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Spin-imbalanced ultracold Fermi gases in a two-dimensional array of tubes
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Motivated by a recent experiment Revelle et al., [Phys. Rev. Lett. 117, 235301 (2016)] that characterized the
one- to three-dimensional crossover in a spin-imbalanced ultracold gas of 6Li atoms trapped in a two-dimensional
array of tunnel-coupled tubes, we calculate the phase diagram for this system by using Hartree-Fock Bogoliubov-
de Gennes mean-field theory and compare the results with experimental data. Mean-field theory predicts fully-
spin-polarized normal, partially-spin-polarized normal, spin-polarized superfluid, and spin-balanced superfluid
phases in a homogeneous system. We use the local density approximation to obtain density profiles of the gas
in a harmonic trap. We compare these calculations with experimental measurements in Revelle et al. as well as
previously unpublished data. Our calculations qualitatively agree with experimentally measured densities and
coordinates of the phase boundaries in the trap and quantitatively agree with experimental measurements at
moderate-to-large polarizations. Our calculations also reproduce the experimentally observed universal scaling
of the phase boundaries for different scattering lengths at a fixed value of scaled intertube tunneling. However,
our calculations have quantitative differences with experimental measurements at low polarization and fail to
capture important features of the one- to three-dimensional crossover observed in experiments. These suggest
the important role of physics beyond mean-field theory in the experiments. We expect that our numerical results
will aid future experiments in narrowing the search for the Fulde-Ferrell-Larkin-Ovchinnikov phase.
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I. INTRODUCTION

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase is a
superfluid phase of matter which was originally predicted to
occur in superconductors under high magnetic fields [1,2]. It is
unique in that both superconductivity and magnetism coexist
in this phase—superconductivity arises from the usual pairing
of fermions, while magnetism arises from a net spin induced
by the Zeeman effect [3–5]. The experimental observation of
the FFLO superfluid has been a long-standing challenge.

There are two main difficulties for experimentally realiz-
ing the FFLO phase in superconductors under high magnetic
fields [6–8]. First, when a magnetic field is applied to a su-
perconductor, the Meissner effect occurs—the magnetic field
is expelled by induced currents, up to a critical field. There-
fore, no net spin is induced. Beyond the critical field, Cooper
pairs break due to the large Zeeman energy compared with
the superconducting gap. Second, even in the absence of the
Meissner effect (such as in either charge-neutral systems or
charged two-dimensional systems with an in-plane magnetic
field), the parameter space for the FFLO phase is predicted
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to be small [5–10]. Despite these difficulties, there is some
indirect experimental evidence of FFLO superfluids in two-
dimensional organic materials, heavy-fermion materials, and
pnictides [11–23].

The FFLO phase can also be potentially realized in other
experimental scenarios, such as a two-component fermionic
system with a mass imbalance [9,24–28], atomic Fermi gases
at unitarity [29–34], with spin-orbit coupling [35–39], in
superconducting rings [40,41], and in electron-hole bilayers
[42]. A recent theoretical work [43] argues that the FFLO
phase can be realized in vortices in a spin-imbalanced three-
dimensional (3D) Fermi gas, a scenario that has previously
been realized experimentally [44]. A FFLO-like phase is pre-
dicted to occur in dense quark matter [45] and nuclear matter
[46]. But so far, the definitive experimental proof of the FFLO
state—the observation of nonzero pair momentum—has not
yet been attained.

Ultracold atomic gases, which are charge-neutral, are ide-
ally suited to directly probe the presence of the FFLO phase,
circumventing some of the limitations of the condensed-
matter experiments. Due to the experimental ability to control
the initial spin polarization via radiofrequency sweeps, one
can potentially realize the FFLO phase in the way it was
originally envisioned by Refs. [1,2], i.e., in spin-imbalanced
fermionic systems, without competing with the Meissner ef-
fect that occurs with magnetic fields in charged systems.
In situ imaging in cold atom experiments potentially allows
researchers to directly probe the coexistence of magnetism
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and superfluidity, and the harmonic trapping potential enables
measurements of the phase diagram over a wide range of den-
sities. Confining atoms in quasi-one-dimensional (1D) tubes
enlarges the parameter space with the FFLO phase as the
ground state. Cold atom experiments can also, in principle,
implement other experimental scenarios described above to
realize the FFLO phase by trapping different atomic species
with different masses, by tuning the interaction to unitarity
via a Feshbach resonance, by inducing artificial spin-orbit
coupling using Raman lasers, or by trapping them in ring
geometries.

One of the most promising steps towards observing the
FFLO phase was in a spin-imbalanced 6Li gas trapped in
a two-dimensional (2D) array of tunnel-coupled quasi-1D
tubes [47,48]. These experiments found that the harmonic
trap separates the gas into fully-spin-polarized, partially po-
larized, and unpolarized phases. Previously, experiments [49]
with a 1D gas found density profiles consistent with separa-
tion of the trapped gas into FFLO, spin-balanced superfluid,
and normal phases, in quantitative agreement with Bethe
Ansatz solutions [49,50]. However, none of these experiments
demonstrated superfluidity, provided evidence of domain
walls containing the excess ↑ atoms, or detected atom pairs
with nonzero center-of-mass momentum. Other experiments
that have searched for the FFLO phase in spin-imbalanced 2D
and 3D atomic gases [44,51–55] have failed to find evidence
for it. This is consistent with theoretical predictions that the
FFLO phase occupies a very small part of the phase diagram
in 2D and 3D gases [5–10,56].

In this paper, we calculate the phase diagram of a spin-
imbalanced Fermi gas trapped in a 2D array of tunnel-coupled
1D tubes by using Hartree-Fock Bogoliubov-de Gennes
(BdG) mean-field (MF) theory over a broad range of exper-
imentally relevant parameters, including those in Ref. [47]
and additional measurements presented here. We use the local
density approximation (LDA) to calculate the density profiles
of both spins in a harmonically trapped gas, as well as the
phase boundaries of the gas in the trap, and compare these
to experimental measurements. Our calculations qualitatively
agree with the measured density profiles and also reproduce
the experimentally observed universal scaling of the measure-
ments when the tunnel coupling is scaled by the pair binding
energy.

