉 = 1

m2

∑
v∈V (G)

D1(v)f2(v) (mod Z),

where m2D2 = div(f2) is a well-defined, perfect pairing on K(G).

This pairing is called the monodromy pairing. Shokrieh gives a concrete proof of
Theorem 16 in [66, Appendix A].

The same underlying finite abelian group may have different perfect pairings
defined on it. Let G be a finite abelian group and 〈·, ·〉1 and 〈·, ·〉2 be two pairings
defined on G. We say that these pairings are isomorphic if there exists ϕ ∈ Aut(G)

such that for all x, y ∈ G, 〈x, y〉1 = 〈ϕ(x), ϕ(y)〉2. The following exercise contains
some of the basics of the classification of pairings on finite abelian groups. For much
more on this topic see [62, 71].
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Exercise 18 Let p be an odd prime and r be a positive integer.

(a) Show that every non-degenerate pairing 〈·, ·〉 : Z/pr
Z × Z/pr

Z → Q/Z is of
the form

〈x, y〉a = axy

pr

for some integer a not divisible by p.
(b) Show that 〈x, y〉a is isomorphic to 〈x, y〉b if and only if the Legendre symbols(

a
p

)
and

(
b
p

)
are equal.

(c) Show that every finite abelian p-group with a perfect pairing decomposes as an
orthogonal direct sum of cyclic groups with pairings.

Like many things in algebra, the prime p = 2 behaves in a special way. The
classification of perfect pairings on finite abelian 2-groups is significantly more
complicated than in the case where p is odd. See [38, Section 2.4] for a discussion of
these issues. For any finite abelian group H , this material can be used to compute the
term #{symmetric, bilinear, perfect pairings φ : H × H → C

∗} from Theorem 14;
see equation (2) of [72, p. 916].

We can now revisit the material from each of the previous two sections and ask
not only about finite abelian groups that occur as the critical group of a graph, but
also about finite abelian groups with a chosen perfect pairing. In [38], the authors
use a construction based on subdivided banana graphs to show that odd order groups
with pairings occur as critical groups.

Theorem 17 ([38, Theorem 2]) Assume the generalized Riemann hypothesis. Let
Γ be a finite abelian group of odd order with a perfect pairing on Γ . Then there
exists a graph G such that K(G) ∼= Γ as groups with pairing.

It may seem surprising that the generalized Riemann hypothesis (GRH), one of
the major unsolved problems in number theory, would play a role in a problem
about critical groups of graphs. The connection comes via the existence of small
quadratic non-residues that satisfy additional properties. In [38], the authors explain
how a positive answer to the following conjecture would remove this dependence
on GRH.

Conjecture 2 Let p be a prime. There exists a prime q < 2
√

p with q ≡ 3 (mod 4)

such that q is a quadratic non-residue modulo p.

Theorem 14 gives the probability that the Sylow p-subgroup of the critical group
of an Erdős–Rényi random graph G(n, q) is isomorphic to a particular finite abelian
p-group. Clancy, Leake, and Payne give the analogous conjecture for a finite abelian
p-group together with a perfect pairing [25].
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Conjecture 3 Fix 0 < q < 1. Let Γ be a finite abelian p-group and 〈·, ·〉 be a perfect
pairing on Γ . Then, as n goes to infinity, the probability that the Sylow p-subgroup
of the critical group of the Erdős–Rényi random graph G(n, q) is isomorphic to Γ

with its associated monodromy pairing isomorphic to 〈·, ·〉 is

∏∞
i=1(1 − p1−2i )

|Γ | · |Aut(Γ, 〈·, ·〉)| ,

where Aut(Γ, 〈·, ·〉) is the set of automorphisms of Γ that preserve the pairing 〈·, ·〉.

We defined the critical group of a connected graph G as the cokernel of its
reduced Laplacian L0, so we should also be able to understand the pairing on K(G)

in terms of this matrix. In fact, this pairing is an instance of the pairing taking values
in Q/Z defined on the cokernel of any nonsingular symmetric integer matrix A

induced by

〈x, y〉 = yT A−1x.

