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Abstract

Decades of research in both cryptography and distributed systems has extensively studied the
problem of state machine replication, also known as Byzantine consensus. A consensus protocol
must satisfy two properties: consistency and liveness. These properties ensure that honest
participating nodes agree on the same log and dictate when fresh transactions get added. They
fail, however, to ensure against adversarial manipulation of the actual ordering of transactions
in the log. Indeed, in leader-based protocols (almost all protocols used today), malicious leaders
can directly choose the final transaction ordering.

To rectify this problem, we propose a third consensus property: transaction order-fairness.
We initiate the first formal investigation of order-fairness and explain its fundamental impor-
tance. We provide several natural definitions for order-fairness and analyze the assumptions
necessary to realize them.

We also propose a new class of consensus protocols called Aequitas1. Aequitas protocols
are the first to achieve order-fairness in addition to consistency and liveness. They can be
realized in a black-box way using existing broadcast and agreement primitives (or indeed using
any consensus protocol), and work in both synchronous and asynchronous network models.

A preliminary version of this paper appears in the proceedings of CRYPTO 2020. This is the full version.
∗Corresponding Author: mahimna@cs.cornell.edu
1Aequitas (IPA pronunciation: /'ae

“
.kwi.ta:s/) is the Roman personification of fairness.
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1 Introduction

The abstraction of state machine replication has been investigated in cryptography and distributed
systems literature for the past three decades. At a high level, the goal of a state machine repli-
cation protocol is for a set of nodes to agree on an ever-growing, linearly ordered log of messages
(transactions). Two properties need to be satisfied by such a protocol: (1) Consistency - all honest
nodes must have the same view of the agreed upon log — that is, they must output messages in
the same order; and (2) Liveness - messages submitted by clients are added to the log within a
reasonable amount of time. In this paper, we will use the terms state machine replication and
consensus2 interchangeably.

Unfortunately, neither consistency nor liveness says anything about the actual ordering of trans-
actions in the final log. A protocol that ensures that all nodes agree on the same ordering is deemed
consistent regardless of how the ordering is generated. This leaves room for the definition to be
satisfied even if an adversary directly chooses the actual transaction ordering, which is discomfort-
ing considering that the ordering is often easy to manipulate [7]. Moreover, in all existing protocols
that rely on a designated “leader” node (e.g., [16, 35, 45]), which includes most protocols used in
practice, an adversarial leader may choose to propose transactions in any order.

In this paper, we formulate a new property for byzantine consensus which we call order-fairness.
Intuitively, order-fairness denotes the notion that if a (sufficiently) large number of nodes receive a
transaction tx1 before another one tx2, then this should somehow be reflected in the final ordering
agreed upon by all nodes.

Importance of fair transaction ordering. The need for a notion of fair transaction ordering is
immediately clear when looking at financial systems. Here, the execution order can determine the
validity and/or profitability of a given transaction. As a concrete example, suppose that Bob has
$0, and two transactions are initiated: tx0, which sends $5 from Alice to Bob, and tx1, which sends
$5 from Bob to Carol. If tx0 is sequenced before tx1, then both transactions are valid; the opposite
ordering invalidates tx1. Manipulation of transaction ordering is a well known phenomenon on Wall
Street [33], but recent work has shown it to also be commonplace in consensus-based systems such
as permissionless blockchains. A recent paper by Daian et al. [21], for example, reports rampant
adversarial manipulation of transactions in the Ethereum network [24] by bots extracting upwards
of USD 6M in revenue from unsophisticated users.

Comparison to validity in Byzantine agreement. Beyond its critical practical importance,
we believe that order-fairness is a key missing theoretical concept in existing consensus literature.
To underscore this point, consider Byzantine agreement [31], or single-shot agreement, another
well-studied problem in consensus literature. For Byzantine agreement, each node starts with a
single value within a set V. The goal is for all nodes to agree on the same value. Validity now
requires that if all honest nodes start with the same value v, then the agreed upon value should
also be v.

The property of order-fairness is a natural analog of validity formulated for the consensus
problem, i.e., extension of Byzantine agreement to multiple rounds. If all honest nodes start with
the belief that a transaction tx1 precedes another transaction tx2, by natural analogy with validity,

2The term “consensus” has been used in systems literature for a number of related primitives, including “single-
shot” consensus. However, in this paper, we use “consensus” to refer to the problem of “state machine replication.”
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the final output log should sequence tx1 before tx2. Consequently, we maintain that order-fairness
is a natural property of independent theoretical interest in the consensus literature.

1.1 Our Contributions

The main contributions of our paper are three-fold: (1) First, we investigate a natural notion of fair
transaction ordering and show why it is impossible to realize. (2) Second, we investigate slightly
weaker notions of fair ordering that are intuitive yet achievable. Still, we find that no existing
consensus protocol achieves them. (3) Third, we introduce a new class of consensus protocols
that we refer to as Aequitas. Aequitas protocols achieve fair transaction ordering while also pro-
viding the usual consistency and liveness. We discuss Aequitas protocols in both synchronous and
asynchronous settings.

Defining order-fairness and impossibility results. To model our consensus protocols, we use
an approach similar to prior work by Pass et al. [40, 41], wherein protocol nodes receive transactions
from clients and need to output or deliver them in a way that satisfies consistency and liveness. We
detail our model in Section 2. Within this model, we provide the first formalization of the property
of order-fairness (Section 4). We start with a natural definition based on when transactions are
received by nodes.

Definition 1.1 (Receive-Order-Fairness, informal; formalized in Definition 4.1). If sufficiently
many (at least γ-fraction) nodes receive a transaction tx before another transaction tx′, then all
honest nodes must output tx before tx′.

Informally, receive-order-fairness here, corresponds to the notion of “first received, first output,”
or equivalently “first in, first out” (FIFO). If a large number of nodes receive tx before tx′, then
tx must be output before tx′. While Definition 1.1 is intuitive, it turns out that it is impossible
to achieve unless we assume very strong synchrony properties and/or a non-corrupting adversary.
This result draws from a surprising connection with voter preferences in social choice theory. To
highlight this using a simple example, consider three nodes, A, B, and C, that each receive 3
transactions, x, y, and z. A receives them in the order [x, y, z], B in the order [y, z, x] and C in
the order [z, x, y]. Notice that a majority of nodes have received (x before y), (y before z) and
(z before x)! This scenario, often called the Condorcet paradox [19], can cause a non-transitive
global ordering even when all local orderings are transitive. This is problematic for the notion of
receive-order-fairness, and we elaborate on this observation in Section 4.1. Theorem 1.2 gives an
informal description of our impossibility result.

Theorem 1.2 (Impossibility of receive-order-fairness, informal; formalized in Theorem 4.4). Con-
sider a system with n nodes where the external network (between users and protocol nodes) is either
asynchronous or the maximum delay δ is at least n rounds. Then, no protocol can achieve all of
consistency, liveness, and receive-order-fairness.

Given this impossibility result, we consider a natural relaxation of receive-order-fairness that
we call block-receive-order-fairness, or simply block-order-fairness. To see the primary difference
between the two definitions, we look at two transactions, tx and tx′, where sufficiently many nodes
have received tx before tx′. While receive-order-fairness requires that tx be output “before” tx′,
block-order-fairness relaxes this to “before or at the same time as.” We refer to transactions
delivered at the same time as being in the same “block.”
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Definition 1.3 (Block-Order-Fairness, informal; formalized in Definition 4.7). If sufficiently many
(at least γ-fraction) nodes receive a transaction tx before another transaction tx′, then no honest
node can deliver tx in a block after tx′.

This small relaxation allows us to evade the Condorcet paradox by a simple trick: placing
paradoxical orderings into the same “block.” We emphasize that block-order-fairness does not
mean that transactions are partially ordered. Consistency still requires that all nodes output
transactions in the same order, whether within the same block or not. The only difference is that
unfair ordering of a set of transactions in our definition without blocks is now, with the use of
blocks, considered fair, provided that these transactions appear in the same block.

Further, we note that while receive-order-fairness is impossible to achieve (as pointed out in-
formally in Theorem 1.2 and formalized later in the paper in Theorem 4.4), block-order-fairness is
not and we provide protocols that guarantee it. We would also like to highlight that our proposed
Aequitas protocols actually make minimal use of this relaxation. In particular, they achieve the
stronger notion of receive-order-fairness except when non-transitive preferences are observed.

Aequitas: Achieving order-fairness. We present a new class of consensus protocols, Aequitas,
that achieve block-order-fairness, in addition to providing consistency and liveness. Aequitas pro-
tocols make use of two basic primitives in a black-box way: (1) FIFO Broadcast (FIFO-BC; see
Section 3.2) [27], which is a basic extension of standard reliable broadcast; and (2) Set Byzantine
Agreement (Set-BA; defined in Section 3.1), which can be achieved from Byzantine agreement.

We note that these are weak primitives and any standard consensus protocol (that achieves
consistency and liveness) can also be used to build the FIFO-BC and Set-BA primitives. This
results in an interesting observation: The Aequitas technique provides a generic compiler that takes
any standard consensus protocol and converts it into one that also provides order-fairness. At a
high level, Aequitas protocols proceed in three major stages. Each transaction tx goes through
these stages before being delivered.

1. Gossip Stage. In this stage, nodes gossip transactions in the order that they were received.
That is, each node gossips its local transaction ordering.

For this purpose, we use the FIFO broadcast primitive (FIFO-BC). FIFO-BC guarantees
that broadcasts by an honest node are delivered by other honest nodes in the same order
that they were broadcast. Even if the sender is dishonest, FIFO-BC guarantees that all honest
nodes deliver messages in the same order as each other. As a result, nodes have a consistent
view of the transaction orderings of other nodes.

We use Logji to denote node i’s view of the order in which node j received transactions,

according to how node j gossiped them. Note that if node j is malicious, Logji may arbitrarily
differ from the actual order in which j received transactions, but FIFO-BC prevents j from
equivocating, i.e., any two honest nodes i and k will have consistent Logji and Logjk. When i
records enough logs Logki that contain the transaction tx, we say that the “gossip stage” for
tx is complete.

2. Agreement Stage. In this stage, nodes agree on the set of nodes whose local orderings
should be considered for deciding on the global ordering of a particular transaction.
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To elaborate, at the end of the gossip stage for a transaction tx, a node i ends up with a set
U tx
i of other nodes whose local orderings i has obtained for tx. That is, k ∈ U tx

i if tx ∈ Logki .
Note that different nodes may end up with a slightly different sets, but agreement proceeds
when enough honest nodes are present in each set. Nodes now perform Byzantine agreement
to agree on a set Ltx of nodes whose ordering will be used to finalize the ordering for tx. For
this, we define a new primitive Set-BA whose validity condition guarantees that if k ∈ U tx

i for
all i, then k ∈ Ltx. It is easy to see how Set-BA can be realized by using standard Byzantine
agreement to determine the inclusion of each possible value k individually. We prove this
formally in Section 3.1.

3. Finalization Stage. In this stage, nodes finalize the global ordering of a transaction tx
using the set of local orderings decided on in the agreement stage.

Suppose that the agreement stage for a transaction tx resulted in the set Ltx. In other to
deliver tx, nodes must ensure that no other transaction should be sequenced earlier in the fair
ordering. In particular, if there is any other transaction tx′ such that tx′ is ordered before
tx in a large number of these local logs, it signifies that tx should be delivered after tx′. In
other words, the finalization of tx depends on waiting until tx′ has been delivered.

To characterize such ordering dependencies between transactions, a node i maintains a
directed graph Gi, where vertices represent transactions and an edge from a to b denotes
that b is waiting for a to be delivered. We refer to Gi as the “dependency graph” or the
“waiting graph” maintained by node i. Since nodes are building this graph on the same
“data” (the set of local logs agreed upon in the agreement phase), nodes will have consistent
graphs. That is, if an edge (a, b) exists in Gi, then it will also (eventually) exist in Gj , if
i and j are both honest. We note that the graph Gi is not guaranteed to be acyclic as the
previously mentioned Condorcet paradox can cause cycles in Gi. Therefore, to retrieve a
total ordering from the graph, we look at the condensation graph of Gi, which collapses the
strongly-connected-components in Gi into the same vertex. Each vertex now represents a set
of transactions. Since the condensation graph is guaranteed to be acyclic, a total ordering can
be extracted from the graph. Transactions in the same vertex can now be delivered together
as part of the same “block.” The subtlety here is that the vertices in the condensation
graph can change (for example, by coalescing two previous vertices into a single one) as new
transactions are added to Gi. Consequently, careful technical considerations are necessary to
ensure that consistency is not lost.

Broadly, we present two finalization techniques, a leader-based one and a leaderless one.
For the leader-based technique, resolving any partial ordering within the dependency graph
is delegated to a leader node. We emphasize that order-fairness is not lost. The leader
is only able to choose the ordering for transactions that are not required to be ordered in a
certain way. We present another, leaderless technique that requires no further communication
between nodes. We find that both realize a slightly weaker notion of liveness than the standard
one, even in a synchronous setting. Specifically, future transactions are required to be input
to the system in order to “flush out” earlier transactions. We formally define “weak-liveness”
in Section 2.

It is worth pointing out that the first two stages (gossip and agreement) are fairly straightforward
to understand and easy to achieve. The third stage is somewhat complex, as it needs to avoid the
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2γ−1 X
X

(Eventual, Weak)
X

* Completely Synchronous Setting (See Section 2)

† 1
2
< γ ≤ 1 is the order-fairness parameter (See Section 4)

Figure 1: The Aequitas protocols

Condorcet paradox while continuing to maintain both consistency and order-fairness. We present a
detailed account of the three stages in Section 5 and the technical nuances of the finalization stage
specifically, in Section 5.1.

Aequitas protocols. To summarize, we present the first consensus protocols that provide order-
fairness. We provide a leader-based and a leaderless protocol each for the synchronous and asyn-
chronous settings, for a total of four protocols that follow the same general outline. These protocols
all provide consistency, block-order-fairness, and some form of liveness. Fig. 1 shows a comparison.

Paper organization. The rest of the paper is organized as follows. We discuss our results in
the context of related work in Section 1.2. We describe our formal framework, along with other
preliminaries, in Section 2. In Section 3, we provide the building blocks for our protocol con-
structions. Section 4 formally introduces several notions of order-fairness and proves impossibility
results. Section 5 provides a general overview of our constructions; we detail our constructions
for the synchronous and asynchronous settings in Sections 6 and 7 respectively. We describe some
other interesting results in Section 8.