Although several previous theoretical works [27,49,50,56–
94] have calculated the phase diagram of spin-imbalanced
fermions in different scenarios, new calculations are needed
to directly compare with the recent measurements [47]. Re-
searchers have calculated the phase diagram in the limit of
uncoupled 1D tubes by using exact methods like the Bethe
Ansatz or exact diagonalization for small systems [49,50,58–
61,93,95], DMRG [66,68–70] quantum Monte Carlo [67],
pairing fluctuation theory [92,94,96], as well as approximate
methods like MF theory [63–65]. While exact methods like
quantum Monte Carlo are sometimes used for calculating the
phase diagram in higher dimensions, too [86], MF theory is
the commonly used method which researchers have used to
calculate the phase diagram for a 2D gas [56,80,87,91], a 3D
gas with no lattice [6,7,9,76–79], a 3D gas with a 3D lattice
[71–75,90], and in the polaron limit of large spin imbalance
[27,80]. The phase diagram of a 3D gas with a 2D lattice
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FIG. 1. Schematic of experiment, containing a spin-imbalanced
gas of 6Li atoms trapped in a 2D array of 1D tubes. The tunneling
amplitude between nearest-neighbor tubes is t .

of tubes, which is the trapping geometry in the experiments
we consider [47], was calculated in Refs. [57,97] by using
MF theory, and in Refs. [88,89] by using a perturbative treat-
ment away from the exact solution for an uncoupled tube.
However, they did not calculate density profiles, a sufficiently
broad regime of the phase diagram, or other experimental
observables such as spatial coordinates of phase boundaries
in a trapped gas, all of which are needed to compare with
experiments [47].

This paper is organized as follows: In Sec. II we discuss the
experimental setup. In Sec. III, we present the MF theory and
the MF phase diagram in a uniform potential. In Sec. IV we
use the LDA to calculate the phases and phase boundaries of
the gas with harmonic confinement in the axial direction while
homogeneous in the transverse directions and compare these
with experimental measurements. We also investigate the uni-
versality and 1D-3D crossover observed in experiments. In
Sec. V, we discuss possible experimental signatures of the
FFLO phase. We summarize in Sec. VI.

II. EXPERIMENTAL SETUP

A. Setup

We consider a dilute ultracold gas of 6Li atoms trapped in
a 2D array of tunnel-coupled 1D tubes along z, as shown in
Fig. 1. The tubes are created by a periodic potential,V (x, y) =
V0[cos2(πx/b) + cos2(πy/b)].

The Hamiltonian for the system without harmonic confine-
ment is

Ĥ =
∫

d3r

[ ∑
σ=↑,↓

ψ̂ +σ (r)

(
− h̄2

2m
∇2 − μσ +V (x, y)

)

× ψ̂σ (r) + gψ̂↑ + (r)ψ̂↑(r)ψ̂↓ + (r)ψ̂↓(r)

]
. (1)

Here, ψ̂σ (r) annihilates an atom at position r = (x, y, z)
with spin σ . The interaction strength g = 4π h̄2as/m is
parametrized by the 3D scattering length as and can be
controlled by tuning the magnetic field near a Feshbach res-
onance. μσ is the chemical potential for spin σ and can
be controlled experimentally via the initial spin populations,
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which can be set by standard radiofrequency sweep tech-
niques. Spin relaxation is negligible during the experimental
duration, and the spin populations remain constant. We as-
sume μ↑ > μ↓ and define

μ = (μ↑ + μ↓)/2,

h = (μ↑ − μ↓)/2. (2)

We include the effects of harmonic confinement via the local
density approximation in Sec. IV.

In the limit where the interaction is weak compared with
the lattice band spacing, the system is restricted to the lowest
band of the transverse lattice and is well described by a single-
band model. In the tight-binding limit where the lattice depth
is smaller than the recoil energy, the Hamiltonian becomes

Ĥ =
∫

dz
∑
k⊥

[∑
σ

ˆ̃ψ +σ (k⊥, z)

(
− h̄2

2m
∂2
z − μσ + εk⊥

)
ˆ̃ψσ (k⊥, z)

]

+ g1D

NxNy

∑
k⊥k′

⊥q⊥

ˆ̃ψ↑ + (k⊥ + q⊥, z) ˆ̃ψ↑(k⊥ − q⊥, z) ˆ̃ψ↓ + (k′
⊥ − q⊥, z) ˆ̃ψ↓(k′

⊥ + q⊥, z). (3)

Here, ˆ̃ψσ (k⊥, z) annihilates an atom at axial position z and
transverse momenta k⊥ = (kx, ky) with spin σ in the low-
est band of the transverse lattice. εk⊥ = 4t − 2t cos kxb−
2t cos kyb is the energy due to tunneling in the x and y di-
rections, where b is the lattice spacing. The sum over kx and
ky runs over the first Brillouin zone from −π/b to π/b. The
effective 1D interaction, g1D, is attractive and is related to as
as [98,99]

√
2�⊥
as

= −ζ

(
1

2
,

mg2
1D

8h̄3ω⊥

)
, (4)

where ω⊥ = π
b

√
2V0/m is the harmonic frequency charac-

terizing the transverse lattice depth, �⊥ = √
h̄/mω⊥ is the

harmonic length in this trap, and ζ is the Hurwitz zeta func-
tion. We denote εB = mg2

1D/4h̄2. This is the 1D pair binding
energy. Associated with this energy scale, we define a length
scale �B = h̄/

√
mεB.

B. Motivation for this setup

The motivation for trapping the gas in a 2D array of tunnel-
coupled 1D tubes to search for the FFLO phase is illustrated
in Fig. 2. In a 3D gas without the 2D optical lattice, the
Fermi surfaces of the ↑ and ↓ spins are spherical, as shown
in Fig. 2(a), and there is no Fermi-surface nesting. Therefore,
a 3D gas with no lattice is not favorable for producing the
FFLO state. Consistent with this expectation, experiments
have so far failed to find any indication of the FFLO phase
in a 3D gas with no lattice [44,51–53]. In the presence of a 2D
lattice in the x-y plane, however, the Fermi surfaces are flatter
normal to z, as shown in Fig. 2(b). This leads to large Fermi-
surface nesting, and therefore a large parameter space with the
FFLO phase as the ground state. Indeed, earlier experiments
found experimental signatures in the density profiles that are
consistent with the FFLO phase [49]. In the 1D limit, i.e.,
t = 0, the Fermi surfaces are two parallel planes for each spin
and are fully nested. But such a 1D gas is not expected to
have long-range order. The case of tunnel-coupled 1D tubes,
as in Fig. 2(b), is therefore a promising geometry to search
for the FFLO phase, since it potentially combines the large
FFLO region of the phase diagram characteristic of 1D with
long-range order stabilized by the intertube coupling.