See [16, Section 1] and [24] for a discussion of the pairing on the cokernel of
a symmetric matrix. In particular, Theorem 2 of [24] shows that Conjecture 3
is consistent with Sylow p-subgroups of critical groups of random graphs being
distributed like Sylow p-subgroups of cokernels of random elements of Symn(Zp)

with their associated pairings. Conjecture 3 is likely to be very difficult since it
implies Theorem 14, the proof of which was a significant achievement that required
the introduction of several new ideas into the study of critical groups.

1.11 Ranks of Divisors and Gonality of Graphs

We next introduce additional material about divisors on graphs that is motivated
by connections to Brill–Noether theory, an important topic in algebraic geometry.
A divisor δ on G is effective if δ(v) ≥ 0 for all v. This property is not invariant
under chip-firing. We have seen examples of divisors that are not effective but are
chip-firing equivalent to divisors that are effective; for another example, see Fig. 7.

A divisor δ has positive rank if for any v ∈ V (G) the divisor δ′ we get by setting
δ′(v) = δ(v) − 1 and δ′(u) = δ(u) for all other vertices u is chip-firing equivalent

Fig. 7 Two divisors on the
graph from Example 1 that
are chip-firing equivalent.
The first is not effective, but
the second is

1

2

2

2

1

0

0

0
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to an effective divisor. The gonality of G, denoted gon(G), is the smallest degree of
an effective divisor with positive rank.

Example 13 Consider the following graph:

u

v

w

If δ is an effective divisor of degree one, then we may assume without loss of
generality that δ(u) = 1 and δ(v) = δ(w) = 0. One can show that the divisor δ′
given by δ′(u) = 1, δ′(v) = −1, δ′(w) = 0 is not equivalent to any effective divisor,
which implies that δ does not have positive rank. We will leave it as an exercise to
show that no effective divisor of degree two has positive rank, either. On the other
hand, the divisor with δ(u) = δ(v) = δ(w) = 1 is a degree 3 divisor of positive
rank, showing that the gonality of this graph is 3.

Several authors have studied ranks of divisors and the gonality of graphs. For
example, de Bruyn and Gijswijt connect the gonality of a graph to the notion of
treewidth, an important concept in graph theory [33]. The authors of [34] study the
gonality of Erdős–Rényi random graphs and prove the following theorem.

Theorem 18 ([34, Theorem 1.1]) Let p(n) = c(n)/n, and suppose that log(n) �
c(n) � n. Then the expected value of the gonality of an Erdős–Rényi random graph
G(n, p(n)) is asymptotic to n.

Related work of Amini and Kool in the setting of divisors of metric graphs leads to
the similar results, but with bounds that are not as tight [2].

Theorem 18 gives the expected value of the gonality of one model of a random
graph, but there are many other questions to consider. Amini and Kool show in [2]
that random d-regular graphs on n vertices have gonality bounded above and below
by constant multiples of n. Connections to tropical geometry led the authors of [34]
to ask about the gonality of random 3-regular graphs. Dutta and Jensen prove a lower
bound for the gonality of a regular graph G in terms of the Cheeger constant of G,
one of the most studied measures of graph expansion [36]. They also give a lower
bound for gonality of a general graph G in terms of its algebraic connectivity, the
second smallest eigenvalue of L(G). As a consequence they prove the following.

Theorem 19 ([36, Theorem 1.3]) Let G be a random 3-regular graph on n

vertices. Then

gon(G) ≥ 0.0072n
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asymptotically almost surely.

Research Project 10 Can we improve the results about the expected gonality
of a random k-regular graph? What can we say about the expected gonality of
other families of random graphs?

There are several additional interesting directions in the Brill–Noether theory of
graphs and metric graphs that have been the subject of successful research projects
with undergraduate coauthors. See, for example, [29, 46, 52, 53].

1.12 Chip-Firing on Directed Graphs

Throughout this section, we have assumed that the graphs we consider are undi-
rected. However, one can define a similar situation on directed graphs by considering
the directed Laplacian matrix L̂ = D − A, where D is a diagonal matrix with
(i, i)-entry equal to the outdegree of vi , and the entries of the adjacency matrix A

correspond to the number of edges from vi to vj . The critical group of this directed
graph is the torsion part of the cokernel of L̂.