1.2 Related Work

While there is an extensive literature on consensus protocols, to the best of our knowledge, no
previous work formally captures a notion of order-fairness like the one we introduce. We also note
that the term “fairness” has been used widely in blockchain and cryptography literature, but for
properties unrelated to ours.

Broadcast primitives. Byzantine broadcast, or the Byzantine Generals Problem [31], is the
elementary broadcast primitive where a designated sender broadcasts a single value to a set of
receiving nodes. In a Byzantine broadcast protocol with the key property of consistency, all honest
receivers output the same value. Reliable broadcast is a continuous version of Byzantine broadcast
where the sender broadcasts multiple values which must be eventually delivered by nodes if the
sender is honest. Three orthogonal properties can be added onto reliable broadcast to give stronger
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notions. FIFO-ordering provides first-in first-out ordering on the messages broadcast by an honest
sender. We refer to such a protocol as (Single sender) FIFO Broadcast (also called OARcast for
Ordered Authenticated Reliable Broadcast in [27]). Local-ordering (also called causal-ordering)
ensures that if a node broadcasts a message m′ after receiving some other message m, then m will
be ordered before m′. The total-ordering property ensures that all honest nodes deliver messages
broadcast potentially by different senders in the same order. This notion is usually called atomic
broadcast [20], which is well-known to be equivalent to the consensus problem. Adding all three
properties to reliable broadcast results in the notion of Causal FIFO Atomic Broadcast which still
does not provide the order-fairness property that we are looking for. The main problem is none of
the requirements consider a global notion of FIFO ordering based on multiple senders.

Our order-fairness property does enforce such a notion according to the following idea: If
enough nodes broadcast a message m before another message m′, then honest nodes will respect
this ordering. Adding this property to atomic broadcast results in a new broadcast notion, which we
call “Global FIFO Atomic Broadcast.” Consequently, requiring order fairness along with standard
consensus properties of consistency and liveness will be equivalent to this new notion of Global
FIFO Atomic Broadcast.

We note that our setup is also slightly different than earlier notions. We assume that any
message broadcast by an honest node is also eventually broadcast by all honest nodes. This allows
us to redefine liveness in terms of being broadcast by enough nodes. This also means that identical
messages broadcast by different nodes can now be delivered together as a single message. Global
FIFO ordering is defined on the ordering of these messages. Note that it no longer makes sense to
talk about (single source) FIFO order or causal order as identical messages, potentially broadcast
at different positions by different nodes, are now delivered as a single message.

Consensus protocols. Hundreds of Byzantine fault tolerant consensus protocols have been pro-
posed over the years, with PBFT [16] being perhaps the most well known one. Multiple survey
papers [7, 10] have recently aimed to systematize this vast literature. Many papers provide ef-
ficiency improvements while maintaining the basic leader-based structure of PBFT. That is, a
leader or primary node is responsible for proposing the transactions in the current round. In such
leader-based protocols ([2, 3, 5, 8, 18, 35, 43–45], just to name a few), the leader node can propose
transactions in the order of its choosing. The leader is also capable of suppressing transactions, at
least temporarily, until an honest node becomes the new leader. We highlight that in previously ex-
plored leader-based protocols, nodes do not know the ordering in which transactions were received
by everyone else. This means that a leader’s proposal can only be rejected by other nodes based
on the validity of transactions rather than the fairness of their ordering. Order-fairness is thus not
achieved in existing leader-based protocols.

Some protocols provide transaction censorship resistance, such that malicious nodes cannot
censor specific transactions based on their content. For this, in protocols like [4, 11, 37], transactions
are encrypted, and the contents are revealed only once their ordering is fixed. Separately, protocols
in [4, 30, 32] rely on a reputation based system to detect unfair censorship. Censorship resistance
is strictly weaker than the order-fairness we consider for three reasons. First, in practice, even if
transaction data is temporarily encrypted, metadata such as a user identifier or a client IP address
can be used to censor a particular transaction. Second, a malicious leader can still blindly reorder
or censor transactions based on just their ciphertext. But perhaps more importantly, a malicious
leader colluding with a user will know the ciphertext corresponding to the user’s transaction and
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can thus unfairly order this transaction before others.

Other uses of the word fairness. The term fairness has been used before in consensus lit-
erature for notions unrelated to ours. One popular use case relates to fairness in block mining in
Proof-of-Work (PoW) blockchains, which intuitively requires that a node’s mining rewards be pro-
portional to its relative computational power. That is, no node should be able to mine selfishly [25]
to obtain more rewards than its fair share. This fairness notion is met by protocols in [1, 32, 34,
36, 38], among others.

Another related definition considers fairness in terms of the opportunities each node gets to
append transactions to the ledger. This includes both fair leader election (in leader based protocols)
and fair committee election (in hybrid consensus protocols). This definition is considered in [1, 26,
29, 32, 39]. We note that even if the leader election process is fair, the current leader still has the
power to manipulate transaction ordering.

Fairness has also been used in the context of “fair exchange.” Fair exchange protocols provide
a way for mutually distrusting parties to exchange digital goods in a secure way. This notion is
completely unrelated to ours but we mention it for completeness.

Works that mention fair transaction ordering. Helix [4] alludes to fair transaction ordering,
but only considers censorship resistance and fair committee election. It uses threshold encryption
to choose a random set of pending transactions for inclusion in the current block. Another related
protocol is Hashgraph [6], which intuitively considers our notion of receive-order fairness, but
provides no formal definitions. Moreover, it fails to realize the impossibility of this notion of fairness
resulting from the Condorcet paradox [19]. As a result, we identify an elementary attack on the
Hashgraph protocol that allows an adversarial node to control transaction ordering. We describe
this attack at a high level below:

In the Hashgraph algorithm, each participant maintains a directed graph (called the hashgraph)
of the transactions it has received from others. Participants sync their transactions to others by
sending their local hashgraph to a randomly chosen participant at every round. The intuitive strat-
egy of their consensus protocol is to ensure that the hashgraphs maintained by honest participants
are consistent. When Alice receives a “sync” of the hashgraph from Bob, she adds all of Bob’s new
transactions (say including a transaction tx) and any of her own to a new event node N . She then
sets the new node’s parents to be the last node received from Bob, and her own last node. Alice
includes a timestamp with the N which is considered to be Alice’s receive-time for the transaction
tx. Without going into too much detail, after N has been buried sufficiently deep in the graph,
Alice considers a specific set of graph nodes in her hashgraph and computes the final timestamp for
tx by taking the median of all the corresponding timestamps. Each participant ends up with the
same final timestamp as they compute the median on the same set of event nodes. However, we
highlight that using the median to compute the final timestamp is the actual cause of unfairness
since it is prone to adversarial manipulation. To see why, consider two users transactions tx1 and
tx2 that are sent by honest users to all the protocol participants. Suppose that all nodes receive
tx1 before tx2 and that the network adversary lets no “sync” attempts go through before everyone
receives both tx1 and tx2. If the receive times for tx1 and tx2 are sufficiently intertwined, then even
a single adversarial participant can cause the median timestamp for tx1 to become larger than the
median timestamp for tx2 which breaks fair-ordering.
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We acknowledge that carefully designing a different formal definition for fair ordering could
allow the Hashgraph protocol to achieve a different notion of fairness, but we base our comparison
on their informal notion of “first received, first output.” In Section 5, we also show a simple concrete
example of why median timestamp based ordering protocols do not work in general.

2 Definitions, Framework, and Preliminaries

In this section, we describe the general execution framework that we will use for expressing and
analyzing consensus protocols. To define the state machine replication problem in an unconstrained
setting, we adopt an approach like that of Pass and Shi [40, 41] and Chan et al. [17]. We focus on
the “permissioned” setting — where the number of consensus nodes n, as well as their identities, is
known a priori to all participants. While arbitrary clients can send messages to these nodes, only
a fixed set of nodes will take part in the consensus protocol. We are also interested in protocols for
several network settings (e.g. synchronous, partially synchronous, and asynchronous) and define
constrained environments for these settings by imposing restrictions that an adversary must respect.

2.1 Protocol Execution Model

Interactive Turing Machines (ITMs). To model protocol execution, we adopt the widely used
Interactive Turing Machine (ITM) approach rooted in the Universal Composability framework [12].
Informally, a protocol details how nodes interact with each other where each node is represented
by an Interactive Turing Machine. As standard practice in cryptography literature [12, 13, 15],
we use an environment Z(1κ) (where κ is the security parameter) to direct the protocol execution.
The environment Z can be thought of to represent everything that is not defined by the protocol
in consideration. Z is also responsible for activating nodes as either honest or corrupt, providing
messages as inputs to nodes, and delivering messages between nodes. This is useful to model systems
where protocol inputs may come from external applications and protocol outputs may be used by
external applications. To communicate with others, a node sends a message to the environment,
which is then relayed to other nodes as appropriate by the environment. Honest nodes follow
the protocol description while corrupt nodes are assumed to be controlled by an adversary. This
adversary, denoted by A, is able to read all inputs/messages sent to corrupt nodes and can set all
outputs/messages to be sent. The adversary also decides when messages sent over the network get
delivered, of course subject to any network assumptions.

Rounds. We assume that the environment Z maintains a global clock. The clock is a global
functionality [15] that contains a simple monotonic counter which can be updated adversarially
by the environment. Informally, “global” means that the clock functionality exists in the system
regardless of the analyzed protocol. This modeling choice follows from Canetti et al. [14]. Whether
this clock is visible to protocol nodes depends on specific network settings. In synchronous settings,
this clock is visible to all nodes3. In the synchronous setting [22], we can therefore model protocol
execution in discrete time steps or rounds. At the start of each round, each node receives a
set txs of transactions from the environment Z. Transactions are assumed to be submitted by
clients, but using the environment abstraction avoids having to model clients explicitly. Rather,

3 In [14], it is emphasized that honest parties do not talk directly to the clock functionality. We can circumvent
this restriction by having the environment send the current time counter to each node as input every round.
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the environment is in charge of providing transactions as input to the nodes. Furthermore, at the
end of each round, each node outputs an ordered log LOG to Z which intuitively represents the list
of transactions ordered by the node so far. We assume that Z always signals the start of a new
round to each node.

Rounds in the partially synchronous setting [23] work similarly to the synchronous setting.
In the asynchronous setting [9], we assume that a global clock still exists in the environment.

Except now, the clock is not accessible to the protocol nodes. The environment Z can provide user
transactions and communication messages to nodes at any time. Without loss of generality, since
protocol nodes cannot read the global clock, we can assume that the clock counter is incremented
every time Z provides new transactions or delivers messages. Note that, we use the notion of
rounds in an asynchronous setting merely as a tool for our analysis. It serves no purpose in the
actual protocol and any protocol that works in the asynchronous setting should not rely on the
current time. Throughout the paper, we may use the terms “time” and “round” interchangeably.

Notational conventions. We use κ to denote the security parameter. N denotes the set of
protocol nodes. For a protocol Π, EXECΠ(A,Z, κ) represents the random variable for all possible
execution traces of Π w.r.t. adversary A and environment Z. The possible executions arise from
any randomness used by honest nodes, adversarially controlled nodes, and the environment. Any
view in the support of EXECΠ(A,Z, κ) is a fully specified instance of an execution trace. That is,
a particular view can be thought of as the joint view of all nodes (including all inputs, outputs,
random coins etc.) during an execution. We use view←$ EXECΠ(A,Z, κ) to denote randomly
sampling an execution. |view| denotes the number of rounds in view.

A function negl(·) is negligible if for every polynomial p(·), there exists a constant κ0 ∈ N, such
that negl(κ) ≤ 1

p(κ) for all κ ≥ κ0. We use negl(κ) to denote a function that is negligible as a
function of κ.

Corruption Model. Since we are concerned only with the permissioned setting, we consider
environments Z that do not spawn any more nodes after an initial spawn. In particular, Z spawns
a set of nodes, numbered from 1 to n without loss of generality at the start. It never spawns any
additional nodes. At any point, A can ask Z to corrupt a particular node for which Z sends a
corrupt signal to that node. When this happens, the internal state of that node gets exposed to
A and A henceforth fully controls the node. A gets full control over all corrupt nodes, including
the ability to control their messages and outputs.

A node is said to be honest in a given view if it is never under adversarial control, otherwise it
is said to be corrupt or byzantine. Note that once a node is corrupted, it cannot become honest at
a later point. In our general model, we assume that the adversary can corrupt nodes dynamically.
That is, nodes can be corrupted at any point during the protocol’s execution. We use a corruption
parameter f to denote the maximum number of nodes that A can corrupt.

Communication and Network Model. As mentioned before, the environment Z provides
transactions sent by users as inputs to nodes and also handles communication between nodes. We
assume that a node can broadcast a message to any subset of recipients through an authenticated
channel. The environment Z delivers any broadcast messages to its recipients at the start of a
round, along with any new transaction inputs from users for that round. Furthermore, we assume
that the adversary A cannot modify messages sent by honest nodes but can reorder or delay
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messages, possibly constrained by the specific setting. We also assume the existence of a public-key
infrastructure (PKI) — each node has a public key registered with the PKI. The public key of a node
is given to all nodes on initialization by the environment. Note that in a PKI, digital signatures
can be used to prove the identity of the message sender. Digital signatures can be realized from a
PKI, as a global signing functionality GΣ

sign (parameterized by a signature scheme Σ). We refer the
reader to [41] for further details. For our paper, we can abstract away the actual implementation
of signatures since in a PKI, without adding any communication overhead, we can assume that
Z simply reveals the identity of the sender when forwarding a message to the recipient(s). We
note that this is equivalent to working in the GΣ

sign-hybrid world where nodes query the global

functionality GΣ
sign when they need to sign messages.

We differentiate between two networks in our model - an internal network for communication
between nodes and an external network for how external users send transactions to nodes. We
emphasize that A is only in charge of scheduling message delivery for the internal network. The
external network may reside in other parts of the application (not relevant to the consensus protocol)
and is managed by Z (and possibly by some other network adversary). However, we may abstract
specific timing properties from the external network to prove our results.

Depending on the network delay properties, we consider the synchronous setting [22] (where
the network delay bound is known), the partially synchronous setting [23] (where the network
delay bound is finite but unknown), and the asynchronous setting [9] (where the network delay is
unbounded).

2.2 Execution Environments

Network Assumptions. First, we formally define the different network assumptions for both
the external and internal networks. We assume that clients submit transactions to the system by
sending them to all the nodes. As mentioned before, we do not explicitly model clients, but rather
have transactions input by the environment. Any network assumptions are modeled as restrictions
imposed on the environment.