With this motivation, we now move on to calculating the
ground state of Eq. (3), comparing our results with exper-
imental measurements, and provide insight into where the
experiments are most likely to find the FFLO phase.

III. MEAN-FIELD THEORY

Any eigenstate of Eq. (3) is invariant under the transforma-
tions t → αt , μσ → αμσ , g1D → αg1D, and z → z/

√
α, for

any constant α. Under these transformations, εB → αεB and
�B → �B/

√
α. Therefore, the phase diagram only depends on

the ratios t/εB and μσ/εB. We set εB = 1 and �B = 1, unless
otherwise specified.

We make a self-consistent BCS approximation for fermion
pairs and a self-consistent Hartree-Fock approximation for the
atomic density:

�(z) = g1D

NxNy

∑
k⊥

〈 ˆ̃ψ↓(−k⊥, z) ˆ̃ψ↑(k⊥, z)〉,

nσ (z) = 1

NxNy

∑
k⊥

〈 ˆ̃ψσ + (k⊥, z) ˆ̃ψσ (k⊥, z)〉, (5)

where NxNy is the number of tubes in a finite box with periodic
boundary conditions in the x and y directions, with each tube
having four neighboring tubes. The MF Hamiltonian is

ĤMF =
∑
k⊥

∫
dz

[
(ψ̂↑ + (k⊥, z) ψ̂↓(−k⊥, z))

×
(
H0 − μ↑ + g1Dn↓ �

�∗ −H0 + μ↓ − g1Dn↑

)

×
(

ψ̂↑(k⊥, z)

ψ̂↓ + (−k⊥, z)

)
− |�(z)|2

g1D
− g1Dn↑(z)n↓(z)

+
∫

dk′

2π

(
h̄2k′2

2m
+ εk⊥ − μ↓ + g1Dn↑(z)

)]
, (6)

where H0 = −h̄2∂2
z /2m + εk⊥ . To derive Eq. (6), we inserted

the mean-field approximations [Eq. (5)] into the Hamilto-
nian [Eq. (3)], neglected the terms that do not preserve
transverse momentum, and used the anticommutation re-
lation ˆ̃ψ↓ + (k⊥, z) f ˆ̃ψ↓(k⊥, z) + ˆ̃ψ↓(k⊥, z) f ˆ̃ψ↓ + (k⊥, z) =∫
dk′/(2π )eik

′z f e−ik′z for any function f (z, ∂/∂z, . . . ) . The
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q

q

FIG. 2. Illustration of Fermi-surface nesting in an array of tubes,
and no nesting in a homogeneous 3D gas. (a) Fermi surfaces for
↑ (dashed black) and ↓ (solid blue) spins in a homogeneous 3D
gas, projected onto the ky = 0 plane. The momentum difference 
q
between the paired ↑ and ↓ spins is unique to each pair. Therefore,
there is no nesting, and the FFLO phase is unlikely to be robust.
(b) Fermi surfaces for ↑ (dashed black) and ↓ (solid blue) spins
in an array of tubes, with t/ER = 0.005, projected onto the ky = 0
plane, where ER is the recoil energy. Multiple pairs of ↑ and ↓
spins on their respective Fermi surfaces have the same momentum
difference 
q, owing to the nearly flat Fermi surface. Therefore, the
Fermi surface is nested, and the FFLO phase is more robust. Paired
spins are connected by red lines.

expectation values in Eq. (5) are calculated in the ground
state of Eq. (6). We assume a uniform chemical potential and
periodic boundary condition along z. In general, � and nσ

can depend on z, breaking translational symmetry along that
direction. The MF approximations made here are expected
to be valid as long as �(z)/εB � 1, g1Dnσ /εB � 1, and for
reasonably large t/εB. When t/εB � 1, the system is in the
1D limit, where the quantum fluctuations are large and likely
to cause MF theory to fail [88].

We numerically find the ground state of Eq. (6) that self-
consistently satisfies Eq. (5). To find the ground state, we

compare the energy for different self-consistent solutions ei-
ther obtained analytically or by numerically iterating different
initial Ansatz wave functions as detailed below. We consider a
variety of Ansatz wave functions that are expected to capture
all the phases in experiments. The ground state within MF
theory is the self-consistent solution with the least energy.

A. Mean-field Ansätze

We consider the following Ansätze. The Ansatz for the fully
spin-polarized gas, NFP, has n↓ = � = 0 and uniform n↑(z).
We calculate the solution for this Ansatz analytically as

n↑(z) = 1

NxNy

∑
k⊥

Re[
√

2m(μ↑ − εk⊥ )]

π h̄
. (7)

This solution is self-consistent, i.e., it satisfies Eq. (5) if μ↓ −
g1Dn↑ < 0.

The Ansatz for the partially spin-polarized normal gas,
NPP, has � = 0 and uniform n↑(z) > n↓(z) > 0. We calcu-
late the self-consistent solution for this Ansatz by solving the
implicit equations

nσ (z) = 1

NxNy

∑
k⊥

Re[
√

2m(μσ − g1Dn−σ − εk⊥ )]

π h̄
(8)

for n↑ and n↓.
The Ansatz for the spin-balanced superfluid, SF0, has uni-

form n↑(z) = n↓(z) and uniform �(z) �= 0. We numerically
iterate this and all the remaining Ansätze, described below, to
self-consistency.

We make two kinds of Ansätze for the FFLO phase—the
FF (Fulde-Ferrell) Ansatz which has a complex order parame-
ter, and the LO (Larkin-Ovchinnikov) Ansatz which has a real
order parameter.

The FF phase has uniform n↑(z) > n↓(z) > 0 and �(z) =
�0eiqz. To obtain the self-consistent solution for the FF phase,
we seed the initial Ansatz with uniform n↑(z) and n↓(z) and
�(z) = �0eiqz, where n↑�B, n↓�B, and �0/εB for the initial
seed are picked randomly from a uniform distribution in the
range [0,1]. We iterate this Ansatz to self-consistency by using
Eq. (5). During the iterations after the initial seed, we do not
enforce the Ansatz to be of the form �(z) = �0eiqz. In an
infinite system, the Ansatz will always retain this form with
constant q during the self-consistency iterations, but the form
changes in our finite systems, so that the final self-consistent
solution is not necessarily the FF phase. We evolve the FF
Ansatz to self-consistency for several values of q and keep the
solution with the lowest energy.