Example 14 Let us consider the following version of the graph from our running
example where we consider some of the edges as being unidirectional:

v1

v2

v3

v4

The adjacency matrix, degree matrix, and directed Laplacian of this graph are
given by

A =

⎛
⎜⎜⎝

0 1 1 1
1 0 0 1
0 0 0 1
0 1 0 0

⎞
⎟⎟⎠ , D =

⎛
⎜⎜⎝

3 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ , L̂ =

⎛
⎜⎜⎝

3 −1 −1 −1
−1 2 0 −1
0 0 1 −1
0 −1 0 1

⎞
⎟⎟⎠ .

One can compute from the Smith normal form of L̂ that cok(L̂) ∼= Z, so the
associated critical group is trivial.
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The notion of critical groups of directed graphs was first introduced in [15] and
further developed in an unpublished note by Wagner [70]. However, there are still
many questions to be considered.

Research Project 11 Consider a finite connected undirected graph G. For
each edge of G make a choice of how to orient it. What can we say about the
critical groups that occur as we vary over all possible choices? For starters,
consider the graph from the previous example.

We can ask many of the questions considered in previous sections in this directed
graph setting. For example, for information on critical groups of Erdős–Rényi
random directed graphs see work of Koplewitz [50] and Wood [73].

2 Arithmetical Structures

In this section we consider a generalization of the Laplacian matrix and critical
group of a graph that leads to interesting new enumerative problems. The Laplacian
of G is defined by L(G) = D − A where A is the adjacency matrix of G and D is
the diagonal matrix whose entries consist of the degrees of the vertices of the graph.
One generalization of this idea is to allow the entries on the diagonal of D to be
other positive integers. This leads to the notion of arithmetical structures, the topic
of this section.

2.1 Definitions and Examples

Let G be a finite connected graph with adjacency matrix A. We define an
arithmetical structure on G by a vector d ∈ Z

n
≥0 so that there exists a vector r ∈ Z

n
>0

with (D − A)r = 0, where D is the diagonal matrix with the entries of d along the
diagonal. We will sometimes write D = diag(d).

Exercise 19 In Sect. 1, we saw that for a connected graph G with |V (G)| = n, the
Laplacian matrix L(G) = D − A has rank n − 1. Show that for any arithmetical
structure on G, the matrix diag(d) − A has rank n − 1.

This exercise shows that the null space of diag(d) − A is 1-dimensional, so there
is a unique vector in it up to scalar multiplication. Unless stated otherwise, we will
use r to denote the vector in Null(D − A) whose entries are all relatively prime
positive integers. This choice of r uniquely specifies an arithmetical structure on G.
As such, we often refer to the pair (r,d) as an arithmetical structure, even though
each one is uniquely determined by the other. We denote the matrix diag(d) − A
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by L(G, r). In Sect. 1 we studied one arithmetical structure at length, (1,d), where
d is the vector consisting of the degrees of the vertices of G. This is the Laplacian
arithmetical structure on G. In this case, L(G, 1) = L(G).

The r-vector of an arithmetical structure has another interpretation based on
elementary number theory. In particular, one can think of an arithmetical structure as
a labeling of the vertices of G with relatively prime positive integers so that the label
of any given vertex is a divisor of the (weighted, if necessary) sum of its neighbors.

Example 15 Consider again the situation from Example 1:

G = , A =

⎛
⎜⎜⎝

0 1 1 1
1 0 0 1
1 0 0 1
1 1 1 0

⎞
⎟⎟⎠ .

Let d = (
5 6 3 1

)T
. The null space of the matrix

L(G, r) = D − A =

⎛
⎜⎜⎝

5 −1 −1 −1
−1 6 0 −1
−1 0 3 −1
−1 −1 −1 1

⎞
⎟⎟⎠

is spanned by the vector r = (
3 2 4 9

)T
, so (r,d) is an arithmetical structure on G.

If we label the graph as below, then the label of each vertex is a divisor of the sum
of the labels of its neighbors.

3

2

4

9

Exercise 20 Find more arithmetical structures on the graph from this example. As
a hint, there are a total of 63 structures, and the largest entry of any r that occurs
is 18.

