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ABSTRACT: The wintertime (December–February) 1990–2016 Arctic surface air temperature (SAT) trend is examined

using self-organizingmaps (SOMs). The high-dimensional SATdataset is reduced into nine representative SOMpatterns, with

each pattern exhibiting a decorrelation time scale of about 10 days and having about 85% of its variance coming from in-

traseasonal time scales. The trend in the frequency of occurrence of each SOM pattern is used to estimate the interdecadal

Arctic winter warming trend associated with the SOM patterns. It is found that trends in the SOM patterns explain about one-

half of the SAT trend in the Barents and Kara Seas, one-third of the SAT trend around Baffin Bay, and two-thirds of the SAT

trend in the Chukchi Sea. A composite calculation of each term in the thermodynamic energy equation for each SOM pattern

shows that the SAT anomalies grow primarily through the advection of the climatological temperature by the anomalous wind.

This implies that a substantial fraction of Arctic amplification is due to horizontal temperature advection that is driven by

changes in the atmospheric circulation. An analysis of the surface energy budget indicates that the skin temperature anomalies

as well as the trend, although very similar to that of the SAT, are produced primarily by downward longwave radiation.
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1. Introduction

Over the Arctic, the surface air temperature (SAT; the

temperature at a height of approximately 2 m above Earth’s

surface) has increased by twice that of the global average

(Chylek et al. 2009; Bekryaev et al. 2010), with the amplitude of

this warming being largest during winter (Serreze and Francis

2006). This phenomenon is known as Arctic amplification. The

impacts of this rapid Arctic SAT increase, associated rapid sea

ice loss (e.g., Francis and Hunter 2006), and subsequent soci-

etal and ecological implications have prompted studies into the

underlying cause.

Processes implicated as potential drivers of Arctic amplification

include surface-based feedbacks involving sea ice loss (e.g., Budyko

1969; Sellers 1969; Serreze et al. 2009; Screen and Simmonds 2010),

changes in oceanic heat transport (e.g., Chylek et al. 2009), changes

in atmospheric heat transport (e.g., Graversen 2006;Graversen et al.

2008; Hwang and Frierson 2010; Lee et al. 2011; Woods et al. 2013;

Ding et al. 2014; Woods and Caballero 2016; Gong et al. 2017; Lee

et al. 2017; Armour et al. 2019), changes in cloud radiative forcing

(e.g., Francis andHunter 2007), and increases in anthropogenic soot

(e.g., Quinn et al. 2008).

The sea ice albedo feedback mechanism is hypothesized to

operate over the Arctic during both summer and winter, due to the

following chainof events: Summertimesea ice loss,which is amplified

by the sea ice albedo feedback mechanism, exposes the ocean’s

surface, resulting inanupwardfluxofheat into the lower troposphere

during the subsequent winter (e.g., Deser et al. 2010). The chain of

events that links summertime sea ice loss to wintertime Arctic

warming in the lower troposphere has been argued to be supported

by observations, which show that the Arctic temperature trend is

most pronounced in the lower troposphere (Serreze et al. 2009;

Screen andSimmonds 2010; Screen et al. 2012;Walsh 2014;Dai et al.

2019). However, there are other plausible mechanisms that can also

explain why the wintertime Arctic warming trend is most pro-

nounced in the lower troposphere. For example, a bottom-heavy

Arcticwarming pattern can also be seen in response to forcing by the

tropical Madden–Julian oscillation (MJO; Yoo et al. 2013), whereby

convection associated with the MJO excites poleward-propagating

Rossby waves that transport warm moist air into the Arctic. Woods

and Caballero (2016) and Baggett et al. (2016) showed that when

warm moist air intrudes into the Arctic, the greatest temperature

increase occurs near the surface because the warm-air advection ef-

fectively erodes the temperature inversion. The results of those

studies bring into question the notion that a bottom-heavy Arctic

winter warming trend is evidence for the driving by local diabatic

processes, such as upward surface sensible and latent heat fluxes as-

sociated with sea ice loss.

Previous studies showed that intraseasonal teleconnection pat-

terns, such as those driven by the MJO, can have an important in-

fluence on fluctuations at much longer time scales, such as Arctic

amplification (Yoo et al. 2013). For example, when multiple intra-

seasonal teleconnection events of the same phase occur within a

single season, the time-mean climate for that season is altered.

Interdecadal climate trends can then be altered by a trend in the

frequency of occurrence of intraseasonal teleconnection patterns.

An example of this relationship has been shown for the interdecadal

trend of the zonal-mean zonal wind, for which most of the inter-

decadal variability can be explained by the interdecadal trend in the
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frequency of intraseasonal teleconnections (Lee and Feldstein 2013;

Feldstein and Lee 2014).

The primary aim of this study is to determine the fraction of the

Arctic warming trend that can be accounted for by changes in the

frequency of occurrence of atmospheric spatial patterns that are

dominated by their intraseasonal-time-scale contribution. Although

it is certainly to be expected that some fraction of the Arctic

warming trend arises from interannual processes, for our

study we examine only the impact of intraseasonal-time-scale

processes. Intraseasonal processes are usually understood to

arise from natural variability; however, the results presented

in this study should not automatically be considered as arising

from natural variability because intraseasonal processes may

also be influenced by external forcings, such as increasing

CO2 concentrations. For example, Compo and Sardeshmukh

(2009) showed that increased sea surface temperatures, due

to increased CO2 concentrations, can excite intraseasonal-

time-scale Rossby waves. In this study, we do not investigate

whether the intraseasonal contribution to Arctic amplifica-

tion is due to natural variability or is a forced response to

increased greenhouse gas concentrations.

To investigate the physical processes that drive the SAT changes

associatedwithArctic amplification, wewill use the thermodynamic

energy equation, since the level of the SAT is close to but not pre-

cisely at the surface. Many other studies that examine SAT changes

over the Arctic use the surface energy budget (instead of the ther-

modynamic energy equation), which is derived by applying the first

law of thermodynamics to Earth’s surface, which is often a solid

(except when the surface is water). The temperature at Earth’s

surface is typically referred to as the skin temperature (SKT).

However, away from the surface, including at a height of 2 m (i.e.,

the height corresponding to the SAT), it is necessary to examine

Arctic amplification using the thermodynamic energy equation,

whichapplies tofluids.Althoughboth the surface energybudget and

the thermodynamic energy equation are derived from thefirst lawof

thermodynamics, the advection terms in the thermodynamic energy

equation vanish over solid surfaces because the horizontal and ver-

tical velocity approach zero at the surface. This leads to different

governing equations for temperatures that are separated by only

2 m. In this study, we examine both temperatures (the SKT and

SAT) and discuss why the differences between them are important,

andperhaps underappreciated in the context ofArctic amplification.