The LO phase has n↑(z) > n↓(z) > 0 and real �(z) �= 0
(except at domain walls), and all three quantities vary with
z. To obtain the self-consistent solution for this phase, we
seed the initial Ansatz with uniform n↑, uniform n↓, and
�(z) = �0(−1)�Mz/L�, where n↑�B, n↓�B, and �0/εB for the
initial seed are chosen randomly from a uniform distribution
in the range [0,1], and M is an integer denoting the number of
domain walls in the initial seed. We evolve the LO Ansatz to
self-consistency for several values of M and keep the solution
with the lowest energy.

When we iterate the LO Ansatz to self-consistency, two
kinds of solutions emerge. In the first kind, the solution has
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FIG. 3. Dimensionless majority- and minority-spin densities and
order parameter in a uniform potential. (a) Densities n↑�B (solid
black) and n↓�B (solid blue), and order parameter �/εB (dash-dotted
red) versus z/�B in a uniform potential with t = 0.02εB, h = 0.63εB,
and μ = 0. The gas has twelve domain walls in this finite system,
and one excess ↑ spin per domain wall. This gas is in the commen-
surate LO phase. (b) Spatially averaged majority- and minority-spin
densities n↑�B (black circles) and n↓�B (blue squares), and spatially
averaged order parameter magnitude |�|/εB (red triangles) vs μ/εB
for t = 0.02εB and h = 0.63εB. The gas exhibits two phases for these
parameters: FFLO at large μ, and NFP at small μ. Red lines separate
the different phases.

exactly one excess ↑ spin per domain wall, i.e.,
∫
dz[n↑(z) −

n↓(z)] = 1 where the integration region contains one domain
wall. This is the commensurate LO phase. In the second
kind of self-consistent solution, the solution has a noninteger
number of excess ↑ spins per domain wall. This is the incom-
mensurate LO phase.

While the FF, commensurate LO, and incommensurate LO
are distinct phases, all of them exhibit spin-imbalanced super-
fluidity, so we group them together as the FFLO phase. We
find that the LO phases always have a lower energy than the
FF phase. We do not find any other types of solutions besides
those described above. We have also checked a large number
of the solutions and found that they are robust to different
values of the initial seeds.

As an example of the self-consistently obtained results,
Fig. 3(a) plots nσ �B (black and blue) and �/εB (red) ver-
sus z/�B in a uniform potential along z, with t = 0.02εB,
h = 0.63εB, and μ = 0. To obtain these results, we used a
finite system with L = 100�B and NxNy = 100 tubes and dis-
cretized space along the axial direction with a grid spacing
of 0.5�B. The order parameter varies with z and has twelve
zero crossings, or domain walls, in this finite system of length
100�B. The spin densities are equal everywhere except near
these domain walls, and there is one excess ↑ spin at each
domain wall. These observations indicate that the gas is in the
commensurate LO phase.

From plots like Fig. 3(a), we calculate the spatially av-
eraged value of the spin densities and the order-parameter
magnitude |�|. The spatially averaged values contain all the
information required to determine the phase in a uniform
potential. Figure 3(b) plots the spatially averaged spin den-
sities nσ �B (black circles and blue squares) and the spatially
averaged order-parameter magnitude |�|/εB (red triangles) in
the ground state of a gas in a uniform potential versus μ/εB
at t = 0.02εB and h = 0.63εB. We find two phases: FFLO
for μ > −0.1εB and NFP for μ < −0.1εB. There is a discon-
tinuous phase transition from the FFLO to the NFP phase,
and the minority-spin density and order parameter change
discontinuously. Repeating this procedure for all h and t gives
the full phase diagram.

B. Phase diagram in a uniform potential

Figure 4 shows the system’s MF ground-state phase di-
agram for different tunneling strengths, calculated by using
the procedure described above. The parameters for system
size and numerical grid spacing are the same as in Fig. 3.
There are three or four different phases, depending on the
tunneling. The ground state is the SF0 phase at small h and
μ > μvac where μvac is a critical value set by t/εB [57]. The
ground state is the FFLO superfluid at large h and μ. The NPP

ground state appears only for t � 0.02εB and occurs at large
h and intermediate μ. The ground state is the NFP phase for
h > −μvac, μ > −h, and smaller μ than FFLO and NPP. For
μ < min(μvac,−h), the ground state is the vacuum, which has
n↑ = n↓ = � = 0.

The phase diagrams in Fig. 4 are, broadly speaking, qual-
itatively consistent with experiments [47], and this will be
presented in detail in Sec. IV. Our calculations also distin-
guish between the FFLO and NPP phases, which have not yet
been distinguished from each other by experiments.

The phase diagrams in Fig. 4 are also consistent with
previous MF calculations [57] and in rough agreement with
the Bethe Ansatz at t = 0 [50,58–60], plotted as dash-dotted
lines in Fig. 4(e).

Despite the rough agreement, there are two major differ-
ences between our results and the Bethe Ansatz, and one
difference between our results and previous MF calculations.

The first difference between MF and the Bethe Ansatz is
the presence of tricritical and multicritical points in the phase
diagram. Our phase diagrams have two tricritical points for
t < 0.2066εB, consistent with the MF findings in Ref. [57].
This is in contrast with the Bethe Ansatz at t = 0 [50,58–60],
which produces a phase diagram with a multicritical point
for four phases instead. Although experiments using a 2D
optical lattice cannot reach t = 0, they are consistent with
having only one multicritical point at t = 0.005εB [47]. This
is a failure of MF theory, which is expected since quantum
fluctuations become large when the system approaches the 1D
limit. As t increases, the tricritical points come closer in MF,
and merge at t = 0.2066εB. This is also the tunneling strength
where μvac reaches 0 [57]. Current experiments cannot realize
such strong tunnelings.

The second difference between MF and the Bethe Ansatz
is the slope of the SF0 lobe in the μ-h plane. For all t , the
slope of the lobe is positive from μ = μvac, up to a turning
point μ = μ0 where the slope becomes infinite. As will be dis-
cussed in Sec. IV, this implies that a partially spin-polarized
harmonically confined gas can have a SF0 core, a signature
that also occurs in 3D gases with no lattice. Since the positive
slope persists up to t = 0 in MF [see Fig. 4(e)], the resulting
distribution of phases in the trap is always 3D-like, in the
sense of having a SF0 core in a spin-polarized gas, as long
as the central chemical potential is not too large. In contrast,
the slope of the SF0 lobe in the Bethe Ansatz phase diagram
at t = 0 is negative at all μ, indicating that a harmonically
confined gas at any nonzero spin polarization will have a
FFLO core. Experiments at t = 0.005εB are consistent with
having a FFLO core at nonzero polarization [47].