Just as we defined the critical group of a graph G to be the torsion part of the
cokernel of L(G), we can define the critical group associated with any arithmetical
structure (r,d) to be the torsion part of the cokernel of L(G, r). We denote this
critical group by K (G; r). We described how to compute cok(L(G)) by finding
its Smith normal form and can proceed similarly in the more general setting with
the matrix L(G, r). If we do this for the matrix from Example 15, we see that the
associated critical group is trivial. In Sect. 2.3 we will analyze the structure of this
group in more depth.
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The concept of arithmetical structures on graphs was originally developed by
Lorenzini in [54] as a way of trying to understand the Néron models of certain
algebraic curves where components might appear with multiplicity greater than one.
Explaining these applications is beyond the scope of this note, but we refer the
interested reader to [55]. We also refer the reader to [5, Section 4] where Asadi and
Backman show that chip-firing on arithmetical graphs can be interpreted as a special
case of the chip-firing for directed multigraphs that we introduced in Sect. 1.12, but
do not pursue this perspective further here.

2.2 Counting Arithmetical Structures

In [54] Lorenzini proves that any finite connected graph has a finite number of
arithmetical structures. However, the proof is nonconstructive and in general does
not give an upper bound for the number of these arithmetical structures. In recent
years, several authors have become interested in trying to count the number of
arithmetical structures on certain types of graphs.

One general approach to counting arithmetical structures comes from the fol-
lowing observation. We first introduce some notation. Let G be a graph and (r,d)

be an arithmetical structure on G. For v ∈ V (G) we write rv for the value of r
corresponding to v and dv for the value of d corresponding to v.

Theorem 20 Let G be a graph and let (r,d) be an arithmetical structure on G.
Assume that v is a vertex of degree 2 with neighbors u and w so that rv > ru and
rv > rw. Then rv = ru + rw.

Moreover, if one defines the graphG′ to be the graph whose vertex set is V (G′) =
V (G) \ {v}, and whose edge set is E(G′) = E(G) ∪ {uw} \ {uv, vw}, then one gets
a new arithmetical structure on G′ by defining r′ to have the same values as r on all
remaining vertices.

Exercise 21 Verify that this theorem holds for the structures that you found in
Exercise 20.

Proof The proof of the first claim follows from the fact that if we have such an
arithmetical structure we know that rv | (ru + rw). If we know that rv > ru and
rv > rw, then ru + rw < 2rv , which implies that ru + rw = rv .

The proof of the second claim is straightforward and can be best understood by
considering a picture such as the one in Fig. 8, and making the observation that if
ru | (

(ru + rw) + ∑
ri

)
, then ru | (rw + ∑

ri ).

We refer to the operation of removing a vertex of degree 2 corresponding to
a local maximum of r, such as the one described in the previous theorem, as
smoothing at vertex v. One can also define a smoothing operation at a vertex of
degree 1; in particular, if v is a vertex of degree 1 that is adjacent to the vertex u

and if rv = ru, then one gets a new arithmetical structure on a smaller graph by
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ru rv rw ru rw⇒

Fig. 8 Pictures showing the “smoothing” operation at a vertex of degree two

Fig. 9 Pictures showing the
“smoothing” operation at a
vertex of degree 1

ru rv ru⇒

removing the vertex v, as illustrated in Fig. 9. An arithmetical structure (r,d) on G

is smooth if there are no vertices of G at which we can apply a smoothing operation.
These smoothing operations are reversible, and in particular the number of ways

that one can take an arithmetical structure and subdivide it can be described in terms
of certain ballot numbers. (For details, see [18] and [4]). The approach taken in those
papers is to count the number of smooth structures on smaller graphs and then count
the number of ways they can be subdivided into general arithmetical structures on
G. In particular, one can show theorems of the following type:

Theorem 21 We can count the number of smooth structures on certain graphs in
the following way:

1. The only smooth structure on a path is given by the Laplacian arithmetical
structure on a single vertex. The total number of structures on a path of length n

is given by the (n − 1)st Catalan number, Cn−1 = 1
n

(2(n−1)
n−1

)
.

2. The only smooth structure on a cycle of length n is given by the Laplacian
arithmetical structure. The total number of structures on a cycle on n vertices
is given by the binomial coefficient

(2n−1
n−1

)
.

3. Let n ≥ 4 and P ′
n be the path graph on n vertices where the first edge is doubled.

The number of smooth structures on P ′
n is 4, and the total number of structures

is 4Cn−1 − 2Cn−2.

In general it appears to be quite difficult to count precisely the number of smooth
arithmetical structures on a graph. For example, even for a bident graph, a path plus
one additional vertex connected only to the second vertex on the path, it is only
known that the number of smooth arithmetical structures is bounded between two
cubic polynomials in the number of vertices [4].