The thermodynamic energy equation, which applies to the

SAT, can be written as
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(The equation that governs SKT changes is discussed in

section 3b.) The thermodynamic energy equation indicates

that temperature changes occur in response to horizontal

temperature advection (2u›T/›x 2 y›T/›y), vertical temper-

ature advection (2 _h›T/›h), and adiabatic warming (kTv/p),

where h denotes the hybrid sigma–pressure vertical coordinate

[the vertical coordinate in the European Centre for Medium-

Range Weather Forecasts (ECMWF) reanalysis], p denotes

pressure, _h[ dh/dt, v [ dp/dt, and k is the ratio between the

specific heat capacity of air and the dry-air gas constant

(ECMWF 2014). The diabatic heating terms Q1, Q2, Q3, and Q4

correspond to longwave radiative heating/cooling, shortwave ra-

diative heating/cooling, heating associated with turbulent eddy

mixing, and latent heat release, respectively. Although turbulent

eddymixing is not truly a diabatic process, as it represents subgrid-

scale vertical advection; this process is parameterized by the

ECMWF reanalysis model (our data source; see section 2), which

is why we include it asQ3 in (1). The first three of theQ terms in

(1) can be expressed as the three-dimensional convergence of the

longwave radiative flux, shortwave radiative flux, and turbulence

eddy heat flux, respectively.

Examination of (1) indicates that the Arctic SAT trendmust

be driven by some combination of terms on the right-hand side

(rhs) of the thermodynamic energy equation. As discussed

above, the upward surface sensible and latent heat fluxes as-

sociated with sea ice loss have been hypothesized to contribute

to an increase in SAT. If these fluxes are to contribute to in-

creases in SAT, their impact must be manifested in the vertical

convergence of the turbulent eddy sensible and latent heat fluxes, a

process that is contained in the turbulent eddy mixing termQ3 on

the rhs of (1). In spite of the fact that Arctic amplification must be

driven by some combination of terms on the rhs of (1), seemingly

few studies on the topic of Arctic amplification analyze the ther-

modynamic energy equation with observational data, opting in-

stead to either examine the surface energy budget (e.g., Lu andCai

2009; Lesins et al. 2012; Gong et al. 2017; Lee et al. 2017), as

mentioned above, or to utilize climate model calculations (e.g.,

Deser et al. 2010; Dai et al. 2019). Therefore, in this study, we

take a different approach by rigorously analyzing not only the

surface energy budget, but also each term in the thermodynamic

energy equation at the level of the SAT with observational data,

with the aim to determine which terms are contributing most im-

portantly to Arctic amplification.

This study is organized as follows. Section 2 describes the

data and methods, including a discussion of self-organizing

map (SOM) analysis and the thermodynamic energy equation.

Section 3 documents the results of the SOM analysis, ther-

modynamic energy budget analysis, and surface energy budget

analysis. Finally, a summary of the main findings of the study is

provided in section 4.

2. Data and methods

The Arctic SAT trend is examined using the daily ECMWF

interim reanalysis data (ERA-Interim; Dee et al. 2011) with a

focus on the winter [December to February (DJF)] seasons

beginning in 1990 and ending in 2016, a time period chosen in

large part because the Arctic SAT trend has accelerated in

recent decades (e.g., Gong et al. 2017; Clark and Lee 2019).

The domain is chosen to be poleward of 608N. It is important

that daily data are used because the time scale of most extra-

tropical teleconnections is about 2 weeks (Feldstein 2000).

A 2.58 horizontal grid spacing is utilized for all variables.

a. Self-organizing maps

To understand what is driving the Arctic SAT trend over the

1990–2016 time period, the high-dimensional SAT dataset is

reduced to a smaller number of representative patterns (Fig. 1)
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FIG. 1. Surface (2m) air temperature anomaly patterns identified by SOManalysis using daily data from 1990 to 2016 duringDecember–

February. The value of p indicates the SOM pattern number. The frequency of occurrence of each SOM pattern is indicated above in

each panel.
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using SOM analysis (e.g., Kohonen 2001). SOM analysis is a

clustering method that can identify patterns that recur in large

datasets (e.g., Hewitson and Crane 2002; Johnson et al. 2008;

Johnson and Feldstein 2010), similar to empirical orthogonal

function (EOF) analysis (e.g., Kutzbach 1967). However, be-

cause the patterns identified by SOM analysis are not con-

strained to be orthogonal, as well as the property that SOM

patterns arise from a minimization of the Euclidean distance

with the observed fields, the patterns identified by SOM

analysis are more likely to resemble the observed data than are

EOF patterns (Yuan et al. 2015). Previous studies, such as that

of Yuan et al. (2015), describe in detail the advantages of SOM

analysis; therefore, we refrain from providing a more detailed

discussion of SOM analysis below.

In this study, we have chosen to use a SOM grid size of 33 3,

as shown in Fig. 1. The SOM analysis is applied after the SAT

anomaly fields are area weighted. To determine whether the

results of this study are sensitive to the size of the SOM grid,

the SOM analysis was repeated for SOM grids of comparable

size. For example, SOM grid sizes of 43 5, 43 4, and 93 1 had

similar results to those presented in this study. The number of

SOM patterns we use is based upon having enough SOM

patterns to accurately represent the daily fields, but not too

many SOM patterns, to ensure that the same circulation pat-

tern is not represented more than once. A detailed discussion

of this perspective can be found in Johnson et al. (2008). The

sensitivity of our results for different time periods (e.g., 1979 to

2016) and domains (e.g., poleward of 508N) was also tested,

finding that the results are not sensitive to either the period or

the domain size.

Our aim is to determine how the resulting cluster patterns

(Fig. 1) have contributed to Arctic amplification. This is ac-

complished by following amethodology that has been applied

in previous studies to estimate the contribution to inter-

decadal trends by trends in the frequency of occurrence of

intraseasonal SOM patterns of the same variable (as will be

shown below, the variance of the SAT SOM patterns in this

study are dominated by their intraseasonal contribution)

(e.g., Johnson et al. 2008; Lee and Feldstein 2013; Feldstein

and Lee 2014). First, each particular DJF day is assigned a

best-matching SOMpattern, defined as the SOMpattern with

the smallest Euclidean distance to the SAT anomaly field on

that day. This leads to a binary time series dp,k,i for each SOM

pattern p, where i is the day and k the DJF season, with i

having 90 values (or 91 values on leap years) for each of the 26

DJF seasons. This binary time series dp,k,i is equal to 1.0 on

days when SOM pattern p is the best-matching pattern, and

zero otherwise. The DJF-mean SAT anomaly, for each DJF

season, can then be approximated as a linear combination of

the nine SOM patterns, where each SOM pattern is weighted

by its frequency of occurrence, fp,k, within each DJF season;

that is,
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k
’ �

Npats

p51
�
26

k51
�

Ndays

i51

d
p,k,i

Ndays
SAT

p
(x, y)

5 �
Npats

p51
�
26

k51

f
p,k
SAT

p
(x, y). (2)

In (2), Ndays denotes the number of days in each DJF season,

Npats denotes the number of SOM patterns, and SATp(x, y)

is SOM pattern p (Fig. 1). We use a ‘‘hat’’ in dSAT to signify

that the SAT field constructed from (2) is not the observed

SAT; rather, it is an estimate of the SAT based on the time

series of best-matching SOM patterns. The frequency of oc-

currence fp,k, which has one value for each DJF season, is

defined as follows:

f
p,k

[ �
Ndays

i51

d
p,k,i

Ndays
, (3)

and is plotted in Fig. 2 as a function of DJF season for each

pattern.