The difference between our results and previous MF cal-
culations [57] is in the size of the FFLO phase relative to the
NPP phase. We find a larger FFLO phase and a smaller NPP
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FIG. 4. MF phase diagram of a spin- 1
2 Fermi gas in a 2D array

of tunnel-coupled 1D tubes, for different tunneling strengths t . We
observe four different phases: a spin-balanced superfluid (SF0), a
spin-polarized superfluid (FFLO), a partially polarized normal phase
(NPP), and fully spin-polarized normal phase (NFP). SF0-vacuum
and NFP-vacuum boundaries are in red, SF0-FFLO and SF0-NFP

boundaries are in green, and NPP-NFP and FFLO-NFPboundaries are
in blue. We have only computed a few data points (orange crosses)
on the FFLO-NPP boundary, and the dashed orange lines are guides
to the eye. Dash-dotted lines in panel (e) show the phase boundaries
obtained from Bethe Ansatz at t = 0.

phase than Ref. [57]. This could be because we considered
a broader range of Ansätze than Ref. [57], which considered
only solutions of the FF form to find the boundary between
the NPP and FFLO phases. Our results show a shrinking trend
for the size of FFLO phase with increasing t/εB, which is
consistent with the expectation that the FFLO ground state is
nearly nonexistent in the 3D limit [3,10].

IV. LOCAL DENSITY APPROXIMATION
IN A HARMONIC TRAP

In the experiments in Ref. [47], the 2D optical lattice which
creates the array of tubes also results in a slowly varying
potential envelope that is approximately harmonic along three
axes. As a result of the spatially varying potential, the gas
exhibits several phases which appear at different distances
from the center. The spin-sensitive in situ density images par-
tially reveal the phases present in the experiment—they can
distinguish all of the predicted phases except NPP vs FFLO.

In the LDA, the properties of the system at a position
r are approximated to be those of a homogeneous system
with chemical potential μ(r) = μvac −Vtrap(r), where in the
present experimentsVtrap(r) = m(ω2

xx
2 + ω2

yy
2 + ω2

z z
2)/2 is a

good approximation for the potential. The LDA is accurate in
large-enough systems. In our experiments, ωz varies linearly
withV0, from 2π × 197 Hz to 2π × 256 Hz whenV0 is varied
from 2.5ER to 12ER. For these parameters, we expect the LDA
to be fairly accurate.

We use the LDA to calculate the variation of densities of
both spins and the order parameter along the axial direction
in one tube, assuming an axially varying harmonic trap and
a uniform potential in the transverse directions. We compare
the calculated density profiles with experimentally observed
density profiles in one tube. We focus on the density profiles
of the central tube in the experiments, which are obtained
by doing an inverse Abel transform on the column-integrated
densities extracted from images. From the calculated density
profiles and the order parameter in the LDA, we extract the
regions in the trap where the various phases occur. We can
similarly extract the phases from the experimental observa-
tions but cannot distinguish between FFLO and NPP because
the experiments did not measure the order parameter.

We extract the locally averaged real-space density nσ (z) in
one tube in MF theory by using the variation of nσ with μ

in Fig. 3(a) and the fact that the local potential in the central
tube varies in the experiment as μ(z) = μc − mω2z2/2. We
set μc and h as the appropriate chemical potentials, which
give the right value for the experimentally measured total
particle numbers in the central tube for each spin, Nσ =∫ ∞
−∞ nσ (0, 0, z)dz, which in LDA are

Nσ =
∫ μc

−∞

√
2nσ (μ, h)√

mω2(μc − μ)
dμ. (9)

We define the polarization in the tube as

Ptube = N↑ − N↓
N↑ + N↓

. (10)

The 3D densities nσ,3D are related to the 1D densities as
nσ,3D = nσ /b2.
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FIG. 5. Majority- and minority-spin densities and order parame-
ter vs axial coordinate in a slowly varying harmonic trap. (a) Spatial
profile of the locally averaged 3D spin densities n↑,3D (black) and
n↓,3D (blue), and (b) locally averaged order-parameter magnitude |�|
vs z, under the local density approximation. The MF curves (thick
lines) in panel (a) are overlaid on top of experimental data [47] (thin
lines), measured for t = 0.02εB, N↑ = 268, as = ∞, and Ptube = 0.4.
These parameters lead to h = 0.63εB and μc = 0.07εB, which are
then used in LDA to calculate the MF curves. The 3D density is
related to the 1D density as nσ3D = nσ /b2. For these parameters, the
gas exhibits two phases in the trap: FFLO in the center, and NFP in the
wings. The discontinuous phase transition from FFLO to NFP causes
a jump in n↓,3D and |�|.

Figure 5(a) plots nσ,3D vs z extracted by doing an inverse
Abel transform on the experimental data (thin lines), and
the locally averaged densities nσ,3D obtained from MF (thick
lines), for the parameters t = 0.02εB, as = ∞, N↑ = 268, and
Ptube = 0.4, where the values of N↑ and Ptube are obtained
by analyzing the experimental data. For these parameters, we
find that μc = 0.07εB and h = 0.63εB. There is good overall
agreement between the experimental and MF density profiles.
Similar agreement is observed qualitatively in all the data,
although for some parameters, especially those at small po-
larization, there is up to a 50% difference in the boundaries of
the phases in the MF curves and experimental data.

Figure 5(b) plots the locally averaged order-parameter
magnitude |�| vs z. The order parameter is nonzero in the
central region of the trap and the gas is spin polarized there,
indicating that the phase in the center is FFLO. There is
a discontinuous transition to the NFP phase at z ≈ 30 μm.
Experiments have not measured the order-parameter magni-
tude yet. Figure 5(b) shows that the FFLO phase should be
present in a significant region of the trap in experiments. The
order-parameter magnitude is 2.3 μK in the center of the trap,

suggesting that, at least under some conditions, the FFLO state
remains robust up to a temperature on this order. The Fermi
temperature corresponding to the peak density in Fig. 5(a) is
3 μK. The temperature in the experiments is typically well
below this.

A. Scaled radii of phase boundaries

From plots like Fig. 5 showing nσ,3D and |�| vs z, we
extract the axial coordinate of the various phase boundaries.
We define Rd as the maximum axial coordinate where n↑,3D �=
n↓,3D, R↓ as the maximum coordinate where n↓,3D > 0 (which
is the inner edge of the NFP phase), RSF,1 and RSF,2 as the
inner and outer edges of the SF0 phase, respectively (where
n↑ = n↓ > 0), and R� as the maximum coordinate where
|�| = 0 and n↑,3D > 0 (which is the outer edge of the SF0

and FFLO phases combined). Of these, R� is not measurable
experimentally. Some of these coordinates are ill defined in
the limits Ptube = 0 and Ptube = 1. In these cases, the radii are
computed or measured in the limit Ptube → 0+ or Ptube → 1−.