Research Project 12 Consider the graph C̃4 obtained by taking the cycle C4
and adding a second edge between two consecutive vertices.

1. How many smooth arithmetical structures are there on C̃4?

(continued)
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2. How many total arithmetical structures are there on C̃4?
3. What if we instead consider bigger cycles or add more edges?

In the definition of smoothing at a vertex v of degree 2 or 1, we have dv = 1. One
might wonder whether this idea could be generalized to vertices v of larger degree
at which dv = 1. These smoothing operations are special cases of the clique-star
transform defined in [30]. This operation replaces a subgraph that is isomorphic to
a star graph, the complete bipartite graph K1,n, by the complete graph on n vertices.

As an example, let us consider arithmetical structures on the complete graph Kn.
Every such arithmetical structure is uniquely determined by a vector of relatively
prime positive integers r = (r1, . . . , rn) where each ri divides the sum

∑n
i=1 ri .

The star graph K1,n consists of a vertex v0 connected to n other vertices, each of
which has degree 1. If an arithmetical structure on this graph has dv0 = 1, then r0 =∑n

i=1 ri (Fig. 10). Therefore, such arithmetical structures on K1,n are in bijection
with the set of all arithmetical structures on Kn. It is interesting to further consider
the remaining structures on K1,n that have dv0 > 1.

To further consider the set of arithmetical structures on Kn, we note that the
definition of an arithmetical structure implies that for each i:

diri =
∑
j 	=i

rj

(di + 1)ri =
∑
j

rj

Fig. 10 The complete graph
K6 and the star graph K1,6
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1

di + 1
= ri∑

j rj
.

In particular, if we sum over all i, we get that

n∑
i=1

1

di + 1
= 1.

The arithmetical structures of Kn are therefore in bijection with ways of writing 1
as a sum of reciprocals of n positive integers. Finding the number of ways of doing
this is a difficult problem in additive number theory.

Exercise 22 Classify all sets of positive integers {a1, a2, a3, a4} so that
∑ 1

ai
= 1.

For each one find the corresponding arithmetical structure on K4.

In general, there is no known formula for this number, but we do have a lower
bound that is doubly exponential in n [49]. Corrales and Valencia get similar results
for all structures on star graphs [31]. We close this section with a conjecture from
[30], which is based on the observation that vertices with higher degree seem to lead
to more arithmetical structures.

Research Project 13 Show that for any simple connected graph G with n

vertices the number of arithmetical structures on G is at least the number on
the path Pn and at most the number on the complete graph Kn.

2.3 Critical Groups of Arithmetical Structures

We have already seen that it is difficult to enumerate all arithmetical structures
on a given graph. However, it might be easier to say something about the critical
groups that occur associated with this set of arithmetical structures. For example, it
is shown in [18] that every arithmetical structure on a path leads to a trivial critical
group; we will give an alternative proof of this fact below. Recall that we define the
critical group K (G; r) of an arithmetical structure (d, r) to be the torsion part of
the cokernel of L(G, r) = diag(d) − A.

To set our notation, let G be a finite multigraph with V (G) = {v1, . . . , vn}. Let
xi,j be the number of edges between vi and vj . Since G is a multigraph we note that
xi,j may be larger than 1. Let (r,d) be an arithmetical structure on G. We define Gr
to be the graph with the same vertex set, V (G), and with xi,j rirj edges between any
two vertices vi and vj . We leave the proof of the following lemma as an exercise in
linear algebra:
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Lemma 1 We have L(Gr, 1) = RL(G, r)R, where R = diag(r).

Let L(G, r)i,j be the matrix we get from L(G, r) by deleting its ith row and
j th column. Similar to the situation in Corollary 2, the determinant of L(G, r)i,j is
given by rirj |K (G; r)|. From this, one can compute

|K (Gr; 1)| = det(L(Gr, 1)1,1)

= det((RL(G, r)R)1,1)

= det(R1,1) det(L(G, r)1,1) det(R1,1)

= (r2 . . . rn)
2r2

1 |K (G; r)|.

On the other hand, we know from Corollary 3 that |K (Gr; 1)| is the number
of spanning trees of Gr. So, we can determine the order of K (G; r) by counting
spanning trees of the graph Gr.