External Network. The external network models the communication channel between the sys-
tem users and the protocol nodes. Any assumptions on the external network can be thought of
as assumptions on how the environment acts. By a synchronous external network, we mean that
any transaction that is received (from the environment) by a node reaches all other nodes within a
known time. This is formally defined in Definition 2.1.

Definition 2.1 (External Synchronous Setting). We say that (A,Z) respects ∆ext = (full, δ) ext-
synchrony w.r.t. a protocol Π if for every κ ∈ N and view in the support of EXECΠ(A,Z, κ), the
following conditions hold: (1) Z provides δ as a public parameter to all nodes upon spawning; (2)
If Z provides an input message m to a node as input in the txs set at time t, then at any time
t′ ≥ t+ δ, all other nodes will also have received message m as input.

For the partially synchronous setting, we assume that the delay bound δ exists but is unknown
to the nodes. Partial synchrony in the external network is defined similar to the synchronous
setting, except now, Z does not provide the parameter δ to the nodes upon spawning. We use
∆ext = (partial, δ) to denote the partially synchronous setting. For the asynchronous setting, we
only assume that transactions are not dropped by the network — they eventually get delivered to all
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the nodes. However, we make no assumptions on the actual delivery time. We use ∆ext = (none,∞)
to denote an asynchronous external network.

Internal Network. The internal network represents the network between nodes and is usually
the standard network considered for consensus problems. For the internal network, synchrony is
the assumption that any message sent by a node reaches the recipient(s) in a known, finite time δ.
Definition 2.2 formalizes this synchrony assumption. Recall that Z delivers messages only at the
start of a round.

Definition 2.2 (Internal Synchronous Setting). We say that (A,Z) respects ∆int = (full, δ) int-
synchrony w.r.t. a protocol Π if for every κ ∈ N and view in the support of EXECΠ(A,Z, κ), the
following conditions hold: (1) Z provides δ as a public parameter to all nodes upon spawning; (2)
If an honest node sends a message at time t, then at any time t′ ≥ t+ δ, all recipient(s) will have
received the message.

The partially synchronous and asynchronous settings for the internal network are defined similarly
to the corresponding notions for the external network. We use ∆int = (partial, δ) and ∆int =
(none,∞) to denote a partially synchronous internal network and an asynchronous internal network
respectively.

Other network nomenclature. We say that the network is completely synchronous (resp.
completely asynchronous) if both the external and the internal network are synchronous (resp.
asynchronous). We say that the external network is instant synchronous if ∆ext = (full, 0). We
use not-async to denote both the synchronous setting (full) and the partially synchronous setting
(partial).

We formalize the permissioned setting next.

Permissioned Setting. We can express the “permissioned” or “classical” environment by placing
the following constraints on (A,Z): In the permissioned setting, we require that the environment Z
spawn all nodes upfront and not spawn any new nodes during the protocol execution. Furthermore,
all nodes know the identity of all other nodes in the protocol. Without loss of generality, we
can assume that the initial nodes spawned by Z are numbered from 1 to n. We define such a
permissioned environment in Definition 2.3.

Definition 2.3 (Classical Permissioned Environment). We say that (A,Z) respects (n, f,∆int,∆ext)-
classical execution w.r.t. a protocol Π if it respects ∆int int-synchrony, ∆ext ext-synchrony and for
every κ ∈ N and view in the support of EXECΠ(A,Z, κ), the following conditions hold: (1) Z
spawns a set of nodes numbered from 1 to n at the start of the protocol and never spawns any
nodes later; (2) Z does not corrupt more than f nodes; (3) Z provides all nodes the parameters
(n, f) upon spawning; (4) Z also provides all nodes any other public parameters upon spawning.
This includes the node identities as well as any public keys.

Notation. For all constraints on (A,Z), when the context is clear, we may choose to exclude
which protocol we are referring to. For example, we may simply write (A,Z) respects (n, f,∆int,∆ext)-
classical execution. For the remainder of the paper, we will only consider (A,Z) that respect
classical execution.
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2.3 The State Machine Replication Abstraction

In the state machine replication or consensus problem, a set of nodes try to agree on a growing,
linearly ordered log. At the start of each round, Z may provide a set txs of transactions to protocol
nodes. We assume that the transactions input by Z are unique. At any time, nodes may also
choose to deliver transactions by outputting a log of transactions LOG to Z. The LOG can be
thought of as a totally ordered sequence where each element is an ordered set of transactions. We
refer to the set of transactions at an index of the LOG as a “block”. The LOG represents the set of
transactions committed by a node so far.

Transaction nomenclatures. When discussing the trajectory of a transaction, several related
terms are used in literature. We say that a transaction tx is received by a node when it is given as
input to the node by Z. A transaction tx is delivered or committed or output by a node when it is
included in a LOG output by the node to Z.

Notation for the ordered log. Suppose that T denotes the space of all possible transactions.
Let LOGi represent the most recent log output by node i to the environment i.e. LOGi represents
the totally ordered list of transactions that node i has delivered so far.

For two logs LOG and LOG′, we define a relation � which intuitively signifies a “prefix” notion.
LOG � LOG′ stands for “LOG is a prefix of LOG′”. We assume that for any x, we have x � x and
∅ � x. LOG[p] denotes the pth element in LOG. LOG(m) denotes the number p such that LOG[p]
contains m.

The security of a state machine replication protocol can now be defined as follows:

Definition 2.4 (Security of state machine replication [41]). We say that a protocol Π satisfies con-
sistency (resp. (Twarmup, Tconfirm)-liveness) w.r.t. (A,Z) if there exists a negligible function negl(·)
such that for any κ ∈ N, the consistency (resp. (Twarmup, Tconfirm)-liveness) property is satisfied ex-
cept with negl(κ) probability over the choice of view←$ EXECΠ(A,Z, κ) where negl(·) is negligible
in κ.

For a particular view, we define the properties below:

• (Consistency) A view satisfies consistency if the following holds:

– Common Prefix. If an honest node i outputs LOG to Z at time t and an honest node j
outputs LOG′ to Z at time t′, then it holds that either LOG � LOG′ or LOG′ � LOG.

– Future Self Consistency. If a node that is honest between times t and t′, outputs LOG
at time t and LOG′ at time t′ ≥ t to the environment Z, then it holds that LOG � LOG′.

• (Liveness) A view satisfies (Twarmup, Tconfirm)-liveness if the following holds: At a time t such
that Twarmup < t ≤ |view|, if an honest node either received a transaction m from Z or output
m in its log to Z, then for any honest node i and any time t′ ≥ t + Tconfirm; t′ ≤ |view|, it
holds that m is in the log output by node i at time t′.
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Here, Tconfirm and Twarmup are polynomial functions in the security parameter κ, the number of
nodes n, the corruption parameter f , the maximum network delay bounds as defined in ∆ext and
∆int (for synchronous and partially synchronous networks only), as well as the actual network delay.
Twarmup is the protocol’s warmup time, until which point liveness need not be satisfied. Tconfirm is
the maximum time it takes for a transaction (input after the warmup time) to be delivered by all
honest nodes.

Note that the actual network delay is required as a parameter only for completely asynchronous
networks. When the network is not asynchronous, the actual network delay is bounded by the
maximum delay parameter. In such cases, the polynomials Tconfirm and Twarmup can be bounded by
replacing the actual network delay by the appropriate delay bound. While this is true, synchronous
protocols where Tconfirm does not depend on the maximum delay bound but rather on the actual
network delay can confirm transactions much faster. The term responsive [39] is used to refer to
such protocols.

Liveness in asynchronous networks. In the asynchronous setting, we assume that the network
delay is an unbounded polynomial [39] in the security parameter. Equivalently, there does not exist
a concrete polynomial Tconfirm that serves as the liveness bound. Rather, we require that as long as
the environment eventually delivers messages, honest nodes eventually include transactions in their
output logs. Note that since the environment eventually delivers all messages before the protocol
execution finishes, all transactions input by the environment should be eventually delivered by a
live protocol. We define asynchronous or eventual liveness below.

• (Asynchronous / Eventual Liveness) A view satisfies (Twarmup, none)-eventual liveness,
or simply Twarmup-eventual liveness, if the following holds: At a time t such that t > Twarmup,
if an honest node either received a transaction m from Z or output m in its log to Z, then
for any honest node i, at the end of protocol execution, it holds that m is in the log output
by node i.

Weak liveness. The standard definition of liveness of a transaction tx (from Definition 2.4) is
independent of what happens in the rest of the protocol’s execution. Sometimes however, it may
be enough for a protocol to be live only if transactions continue to be received by the system. For
example, a transaction tx will only be delivered if there is some transaction that is received by
all nodes sufficiently after tx. Intuitively, later transactions will cause earlier ones to be “flushed
out” of the system. We note that this subtle distinction between the two liveness definitions is
rarely considered in the literature. We found that some leaderless protocols (i.e. those that are
not based on a leader node) like the ones in [6, 42] implicitly ignore this distinction. Along similar
lines, we define a weaker version of conventional liveness, which we call “weak-liveness.” Despite
the technical difference, we think that it should be acceptable in most real world systems. For a
particular view, we define weak-liveness below.

• (Weak Liveness) A view satisfies (Twarmup, Tconfirm)-weak-liveness if the following holds:
Suppose that at a time t such that t > Twarmup, an honest node either received a transaction
m from Z or output m in its log to Z. Let T be a set built recursively as follows: (1) Add
m to T; (2) For m0 ∈ T, add to T, all transactions m′0 that were received by at least one
honest node before m0. Now if another transaction m′ was received at time t′ and is such
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that it was first received by a node after all nodes received all transactions in T, then for any
honest node i and any time t′′ ≥ t′ + Tconfirm; t′′ ≤ |view|, it holds that m is in the log output
by node i at time t′′.

We also define weak eventual liveness, which provides a version of weak liveness for the asyn-
chronous setting.

• (Weak Eventual Liveness) A view satisfies (Twarmup, none)-weak-eventual-liveness or sim-
ply Twarmup-weak-eventual-liveness if the following holds: Suppose that at a time t such that
t > Twarmup, an honest node either received a transaction m from Z or output m in its log
to Z. Let T be a set built recursively as follows: (1) Add m to T; (2) For m0 ∈ T, add to
T, all transactions m′0 that were received by at least one honest node before m0. If another
transaction tx′ was first received by nodes after all nodes received all transactions in T, then
for any honest node i, at the end of protocol execution, it holds that m is in the log output
by node i.

For all of the liveness properties, we say that a protocol Π satisfies the property if there exists
a negligible function negl(·) such that for any κ ∈ N, the property is satisfied except with negl(κ)
probability over the choice of view←$ EXECΠ(A,Z, κ) where negl(·) is negligible in κ.

3 Building Blocks

We start by describing some useful primitives that will form the foundation for designing our fair
ordering consensus protocols. More specifically, we will utilize two primitives: (1) Set Byzantine
Agreement (Set-BA); and (2) FIFO Broadcast (FIFO-BC). We introduce Set-BA in Section 3.1 and
FIFO-BC in Section 3.2. We also show how to build Set-BA from standard Byzantine agreement
and FIFO-BC from reliable broadcast.

Subroutines and composition. We follow the standard conventions to enable secure compo-
sition when considering multiple instantiations of the same protocol. Each instance of a protocol
is spawned with a session identifier sid. We use Π[sid] to denote the instance of protocol Π with
session id sid. Each protocol may take inputs from and return outputs to an environment. Note
that this “environment” may be different for any subroutines called. For example, when a calling
process p, forks an instance of a protocol Π, p is taken to be part of the environment for Π and
handles its inputs and outputs.

3.1 Set Byzantine Agreement

Definitions. In a (poly) Set Byzantine Agreement protocol (Set-BA), participating nodes will try
to agree on a set of values. At the start of the protocol, each node receives the identities of all
participating nodes, the parameters n and f , the network parameters, as well as any other public
parameters from Z. At the start of the protocol, each node receives any public parameters from
Z. Each node i in the set P of participating nodes also receives a set Ui ⊆ S as input from Z. The
set S is also known to all nodes and its size is polynomial in the parameters. At the end of the
protocol, each honest node j ∈ P outputs a set of the agreed upon values Oj .

16



Definition 3.1 (Security of Set-BA). A Set-BA protocol Πsba satisfies agreement, inclusion validity,
and exclusion validity w.r.t. (A,Z) if for all κ ∈ N, the following properties hold except with
negligible probability over the random choice of view←$ EXECΠsba(A,Z, κ).

• (Agreement) If two honest nodes i and j output the sets Oi and Oj respectively, then
Oi = Oj .

• (Inclusion Validity) If an element is in the input sets of all nodes, then it will also be in
the output sets of all honest nodes. That is, if c ∈ Ui for all i ∈ P , then c ∈ Oj for all honest
j.

• (Exclusion Validity) If an element is not in any input set, then it is not in any honest
output set. That is, if c /∈ Ui for all i ∈ P , then c /∈ Oj for all honest j.

Comparison to Asynchronous Common Subset (ACS). A primitive related to Set-BA is
the asynchronous common subset (ACS) problem from [11, 37] that can be used to build an asyn-
chronous Byzantine fault tolerant system. Similar to our Set-BA primitive, each node in an ACS
protocol is input a set Ui and all nodes agree on a common output set O. ACS guarantees that
the common output O contains all the elements of the input sets of at least n− 2f honest nodes.
However, O can also contain elements that were proposed by only malicious nodes. On the other
hand, a Set-BA protocol also needs to satisfy exclusion validity which along with the agreement
and inclusion validity properties, guarantees that only honest proposals are included in output set.
We prove this in Lemma 3.2. Note that the output set also need not include all elements from
n− 2f of the honest input sets.

As mentioned before, it is easy to prove that any Set-BA protocol satisfies the “honest proposal”
property shown in Lemma 3.2.

Lemma 3.2. Consider any set Byzantine agreement (Set-BA) protocol Πsba that satisfies agree-
ment, inclusion validity, and exclusion validity (w.r.t. (A,Z)). Except for a negligible number of
views, Πsba also satisfies the following:

• (Honest Proposal) If an honest node outputs the set O, then for every c ∈ O, there exists
i ∈ P such that i is honest and c ∈ Ui.

Informally, this guarantees that all values in the agreed upon set must have been proposed by some
honest node.