We scale the coordinates of the phase boundaries by
√
N�z.

This choice of the scaling factor is natural, since the scaled
coordinates R/(

√
N�z ) are less dependent on fluctuations in√

N and ωz in the experiments. This can, for example, be seen
by noting that

Rd√
N�z

=
(

h̄

2m[μc − min(μvac,−h)]

∫ μc

−∞
dμ

n(μ, h)√
μc − μ

)−1/2

.

(11)
The right-hand side of this equation does not explicitly depend
on N or ωz. In the special limit t = 0 and Ptube = 1, all the
scaled radii are analytically known; Rd/(

√
N�z ) = √

2, R↓ =
R� = 0. In this limit, μc = Nh̄ωz − h. At small tunnelings at
Ptube = 1, the chemical potential can be obtained by Taylor
expanding the integral in Eq. (9) as μc = Nh̄ωz − h − 2t ,
leading to

Rd/(
√
N�z ) =

√
2(1 + 4t/Nh̄ωz ). (12)

B. Scaled radii: Experiment vs theory

All the scaled radii described above can be determined by
specifying only four parameters: N↑, as, t/εB, and Ptube. In
principle, h̄ωz/εB is also a free parameter, but in our calcula-
tions as in the experiments, ωz is determined from the optical
lattice depth which provides the harmonic confinement and so
is not independent of t .

The filled circles in Figs. 6(a.i)–6(a.iv) show the scaled
radii vs tube polarizations Ptube, obtained from MF theory for
a harmonically trapped gas with various t/εB and fixed scat-
tering length as = −5360a0 and N↑ = 250. The boundaries
of the different phases are extracted by using the procedure
described earlier in this section. The blue triangles and red
inverted triangles show the experimental measurements for
the scaled R↓ and Rd in the central tube. The blue, red, green,
and orange filled circles are the scaled R↓, Rd , RSF,i, and R�

in MF theory, and the solid lines are guides to the eye. The
dashed red and blue lines in Fig. 6(a.i) are the scaled Rd and
R↓ obtained from the Bethe Ansatz at t = 0. In the Bethe
Ansatz, RSF1 = Rd and RSF2 = R↓ up to the multicritical point
at h = 0.5εB, and R� = R↓ always. Experiments have not yet
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FIG. 6. Scaled radii in the central tube of a spin- 1
2 Fermi gas

trapped in a 2D array of 1D tubes with axial harmonic confinement,
obtained from experiment (triangles) and using MF theory and LDA
(filled circles) at different tube polarizations Ptube. The solid lines
guide the eye. The dashed lines at t = 0.005εB are the scaled radii
obtained from the Bethe Ansatz. The parameters for each column
are (a) N↑ = 250, as = −5360a0, (b) N↑ = 100, as = −5360a0, and
(c) N↑ = 250, as = −8610a0. Parameters for each row are (i) t =
0.005εB, (ii) t = 0.02εB, (iii) t = 0.05εB, (iv) t = 0.09εB. The system
exhibits three or four phases: a spin-balanced superfluid (SF0) inside
the green lobes, a spin-polarized superfluid (FFLO) for R < R�

(between the orange and green curve), a partially polarized normal
phase (NPP) for R� < R < R↓ (between the orange and blue curves),
and a fully polarized normal gas (NFP) for R↓ < R < Rd (between
the blue and red curves). For some parameters, the NPP phase is not
resolvable (if it exists). The blue triangles and red inverted triangles
are experimental data points for R↓ and Rd .

measured R� and RSF,i. We set the horizontal axis as Ptube

instead of h, since Ptube is experimentally observable. Since
calculating the scaled radii versus Ptube requires us to calculate
the self-consistent solution at a large number of points in the
μ-h plane for each tunneling, we used a smaller system size of
L = 25�B with a grid spacing of 0.25�B. We find the finite-size
errors due to the reduced system size to be negligible—the
majority spin density changed by O(10−3) when we reduced
our system size from L = 100�B to L = 25�B.

The scaled radii plotted in Figs. 6(a.i)–6(a.iv) are, broadly
speaking, qualitatively consistent with the scaled radii derived
from experimental data, but there are quantitative differences.
At all tunnelings at Ptube = 0, the gas is in the SF0 phase
everywhere in the trap, both in MF theory and the experi-
ment. Here, RSF,1 = 0 and R↓ = R� = RSF,2. However, there
is significant difference in the value of the latter scaled
radii measured in experiments and obtained from MF the-
ory at Ptube = 0. At all tunnelings at Ptube = 1, the gas is
in the NFP phase everywhere in the trap, R↓ = R� = 0 and
Rd/(

√
N�z ) ≈ √

2(1 + 4t/Nh̄ω) as predicted in Eq. (12). For
large Ptube, our MF calculations produce a spin-polarized
phase in the trap center, surrounded by the NFP phase, agree-
ing with experimental observations.

Our calculations also reveal phase boundaries that have not
yet been measured by experiments, but should be present.
For example, the phase boundaries in the MF calculations
easily distinguish between FFLO and NPP; �(z) �= 0 in the
FFLO phase, and �(z) and nσ (z) vary with z on a length
scale given by the difference in Fermi momenta of ↑ and ↓.
Our calculations predict that the NPP phase appears for t >

0.02εB and is either absent or occupies a very small space for
t � 0.02εB. This is consistent with the Bethe Ansatz at t = 0.
Previous experiments [47] did not measure � and did not
have the spatial resolution to image rapid density oscillations.
Therefore, they could not distinguish between FFLO and NPP.
Future experiments which probe the gas after a time-of-flight
expansion, or with a high-resolution microscope which can
resolve density oscillations in situ, may be able to distinguish
between these two phases [100,101].

The largest disagreement between experiments and our
calculations is at small Ptube and t � 0.02εB, i.e., close to
the 1D limit. In the limit Ptube → 0, MF theory predicts that
Rd → R↓, while the Bethe Ansatz predicts and experiments
measure that Rd → 0. Physically, this means that experiments
observe a spin-polarized (i.e., FFLO or NPP) phase in the
center surrounded by the SF0 phase, while MF predicts a SF0

phase in the center surrounded by the FFLO phase and the NFP

phase. A distribution of the phases as in experiments for t �
0.02εB is often referred to as 1D-like, while the distribution of
phases in MF is 3D-like and inverted relative to the 1D-like
phase distribution. As the tunneling increases from t = 0 to
t = 0.02εB, experiments observe that the Rd vs Ptube curve
gets steeper so that the polarization where R↓ = Rd shifts to
smaller Ptube. Beyond t ≈ 0.02εB, Rd = R↓ at Ptube = 0, i.e.,
the experimental measurements are consistent with a 3D-like
phase distribution with a SF0 core in the trap center, agreeing
with our MF theory.