Let us first consider the special case where the skeleton of G is a tree. Let
V (G) = {v1, . . . , vn}. The skeleton of a multigraph G is the graph G that has
the same vertex set as G and has min(1, xi,j ) edges between any pair of vertices
vi, vj . Intuitively, this is what happens when you remove all “repeated” edges. If G

is a tree, then it is easy to see that the number of spanning trees of G is
∏

xi,j 	=0

xi,j .

Moreover, it is clear that Gr is also a tree and therefore that the number of spanning
trees of Gr is given by

|K (Gr; 1)| =
∏

xi,j 	=0

xi,j rirj =
∏

xi,j 	=0

xi,j

n∏
i=1

r
deg(vi )

i .

In particular, this proves the following result of Lorenzini [54, Corollary 2.3].

Corollary 6 Let G be a graph with V (G) = {v1, . . . , vn} so that G is a tree and
let (d, r) be an arithmetical structure on G. Then

|K (G; r)| =
∏

xi,j 	=0

xi,j

n∏
i=1

r
deg(vi )−2
i .

More generally, one can count spanning trees of Gr by noting that a spanning
tree of G that includes an edge vivj will lead to rirj spanning trees in Gr, as we
can choose any of the related edges. In particular, a spanning tree T of G leads to∏

i r
degT (vi )

i spanning trees of Gr, where degT (vi) denotes the degree of the vertex
vi in the tree T . This discussion proves the following theorem:
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Theorem 22 Let G be a graph with V (G) = {v1, . . . , vn} and let r give an
arithmetical structure on G. Then we have

|K (G; r)| =
∑
T ⊆G

(
n∏

i=1

r
degT (vi )−2
i

)
,

where the sum ranges over all spanning trees of the graph G.

Example 16 If G is a path on n vertices, then there is a single spanning tree given
by G itself. It follows from [18, Lemma 1] that any arithmetical structure on a path
has r1 = rn = 1. Therefore one computes that

|K (G; r)| =
∑
T ⊆G

(
n∏

i=1

r
degT (vi )−2
i

)

=
n∏

i=1

r
degG(vi )−2
i = 1

r1rn
= 1.

This gives an alternative proof to the first claim in [18, Theorem 7].

Example 17 Let G be a cycle on n vertices. A spanning tree of G corresponds to
removing a single edge. In particular, Theorem 22 implies that

|K (G; r)| =
n∑

i=1

1

riri+1
.

If r 	= 1 then the arithmetical structure has some vertex vi with ri = ri−1 + ri+1, so
we can smooth the structure at this vertex. In particular, we note that

1

ri−1ri
+ 1

riri+1
= 1

ri−1(ri−1 + ri+1)
+ 1

ri+1(ri−1 + ri+1)
= 1

ri−1ri+1
.

This shows us that smoothing the structure at this vertex will not change the order
of the critical group. Any arithmetical structure (r,d) on Cn can be smoothed to the
Laplacian arithmetical structure on some Ck with k ≤ n. For this value of k we see
that

|K (Cn; r)| = |K (Ck; 1)| = k.

Understanding the structure of the group K (G; r) rather than just its order
requires a more careful analysis. The following theorem is a restatement of
Proposition 1.12 in [54].
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Theorem 23 We have the following two short exact sequences:

1 →
⊕

Z/riZ → E → K (G; r) → 1

1 → E → K (Gr; 1) →
⊕

Z/riZ → 1,

where E is a specific quotient group.

In general, these short exact sequences do not split but they do give us insight
about the structure of K (G; r) if we know the structure of K (Gr; 1).

Research Project 14 What are the possible critical groups associated with a
given graph G as we vary the arithmetical structures (r,d)?

Answers to this question are known only in a few cases. We have already seen
what happens with paths and cycles. Critical groups associated with arithmetical
structures on bident graphs Dn are analyzed in [4, Section 5]. In particular, the
authors show that for any r, the matrix L(G, r) has an (n−2)× (n−2) minor equal
to 1 and use Corollary 1 to show that K (G; r) is cyclic. An analysis similar to the
one leading to Corollary 6 shows that the biggest possible order will be 2n − 5 and
completely characterizes the smaller critical group orders that occur.

There are natural generalizations of many of the problems from Sect. 1 to
arithmetical graphs. For example, see [16, Section 5] for results on a realization
problem for arithmetical graphs.
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