Proof. The proof is straightforward. We ignore the negligible “bad” views and let view be a exe-
cution of Πsba where agreement, inclusion validity, and exclusion validity are all satisfied. Suppose
that there was a value c in the output agreed upon by honest nodes even though it was not in
any honest node’s input set. Now, to an honest node, this protocol execution is indistinguishable
from the world where none of the malicious nodes had c in their input set (from Z) either. In
particular, it could have been the case that a malicious node did not receive c as input from Z
but still proposed it as part of the protocol. Equivalently, in this world, c was in the agreed upon
output in Πsba even when no node was given it as input by Z. This contradicts the exclusion
validity property of Πsba.
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Set Agreement from Binary Byzantine Agreement (BBA). We show how Set-BA can easily
be realized from a BBA protocol. Recall that in a BBA protocol, each node i starts with an initial
value bi ∈ {0, 1} and outputs a bit outi when the protocol ends. The goal is for all honest players
to output the same bit. A secure BBA protocol ΠBBA needs to satisfy two properties in all except
a negligible number of executions —

• (Agreement) outi = outj for all honest nodes i and j.

• (Validity) If all honest nodes start with the same initial value b, then outi = b for all honest
nodes i.

Let ΠBBA be a BBA protocol that satisfies both agreement and validity. We can now construct
a protocol Πsba from the BBA protocol ΠBBA that satisfies the Set-BA security properties. Suppose
that Πsba needs to be instantiated with the session id sid. We now describe the protocol Πsba for a
node i:

1. For each s ∈ S, if s ∈ Ui, node i forks a new instance of ΠBBA[(sid, s)] with input 1; otherwise
it forks an instance ΠBBA[(sid, s)] with input 0.

2. Collect the outputs of all ΠBBA instances. Let out(s) denote the output of ΠBBA[(sid, s)].
Construct the set O = {s ∈ S | out(s) = 1} and output it.

Lemma 3.3. If ΠBBA satisfies the BBA security properties for (A,Z), then Πsba satisfies agree-
ment, inclusion validity, and exclusion validity.

Proof. The proof follows in a straightforward way from the security of ΠBBA. Agreement and
validity (both inclusion and exclusion) for Πsba follow directly from the agreement and validity
properties of ΠBBA. To see why exclusion validity holds, suppose that there is an element c that
was not in any input set. This means that all honest nodes sent input 0 to the instance ΠBBA[(sid, c)],
which implies that c cannot be in the agreed upon output set.

One crucial point worth mentioning here is that Πsba forks only a polynomial number of instances
of ΠBBA since S is of polynomial size. Consequently, all nodes still run in polynomial time.

For our purpose, an equivalent way to view Set-BA is a combination of individual Byzantine agree-
ment for every possible input element in S. Our protocols consider S = {1, . . . , n} and we will use
the Set-BA primitive to agree on the which local node orderings to consider to finalize the order of
a given transaction.

Other Properties. To analyze other useful characteristics of a Set-BA protocol, we define two
additional properties, liveness and α-validity. Liveness describes how long it takes for nodes to
reach agreement while α-validity can be used to determine how easy it is for an adversary to make
honest nodes agree on a non-majority value.

Formally, we say that a protocol Πsba satisfies T sba
confirm-liveness (respectively αsba-validity) if the

properties as described below are satisfied except for a negligible number of executions.

• (T sba
confirm-Liveness) All honest nodes output in at most T sba

confirm rounds after all honest nodes
have input their starting value.

When the network is asynchronous, we define liveness in the same way as for state machine
replication.
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• (αbba-Validity) If c is present in the initial sets of at least αbba fraction of all nodes, then
c ∈ Oi for all honest nodes i.

T sba
confirm is a polynomial in κ, n, f , the network delay bound in ∆int, and the actual internal network

delay.

3.2 FIFO Broadcast

Single source FIFO (first in, first out) broadcast (also called Ordered Authenticated Reliable broad-
cast or OARcast in [27]) is a broadcast primitive in which all honest nodes in the protocol need to
deliver messages in the same order as they were broadcast by the sender. In one instantiation of
a FIFO broadcast protocol, we consider a single designated sender who broadcasts a sequence of
messages to all other nodes. If the sender is honest, each honest node must deliver the messages
in the same order as they were broadcast. If the sender is dishonest, all honest nodes must deliver
messages in the same order as each other; except now, this order may may be different than the
one broadcast by the sender. When composing several FIFO broadcast primitives together with
different senders, FIFO order is maintained for each individual sender but different honest nodes
may deliver messages from different senders in different orders.

Definitions. At the start of the FIFO Broadcast (FIFO-BC) protocol, each node receives the
appropriate public parameters from the environment. At any time, the designated sender may also
receive as input a message m from the environment. At any time, nodes can choose to deliver
messages.

Definition 3.4 (Security of (FIFO-BC)). A FIFO-BC protocol Πfifocast satisfies liveness, agreement,
and FIFO-order w.r.t. (A,Z) if for all κ ∈ N, the following properties hold except with negligible
probability over the random choice of view←$ EXECΠfifocast(A,Z, κ).

• ((T fifocast
warmup, T

fifocast
confirm)-Liveness) If the sender is honest and receives a message m as input in

round r > T fifocast
warmup, or if an honest node delivers m in round r > T fifocast

warmup, then all honest

nodes will have delivered m by round r + T fifocast
confirm.

Eventual liveness in asynchronous networks is defined in the same way as for state machine
replication.

• (Agreement) If an honest node delivers a message m before m′, then no honest node delivers
m′ unless it has already delivered m.

• (FIFO-Order) If the sender is honest and is input a message m before m′, then no honest
node delivers m′ unless it has already delivered m.

T fifocast
confirm is a polynomial in κ, n, f , the network delay bound in ∆int, and the actual internal network

delay.
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Notation. Let Πfifocast[(sid, j)] denote the instance of the protocol Πfifocast where node j is the
designated sender. In a consensus protocol that invokes Πfifocast[(sid, j)], we assume that each node

i keeps track of the messages delivered (i.e. messages broadcast by node j) in a local log Log
(sid,j)
i .

This represents node i’s view of broadcasts from node j in the session sid. When the session id is
clear from context, we may also write the local log simply as Logji .

Two local logs Log and Log′ are called “equal until tx”, denoted by ≈tx, if they are equivalent
until the occurrence of tx. Log[p] denotes the pth element in Log. Log(m) denotes the number p
such that Log[p] contains m. Consequently, Log(m) < Log(m′) signifies that m appears before m′

in Log.

FIFO-BC from Reliable Broadcast. Reliable broadcast is a basic broadcast primitive where
a designated sender broadcasts messages to a set of nodes. Honest nodes will only deliver those
messages that were broadcast, and will eventually deliver all messages broadcast by an honest
sender. Reliable broadcast can be considered a “continuous” version of single shot Byzantine
broadcast or the Byzantine generals problem [31]. Ho et al. [27] show how FIFO broadcast can be
achieved using reliable broadcast even in asynchronous networks. The intuition is simple: sequence
numbers are added to the messages broadcast by the sender in a reliable broadcast protocol. An
honest node does not deliver a message with sequence number k until it has delivered a message
with sequence number k − 1. We refer the reader to [27] for the detailed construction.

4 Defining Fair Ordering

We formally define fair ordering in this section. As it turns out, providing a definition that is
achievable by protocols, yet intuitive, is not trivial. Some natural definitions are not achievable
except under strong assumptions. We use this section to also go through these definitions that led
to our final definition.

(Attempt 1) – Send-order-fairness. A strawman approach is to require ordering to be in
terms of when transactions were sent by clients. For instance, if a transaction tx1 was sent by a
client before another transaction tx2 (possibly by another client), then tx1 should appear before
tx2 in the agreed upon log. Not surprisingly, this can lead to several problems: most importantly,
there needs to be a trusted way to timestamp a transaction at the client side. Even assuming
such a timestamping service, network synchrony is also required to ensure that a transaction is not
arbitrarily delayed (either by a offline user or by a malicious network adversary). Although we do
not focus on this notion, we briefly discuss the possibility of achieving it in practice using trusted
hardware in Section 8.3.

The challenges of send-order-fairness suggest it would be more prudent to define fair ordering in
terms of when the consensus nodes actually receive transactions. Since every node might receive
transactions at slightly different times, or in a slightly different order, care must be taken in
formulating the definition. We introduce a natural notion below.

(Attempt 2) – Receive-order-fairness. Intuitively, “receive order” means that the fair or-
dering is defined by looking at when enough nodes receive a particular transaction. For instance,
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if sufficiently many nodes receive a transaction tx1 before another transaction tx2, then tx1 must
appear before tx2 in the final log. This is formalized in Definition 4.1, where “sufficiently many” is
parameterized using γ. We refer to γ as the order-fairness parameter.

Definition 4.1 (Receive-order-fairness, restatement of Definition 1.1). For a view in the support
of EXECΠ(A,Z, κ), we define receive-order-fairness as follows:

• A view satisfies (γ, Twarmup) receive-order-fairness if the following holds: For any two transac-
tions m and m′, let η be the number of nodes that received both transactions between times
Twarmup and |view|. If at least γη of those nodes received m before m′ from Z, then for all
honest nodes i, i does not deliver m′ unless it has previously delivered m.

A protocol Π satisfies (γ, Twarmup) receive-order-fairness w.r.t (A,Z) if there is a negligible function
negl(·) such that for any κ ∈ N, the order-fairness property is satisfied except with probability
negl(κ) over a random choice of view←$ EXECΠ(A,Z, κ).

4.1 Condorcet paradox and the impossibility of fair ordering.

The Condorcet paradox [19], or the “voting paradox”, is a result in social choice theory that shows
how some situations can lead to non-transitive collective voting preferences even if the preferences
of individual voters are transitive. To illustrate how this applies to fair ordering, let us look at a
simple example:

Example 4.2. Suppose that there are 3 nodes: A, B, and C. In the protocol execution, 3
transactions, tx1, tx2, and tx3 are sent by clients to all the nodes.

• Node A receives transactions in the order tx1, tx2, tx3.

• Node B receives transactions in the order tx2, tx3, tx1.

• Node C receives transactions in the order tx3, tx1, tx2.

Now, 2 nodes (A and C) received tx1 before tx2, 2 nodes (A and B) received tx2 before tx3, and 2
nodes (B and C) received tx3 before tx1. It is easy to see that no protocol can satisfy fair ordering
for γ ≤ 2

3 , since such a protocol would have to include tx1 before tx2; tx2 before tx3; and tx3 before
tx1 in its final log.

Theorem 4.3 extrapolates this observation to a system with n consensus nodes.

Theorem 4.3. Consider any n, f,∆int,∆ext where ∆ext is either (none,∞) or (not-async, δext ≥ n).
Let γ ≤ n−1

n . If a consensus protocol Π satisfies (Twarmup, Tconfirm)-liveness w.r.t. all (A,Z) that
respect (n, f,∆int,∆ext)-classical execution, then it cannot also satisfy (γ, Twarmup)-receive-order-
fairness (from Definition 4.1).

Proof. The proof takes inspiration from the counterexample in Example 4.2. Denote the nodes
in the system by the numbers 1 to n. We show a specific environment Z in which no protocol
can achieve receive order-fairness. Suppose that clients submit n transactions tx1 to txn. Further,
suppose that node 1 receives the transactions in the order tx1, tx2, · · · , txn and any node i 6= 1
receives the transactions in the order txi, · · · , txn, tx1, · · · , txi−1.
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Now, it is straightforward to see that all nodes except node 2 received tx1 before tx2, all nodes
except node 3 received tx2 before tx3 and so on. Finally, all nodes except node 1 received txn before
tx1. This means that any consensus protocol that provides order-fairness for γ ≤ n−1

n must order
tx1 before tx2, · · · , txn−1 before txn, and txn before tx1 which is a contradiction.

Notice that the result in Theorem 4.3 only requires properties from the external network, and is
actually independent of the adversary. In other words, receive-order-fairness for an order-fairness
parameter γ ≤ n−1

n is impossible to achieve even when there is no adversary.

Following the previous result, one would think that receive-order-fairness might still be possible for
γ = 1. Unfortunately, a simple followup theorem shows this to be impossible in the presence of
even a single corrupt node.

Theorem 4.4. Consider any n, f,∆int,∆ext where f ≥ 1 and where ∆ext is either (none,∞) or
(not-async, δext ≥ n). Let γ ≤ 1. If a consensus protocol Π satisfies consistency and (Twarmup, Tconfirm)
liveness w.r.t. all (A,Z) that respect (n, f,∆int,∆ext)-classical execution, then it cannot also satisfy
(γ, Twarmup) receive-order-fairness.

Proof. The case for γ < 1 is handled by Theorem 4.3. To show the result for γ = 1, first suppose
that there is a protocol Π that satisfies consistency, (Twarmup, Tconfirm) liveness and (1, Twarmup)
receive-order-fairness w.r.t all (A,Z). Suppose that the nodes in the protocol are numbered from
1 to n.

Let Z be the same environment considered in the proof of Theorem 4.3. We will consider
adversaries that corrupt a single node. Suppose that an adversary A1 corrupts node 1, which
claims to have received transaction txn before tx1 (as opposed to the actual ordering of tx1 before
txn it received from the environment). Note that to all other protocol nodes, this is indistinguishable
from the world where the environment itself provided node 1, the transaction txn before tx1. Since
in this world, Π would have to result in all honest nodes ordering txn before tx1 (since all nodes
received txn before tx1), the same needs to hold true in (A1,Z)

In a similar spirit, we can consider other such adversaries Ai that corrupt node i and claim to
have received txi−1 before txi. Using the same analysis as before, we can infer than Π would also
have to result in all honest nodes ordering txi−1 before txi in (Ai,Z). But, all (Ai,Z) also cannot
be distinguished since the identity of the adversarial node is unknown to other nodes.

Consequently, with respect to (A1,Z), the protocol Π must result in all honest nodes delivering
tx1 before tx2, · · · , txn−1 before txn, and txn before tx1 which is a contradiction.

4.2 Environments that support receive-order-fairness

We find that the Condorcet paradox can be circumvented in a few ways by assuming specific
network properties.

External synchrony assumption. The primary reason for the impossibility of fair-ordering
is that different nodes may receive the same client transaction several rounds apart, resulting in
non-transitive collective ordering. Synchrony in the external network can prevent any such non-
transitive ordering. To elaborate, suppose that ∆ext = (full, δ) where δ ≤ 1 (e.g., an instant
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synchronous external network). Then, any client transaction that a node receives will reach all
other nodes within 1 round. This implies that if some node receives transactions tx1, tx2 and tx3

in that order, then no node can receive tx3 before tx1. It is now straightforward to see how this
circumvents the Condorcet paradox.

Non-corrupting adversary and γ = 1. If the adversary does not corrupt any nodes, and its
power is restricted to influencing network delays, we find that it is possible to achieve receive-
order-fairness for γ = 1. In this setting, a single leader can receive the transaction orderings from
individual nodes, and decide on a final ordering that preserves receive-order-fairness.