In the regime described above where t � 0.02εB, the ex-
perimental measurements agree better with the Bethe Ansatz.
At t = 0, the Bethe Ansatz, which is exact, nearly perfectly
matches the experimental measurements, with small devia-
tions occurring possibly due to finite-temperature corrections
unaccounted for here. At t = 0.02εB, the experiments still
observe a 1D-like phase distribution like that at t = 0.

Some of the differences between experimental measure-
ments and MF calculations could be due to the invalidity of
MF theory in some regimes, or systematic inaccuracies in our
calculations due to finite system size and finite discretization
of our system in space. MF theory is not expected to be
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valid for t/εB � 1 due to large quantum fluctuations. Indeed,
our calculations differ the most from experimental measure-
ments when t � 0.02εB. In lieu of MF theory, Ref. [88]
proposes a perturbative treatment of the tunneling from an
exact solution at t = 0. Strong interactions could also produce
beyond-mean-field effects, or cause a failure of the tight-
binding model due to excitation to higher bands in the lattice.
We used a finite system size L = 25�B with a grid spacing
of 0.25�B in our calculations in Sec. IV, both of which can
contribute to systematic errors. In the FFLO phase at large
polarization, the nonzero grid spacing is a source of error
because the domain-wall spacing can become comparable to
the grid spacing. In the FFLO phase at small polarization, the
finite system size is a source of error because the polarization
cannot smoothly go to zero in our system. Another source of
error could be that N↑ in the experiments sometimes deviates
considerably from 250, even though the scaling factor is cho-
sen to reduce the dependence on N . For example, N↑ = 268
for the experimental data plotted in Fig. 5 and is sometimes as
high as 295.

Some of our calculations’ inaccuracies may be mitigated
by increasing the system size in the calculations with a uni-
form potential, including higher bands of the optical lattice,
including finite-temperature corrections, or replacing the local
density approximation with a BdG method which includes a
spatially dependent potential.

C. Scaled radii: Other parameters

Here we explore the dependence of our results on the
interaction strength and the number of atoms. In Figs. 6(a.i)–
6(a.iv), we fixed N↑ = 250 and as = −5360a0. In Figs. 6(b.i)–
6(b.iv) and 6(c.i)–6(c.iv), we vary N↑ and as.

Figures 6(b.i)–6(b.iv) set N↑ = 100, keeping as =
−5360a0 the same as in Figs. 6(a.i)–6(a.iv). The effect
of reducing N↑ in our calculations is straightforward to
understand—the major effect is that it lowers the central
chemical potential μc. For t < 0.05εB, μc is reduced to a
value below the chemical potentials where the FFLO phase
is the ground state. Therefore, as can be observed from
Figs. 4(b.i)–4(b.iv), the gas always has a SF0 core, surrounded
by NFP wings, and the FFLO phase is completely missing. For
t � 0.05εB, the FFLO phase appears at large polarizations,
but the size of the FFLO phase is smaller in Fig. 6(b.iv)
than in Fig. 6(a.iv). Conversely, extrapolating this trend to
increasing N↑ instead of decreasing N↑, μc will increase and
the FFLO phase should be larger.

Based on the MF phase diagrams in Fig. 4, we can pre-
dict that significantly increasing N↑ in MF theory, instead
of decreasing N↑ as in Fig. 6(b), also leads to an important
qualitative change in the arrangement of phases in the trap. For
large μc, a gas with Ptube → 0 will have a 1D-like phase dis-
tribution, i.e., a FFLO core surrounded by SF0 wings. While
MF predicts that such a 1D-like distribution of phases will
appear only for large N↑ (e.g., N↑ > 700 at t = 0.02εB and
as = −5360a0), current experiments measure 1D-like profiles
already for N↑ = 250 and t � 0.02εB. The system sizes re-
quired in our MF calculations to obtain a particle number high
enough for a 1D-like phase distribution are prohibitively large.

vac

SF0
FFLO

NFP

t = 0.05 B

as/a0
-4340
-5360
-8610
−∞
+6170

FIG. 7. Apparent universality of scaled radii for different scatter-
ing lengths. The scaled radii at as = −4340a0, −5360a0, −8160a0,
−∞, and 6170a0 are plotted as filled circles, filled squares, filled
diamonds, open circles, and open squares, respectively. The lines
guide the eye. The color coding for the different scaled radii R↓,
Rd , RSFi, and R� is the same as that used in Fig. 6. The results for
different scattering lengths do not collapse onto each other exactly,
but show only a weak dependence on the scattering length.

Figures 6(c.i)–6(c.iv) set as = −8610a0, keeping N↑ =
250 the same as in Figs. 6(a.i)–6(a.iv). The effect of changing
as in our calculations is more subtle. Changing the scattering
length changes �B, but we set �B = 1. However, changing
as and fixing t/εB requires appropriately changing the tun-
neling, which consequently changes ωz due to the harmonic
confinement provided by the 2D optical lattice. Thus, the only
relevant difference between two plots in Figs. 6(a) and 6(c)
with the same t/εB is the ratio h̄ωz/εB. This then leads to
differences in μc/εB and h/εB for a given polarization.

Figures 6(a.i)–6(a.iv) and 6(c.i)–6(c.iv) show a remarkable
feature: the scaled radii for the same t/εB seem to be nearly
identical, although the scattering lengths are different. This
remarkable universal scaling of the scaled radii for different
scattering lengths and equal t/εB was also observed in exper-
iments [47]. There seems to be no a priori reason for this
universality. Nevertheless, we observe an apparent universal
scaling in our calculations. One possible explanation could be
the weak dependence of the scaled radii on h̄ωz/εB, as noted
in Eqs. (11) and (12).

We further analyze the universality of the scaled radii in
Fig. 7, where we plot the scaled radii for different scattering
lengths at t = 0.05εB. The scattering lengths considered in
Fig. 7 are the same as the scattering lengths that experiments
set for the 6Li atoms by tuning the magnetic field [47]. We
observe that, although the scaled radii at different as are nearly
the same, they are not identical. In fact, a perturbative calcula-
tion of the scaled radii [Eq. (12)] at small tunneling predicts a
weak dependence on h̄ωz/εB and thus on the scattering length,
and our results are consistent with this.