Following Lee and Feldstein (2013) and Feldstein and Lee

(2014), the trend in fp,k can be used to estimate the DJF SAT

trend with the following equation:

D dSAT(x, y)5 �
9

p51

Df
p,k
SAT

p
(x, y), (4)

where D denotes a trend calculated with linear regression.

Equation (4) can be derived by applying D (i.e., linear regres-

sion) to both side of (2). In (4),Dfp,k corresponds to the trend in

the frequency of occurrence of SOM pattern p.

To determine the contribution of each individual SOM

pattern toward the SAT trend, in Fig. 3 the product ofDfp,k and
SATp(x, y) is displayed for all patterns p. The estimated DJF

SAT trend using (4), defined as the sum over all panels in Fig. 3,

is shown in Fig. 4b. As can be seen by comparing Fig. 4a (the

observed SAT trend) and Fig. 4b, a substantial fraction of the

SAT trend is captured by (4) (the difference between Figs. 4a

and 4b is shown in Fig. 4c). The implication of the similarity

between Figs. 4a and 4b will be discussed more in section 3.

Any discrepancies between Figs. 4a and 4b reflect the fact that

SAT observations on any particular day are being ‘‘forced’’ to

fit one of nine SOM patterns.

b. The composite method

To determine the physical processes that drive the growth

and decay of the SOMpatterns on intraseasonal time scales, we

generate composites based on the Euclidean distance between

the SOM patterns and observations. (This composite approach

does not contribute to Figs. 1–5.) For the days that comprise

these composites, the SAT anomaly fields have an excellent

match with the SOM patterns (Fig. 1). We calculate lagged

composites of each term in the thermodynamic energy equa-

tion, and then integrate this equation forward in time to de-

termine the terms that make the largest contributions to SAT

anomaly growth/decay associated with each SOM pattern. As

discussed below, each SOM pattern shown in Fig. 1 can be

accurately estimated by a composite of the SAT anomalies

based on days when the Euclidean distance between that SOM

pattern and the observed SAT anomaly field is small. (The

threshold criteria for these composites will also be dis-

cussed below.)

The days with particularly small Euclidean distances,

which comprise our composites, are termed events. To select
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these events, we first generate candidate events for each SOM

pattern p. A candidate event is any day for which SOM pat-

tern p is the best-matching SOM pattern to the daily SAT

anomaly field. To be considered an event, however, this

candidate must satisfy several additional constraints. These

constraints are applied to ensure that the resulting compos-

ites both resemble the SOM patterns and comprise statisti-

cally independent events.

To guarantee a good match between the SOM patterns and

the composite patterns, any candidate event for SOMpattern p

must be a day for which the Euclidean distance between SOM

pattern p and the daily SAT anomaly field is a local minimum

(i.e., a day when the time derivative of the Euclidean distance

changes sign from negative to positive). This local minimum is

also constrained to have a value of less than 0.5 standard de-

viations of the mean Euclidean distance associated with all

candidate events for SOM pattern p. To ensure statistical in-

dependence, any pair of candidate events for SOM pattern p

that satisfy the above constraints must also be separated from

each other by more than 12 days, unless a different SOM

pattern occurs on a date between them. If a pair of candidates

are too close to each other, the candidate with the smaller

Euclidean distance is considered to be an event and the other

candidate event is discarded. This final constraint ensures

that the events comprising our composites are statistically

independent because teleconnection patterns typically have a

decorrelation time scale of about 10 days (e.g., Feldstein

2000), as is the case for the SOM patterns in our study (Fig. 5).

In Fig. 6, the event selection method is illustrated for two

individual years, where the events are marked by yellow as-

terisks. In general, we find that the results of this study are not

sensitive to how strictly an event is defined, but we choose to

utilize strict constraints in order to maximize the resemblance

between the composite SAT anomalies and the correspond-

ing SOM patterns in Fig. 1 and to ensure statistical

independence.

Over all of the years between 1990 and 2016, the event se-

lection criteria described above result in between 19 and 34

events for all SOM patterns. The resulting composite SAT

anomaly fields for each SOM pattern are very similar to those

displayed in Fig. 1 (not shown). Therefore, the SAT anomaly

composites can be substituted in place of SATp(x, y) in (4) with

little impact on the accuracy of the estimate for D dSAT(x, y)

(not shown).

Excellent correspondence is found between the SAT

anomaly SOM patterns in Fig. 1 and composites of the tem-

perature anomalies calculated on the lowest hybrid sigma–

pressure level of the ECWMF reanalysis model (see Fig. 7),

which corresponds to a height of about 10 m (Berrisford et al.

2009). Therefore, to investigate the processes that drive the

SAT anomalies, for each SOM pattern, as discussed above, we

integrate the thermodynamic energy equation, that is,
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on the lowest hybrid sigma–pressure level, where primes

signify anomalies. We calculate lagged composites of each

term on the rhs of (5) for each SOM pattern. (Note that the

primes on bracketed quantities apply to the product within

the brackets.) We examine the thermodynamic energy

equation on the lowest hybrid sigma–pressure level for a

practical reason, namely that wind and diabatic heating data

are not available at a height of 2 m. However, wind and

FIG. 2. The frequency of occurrence (y axis) of each self-organizing map pattern (the value of p indicates the SOMpattern number) as a

function of the December–February (DJF) season (x axis). Panels correspond to the patterns shown in Fig. 1. The blue bars show the

fraction of days that any particular pattern was the best-matching pattern (see text) to the daily surface air temperature anomaly field for

the corresponding DJF season. The red line is the linear fit to the blue bars and the slope of the linear fit is indicated above the top-right

corner of each panel. The slopes for patterns 1, 3, 5, and 8 are statistically significant at the 5% level based on a two-tailed Student’s t test, as

indicated by the asterisks.
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FIG. 3. The contribution to the surface (2 m) air temperature trend by each SOM pattern identified in daily data from 1990–2016 during

December–February. The value of p indicates the SOM pattern number. As indicated in the top label for each panel, these contributions

are calculated by multiplying the linear trend in the frequency of each pattern (Fig. 2) by the SOM patterns in Fig. 1.
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diabatic heating data are available at the lowest hybrid

sigma–pressure level. Therefore, we assume that the terms

that drive the temperature anomalies on this lowest hybrid

sigma–pressure level are the same as those that drive the

SAT anomalies.