4.3 Towards weaker definitions for order-fairness

We give two natural relaxations of the original definition. The first is approximate-receive-order-
fairness (or simply approximate-order-fairness) while the second is block-receive-order-fairness (or
simply block-order-fairness). For approximate-order-fairness, we only look at unfairness in the
ordering of two transactions if they were received sufficiently apart in time. We emphasize that
approximate-order-fairness only makes sense in synchronous and partially synchronous settings.
On the other hand, for block-order-fairness, we choose to ignore the ordering within a block while
considering fair ordering. Notably, this allows us to circumvent the Condorcet paradox by aggre-
gating any transactions with non-transitive orderings into the same block. This is reasonable to
consider even in asynchronous environments.

First, we look at approximate-order-fairness. For a given view in the support of EXECΠ(A,Z, κ),
we define the property below.

Definition 4.5 (Approximate-Order-Fairness). A view satisfies (γ, Twarmup, ξ) approximate-order-
fairness if the following holds: For any two transactions m and m′, let η be the number of nodes
that received both transactions between times Twarmup and |view|. If at least γη of those nodes
received m more than ξ rounds before m′ from Z, then for all honest nodes i, i does not deliver
m′, unless it has previously delivered m.

A protocol Π satisfies (γ, Twarmup, ξ) approximate-order-fairness w.r.t (A,Z) if there is a negligi-
ble function negl(·) such that for any κ ∈ N, the above property is satisfied except with probability
negl(κ) over a random choice of view←$ EXECΠ(A,Z, κ).

Quickly, we notice that a protocol which satisfies (Twarmup, Tconfirm)-liveness, also satisfies
(1, Twarmup, ξ) approximate-order-fairness for any ξ ≥ Tconfirm. Clearly, if a transaction tx2 was
received after tx1 was delivered by all nodes, then tx2 will be delivered after tx1. Moreover, we also
find that if ξ < Tconfirm, then any protocol that satisfies (γ, Twarmup, ξ) approximate-order-fairness
must also satisfy (γ, Twarmup) receive-order-fairness (for environments with a different network syn-
chrony bound).

Theorem 4.6. Consider any n, f ≥ 1,∆int,∆ext. Let ∆int = (not-async, δint) and ∆ext =
(not-async, δext ≥ 1). Also consider γ ≤ 1 and ξ < Tconfirm. If a protocol Π achieves consistency,
(Twarmup, Tconfirm)-liveness, and (γ, Twarmup, ξ)-approximate-order-fairness. w.r.t. all (A,Z) that
respect (n, f,∆int,∆ext)-classical execution, then it also satisfies (γ, Twarmup)-receive-order-fairness
w.r.t. all (A′,Z ′) that respect (n, f,∆′int,∆

′
ext)-classical execution where ∆′int = (not-async, δ′int =

δint
ξ+1) and ∆′ext = (not-async, δ′ext = δext

ξ+1).
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Proof. Consider any (A′,Z ′) that respects (n, f,∆′int,∆
′
ext)-classical execution. Construct a Z that

is similar to Z ′ except that between any two rounds Z inserts ξ rounds of “silence” i.e. it takes
no action during these rounds. Note that (A′,Z) also respects (n, f,∆int,∆ext)-classical execution
which would mean that Π satisfies (γ, Twarmup, ξ) approximate-order-fairness.

Now, for two transactions tx1 and tx2 such that γ fraction nodes received tx1 before tx2 in
(A′,Z ′) (and all nodes received them after time Twarmup), they were received more than ξ rounds
apart by γ fraction nodes in (A′,Z) which means tx1 must be ordered before tx2. Consequently, Π
must result in honest nodes ordering tx1 before tx2 even in (A′,Z ′). In other words, Π will satisfy
(γ, Twarmup) receive-order-fairness w.r.t. (A′,Z ′). The result follows.

Consequently, approximate order-fairness doesn’t turn out to be very useful since it suffers from
the same problems as the previously defined receive-order-fairness. Note that from Section 4.2,
we can infer that approximate-order-fairness can be achieved when δext ≤ ξ. Still, since it only
applies to non-asynchronous networks, we propose a second definition, block-order-fairness, that
performs much better since it provides a way to handle any cycles in transaction ordering and
also applies to asynchronous networks. We note that our synchronous protocol (Section 6) also
satisfies approximate-order-fairness for ξ ≥ δext.

For a given view in the support of EXECΠ(A,Z, κ), we state the block-order-fairness property below.

Definition 4.7 (Block-Order-Fairness). A view satisfies (γ > 1
2 , Twarmup)-block-order-fairness if

the following holds: For any two transactions m and m′, let η be the number of nodes that received
both transactions between times Twarmup and |view|. If at least γη of those nodes received m before
m′ from Z, then for all honest nodes i, i does not deliver m at a later index than it delivers m′.

A protocol Π satisfies (γ, Twarmup)-block-order-fairness w.r.t. (A,Z) if there is a negligible
function negl(·) such that for any κ ∈ N, the above property is satisfied except with probability
negl(κ) over a random choice of view←$ EXECΠ(A,Z, κ).

In the next few sections, we will show protocols that guarantee block-order-fairness.

5 Overview of the Aequitas protocols

We provide a general overview of our Aequitas protocols in this section. In the next two sections,
we will dive deeper into the actual Aequitas constructions. Specifically, we provide four concrete
protocols: Πsync,lead

Aequitas ,Π
sync,nolead
Aequitas ,Πasync,lead

Aequitas and Πasync,nolead
Aequitas . Sections 6 and 7 describe the leaderless

synchronous and asynchronous protocol designs respectively. The leader-based protocols are easier
modifications to existing consensus protocols and we use Section 8.1 to briefly discuss them.

• Πsync,nolead
Aequitas is a leaderless protocol that provides consistency, weak-liveness, and block-order-

fairness in the completely synchronous setting.

• Πsync,lead
Aequitas is a leader-based protocol that provides consistency, weak- liveness, and block-order-

fairness in the completely synchronous setting.

• Πasync,nolead
Aequitas is a leaderless protocol that provides consistency, eventual-weak-liveness, and

block-order-fairness in any setting.
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• Πasync,lead
Aequitas is a leader-based protocol that provides consistency, eventual-weak-liveness, and

block-order-fairness in any setting.

Construction overview. Aequitas protocols utilize the FIFO-broadcast (FIFO-BC) and the set
byzantine agreement (Set-BA) primitives described in Section 3 in a black-box way to provide order-
fairness. At a high level, Aequitas protocols function in three steps: First, a node uses a FIFO-BC
protocol Πfifocast to send all other nodes the transactions it has received from users. Recall that
in FIFO-BC, nodes deliver messages in the same order as broadcast by an honest sender. When a
node delivers a message received from another node, it gets added to its local log. To elaborate,
broadcasts from node j as delivered by node i are tracked in the local log Logji . Next, all nodes
seek to agree on the content of these local logs so as to order the transaction tx in question. This
is done using a Set-BA protocol Πsba. At this point, intuitively, all honest nodes have agreed on
anything that will be used to compute the ordering for tx. To decide on the final ordering for tx,
we provide two options for the finalization step — a leader-based one and a leaderless one.

For the finalization step in the leader-based protocol, a designated leader proposes an extension
to the current chain. Since other nodes have all the relevant transaction orderings from the stages
before, they can verify that the leader’s proposal does not break order-fairness. If the leader’s
proposal is valid, nodes can deliver the proposed transactions by extending their LOG output to
Z. An important difference exists between such a leader-based protocol and prior leader-based
protocols: In earlier protocols, a leader could propose any ordering of its choice that would be
accepted by other nodes. On the other hand, in our leader-based protocol, a malicious leader can
mess with the transaction orderings only in a way that does not break the order-fairness property.
For instance, if a transaction tx1 was received before tx2 by all nodes, a malicious proposal that
puts tx2 before tx1 will be rejected by all the other nodes.

We propose another finalization that is leaderless and requires no further communication
between nodes. It also provides consistency, block-order-fairness and weak-liveness (from Sec-
tion 2.3). Recall that “weak” denotes that liveness depends on transactions continuing to be input
into the system.

We elaborate on the three major stages of our Aequitas protocols below:

• Stage I: Gossip / Broadcast. Each node FIFO-broadcasts transactions as they are received
as input from the environment. When a node i receives a set of transactions txs from Z, it
sends txs as input to the protocol Πfifocast[(sid, i)] with i as the designated sender. Note that
all broadcasts can be sent in the same session sid. Different session ids need to be used only
when considering composition of several protocols in the system.

In parallel to broadcasting transactions, a node also receives and processes broadcasts
from other nodes. For a node i, broadcasts sent by node j are appended to a local log Logji
when they get delivered to i by Πfifocast[(sid, j)]. Intuitively, Logji denotes node i’s view of
how transactions were received by node j.

• Stage II: Agreement on local logs. To determine the ordering for a particular transaction
tx, a node i waits until it has received tx from sufficiently many other nodes. In other words,
node i waits until there are sufficiently many k such that its local log Logki contains tx. When
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both the external and internal networks are synchronous, this can alternatively be achieved
by waiting for enough time. The properties of FIFO-BC guarantee that if two honest nodes i
and j have local logs Logki and Logkj respectively that both contain tx, then Logki ≈tx Logkj .

We state this fact as Lemma 5.1. Recall that Logki ≈tx Logkj holds when Logki and Logkj are
identical until tx occurs.

Now, the next step is for all nodes to agree on which local logs to use to determine the
ordering for tx. For a node i, let U tx

i denote the set of nodes k such that Logki contains tx.
Node i starts an instance of the protocol Πsba[(sid, tx)] and provides it the input U tx

i . Upon
the completion of the Set-BA protocol, all honest nodes receive the same set Ltx. Intuitively,
Set-BA is used to agree which nodes’ orderings should be used to determine the final ordering
for transaction tx. Recall that Lemma 3.2 guarantees that if k ∈ Ltx, then there is some
honest node j such that tx ∈ Logkj . This, along with the liveness property for FIFO-BC
ensures that all honest nodes will eventually receive tx broadcast by node k ∈ Ltx (even if k
is malicious).

Finally, we note that at the end of the agreement phase, every honest node has agreed on
a set of nodes Ltx whose transaction orderings should be used to determine the final ordering
for the transaction tx in consideration. We say that a node i has received the agreed logs for
tx if for all k ∈ Ltx, it holds that tx ∈ Logki .

• Stage III: Finalization. To decide on the final ordering for a transaction tx, we provide
two options for the finalization step: a leader-based one and a leaderless one. For both
the leader-based and leaderless finalizations, nodes first build a graph that represents any
ordering dependencies between transactions. Specifically, a node i maintains a directed graph
Gi, where vertices represent transactions and edges represent ordering dependencies. We
refer to Gi as the “dependency graph” or the “waiting graph” maintained by i. After the
agreement stage for tx is completed, the protocol now uses the local logs to see if some other
transaction might have come before. If there is another transaction tx′ that appears before
tx in sufficiently many local logs (e.g., n − f times), then i adds an edge from tx′ to tx in
Gi. Intuitively, an edge (a, b) ∈ Gi denotes that the finalization stage for b is “waiting” for
a to be delivered. Since the same Ltx is used by all honest nodes, if an edge (a, b) exists in
Gi, then it will at some point exist in Gj , when nodes i and j are both honest. However, we
note that Gi is neither guaranteed to be complete nor acyclic. Two vertices in Gi that might
never have an edge between them. Moreover, the Condorcet paradox can still create cycles in
Gi. To break ties between transactions without an edge, we use the following two techniques.

– Finalization via leader-based proposal. Πsync,lead
Aequitas and Πasync,lead

Aequitas both use a leader-
based approach to finalize transactions in the graph. For this, any leader-based con-
sensus protocol can be run along with the gossip and agreement stages above. When
a designated leader proposes and broadcasts a new block, instead of just checking the
syntactical validity of transactions, each node i checks that the proposal does not conflict
with any required order-fairness in the graph Gi. That is, node i checks that for any
transaction tx in the proposed block, if (tx′, tx) is in Gi, then either tx′ has already been
delivered or tx′ is also in the current proposed block.
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Abstractly, we allow the leader node to choose the transaction ordering but only as long
as order-fairness is still satisfied. For transactions among which there is no clear winner,
the leader may choose any ordering.

– Finalization via local computation. Πsync,nolead
Aequitas and Πasync,nolead

Aequitas both use a leaderless
approach to finalize transactions in the graph and require no further communication. At
a high level, to order transactions tx1 and tx2 between whom there in no edge in Gi, the
protocol will wait until tx1 and tx2 have a common descendant, with the final ordering
being based on which transaction vertex has the most descendants. We prove that any
other graph vertex that is a descendant of only one of tx1 and tx2 is present in Gi when
node i makes the decision for ordering tx1 and tx2. This will ensure that all honest
nodes will order tx1 and tx2 the same way.

We highlight that the above description of the finalization stage is a simplified one. As de-
scribed, it is not sufficient to avoid the Condorcet paradox. Furthermore, adversarial trans-
actions could result in a node waiting for unbounded periods of time. The actual technique
to get around these obstacles is quite nuanced and we dedicate Section 5.1 to its details.

Lemma 5.1. If two honest nodes i and j have local logs Logki and Logkj respectively where k is any

other node such that both logs contain a transaction tx, then Logki ≈tx Logkj .

Proof. This result follows directly from the agreement property of FIFO-BC.

Before diving into the details of the finalization step, we take a step back to understand why it
turns out to be quite non-trivial. We look at a simple strawman protocol based on transaction
timestamping that looks intuitive and analyze why it does not work.

The problem with timestamp-based ordering. Consider a simple synchronous protocol
Πtimestamp that works as follows:

1. When an honest node i receives a transaction tx from Z in round t, it assigns tx the timestamp
t and broadcasts (tx, t) to all other nodes.

2. Upon waiting for δext + Tconfirm rounds where δext is the network delay bound for the exter-
nal network and Tconfirm is the liveness polynomial for the broadcast primitive, nodes reach
agreement on the set of timestamps T to use to calculate the final timestamp for tx.

3. Each node calculates the final timestamp for tx as the median of all the timestamps in T. We
represent this final timestamp by final(tx).