Equation (5) shows that anomalous horizontal tempera-

ture advection, anomalous vertical temperature advection,

anomalous adiabatic warming, and anomalous diabatic

heating all potentially contribute to changes in the tempera-

ture anomalies T0 on the lowest reanalysis model level. In this

study, an anomaly is defined as the deviation from the

smoothed calendar-day mean, which is obtained by retaining

the first 10 harmonics of the seasonal cycle. As discussed in

Clark and Feldstein (2020a), the horizontal temperature ad-

vection term can be decomposed further by letting u5u1u0

and T5T1T 0, which results in

2u � =T1u � =T 52(u � =T)0 5 (2u0 � =T1u0 � =T )

1 (2u � =T 0 1u � =T 0)

1 (2u0 � =T 0 1u0 � =T 0)

1 (2u � =T1 u � =T ) , (6)

where overbars denote the smoothed seasonal cycle, primes

denote deviation therefrom, = [ (›/›x, ›/›y, 0), and u 5 (u, y,

0). Because the overbar denotes a smoothed seasonal cycle,

rather than a time mean, the terms u0 � =T , u � =T 0, and

(2u � =T1 u � =T ) are very close to but not exactly equal to

zero (Clark and Feldstein 2020a).

The diabatic terms in (5)—which, as described above,

comprise radiational heating (shortwave and longwave), ver-

tical mixing, and latent heat release—are downloaded explic-

itly from ERA-Interim as 12-h accumulated fields for both

FIG. 4. (a) The observed 1990–2016 DJF surface air temperature trend. (b) The approximated (see text) 1990–2016 DJF

surface air temperature trend using self-organizingmaps. (c) The difference between the observed and approximated surface

air temperature trends [(a) minus (b)]. (d) The values of the 1990–2016 DJF surface air temperature trends averaged in the

domains outlined by boxes overlaid in (a)–(c). The average values in (d) are area weighted.
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0000 and 1200 UTC. The daily mean heating is then obtained

by adding the 0000 and 1200 UTC 12-h accumulations. The

horizontal temperature advection terms represent daily means,

calculated with 6-hourly wind data and temperature data on

the lowest model level, and applying the gradient operator in

spherical form (an NCAR Command Language built-in func-

tion, gradsf, was utilized). The adiabatic warming term is also a

daily mean calculated with 6-hourly data. A detailed discussion

for the calculation of vertical temperature advection on the

lowest model level is included in the appendix section of Clark

and Feldstein (2020a). All terms in (5) and (6) are domain

averaged in the green boxes outlining the dominant anomalies

shown in Fig. 7. The motivation for choosing the domains in

Fig. 7 will be discussed in the next section.

After domain averaging, composite values of each term in

(5) and (6) are integrated forward in time starting at lag

day 215, with a time step of one day, using the composite

values at each lag day, following themethod of Seo et al. (2016)

and Clark and Feldstein (2020a,b). Specifically, after letting A

denote any of the terms on the rhs of (5) or (6) averaged over a

green box in Fig. 7, we computeðlag
215

A(t) dt’ �
lag

t5215

A(t) dt (7)

FIG. 5. Autocorrelation functions of the projection time series associated with each SOM pattern. The projection time series are obtained

by calculating the dot product between the daily SAT anomaly data and the SOM patterns shown in Fig. 1.
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for each termA, where lag varies between215 and115 days,

t denotes the composite time lag in days, and dt is equal to

1 day. Each term A has units of K day21, but after integra-

tion using (7), �lag

t5215A(t)dt has units of K and represents

the contribution of term A to the temperature change; that

is, T 0
A(lag)2T 0

A(215) for the domain under consideration,

where T 0
A corresponds to the temperature anomaly on the

lowest hybrid sigma–pressure level associated with term A.

Since T0(215) is typically found to be small, consistent with

Fig. 5, and because each term in (5) is also assumed to be

small at lag 215, the calculation in (7) gives an estimate of

T0(lag) arising from term A. For lag day 0, the integration

performed with (7) can be thought of as generating an esti-

mate of the contribution by term A to the SAT anomalies of

the SOMpatterns. Therefore, for each termA, by substituting

the integrated lag-day-0 SAT anomalies for SATp in (4), we

can determine which of the terms in (5) and (6) make the

largest contribution to the SAT trend shown in Fig. 4b. (Note

that the events described above are designated to be lag day 0

in these integrations.)

As will be discussed in section 3, 15 days approximates two

decorrelation time scales of each SOM pattern; however, it is

found that the results are not sensitive to the day at which the

integration is initiated. Statistical significance is tested with a

Monte Carlo approach, by randomly generating 250 composites.

3. Results

a. The causes of surface air temperature trends:

Thermodynamic energy budget at the lowest model level

Comparing Figs. 1 and 2, it is evident that warm Arctic

SOM patterns are increasing in frequency and cold Arctic

SOM patterns are decreasing in frequency. This result is un-

surprising and guaranteed because the underlying data have a

positive trend. Based on (4) and the results shown in Figs. 1

and 2, we expect the approximated Arctic SAT trend to be

characterized by warming much like that shown in Fig. 4a.

Indeed, over the Arctic, Fig. 4b shows that the approximated

SAT trend strongly resembles the observed SAT trend. In

fact, the approximated SAT trend in Fig. 4b is characterized

not only by broad warming over the Arctic but also by a local

maximum of warming over the Barents and Kara Seas, much

like that seen for the observed Arctic SAT trend (Fig. 4a).

Specifically, the estimated Arctic SAT trend can explain

about one-half of the trend over the Barents and Kara

Seas, one-third of the trend over Baffin Bay, and two-

thirds of the trend over the Chukchi Sea (Fig. 4d). As

discussed below, on average, about 85% of the variance of

each SOM pattern comes from intraseasonal time scales.

Therefore, these results indicate that in addition to an

interannual-time-scale contribution to the interdecadal Arctic

SAT trend, intraseasonal-time-scale weather patterns also likely

make an important contribution to the driving of the trend. The

SOM patterns that most strongly contribute to the SAT trend

pattern shown in Fig. 4b are patterns 1, 3, 5, and 8, as seen

in Fig. 3.

The fact that the estimate for the interdecadal Arctic SAT

trend in Fig. 4b is a good match to the observed Arctic SAT

trend in Fig. 4a has important implications. Noting that the

decorrelation time scale of each SOM pattern is found to be

less than about 10 days (Fig. 5), as measured by the number of

days that it takes for the autocorrelation function of each SOM

pattern to decay by a factor of e, the match between Figs. 4a

and 4b suggests that a substantial fraction of the interdecadal

Arctic SAT trend can be explained by the interdecadal trend

in the frequency of occurrence of spatial patterns that have

a large contribution from intraseasonal-time-scale weather.

However, as will be discussed below, there is a contribution to

the estimated SAT trend shown in Fig. 4b from interannual-

time-scale variability that projects onto the intraseasonal-time-

scale patterns. Nonetheless, the intraseasonal decay of the

autocorrelations in Fig. 5 suggest that intraseasonal variability

is important for driving the Arctic SAT trend. (The time series

for the amplitude of each SOM pattern were obtained by

projecting the daily SAT onto the SOM pattern, i.e., calculat-

ing the dot product between the daily SAT anomaly field and

each SOM pattern. Note that these projections are not part of

the SOM analysis.) As discussed in the introduction, these

results, on their own, do not indicate whether or not the trends

FIG. 6. The best-matching self-organizing map pattern (blue

bars) and corresponding Euclidean distance to the daily surface air

temperature anomaly field (red lines) for the (a) 1995/96 and

(b) 2012/13 DJF seasons. The green line shows the threshold deter-

mined by the candidate events associated with the best-matching

self-organizing map pattern (see section 2). Yellow asterisks are

overlaid on the red line for days that were determined to be an event

(see section 2).
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in the frequency of each SOM pattern arise from natural

variability.