Notice how the first two steps almost perfectly resemble the gossip and agreement stages. The
finalization (third) step is also surprisingly simple, but unfortunately can lead to easy manipulation
of final timestamps by a single adversary. To see why, consider 5 nodes, A,B,C,D and E, where
E is malicious and two transactions, tx1 and tx2. tx1 is received by nodes A, . . . , E at rounds
1, 1, 4, 4, 2 while tx2 is received by the nodes at rounds 2, 2, 5, 5, 3. Now, all nodes have received tx1

before tx2 and consequently, final(tx1) < final(tx2) should hold. However, notice how E can invert
the ordering of the final timestamps simply by switching around its own timestamps for tx1 and
tx2. E can make final(tx1) = 3 and final(tx2) = 2, i.e., a final timestamp of 3 for tx1 (median of (1,
1, 3, 4, 4)) and 2 for tx2 (median of (2, 2, 2, 5, 5)), and thus an unfair ordering.
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5.1 The Finalization Stage

We describe the general theme of the finalization stage here.

Ordering two transactions. For a pair of transactions tx and tx′, how does a node i choose
which one to deliver first? Suppose that the agreement phases for tx and tx′ result in the outputs
Ltx and Ltx′

. Define l(tx,tx′) as below.

l(tx,tx′) =
∣∣∣{k ∈ Ltx ∪ Ltx′ | Logki (tx) ≤ Logki (tx

′)
}∣∣∣

l(tx,tx′) denotes the number of logs Logki where tx was ordered at or before tx′. Now, if l(tx,tx′)

is “small,” it means that a large number of nodes have received tx′ before tx. This means that the
finalization stage for tx should wait until tx′ has been delivered. This provides a partial ordering
between any two transactions. We defer the details to when we describe the actual Aequitas
constructions.

Additional notation. Let tx Ci tx′ represent that i is waiting to deliver tx′ before proceeding
with the finalization phase for tx. Lemma 5.2 shows that l(tx,tx′) and l(tx′,tx) cannot both be “small”.
Consequently, both tx and tx′ will not wait for each other or equivalently, at most one of tx Ci tx′

and tx′ Ci tx will be true.

Lemma 5.2. l(tx,tx′) + l(tx′,tx) ≥
∣∣∣Ltx ∪ Ltx′

∣∣∣
Proof. Let X = Ltx ∪ Ltx′

. For any k ∈ X, at least one of Logki (tx) ≤ Logki (tx
′) and Logki (tx

′) ≤
Logki (tx) is true. k is therefore counted in either l(tx,tx′) or l(tx′,tx) which proves the required
result.

Adversarial transactions. The calculation of l(tx,tx′) needs to wait for the agreement phases of
both tx and tx′ to finish. Now, if an adversarial node FIFO-broadcasts a transaction txfake claiming
it to be a real user transaction, then the ordering between txfake and a real transaction tx cannot
be calculated since the agreement phase for txfake will never finish. So that this does not happen,
the protocol needs to ensure that at least one honest node has received txfake before tx (from Z).
For example, in the synchronous protocol, this is done by checking that a transaction tx′ is added
to the graph only when there is another transaction tx that has finished its agreement stage and
tx′ is present in at least

∣∣Ltx
∣∣− (n− f) + 1 among the local logs in Ltx. Note that the agreement

stage will only finish for honest transactions.

Non-transitive waiting. The Condorcet paradox can still cause non-transitive waiting. It is
still possible to have transactions tx1, tx2, and tx3 such that tx1 C tx2; tx2 C tx3; and tx3 C tx1.
The way we get around this is by delivering such transactions at the same time—by placing them
in the same block.

Graph based approach. Instead of a separate thread waiting for the resolution of each transac-
tion, representing the “waiting” between transactions as a graph provides a nice way to modularize
the protocol. Suppose that each node i maintains a directed graph Gi = (Gi.V,Gi.E) where Gi.V
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denotes the set of vertices and Gi.E denotes the set of edges in Gi. Each vertex represents a trans-
action and an edge from y to x (equiv. (y, x) ∈ Gi.E) represents that x is waiting on y i.e. xCi y.
When the agreement phase for a transaction tx completes, i does the following:

• Add tx to the graph Gi if it does not already exist.

• For all transactions tx′ such txCi tx
′, first, if tx′ does not exist in the graph, add a new vertex.

Then, add the edge (tx′, tx) to Gi.

As mentioned before, Gi may not be acyclic. In order to deal with the Condorcet paradox, we
consider the strongly connected components of Gi. Recall that a subgraph G′ of a directed graph
G is called strongly connected if every vertex in G′ can reach every other vertex in G′. A strongly
connected component is a maximal strongly connected subgraph.

Intuitively, all transactions in a strongly connected component will be delivered in the same
block. A cycle that exists in Gi (due to non-transitivity of transactions) will be entirely contained
in the same strongly connected component. On the other hand, if a transaction does not need to
wait on any other one, then it will be in a strongly connected component by itself. We can collapse
Gi into a new graph G∗i where each strongly connected component is represented as a single vertex.
G∗i is also called the condensation of Gi. Each vertex in G∗i will now denote a set of transactions.
We note that G∗i will now be acyclic.

Graph Notation. Since a vertex in Gi contains a single transaction, we may use a transaction
and its corresponding vertex interchangeably when referring to the vertex in Gi. Let TXSi(v) be the
set of transactions for a vertex v ∈ G∗i .V . Let SCCi(v) denote the strongly connected component of
Gi that contains the vertex v. SCCi(v) also denotes the corresponding vertex in the condensation
graph G∗i .

Ordering incomparable vertices in G∗i and breaking ties. As mentioned before, not all
pairs of vertices in G∗i are connected by an edge. This only gives a partial ordering for delivering
transactions. We still need a way to totally order vertices in G∗i . In the leader-based version of the
finalization step, we delegate this responsibility to the leader node. We elaborate on the technique
used in the synchronous leaderless protocol in Section 6 and the asynchronous leaderless protocol
in Section 7.

Delivering a transaction. Recall that a transaction enters the finalization stage when it has
completed the agreement stage, while it is delivered when it gets output to Z as part of the LOG.
For the leaderless protocols, the set of transactions TXSi(v) corresponding to the vertex v ∈ G∗i .V
can be delivered in the LOG output to Z when it is not waiting for any other transaction and
is preferred over any other transaction that it is incomparable with in the graph. For this, care
must be taken to ensure that the set of transactions that tx is incomparable with is the same when
all honest nodes are deciding to deliver tx, which we defer to the actual protocol descriptions in
Sections 6 and 7.
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6 The Synchronous Aequitas protocol

We describe Πsync,nolead
Aequitas , the leaderless Aequitas protocol for the completely synchronous setting. By

“complete synchrony,” we mean that both the external and internal networks are synchronous. For
this section, we assume that (A,Z) respects ∆ext = (full, δext) ext-synchrony and ∆int = (full, δint)
int-synchrony.

To build the Πsync,nolead
Aequitas protocol, we assume a secure FIFO-BC protocol Πfifocast (from Defini-

tion 3.4) and a Set-BA secure protocol Πsba (from Definition 3.1) that work for any (A,Z) that
respect (n, f,∆int,∆ext)-classical execution. Let (T fifocast

warmup, T
fifocast
confirm) and T Set-BA

confirm denote the liveness
parameters for Πfifocast and Πsba respectively. We note that any bound for the number of corruptions
f will be at least as restrictive as bounds required by Πfifocast and Πsba.

6.1 Protocol Description

The Πsync,nolead
Aequitas protocol follows much of the same general techniques from Section 5. The gossip

and agreement stage take place exactly as described there. In the gossip stage, a node i forks
an instance of Πfifocast[(sid, i)] and uses it to broadcast transactions as they are received from Z.
After broadcasting a transaction tx, it waits until the broadcasts from all honest nodes would have
arrived. Let U tx

i denote the set of nodes k such that tx ∈ Logki . Note that all honest nodes are
present in U tx

i . In the agreement stage, i forks an instance of Πsba[(sid, tx)] to agree on a set Ltx

indicating the nodes whose logs to use to order tx.
For the finalization stage, we now present the remaining details that were deferred from Sec-

tion 5.1. Please refer to Section 5 for any notation.

Building the “waiting” graph Gi. Recall that each node i builds a graph Gi where vertices are
transactions and edges denote ordering dependencies between transactions. For two transactions

tx and tx′, an edge (tx′, tx) is added to Gi if l(tx,tx′) ≤
∣∣∣Ltx ∪ Ltx′

∣∣∣ − γn + f . Each node i also

maintains the condensation graph G∗i where each strongly connected component in Gi is condensed
to a single vertex.

Ordering incomparable vertices in G∗i . Suppose that v and v′ are two vertices in G∗i that are
are currently not comparable i.e. they do not have an edge between them. To determine which
vertex to deliver first, we wait until they have a common descendant, after which we order based
on number of descendants. We note that once a common descendant arrives, any other transaction
that arrives will also be a descendant of both v and v′. In other words, the vertex with the higher
number of descendants will become fixed allowing for a consistent ordering across protocol nodes.
Lemma 6.1 shows a helpful result on when vertices can be “incomparable.”

A subtle point to note here is that the common descendant itself can cause v and v′ to be
combined into the same strongly connected component if it creates a cycle containing them. This
is precisely why our protocol achieves weak-liveness, where we achieve liveness, if a transaction
arrives late enough that it cannot create a cycle with transactions in v and v′. Effectively, we
need to wait for a transaction to arrive at a sufficiently later time in order to “flush out” earlier
transactions.
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Lemma 6.1. Let v1 and v2 be two vertices in G∗i that do not have an edge between them. Let rfirst

denote the time when any transaction in TXS(v1) was first received by a node. Let rlast denote the
time when any transaction in TXS(v2) was last received by a node. Then rlast − rfirst ≤ 2δext.

Proof. The proof is straightforward. Suppose that txfirst was received by some node at time rfirst.
Then, all nodes have received txfirst as input by time rfirst + δext. Similarly, suppose that txlast was
received last by some node at time rlast. Then, no node has received txfirst as input before time
rlast − δext. Since there is no edge from v1 to v2, it cannot be the case that all nodes received txfirst

before txlast. Therefore, rlast − rfirst ≤ 2δext.

Breaking ties. We use an a priori known ordering relation to break any ties that arise (e.g., two
vertices with equal number of descendants). In particular, suppose that Ord is a binary relation
on 2T × 2T that is known a priori to all nodes. 2T represents the power set of T . The relation
is defined on sets of transactions (rather than individual transactions only) since we may deliver
several transactions at once. We assume that Ord is supplied to all nodes on initialization by Z.
We will use this function to deterministically break ties between two sets of transactions when
neither should clearly come before the other. For two sets S1 and S2, (S1, S2) ∈ Ord implies that
all nodes agree S1 should come before S2 if there is no clear winner. Ord can also be used to order
transactions in the same block. In general, the Ord relation only needs to satisfy two properties:

• ∀(a, b) ∈ 2T × 2T ; a 6= b, exactly one of (a, b) and (b, a) is in Ord.

• ∀a, b, c ∈ 2T , if (a, b) ∈ Ord and (b, c) ∈ Ord then (a, c) ∈ Ord.

We note that Ord can be defined using a simple alphabetical or ascending order.

Delivering transactions. The transactions TXSi(v) of a vertex v in G∗i can be delivered when:

• v is a source vertex i.e. it has no incoming edge. This ensures that v is not waiting on any
other transaction to be delivered first.

• 3δext rounds have passed since v was added to the graph. Waiting for 2δext rounds ensures
that any other vertex v′ that v is incomparable to, is also present in the graph. Waiting for
another δext rounds ensures that any vertex that is a descendant of only one of v such a v′ is
also present in the graph.

• For any other source vertex v′, v has a common descendant with v′ and either has more
descendants or has an equal number of descendants and (TXSi(v),TXSi(v

′)) ∈ Ord holds.
This ensures that every node will order v before v′.

Bound on f . Suppose that (γ, ·) order-fairness needs to be realized. This implies that if γn
nodes receive transactions in a particular order, it must be reflected in the final ordering. Since f
nodes can be adversarial, the output must be the same even if γn− f of those orderings are seen.
Now, as we don’t want a bi-directed edge to be added to Gi (this can lead to an unbounded length
cycle), γn − f > n

2 must hold. Equivalently, n > 2f
2γ−1 . For γ = 1 block order-fairness, we require

an honest majority.
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Communication Complexity. Let s be the size (in bits) of a transaction. Let B(λ) be the com-
munication complexity of an optimal λ-bit Byzantine agreement protocol. Then, reliable broadcast
for one sender can be instantiated with O(B(s)) communication for each s-bit transaction tx. Con-

sequently, for each transaction, Πsync,nolead
Aequitas has communication complexity O(nB(s) + nB(1)).

6.2 Protocol Pseudocode

Initialization. At the start of the protocol, we assume that i receives the identities of other
protocol nodes, n, f , the maximum network delays δint, δext, and the binary relation Ord. A
FIFO-BC protocol Πfifocast and a Set-BA protocol Πsba have also been agreed upon a priori. Let
T fifocast

confirm and T sba
confirm represent the liveness bounds for Πfifocast and Πsba respectively. Now, for

each j ∈ N , i initializes Logji ← []. It also initializes an empty graph Gi and a final output log LOGi.

• At the start of a round r, when i receives a set of transactions txs from Z, it does the following:

1. (Gossip)

(a) Fork an instance of Πfifocast[(sid, i)] with i as the sender, if it does not already exist.

(b) Send txs as input to Πfifocast[(sid, i)].

(c) Record (sid, txs, gossip-end, r + δext + T fifocast
confirm)

2. (Agreement)

(a) Check if there is any previously recorded tuple (sid, gossip-end, txs′, r′) such that r = r′.

(b) For such a tuple for txs′, for each tx ∈ txs′, fork an instance of Πsba[(sid, tx)] and provide
it the input U tx

i .

(c) Record (sid, agreement-end, tx, r + T sba
confirm) for each tx ∈ txs′.

3. (Build Graph)

(a) Check if there is any previously recorded tuple (sid, agreement-end, tx, r′) such that r = r′.

(b) For such a tuple for tx, first add a vertex denoted by tx to Gi if it does not already exist.
Now, for any other transaction tx′ seen so far that has not yet been delivered,

i. Let u =
∣∣{k ∈ Ltx | tx′ ∈ Logki

}∣∣.
ii. If u ≥

∣∣Ltx
∣∣− (n− f) + 1, compute l(tx,tx′) as per Section 5.1.

iii. If l(tx,tx′) ≤
∣∣∣Ltx ∪ Ltx′

∣∣∣− γn+ f , then record tx C tx′. Add an edge (tx′, tx) to Gi

if it does not already exist.

(c) Record (sid, graph-end, tx, r + 3δext) for tx

4. (Finalization)

(a) Compute the condensation graph G∗i of Gi by collapsing each strongly connected com-
ponent into a single vertex.

(b) Let Vsource be the set of vertices in G∗i where v ∈ Vsource if it satisfies:

• All transactions in TXS(v) have been received.
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• v is a source vertex in G∗i . That is, v has no incoming edges.

(c) Let Vfinalize ⊆ Vsource be the set of vertices v that also satisfy:

• For all tx∗ ∈ TXS(v), there is any previously recorded tuple (sid, graph-end, tx∗, r′)
with r ≥ r′

(d) For v ∈ Vsource, let Desc(v) denote the descendants of v in G∗i . Let nDesc(v) = |Desc(v)|
i.e. the number of descendants.

(e) For v ∈ Vfinalize and v′ ∈ Vsource, let common-desc(v,v′) be a boolean that denotes whether
v and v′ have a common descendant. That is, we define common-desc(v,v′) := (Desc(v)∩
Desc(v′) 6= ∅)

(f) If there is a v ∈ Vfinalize such that for all other v′ ∈ Vsource,

• common-desc(v,v′) = true

• Either nDesc(v) > nDesc(v′) holds or (nDesc(v) = nDesc(v′)) ∧ (TXS(v),TXS(v′)) ∈
Ord.

then, deliver transactions in v by appending TXS(v) to LOGi. Remove v from G∗i and
the corresponding vertices form Gi.

(g) Repeat steps 4b to 4f until there is no such v in step 4f.

(h) Output the current LOGi to Z.

• When i receives txs from Πfifocast[(sid, j)], it appends txs to Logji and adds j to the set U tx
i .

• When i receives the output from Πsba[(sid, tx)], it stores it as Ltx.

Transaction Lifecycle. Suppose that a transaction tx is input to node i in round r0. Since
the external network is synchronous, by round r0 + δext, all nodes will have been input tx by Z.
Consequently, by round r1 = r0 + δext + T fifocast

confirm, node i will have received the gossip broadcasts
from all other honest nodes. By round r2 = r1 + T sba

confirm, node i will receive the output of the
agreement stage for tx, and tx can be added to the graph Gi. Now by round r3 = r2 + 2δext, any
other transaction that tx could be incomparable with will also get added to Gi. Waiting for this
time ensures that tx does not get delivered before ensuring that all relevant transactions have been
placed in the graph.

We now prove the consistency (in Section 6.3), weak-liveness (in Section 6.4), and block-order-

fairness (in Section 6.5) properties for the Πsync,nolead
Aequitas protocol.

6.3 Consistency Proof

To show consistency, we need to prove that two honest nodes i and j remove transactions from
their graphs G∗i and G∗j in the same order. For this, we first present a helpful lemma (Lemma 6.2),
showing that the graphs G∗i and G∗j for honest nodes i and j get built in the same way.

Lemma 6.2. Suppose that when an honest node i delivers tx, v = SCCi(tx) is the vertex that
contains tx in G∗i . That is, tx is delivered in the set of transactions TXSj(v). Now, if another
honest node j delivers tx and v′ = SCCj(tx) at that point, then TXSi(v) = TXSj(v

′), or equivalently
SCCi(tx) = SCCj(tx) when tx is output by each of the nodes. This means that we can drop the node
subscripts.
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Proof. Suppose for contradiction, that there is a transaction tx′ such that tx′ ∈ TXSi(v) and
tx′ /∈ TXSj(v

′) when tx was output by the two nodes. Since tx and tx′ are in the same strongly
connected component in Gi, there is a path from tx′ to tx which also means that there is a path
from tx′ to tx in Gj when tx gets added to Gj . Since tx′ is not in the same component as tx in Gj ,
this implies that for j to output tx, it must have output tx′ before.

But tx and tx′ being in the same component in Gi also implies that there is a path from tx to
tx′. Consequently, j also needs to wait for tx before delivering tx′. This implies that tx and tx′

are in the same strongly connected component in Gj which contradicts the assumption. The result
follows.

We can now state the consistency theorem.

Theorem 6.3 (Consistency of Πsync,nolead
Aequitas ). Consider any n, f, γ,∆ext = (full, δext),∆int = (full, δint)

with n > 2f
2γ−1 . Let Πfifocast be a secure FIFO-BC protocol and Πsba be a secure Set-BA proto-

col. Then, Πsync,nolead
Aequitas satisfies consistency w.r.t. any (A,Z) that respects (n, f,∆int,∆ext)-classical

execution.

Proof. Suppose that an honest node delivers a transaction tx1 before another one tx2. We need to
show that no honest node will deliver tx2 without delivering tx1 first. Consider two honest nodes
i and j. Let v(1,i) = SCCi(tx1) and v(2,i) = SCCi(tx1) be vertices in G∗i when tx1 and tx2 were
delivered. Further, let v(1,j) = SCCj(tx1) and v(2,j) = SCCj(tx1) be vertices in G∗j when tx1 and tx2

were delivered. From Lemma 6.2, we know that v1 = v(1,i) = v(1,j) and v2 = v(2,i) = v(2,j). Further,
TXSi(v1) = TXSj(v1) and TXSi(v2) = TXSj(v2). Now, either tx1 was delivered even before tx2 was
added to Gi, or there is an edge from v1 to v2 in G∗i (which caused tx1 to be output before) or v1

and v2 are incomparable.

• If tx1 was delivered before tx2 was added to Gi, then at least γn−f nodes received tx1 before
tx2. Therefore, even if tx2 gets added to Gj before tx1, there will be an edge from tx1 to tx2

in Gj . By Lemma 6.2, tx1 cannot be in the same SCC as tx2 either, which implies that node
j cannot deliver tx2 first.

• If (v1, v2) is an edge in G∗i , then it will also be in G∗j when j delivers TXS(v2). This means
that j cannot deliver TXS(v2) before it delivers TXS(v1).

• If there is no edge between v1 and v2 in G∗i , then node i delivers TXS(v1) before because v1

had more descendants (or because of the deterministic tie-breaker). Since j waits for 2δext

time, both v1 and v2 are present in its graph G∗j when j outputs TXS(v2), causing j to wait
for a common descendant of v1 and v2 to be added. By waiting for another δext rounds, any
other vertex that is not a common descendant will also be in G∗j , and the difference in the
number of descendants of v1 and v2 will remain constant henceforth. This means that j will
take the same decision as i to deliver TXS(v1) before TXS(v2).

The consistency result follows.
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6.4 Liveness Proof

As mentioned before, we show that Πsync,nolead
Aequitas satisfies weak-liveness. To show weak-liveness for a

transaction tx, first, in Lemma 6.4, we prove that if a transaction is input sufficiently after tx, it
cannot be coalesced into the same strongly connected component as tx.

Lemma 6.4. Consider a transaction tx and build the set T as per the weak-liveness definition. That
is, T is built recursively as follows: (1) Add tx to T; (2) For tx∗ ∈ T, add to T, all transactions
that were received by at least one honest node before tx∗. Now, suppose that there was another
transaction tx′ that is input to all nodes after all transactions in T. Then SCCi(tx) 6= SCCi(tx

′)
for any honest i.

Proof. Suppose that tx′ = tx0 was in the same strongly connected component as tx = txk for
an honest node i. This means that there are transactions tx1, tx2, . . . , txk−1 such that the edges
(tx′ = tx0, tx1), (tx1, tx2), . . . , (txk−1, tx = txk) are in the graph Gi. This means that at least one
honest node received tx0 before tx1, at least one honest node received tx1 before tx2 and so on.
This means that by construction of T, tx′ would be in T which is a contradiction. We conclude
that SCCi(tx) 6= SCCi(tx

′).

We now present the weak-liveness result for Πsync,nolead
Aequitas .

Theorem 6.5 (Weak-Liveness of Πsync,nolead
Aequitas ). Consider any n, f, γ, ∆ext = (full, δext), ∆int =

(full, δint) with n > 2f
2γ−1 . Let Πfifocast be a secure FIFO-BC protocol and Πsba be a secure

Set-BA protocol. Further, suppose that Πfifocast satisfies (T fifocast
warmup, T

fifocast
confirm) liveness, and Πsba sat-

isfies T sba
confirm liveness. Then, Πsync,nolead

Aequitas satisfies (T fifocast
warmup, T

∗
confirm)-weak-liveness where T ∗confirm =

5δext + T fifocast
confirm + T sba

confirm − 1 w.r.t. any (A,Z) that respects (n, f,∆int,∆ext)-classical execution.

Proof. Suppose that tx was first input by Z in round r > T fifocast
warmup. Then, tx is received by

all honest nodes as input by round r + δext and consequently added to all honest graphs Gi by
round r + 2δext + T fifocast

confirm + T sba
confirm. Finally, tx is part of Vfinalize for all honest nodes by round

r + 5δext + T fifocast
confirm + T sba

confirm.
Now, consider the set T built form tx as in the weak-liveness definition. Suppose now that a

transaction txflush is input to all nodes after all transactions in T. Let rflush be the round that
txflush is first input to some node. Then, txflush is received by all nodes by round rflush + δext and
therefore added to all honest graphs Gi by round rflush +2δext +T fifocast

confirm +T sba
confirm. From Lemma 6.4,

v = SCCi(tx) 6= SCCi(txflush) for any honest i. Now, any transaction tx′ that tx is incomparable
was input to at least one honest node no later than tx, i.e., txflush was received after tx′ by all
honest nodes. Consequently, txflush will be a descendant of both tx and tx′. This means that node
i can deliver TXSi(tx) when TXSi(tx) ∈ Vfinalize, and when txflush gets added to its graph. Since
the bound δext could be much larger than the actual network delay, we can guarantee that both
conditions are met for all honest nodes only by round rflush + 5δext + T fifocast

confirm + T sba
confirm − 1 (since

r + 1 ≤ rflush by construction).
The result follows.

In Section 6.6, we show a simple modification to Πsync,nolead
Aequitas protocol achieves (conventional) liveness,

while continuing to achieve consistency and order-fairness, when the external network is restricted
such that δext ≤ 1.
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6.5 Block-Order-Fairness Proof

Theorem 6.6 (Block-Order-Fairness of Πsync,nolead
Aequitas ). Consider any n, f, γ,∆ext = (full, δext),∆int =

(full, δint) with n > 2f
2γ−1 . Let Πfifocast be a secure FIFO-BC protocol and Πsba be a secure Set-BA pro-

tocol. Further, suppose that Πfifocast satisfies (T fifocast
warmup, T

fifocast
confirm) liveness, and Πsba satisfies T sba

confirm

liveness. Then, Πsync,nolead
Aequitas satisfies (γ, T fifocast

warmup) block-order-fairness w.r.t. any (A,Z) that respects
(n, f,∆int,∆ext)-classical execution.

Proof. The proof is straightforward. Let tx1 and tx2 be two transactions that all nodes receive after
time T fifocast

warmup. First, we note that if γn nodes receive tx1 before tx2, then at least γn − f honest
ones do. This means that then there will be an edge from tx1 to tx2 in all honest Gi. Consequently,
either tx1 will be delivered before tx2 by all nodes, or it will end up in the same strongly connected
component as tx2 and be delivered at the same time. In other words, tx1 cannot be delivered at a
later index than tx2 in the LOG.

Corollary 6.6.1. Πsync,nolead
Aequitas also satisfies (γ, T fifocast

warmup) receive-order-fairness when δext ≤ 1.

Proof. When δext = 1, there are no cycles in the transaction dependencies. In other words, there
are no cycles in Gi for an honest node i, and each transaction is in a strongly connected component
by itself. Therefore, if at least γn nodes receive tx1 before tx2, there will be an edge from tx1 to
tx2 in all honest Gi, and consequently, node i will deliver tx1 before tx2.

6.6 Modified protocol for δext ≤ 1

In this section, we show a modification to the Πsync,nolead
Aequitas protocol that achieves (conventional)

liveness when δext ≤ 1.
Consider a protocol Π∗ that modifies Πsync,nolead

Aequitas as follows: For a transaction tx input in
round r, in the finalization step, instead of waiting for a common descendant, deliver tx in round
r + 4δext + T fifocast

confirm + T sba
confirm based on which of its incomparable vertices have a larger number of

descendants. Specifically, Π∗ simply excludes the check for common-desc(v,v′) = true in step 4f of

the pseudocode for Πsync,nolead
Aequitas (Section 6.2).

Theorem 6.7 shows that Π∗ satisfies consistency, (conventional) liveness, and receive-order-
fairness.

Theorem 6.7. Consider any n, f, γ, ∆ext = (full, δext), ∆int = (full, δint) with n > 2f
2γ−1 . Let

Πfifocast be a secure FIFO-BC protocol and Πsba be a secure Set-BA protocol. Further, suppose that
Πfifocast satisfies (T fifocast

warmup, T
fifocast
confirm) liveness, and Πsba satisfies T sba

confirm liveness. Then, the protocol

Π∗ (modified from Πsync,nolead
Aequitas ) satisfies consistency, (T fifocast

warmup, T
∗
confirm)-liveness where T ∗confirm =

5δext + T fifocast
confirm + T sba

confirm, and (γ, T fifocast
warmup)-receive-order-fairness w.r.t. any (A,Z) that respects

(n, f,∆int,∆ext)-classical execution.

Proof. The main component of the proof is actually to prove the consistency of Π∗. We note that
liveness essentially follows directly from the construction of Π∗, while order-fairness follows in the
same way as for Πsync,nolead

Aequitas (see Section 6.5; Theorem 6.6 and Corollary 6.6.1). We sketch the

consistency proof below, reusing several components from the consistency proof for Πsync,nolead
Aequitas (see

Theorem 6.3).
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Consistency Proof Sketch. Consider a transaction tx input to honest node i in round r. First,
note that any transaction tx′ that is incomparable with tx is input to some honest node no later
than round r + δext, which implies i will have received it as input no later than round r + 2δext.
Consequently, tx′ is added to Gi by round r + 3δext + T fifocast

confirm + T sba
confirm. In other words, any

incomparable transaction is present in Gi when node i decides on the ordering for tx. We now need
to show the ordering among these incomparable vertices (based on number of descendants) will be
the same, resulting in all nodes taking the same ordering decision regarding tx.

Specifically, let tx′ be incomparable with tx and suppose another transaction tx∗ is a descendant
of tx but not of tx′ in some honest Gj . We need to show that, for any honest node j, tx∗ is present
in Gi, when i delivers tx. We note that such a tx∗ will be received by some honest node by round
r + 2δext (which is the last round some node could have received tx′), which implies that all nodes
(including node i) will receive it by round r + 3δext. Consequently, tx∗ will be added to Gi by
round r + 4δext + T fifocast

confirm + T sba
confirm. In other words, any transaction that increases the number of

descendant only for one of tx and tx′ will be present in Gi by this time. Consequently, the difference
in the number of descendants of tx and tx′ will be the same for all honest nodes when they deliver
tx, i.e., all honest nodes will order tx and tx′ the same way.