Next, we quantify the intraseasonal and interannual contri-

bution to the SOM patterns. We use two approaches. In the

first approach we remove the interannual variability from the

projection time series by subtracting the DJF mean from each

season. For the SOM patterns, we find that the variance of the

resulting time series varies between 66% and 82% (with a

FIG. 7. Temperature anomaly composites (colors) on the lowest model level and sea level pressure anomaly composites (contours) for

the self-organizing map events (see section 2). Solid (dashed) contours denote positive (negative) sea level pressure anomalies.

Alphabetically labeled green boxes outline the major anomalies examined in this study (also see Fig. 8). Stippling indicates statistical

significance of the surface air temperature anomaly composites for p , 0.10.
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median of 76%) of the corresponding time series that in-

cludes interannual variability. The actual variance due to

intraseasonal-time-scale processes is larger than these values,

because seasonal-mean sampling of an intraseasonal AR(1)

process can account for a substantial fraction of the interannual

variance. This relationship between intraseasonal-time-scale

fluctuations and interannual variance is known as climate noise

(e.g., Madden 1976; Madden and Shea 1978; Feldstein 2002;

Franzke 2009). A climate noise calculation was performed by

computing 1000 synthetic time series, each using the lag-1-day

autocorrelation of the corresponding SOM projection time

series. As the median interannual variance from climate noise

was found to be 44% of the total interannual variance, these

results imply that, on average, intraseasonal time scales ac-

count for about 87% of the total variance. In the second ap-

proach, we reconstruct the daily SAT fields by assigning each

day to the SOM pattern with the minimum Euclidean distance

(as discussed in section 2a). Removing the interannual vari-

ability from the resulting SAT field, by subtracting the DJF

mean from each season, shows that about 84% of the vari-

ability in the SAT is generated on intraseasonal time scales.

Although these results indicate that intraseasonal-time-scale

processes dominate the variance of the SOM patterns, the

SOM method cannot quantify the exact fraction of the Arctic

amplification trend that is explained by intraseasonal-time-scale

processes. Nevertheless, these results are strongly suggestive

that intraseasonal-time-scale processes play an important role in

Arctic amplification.

In spite of these results, however, we recognize the impor-

tance for future research to further examine the relative im-

portance of intraseasonal and interannual variability on Arctic

amplification. It is important to note that our method is tar-

geted toward understanding the intraseasonal contribution to

Arctic warming.

To determine the processes that are contributing to the

Arctic SAT trend, we next examine the thermodynamic energy

budget of the SAT anomalies that characterize each SOM

pattern. However, because the large number of SAT anomalies

(labeled by green boxes in Fig. 7) make the examination of the

thermodynamic energy budget cumbersome, for the remainder

of this study, we focus only on the SOM patterns with statis-

tically significant increasing or decreasing trends (Fig. 2).

These trending SOM patterns that form the focus of the re-

mainder of this study are patterns 1, 3, 5, and 8. SOM patterns

2, 4, 6, 7, and 9 are also examined, but are deferred to the online

supplemental material.

We begin our discussion of the thermodynamic energy

budget with the SAT anomaly labeled ‘‘A’’ (indicated by a

green box over Siberia) associated with SOM pattern 1 (Fig. 7,

top left). For SOM pattern 1, the SAT anomaly labeled ‘‘A’’ is

referred to as ‘‘SOM P1: A’’ in Fig. 8. Although SOM P1: A is

characterized by colder than average temperatures within the

interior of Asia, poleward of this anomaly, within the Arctic,

warmer than average temperatures are observed (Fig. 7, top

left). Therefore, SOM P1 is reminiscent of the warm Arctic–

cold continent SAT trend pattern observed in recent decades

(e.g., Cohen et al. 2014). As discussed in the previous section,

to determine what terms are driving SOM P1: A, each term in

the thermodynamic energy equation, (5), is integrated forward

in time using (7). The box-averaged SAT values calculated

from this integration, as well as the box-averaged composite

SAT anomaly itself, are shown in Fig. 8 (top left).

Upon examination of SOM P1: A (Fig. 8, top left), we can

see that the SAT anomaly (thick gray line) reaches a peak

value of about24.0 K at lag day11 (right y axis). The term in

the thermodynamic energy equation that most strongly con-

tributes to this SAT anomaly over Siberia is the anomalous

horizontal temperature advection (thick red line; left y axis),

which is dominated by the contribution from the anomalous

wind, (2u0 � =T1u0 � =T), shown by the thin red line. This

term, which corresponds to the advection of the climatological

temperature by the anomalouswind, contributes about210Kof

temperature change over the 30-day integration period for SOM

P1: A. This finding, and the fact that SOMP1 has been occurring

more frequently, supports the idea that changes in the large-

scale circulation, and the accompanying changes in horizontal

temperature advection, have contributed to the emergence of

the warm Arctic–cold continent SAT pattern (Clark and

Lee 2019).

The driving of the negative SAT anomaly of SOM P1: A by

the term (2u0 � =T1u0 � =T) is consistent with the fact that the

SAT anomaly is located in a region where the anomalous sea

level pressure gradient is maximized (see the contours in Fig. 7,

top left). In addition, the vertical mixing 1 latent heat release

term (dashed blue line) also contributes to the negative SAT

anomaly of SOMP1: A. However, the contribution to the SAT

anomaly by vertical mixing 1 latent heat release is overall

much weaker than that by horizontal temperature advection.

With the exception of (2u � =T 0 1 u � =T 0), the remaining

terms in the thermodynamic energy equation all contribute

to positive temperature changes over Siberia (SOM P1: A).

The most dominant of the positive terms are the longwave

heating and nonlinear horizontal temperature advection

terms, (2u0 � =T 0 1 u0 � =T 0). Conceptually, the longwave heat-

ing term can be approximated using a linearization of the radi-

ative transfer equation

Q
lw

c
p

’2t21T 0 , (8)

where t is a relaxation time scale and T0 is the SAT anomaly

(Fueglistaler et al. 2009). From this perspective, a temperature

anomaly decays from emission of longwave radiation, resulting

in a dampening of the SAT anomalies that are caused by the

advection of the climatological temperature by the anomalous

wind. Therefore, for SOM P1: A, while the advection of the

climatological temperature by the anomalous wind drives the

growth of the SAT anomaly, the longwave heating drives its

decay. A similar finding has been reported for the SAT changes

associated with the NAO (Clark and Feldstein 2020a).