We note that the other parts from the consistency proof for Πsync,nolead
Aequitas (Section 6.3; Theo-

rem 6.3) now apply.

For completeness, to see why liveness holds, suppose that a transaction tx is first input in round
r. Then, it is received as input by all nodes by round r + δext. Since nodes deliver a transaction
4δext + T fifocast

confirm + T sba
confirm rounds after they receive it as input, we note that all nodes will deliver

tx by round r + 5δext + T fifocast
confirm + T sba

confirm = r + T ∗confirm.

7 The Asynchronous Aequitas protocol

We describe the leaderless asynchronous protocol Πasync,nolead
Aequitas in this section. The general technique

is the same as the one for its synchronous equivalent which we discussed in Section 6.1. We note
the major modifications here:

• First, we note that we can no longer wait for a specific number of rounds, since we are not
making any synchrony assumptions. Rather, to start the agreement phase, a node i waits
to receive a transaction n− f times from other nodes. This means that after the agreement
phase for tx returns the set Ltx, only n− 2f indices are guaranteed to be honest (instead of
n− f honest in the synchronous protocol).

• Now, to realize (γ, Twarmup) block-order-fairness, we need γn− 2f > n
2 to hold. Equivalently,

we need n > 4f
2γ−1 . This means that even for γ = 1, our protocol requires n > 4f . For other

values of γ, the fraction of nodes allowed to be corrupted will be smaller.

• When i receives the output Ltx from the agreement phase, it makes sure that any transaction
that appears in at least f+1 logs is added to the graph Gi. This ensures that before delivering
tx, any other vertex that it is “incomparable” with exists in the graph. At the same time, it
also ensures that maliciously placed transactions are not added to the graph.
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• Suppose that v and v′ are incomparable. The synchronous protocol delivered the vertex with
the higher number of descendants when a common descendant vcommon was added to the
graph. This is not enough to ensure consistent ordering across nodes in the asynchronous
setting. Before delivering v or v′, a node also needs to wait for vertices incomparable with
vcommon to be received. Note that this does not happen within a fixed time as it did in the
synchronous case.

The rest of the protocol is more or less identical to the synchronous protocol Πsync,nolead
Aequitas . For

completeness, we write down the entire protocol in Section 7.1. In the subsequent sections, we show
that Πasync,nolead

Aequitas satisfies consistency, weak-liveness, and order-fairness.

7.1 Protocol Pseudocode

We describe Πasync,nolead
Aequitas for γ = 1 for an honest node i below:

• (Gossip) When i receives a set of transactions txs from Z, it does the following:

1. Fork an instance of Πfifocast[(sid, i)] with i as the sender, if it does not already exist.

2. Send txs as input to Πfifocast[(sid, i)].

• When i receives txs from Πfifocast[(sid, j)], it does the following:

1. Append txs to Logji and add j to the set U tx
i .

2. if
∣∣U tx

i

∣∣ ≥ n− f, then fork an instance of ΠSet-BA[(sid, tx)] and provide it the input U tx
i

• When i receives Ltx from Πsba[(sid, tx)], it does the following:

1. Record the output Ltx

2. Add a vertex denoted by tx to Gi if it does not already exist

3. For any tx′ seen in at least f + 1 Logji , add tx′ to Gi if it does not already exist

4. For any tx′ in Gi, if Ltx′
exists, calculate l(tx,tx′) as per Section 5.1. If l(tx,tx′) ≤ f , add

the edge (tx′, tx) to Gi

5. Run the Finalization step

• (Finalization)

1. Compute the condensation graph G∗i of Gi by collapsing each strongly connected com-
ponent into a single vertex.

2. Let Vsource be the set of vertices in G∗i where v ∈ Vsource if it satisfies:

• All transactions in TXS(v) have been received.

• v is a source vertex in G∗i . That is, v has no incoming edges.

3. For v ∈ Vsource, let Desc(v) denote the descendants of v in G∗i . Let nDesc(v) = |Desc(v)|
i.e. the number of descendants.

4. For v, v′ ∈ Vsource, let common-desc(v,v′) be a boolean that denotes whether v and v′ have
a common descendant. That is, we define common-desc(v,v′) := (Desc(v) ∩Desc(v′) 6= ∅)
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5. If there is a v ∈ Vsource such that for all v′ ∈ Vsource,

• common-desc(v,v′) = true

• Suppose that vcommon is the common descendant. Then, check that the transactions
in any vertex incomparable with vcommon has been received.

• Either nDesc(v) > nDesc(v′) holds or (nDesc(v) = nDesc(v′)) ∧ (TXS(v),TXS(v′)) ∈
Ord.

then, deliver transactions in v by appending TXS(v) to LOGi. Remove v from G∗i and
the corresponding vertices form Gi.

6. Repeat steps 2 to 5 until there is no such v in step 5.

7. Output the current LOG to Z.

7.2 Consistency Proof

Theorem 7.1 (Consistency of Πasync,nolead
Aequitas ). Consider any n, f < n

4 ,∆ext,∆int. Let Πfifocast be a se-

cure FIFO-BC protocol and Πsba be a secure Set-BA protocol. Then, Πasync,nolead
Aequitas satisfies consistency

w.r.t. any (A,Z) that respects (n, f,∆int,∆ext)-classical execution.

Proof. Suppose that an honest node i delivers transactions in v1 = SCCi(tx1) before v2 = SCCi(tx2).
We first note that the proof for Lemma 6.2 carries over even for the asynchronous setting. This
implies that for any honest node j and a transaction tx, SCCj(tx) = SCCi(tx) = SCC(tx). Now,
one of the following three cases can arise:

1. tx1 was delivered by i even before tx2 was added to Gi. This means that at least n− 2f logs
for indices in Ltx2 contained tx1 before tx2. Consequently, for any other honest node j, even
if tx2 was added to Gj before, an edge from tx1 to tx2 would also be added. Since tx1 and
tx2 are not in the same strongly connected component, this implies that j cannot deliver tx2

before first delivering tx1.

2. (v1, v2) ∈ G∗i .E. This means, that for any honest node j, G∗j would also have this edge.
Consequently, all honest nodes will deliver transactions in v1 before transactions in v2.

3. v1 and v2 are incomparable in G∗i . Consequently, tx2 was present before tx1 in at least f + 1
logs which implies that the node tx2 was present in Gi when tx1 was delivered. Now, from
the description of Πasync,nolead

Aequitas , i needs to wait for a common descendant of v1 and v2 as well
as any vertices it is incomparable with to be received and added to the graph. Let Desci(v1)
and Desci(v2) be the descendants in G∗i of v1 and v2 respectively.

Now, let v′ ∈ Desci(v1); v′ /∈ Desci(v2). That is, v′ is a descendant of v1 but not of v2. We
need to show that v′ is present in G∗j for an honest j, before j delivers tx1 or tx2. First, we
note that since v1 and v2 are incomparable, both are present in G∗j before j delivers either
one. This means that j also needs to wait for a common descendant vcommon of v1 and v2 to
be received and added to j’s graph. Now, v′ cannot be a descendant of vcommon (otherwise it
would also be a common descendant). Therefore, either there is an edge from v′ to vcommon

in G∗j or v′ and vcommon. In either case, j needs to wait for v′ to be received and added to its
graph.
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This implies that any vertex that is a descendant of exactly one of v1 and v2 is also present
in G∗j when j is deciding whether to output transactions in v1 or v2 first. Consequently, the
difference in the number of descendants between v1 and v2 is the same as when i made its
decision. In other words, j will also deliver tx1 before tx2.

We conclude that any honest node j will also deliver tx1 before tx2.

7.3 Liveness Proof

Theorem 7.2 (Liveness of Πasync,nolead
Aequitas ). Consider any n, f < n

4 ,∆ext,∆int. Let Πfifocast be a secure

FIFO-BC protocol and Πsba be a secure Set-BA protocol. Then, Πasync,nolead
Aequitas satisfies eventual-weak-

liveness w.r.t. any (A,Z) that respects (n, f,∆int,∆ext)-classical execution.

Proof. Suppose that a transaction tx was input to some node in the system. Eventual delivery in
the external network guarantees that all nodes will eventually receive tx. Subsequently, eventual
delivery in the internal network guarantees that the agreement phase for tx will eventually end
resulting in all nodes adding tx to their “waiting graph.” In other words, tx will eventually make
its way into the graph Gi for all honest nodes i.

Consider the set T built from tx as in the weak-liveness definition. Suppose now, that a
transaction txflush is input to all nodes after all transactions in T. First, we note that eventual
delivery (in both the external and internal networks) guarantees that every honest graph Gi will
also eventually contain txflush.

Now, we note that the proof of Lemma 6.4 also applies to the asynchronous setting. This means
that tx and txflush will be in different strongly connected components in all honest Gi. Since txflush

is input after tx to all nodes, it will be a descendant of tx in all honest G∗i .
Consider any other transaction tx′ that is incomparable with tx in some honest Gi. Then, tx′

was received by at least one honest node no later than tx, i.e., txflush was input to all honest nodes
after tx′. Consequently, txflush will also be a descendant of tx′ in all honest Gi.

This means that when all such tx′ get added to Gi, node i will be able to deliver tx based
on which of its incomparable vertices has a larger number of descendants. Since eventual delivery
guarantees that any input transaction will eventually be added to the graph, we conclude that all
honest nodes will eventually deliver transaction tx.

The result follows.

7.4 Block-Order-Fairness Proof

Theorem 7.3 (Block-Order-Fairness of Πasync,nolead
Aequitas ). Consider any n, f < n

4 ,∆ext =
(full, δext),∆int = (full, δint), γ = 1. Let Πfifocast be a secure FIFO-BC protocol and Πsba be a secure

Set-BA protocol. Then, Πasync,nolead
Aequitas satisfies (γ, Twarmup) block-order-fairness w.r.t. any (A,Z) that

respects (n, f,∆int,∆ext)-classical execution.

Proof. This proof proceeds in the same way as the block-order-fairness proof for Πsync,nolead
Aequitas .
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8 Other results

8.1 Leader-Based Aequitas Protocols

We use this section to describe a sketch of the leader-based Aequitas constructions, Πsync,lead
Aequitas and

Πasync,lead
Aequitas . For this, we will pair an existing leader-based consensus protocol Πleader with the three

Aequitas stages described in Section 5.

The Aequitas stages. Each node follows the three stages of the Aequitas protocol. An honest node
i broadcasts or “gossips” transactions as it receives them from the environment. Next, all nodes
agree on which of these broadcasts to use to determine the ordering for a particular transaction.
Finally, i builds the “waiting” graph Gi.

Leader proposal. The actual method of selecting the leader is orthogonal to our construction.
Leaders may be cycled periodically or only when there is a detected failure. We only assume that
the current leader node is known to all nodes so that proposals from non-leader nodes can be
immediately rejected. The current leader node proposes a set of blocks to add to the log. Suppose
that we represent the proposal by S1, . . . , Sp where each of the Sx are sets of transactions. Before
accepting the proposal, an honest node does the following:

1. Use the protocol Πleader to reach agreement on the block proposal (to ensure that the leader
does not equivocate). During the voting for Πleader, ensure that at least f + 1 nodes received
the transactions in the proposal from Z.

2. Ensure that the proposed transactions are valid.

3. For each set Sx from S1 to Sp,

• Wait for all tx ∈ Sx to be received and added to Gi. If all tx ∈ Sx do not belong to the
same strongly connected component in Gi, then reject the proposal.

• If SCC(tx) has an incoming edge in G∗i that has not been delivered from S1 to Sx−1,
then reject the proposal.

4. Accept the proposal and append S1, . . . , Sp to LOGi.

5. Remove the delivered transactions from Gi (and G∗i ).

6. Output LOGi to Z.

8.2 Adding Order-Fairness to Any Consensus Protocol

As mentioned before, one of the upshots of our Aequitas constructions is that they provide a generic
compiler that allows any standard consensus protocol to be converted into one that provides order-
fairness. Aequitas protocols only rely on reliable broadcast and Byzantine agreement, both of which
can be realized by any existing consensus protocol.
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8.3 Send-Order-Fairness

Throughout this paper, we focused on notions of order-fairness for which transaction ordering is
determined by the order in which transactions were received by the protocol nodes. An mentioned
in Section 4, an alternative notion is that of send -order-fairness, where transactions are ordered
according to the time they were sent by users. It is easy to see that for this to work, it would
require a trusted or verifiable client-side timestamp. In other words, there needs to be a trusted
way for a client to prove that her transaction was generated at time t.

Intuitively, this would require the presence of some trusted party to attest to the accuracy of the
generated timestamp. Trusted execution environments (TEEs), e.g., Intel SGX [28], are a potential
way to provide such a trusted timestamp as they provide protection for client-side software from a
untrusted host (i.e., the client). Unfortunately, current TEE implementations cannot provide any
notion of trusted global time. We note that retrieving time from a trusted source is not enough
since an untrusted host could arbitrarily delay incoming timestamps.

Furthermore, a user could always generate a trusted timestamp and then simply hold on to the
attested transaction until a favorable time. If the external network (between the users and protocol
nodes) is asynchronous or partially synchronous, then there is no way to distinguish whether a
transaction was delayed by the network or simply withheld by the user. Moreover, an asynchronous
network would also require protocol nodes to wait an unbounded amount of time to ensure that
no transaction should be ordered earlier. Consequently, for send-order-fairness to be feasible, it is
imperative that the external network be synchronous.

Trusted client-side timestamps would enable a new design paradigm for time-sensitive systems
(e.g., financial exchanges). We leave their design open for future work.
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Fault Tolerance”. In: ICDCS. 2013, pp. 297–306.

42



[6] Leemon Baird. The Swirlds Hashgraph Consensus Algorithm: Fair, Fast, Byzantine Fault
Tolerance. https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf. 2016.

[7] Shehar Bano et al. Consensus in the Age of Blockchains. arXiv:/1711.03936. 2017.

[8] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. “State Machine Replication for the
Masses with BFT-SMART”. In: DSN. 2014, pp. 355–362.

[9] Gabriel Bracha and Sam Toueg. “Asynchronous Consensus and Broadcast Protocols”. In: J.
ACM 32.4 (1985), pp. 824–840.
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