For SOM P1: A, the sum of all the integrated terms in the

thermodynamic energy equation (thin gray line in Fig. 8) is

almost equal to the temperature change (thick gray line). This

confirms that our breakdown of the thermodynamic energy

equation is reasonable at this location. However, for other

regions examined in Fig. 8, there are often discrepancies
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between the thick and thin gray lines, most likely due to the fact

that the temperature changes associated with individual terms

in the thermodynamic energy equation can be an order of

magnitude greater than the observed change in temperature.

As a result, small numerical errors in the calculations of the

dominant terms on the rhs of (5) can lead to larger errors in the

summation curve (thin gray line) relative to the observed

temperature change (thick gray line). Sources of error in the

calculation of the dominant terms include the following:

d The use of a 24-h time step in our integration of daily mean

quantities, which is significantly larger than the reanalysis

time step of about 12 min (ECMWF 2014).
d The use of a horizontal resolution (2.58) that is significantly
coarser than that of the reanalysis model, which integrates

the thermodynamic equation with the spectral transform

method (ECMWF 2014).
d The lack of a horizontal diffusion term in our analysis, which

is present in the reanalysis model but is not available for

download from ECMWF or easily applied to observations

(ECMWF 2014).
d The absence in our budgets of an analysis increment that is

generated by ECMWF from 12-hourly data assimilation.
d The use of diabatic heating terms that represent the daily

average of 12-min time steps, which differs from the daily

average of 6-hourly data that was used in the other terms.

Considering these sources of error, which are often insur-

mountable or unavoidable, a balanced budget is not expected

to occur over most regions. Nevertheless, it is still useful to

FIG. 8. (top to bottom) Thermodynamic energy budgets of the alphabetically labeled surface air temperature (SAT) anomalies shown in

Fig. 7 for patterns 1, 3, 5, and 8, respectively. Each panel corresponds to a different surface air temperature anomaly boxed in green in

Fig. 7. The curves in each panel correspond to different terms in the thermodynamic energy equation (see legend). The thick gray line

corresponds to the domain (area-weighted)-average SAT anomaly composite minus the lag day215 SAT anomaly. The remaining terms

(also domain averaged) are 2u � =T1 u � =T (thick red), 2u0 � =T1u0 � =T (thin red), 2u � =T 0 1 u � =T 0, (dashed red)

2u0 � =T 0 1u0 � =T 0 (dotted red), anomalous adiabatic warming/cooling (green), anomalous vertical advection (yellow), anomalous di-

abatic heating (thick blue), longwave heating/cooling (thin blue), vertical mixing1 latent heating (dashed blue), and the sum of diabatic

term with the advection terms and adiabatic warming (thin gray). The gray lines correspond to the right y axis, while the remaining terms

correspond to the left y axis. Note that all terms that appear on the right-hand side of the thermodynamic energy equation, (5), are

integrated using the composite values at each lag (x axis). Statistical significance at p , 0.10 is indicated with 3 marks.
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examine the dominant terms in the thermodynamic budgets

with these sources of error in mind.

Upon examination of the remaining panels in Fig. 8, a sim-

ilar picture to that seen for SOM P1: A emerges. Specifically,

the advection of the climatological temperature by the anom-

alous wind plays a central role in driving the growth of each

SAT anomaly shown in Fig. 7, while longwave heating/cooling

plays a crucial role in the decay of each SAT anomaly. This can

be seen in Fig. 8 by the fact that the sign of the temperature

curve (thick gray line) is usually the same as the sign of the

horizontal temperature advection curve (thick red line).

Furthermore, for all domains, vertical advection and adiabatic

warming are unimportant contributors to the SAT anomalies

relative to the other terms in the thermodynamic energy

equation. However, unlike that seen for SOM P1: A, vertical

mixing1 latent heat release does not consistently contribute to

the growth of SAT anomalies. In fact, vertical mixing 1 latent

heat release more often contributes to the decay of SAT

anomalies. For example, for SOMP1: B, SOMP3: A, SOMP8:

A, and SOM P8: D, vertical mixing1 latent heat release plays

an even more important role in the decay of the SAT anoma-

lies than does longwave heating/cooling. Vertical mixing 1
latent heat release only contributes to the growth of four SAT

anomalies: SOM P1: A, SOM P5: A, SOM P8: B, and SOM

P8: E.

The finding that vertical mixing contributes to the growth of

only four SAT anomalies is in contrast with the sea ice albedo

feedback mechanism for Arctic amplification, which predicts

the growth of SAT anomalies to be dominated by vertical

mixing in regions of pronounced sea ice decline. In addition,

inspection of the location of these four SAT anomalies in Fig. 7

(SOM P1: A, SOM P5: A, SOM P8: B, and SOM P8: E) indi-

cates that vertical mixing contributes to the driving of SAT

changes only over continents and open ocean, where sea ice is

not present climatologically.

In all but one instance (SOM P5: A), advection of the cli-

matological temperature by the anomalous wind is the domi-

nant contributor to SAT anomaly growth. As discussed for

SOMP1: A, this finding is consistent with the fact that the SAT

anomalies shown in Fig. 7 tend to be largest in regions where

the amplitude of the anomalous sea level pressure gradient

maximizes. In the one instance where temperature advection

does not dominate the driving of the SAT anomaly, for SOM

P5: A, it is vertical mixing1 latent heat release that dominates

the driving of the SAT anomaly.

According to the ice albedo feedback mechanism, as dis-

cussed in section 1, the melting of Arctic sea ice will result in

an upward sensible and latent heat flux, in addition to an

upward longwave radiative flux, followed by widespread

warming over much of the Arctic. Since the sea ice melting

will be confined to a relatively small region within the Arctic,

the corresponding warming must be initially confined to the

same small region, and the widespread warming over the

Arctic that follows the sea ice melting must be accomplished

by horizontal temperature advection. If this scenario has been

taking place, however, we would expect to see strong con-

tributions to the horizontal temperature advection

from (2u � =T 0 1 u � =T 0) and/or (2u0 � =T 0 1u0 � =T 0) (i.e.,

horizontal temperature advection associated with the SAT

anomalies). However, our findings show that advection of

the climatological temperature by the anomalous wind

(2u0 � =T1 u0 � =T) dominates the SAT changes. This finding

provides further support to the perspective that surface heat

fluxes are not important contributors to the fraction of the

Arctic SAT trend shown in Fig. 4b.

b. The causes of skin temperature trends: The surface energy

budget

In section 2 and section 3a, we showed that a substantial

fraction of the SAT trend is driven by the trend in the fre-

quency of occurrence of the nine SOM patterns (Fig. 2). In

Fig. 9b, we show that the trend in the frequency of the nine

SOM patterns (Fig. 2) can also explain a substantial fraction of

the total SKT trend, since substitution of the SKT anomaly

composites (Fig. 10 and Fig. S2 in the online supplemental

material, leftmost column) in place of SATp(x, y) in (4) leads

FIG. 9. (a) The observed 1990–2016 DJF skin temperature trend.

(b) The approximated (see text) 1990–2016 DJF SKT trend using

self-organizing maps.
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to a good match with the observed SKT trend (Fig. 9a). To

determine what processes are contributing to the SKT trend

shown in Fig. 9b, we derive an equation for the evolution of

SKT anomalies.

Letting Flw, Fsw, and Fh denote the longwave radiative flux,

shortwave radiative flux, and surface heat flux (latent 1 sen-

sible), respectively, andR a residual, the surface energy budget

can be written as

G5FY
lw 1F[

lw 1FY
sw 1F[

sw 1F
h
1R , (9)

where G {[
Ð Dz

0
rcp(dT/dt)dz} denotes energy storage within a

thin surface layer of depth Dz, Y denotes a downward flux,

and [ denotes an upward flux. Taking the differential d to

represent an anomaly, defining a downward flux as positive,

and letting F[
lw 52«ssT

4
s , where Ts is the skin temperature,

s is the Stefan–Boltzmann constant, and «s is the surface

emissivity, the surface energy budget can be expressed in

terms of anomalies:

dG5 dFY
lw 2 4«

s
sfT

s
g3dT

s
1 dFY

sw 1 dF[
sw 1 dF

h
1 dR , (10)

FIG. 10. (top to bottom) Composite surface energy budget for self-organizing map patterns 1, 3, 5, and 8, respectively. (left to right) Lag-

day-0 composites of the skin temperature anomaly, surface downward longwave radiation anomaly, surface (latent1 sensible) heat flux

anomaly, residual, and the 2-m temperature anomaly minus the skin temperature anomaly, respectively. The pattern correlation with the

corresponding skin temperature anomaly pattern is indicated in the top-left corner of each panel (except for the rightmost column, which

does not appear in the surface energy budget equation). Each quantity of the surface energy budget represents a daily mean. Statistical

significance at p , 0.10 is indicated by the stippling.
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where curly braces denote DJF climatology. After rearranging

terms, we arrive at an expression for the skin temperature

anomaly dTs:

dT
s
5
dFY

lw 1 dF
h
1 dR2 dG

4«
s
sfT

s
g3 (11)

(Lu and Cai 2009; Lesins et al. 2012; Gong et al. 2017; Lee et al.

2017; Clark and Feldstein 2020a). Shortwave radiative fluxes

are neglected (because it is dark during DJF over the Arctic)

and the surface emissivity «s is set equal to one. Each term in

(11) is plotted in Fig. 10 (columns) for the four trending

SOM patterns (rows) and in Fig. S2 for the remaining SOM

patterns (2, 4, 6, 7, and 9). In both Fig. 10 and Fig. S2, the

quantity dR 2 dG is treated as a residual, which includes

vertical mixing and horizontal temperature advection

within the ocean, conduction through soil, sea ice, and snow,

and latent heating associated with the melting and freezing

of sea ice and snow.

Compared to all other terms in (11), the surface DLR

anomaliesmost strongly resemble the SKT anomalies (Fig. 10),

with a pattern correlation of about 0.90 for all SOM patterns.

The pattern correlations between the SKT and all other terms

in the surface energy budget (i.e., the surface heat fluxes and

residual) are substantially smaller. In light of the strong cor-

relation between the DLR and SKT anomaly patterns, one can

ask whether the SKT anomalies are caused by the DLR

anomalies or vice versa. We can gain insight into this question

by considering the other terms in the surface energy budget.

For regions where there are positive SKT anomalies, if the

SKT were to increase the DLR, a flux of heat from the surface

to the atmosphere must occur. Therefore, if such a process

were occurring in observations, we would expect to see upward

(negative) surface heat fluxes in regions of positive SKT

anomalies. However, for all four SOM patterns in Fig. 10, the

correlations between the SKT field and the surface heat fluxes

are positive (downward surface heat fluxes over regions with

positive SKT anomalies). In addition, if the SKT were not

driven by the fluxes from the atmosphere, then the SKT would

be driven by residual processes. Contrastingly, for all four

SOM patterns in Fig. 10, the residual is negatively corre-

lated with the SKT anomaly pattern. These results imply

that the surface DLR anomalies likely drive the SKT

anomalies, not the other way around. In addition, these

results also indicate that DLR is the primary driver of the

SKT trend shown in Fig. 9b. However, we must emphasize

that, although DLR is driving the SKT anomalies, DLR is

not driving the SAT anomalies. As discussed in the previous

subsection, SAT anomalies are driven primarily by hori-

zontal temperature advection.

One may ask why longwave radiation drives temperature

anomaly growth at the surface (Fig. 10), but the temperature

anomaly decays at only 2 m above the surface (Fig. 8). The

reason is illustrated schematically in Fig. 11. At the surface, as

seen in Fig. 11, longwave radiation contributes to temperature

changes solely through absorption of downward longwave ra-

diation (DLR). In contrast, above the surface, the longwave

radiation Q1 has contributions from the absorption of both

downward and upward longwave radiation, as well as from the

emission of downward and upward longwave radiation.

FIG. 11. Idealized schematic illustrating how longwave radiative fluxes impact the surface air temperature (SAT)

and skin temperature (SKT). At a height of 2 m, a layer of depth D is depicted with a temperature (SAT) that is

impacted by downward longwave fluxes entering the top of the layer (FDA) and exiting the bottom of the layer

(FD2). The temperature of the layer at 2 m is also impacted by upward longwave fluxes entering the layer from the

bottom (FUB) and exiting from the top (FU2). The SKT is impacted by only one longwave flux, which is the

downward longwave flux at the surface (FDS). The SAT is a fluid and is impacted also by horizontal temperature

advection, as indicated, while the SKT can only be impacted by upward or downward fluxes, or other residual

processes, as discussed in the text.
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We examine what is driving the longwave radiation at both

the surface and 2 m above the surface using the Rapid Radiative

Transfer Model (RRTMG; Mlawer et al. 1997; Iacono et al.

2008). In particular, we follow Clark and Feldstein (2020b) and

conduct two types of clear-sky radiative transfer calculations.

The aim of the first (second) calculation is to determine the

contribution that atmospheric temperature (moisture) anoma-

lies have on both the surface DLR and the radiative heating

rates on the lowest model level. The first (second) calculation is

conducted by inputting the observed temperature and climato-

logical water vapor concentrations (climatological temperature

and observedwater vapor concentrations) for the entire depth of

the atmosphere into RRTMG. For more details about config-

uring the data for these calculations, see Clark and Feldstein

(2020b) and their supplementary material.

After performing RRTMG calculations to determine the

anomalous surfaceDLR and radiative heating rates, composites

of surface DLR and radiative heating rate anomalies are cal-

culated for the events discussed in section 2 (Fig. 12 and

Fig. S4). The leftmost three columns of Fig. 12, respectively,

show the water vapor–driven contribution to the surface DLR

anomalies, the temperature-driven contribution to the surface

DLR anomalies, and their summation (column 11 column 2).

The summation of column 1 and 2 is an excellent match with

the ERA-Interim clear-skyDLR anomalies (cf. Fig. 12, column

3, to the corresponding SOM patterns in Fig. S3), indicating

that the contributions from temperature and water vapor

anomalies to the surface DLR anomalies can be linearly sep-

arated. As shown in Fig. 12, the dominant contributor to the

clear-sky surface DLR is temperature, but water vapor is cer-

tainly also important.

To quantify the impact that cloud liquid water and ice have

on the surface DLR patterns shown in Fig. 9 and Fig. S2, in

Fig. 13 we show the difference between the ERA-Interim all-

FIG. 12. The contribution to the skin temperature anomalies from (column 1) water vapor–driven DLR and (column 2) temperature-

drivenDLR. (column 3) The sum of columns 1 and 2. Also shown are (column 4) the water vapor–driven and (column 5) the temperature-

driven longwave radiative heating rates at the lowest reanalysis model level.
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sky and clear-sky surface DLR anomalies (i.e., subtracting the

surface DLR anomalies in Fig. S3 from those in column 2 of

Fig. 9 and Fig. S2). The result shows that clouds overall amplify

the surface DLR anomalies; compare Fig. 13 to the corre-

sponding patterns in Fig. 11 and Fig. S4, column 3. The impact

of clouds on surface DLR identified here may also be under-

estimated due to inaccurate parameterizations of ice nuclei

over the Arctic (e.g., Prenni et al. 2007).

As was seen for the surface DLR, the contribution to the

heating rates by water vapor and temperature anomalies can

be linearly separated, because the sum of the rightmost two

columns is almost exactly equal the total longwave heating

rates calculated by ERA-Interim (not shown). Because long-

wave radiation drives the decay of the lowest-model-level

temperature anomalies (Fig. 8), anomalous emission must ex-

ceed anomalous absorption. Therefore, as evidenced by Fig. 12

FIG. 13. The difference between surface clear-sky downward longwave radiation and surface all-sky downward longwave radiation, using

ERA-Interim data.
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(rightmost two columns), the emission of longwave radiation at

the lowest model level is driven primarily by temperature

anomalies, providing further justification for the conceptuali-

zation using (8). Interestingly, the water vapor–driven contri-

bution to the longwave heating rate sometimes contributes to

SAT anomaly growth, but the amplitude is small (Fig. 12,

column 4).

Returning to the remaining panels of Fig. 10, we conclude

this subsection by considering the surface heat fluxes, which

have been implicated as potential contributors to Arctic

amplification due to amplified sea ice decline. Apart from

showing that the SKT anomalies of each SOM pattern are

driven by anomalies in surface DLR, Fig. 10 also shows that

the surface heat fluxes are driven in large part by the differ-

ence between the SKT and SAT anomalies (cf. Fig. 10, col-

umns 3 and 5). This implies that the surface heat flux anomaly

patterns shown in Fig. 10 can be explained by horizontal

temperature advection because the SAT anomalies are

driven directly by horizontal temperature advection, as

shown in Fig. 8, and the SKT anomalies are, in large part,

driven indirectly by horizontal temperature advection

through the changes in surface DLR. Changes in moisture

also impact the SKT through changes in surface DLR

(Figs. 11 and 12) and although we did not examine what drives

the moisture changes, it is likely that the circulation plays a

prominent role here as well. The circulation changes associ-

ated with the SOM patterns would presumably also act to

advect the climatological moisture field, which has a similar

gradient field to that of the climatological temperature. All of

these results highlight the prominent role that the circulation

has on Arctic SKT variability.

4. Summary and conclusions

Although Arctic amplification is a phenomenon that is ob-

served on interdecadal time scales, this study shows that a

significant fraction of Arctic amplification can be explained by

the trend in the frequency of occurrence of nine SOMpatterns.

These SOM patterns are shown to have a large intraseasonal

contribution, as their autocorrelation functions decay signifi-

cantly within a season, and on average about 85% of the var-

iance of each SOM pattern comes from intraseasonal time

scales. The warm Arctic patterns, identified by SOM analysis,

are increasing in their frequency of occurrence, while the cold

Arctic patterns are decreasing in their frequency of occur-

rence. By taking into account the trend in the frequency of

occurrence of each SOM pattern, it is found that these pre-

dominantly intraseasonal-time-scale SOM patterns can ex-

plain about one-half of the observed warming trend in the

Barents and Kara Seas, about one-third of the observed

warming trend around Baffin Bay, and about two-thirds of the

observed warming trend in the Chukchi Sea. Although this

study shows that the trend in the frequency of the SOM pat-

terns can account for a large fraction of the interdecadal SAT

trend, it does not show why the frequencies of the SOM pat-

terns have changed. An important question, which we leave for

future work, is determining whether or not externally forced

changes in the weather (i.e., externally forced intraseasonal

variations) contributed importantly to the frequency trends of

the SOM patterns.

In contrast with the viewpoint that sea ice loss is driving

wintertime Arctic amplification through upward surface heat

fluxes, this study suggests somewhat the opposite. At least for

the contributions from the intraseasonal processes represented

by the SOM patterns, horizontal temperature advection, which

drives the Arctic SAT trend, is more likely the driver of the

surface heat fluxes. An examination of different terms that

contribute to the horizontal temperature advection reveals

that the SAT anomalies of nearly all of the SOM patterns are

driven by the advection of the climatological temperature field

by the anomalous wind. This implies that the Arctic SAT trend

has an important contribution to its trend by changes in the

circulation. Whether these circulation changes are natural

or a response to external forcing is not clear from the results

presented in this study. Nonetheless, the finding that the

circulation is driving warming over the Arctic is consistent

with several observational studies (e.g., Sorokina et al. 2016;

Gong et al. 2017; Lee et al. 2017), but inconsistent with a

number of studies that examine the Arctic SAT response in

climate model runs with sea ice removed. Perhaps the in-

consistency between this study and those climate modeling

studies is due to the experimental designs of the climate

modeling studies. That is, the removal of sea ice in the models

raises the SKT which ensures an upward heat flux. However,

we also cannot rule out the possibility that the fraction of the

Arctic SAT trend unexplained by the SOM patterns is driven

by sea ice loss.

As a final point, this study shows that the surface energy

budget should be applied strictly to the SKT, rather than to the

SAT, because the equations that govern SKT changes and SAT

changes are different. The SKT is the temperature of Earth’s

surface, which is often a solid, while the SAT is defined as the

temperature of the atmosphere (i.e., a fluid) about 2 m above

Earth’s surface. Therefore, although the surface energy budget

is a useful diagnostic tool for understanding climate variability,

applying the surface energy budget as a means to understand

SAT may lead to misleading results because there are no

temperature advection terms in the surface energy budget

equation. As shown in this study, SKT anomaly growth is

driven by surface DLR, which is due to both atmospheric

temperature anomalies and moisture anomalies. However, at

2 m above the surface, the SAT anomaly growth is driven by

horizontal temperature advection, and longwave radiation in-

stead contributes to SAT anomaly decay.

In spite of the fact that SKT and SAT anomaly patterns

often have high spatial correspondences, as shown in this study,

the horizontal temperature advection term is very important,

even at levels near the surface where the winds tend to be

weakest. Therefore, future studies should take care to consider

the difference between what drives the SKT and what drives

the SAT.
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