D. Onset of superfluidity

The 1D-ness or the 3D-ness of the phase distribution of
a trapped gas is captured by plotting the critical polarization
P3D at which the spin-balanced superfluid core shrinks to
zero. If P3D = 0, then the gas does not have a SF0 core as
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FIG. 8. Critical polarization in MF theory for the onset of
spin-balanced superfluidity at the center of the tubes, for differ-
ent scattering lengths. The critical polarization for as = −4340a0,
−5360a0, −8160a0 is plotted as blue circles, orange squares, and
green diamonds, respectively. The critical polarization in MF de-
creases with t/εB, in contrast with experiments where it increases
with t/εB.

Ptube → 0, and the gas is therefore 1D-like. If P3D �= 0, then
the gas is said to be 3D-like [47]. The Bethe Ansatz shows
that P3D = 0 at t = 0 [49,50]. Consistent with this, experi-
ments found that P3D = 0 for t < 0.02εB, and P3D > 0 for
t > 0.02εB [47]. They empirically associated this change in
P3D with a crossover from 1D-like to 3D-like behavior of the
gas at t ∼ 0.02εB.

Figure 8 plots P3D extracted from the MF scaled radii
in Figs. 6(a) and 6(c). In contrast to experiments, we find
that P3D > 0 for all t/εB, and decreases with t/εB. Notably,
P3D �= 0 even as t → 0, due to significant differences between
our MF results and experimental measurements as well as the
Bethe Ansatz.

The critical polarization is expected to change with par-
ticle number. With a large particle number in the trap, MF
theory might lead to a 1D-like distribution of phases, giving
P3D = 0 at small tunneling, and capture a crossover from
P3D = 0 at small tunneling to P3D > 0 at large tunneling. But
the particle numbers required for this are large. For example,
MF predicts 1D-like behavior for N↑ > 700 at t = 0.02εB
and as = −5360a0, which is higher than the particle numbers
N↑ ≈ 250 in the present experiment.

V. EXPERIMENTAL SIGNATURES

While experiments have been able to show the existence
of the NFP and SF0 phases with in situ spin-sensitive density
images, they have thus far not been able to prove the existence
of the FFLO phase. Our numerical calculations indicate that
the experimental measurements are consistent with having the
FFLO phase in some regions of the cloud (see Fig. 6). Below,
we argue that the experiments should be able to observe the
FFLO phase with proper imaging techniques that can be im-
plemented with current technology.

There are possibly two ways to experimentally observe the
FFLO phase. The first method involves imaging the cloud
after a time-of-flight expansion. Previously, theorists have
predicted [100,101] that the FFLO state shows clear peaks
in the density after a time-of-flight expansion. The second
method involves in situ imaging of small density oscillations.

Below, we shed some light on the experimental requirements
to measure these oscillations.

There are at least three questions to consider for imag-
ing the oscillations in situ—the magnitude and periodicity
of oscillations in one tube, and the alignment of oscillations
between different tubes. The LDA does not answer any of
these questions, since we average over the oscillations at each
chemical potential, but our calculations in a uniform potential
can give some insight into the answers for one tube. The dis-
tance between density oscillations increases as Ptube decreases,
and, as we will see below, is within experimental imaging
resolution only for small Ptube. Therefore, we focus on the
case of small Ptube here. For small Ptube, the commensurate
LO phase is more favorable than the FF or incommensurate
LO phases.

In the commensurate LO phase, the excess ↑ spins are
concentrated at domain walls. This causes the majority-spin
density n↑ to peak at domain walls, and the minority-spin
density n↓ to dip at domain walls. The magnitude of the peak,
relative to the background density away from the domain
wall, is O(ξb2)−1, where ξ is the healing length and b is the
lattice spacing between the tubes. This magnitude is a large
fraction of the background spin density nσ,3D = nσ /b2, as, for
example, evinced in Fig. 3(a), and should be measurable in
experiments. The number of excess spins per unit length in the
commensurate LO phase is n↑ − n↓. Therefore, the average
distance between the excess spins, i.e., the average distance
between the density oscillations, is 1/(n↑ − n↓). For a typ-
ical experimental value of �B ≈ O(200) nm, and assuming
that experiments can resolve distances larger than 4 μm, the
density oscillations are resolvable if (n↑ − n↓)�B < 0.05. For
the present experiments’ parameters, MF calculations predict
that this density difference can occur near the center of the
trap for Ptube � 0.05 for t/εB � 0.09. More accurate values
for the magnitude and periodicity of the oscillations can be
obtained by doing a BdG calculation with a spatially depen-
dent potential in the axial direction and a uniform potential in
the transverse directions, instead of a uniform potential in all
directions as we do in this paper.

Since our calculations assume that the chemical potential is
uniform in the transverse directions, the densities in different
tubes are identical, and therefore the density oscillations are
always aligned. Generalizing the calculation to include a spa-
tially dependent potential in the axial and transverse directions
will shed light on the alignment of oscillations in different
tubes. Our preliminary BdG calculations for two tubes with
different potentials show that the oscillations in the two tubes
are phase locked for sufficiently large tunneling, t � 0.05εB.
Doing a full 3D BdG calculation with spatially varying poten-
tials in all directions is computationally expensive and subject
to numerical difficulties such as getting stuck in local minima.

VI. SUMMARY

We used Hartree-Fock Bogoliubov-de Gennes MF theory
to calculate the phase diagram of a spin-imbalanced Fermi gas
trapped in a 2D array of tunnel-coupled 1D tubes and used the
LDA to calculate the density profiles and scaled coordinates
of the phase boundaries of this gas in an axially varying
harmonic trap. We compared these results to experimental
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measurements of the density and phase boundaries [47] over
a broad range of parameters.

Our calculations broadly agree with many aspects of these
experimental measurements. We find density profiles and co-
ordinates of the phase boundaries in a harmonic trap that
are consistent with experimental measurements. We also re-
produce the experimentally observed universal scaling of the
scaled coordinates of phase boundaries onto one another for
different scattering lengths, when t/εB is fixed.

However, our calculations show some discrepancies with
the experimental measurements. While experiments measured
a 1D-like distribution of phases in the trap, with a partially
spin-polarized core at the center of the trap at small polar-
izations and small tunneling, our calculations never produce
such 1D-like behavior. Our calculations also yield an incorrect
trend for the critical polarization for the onset of spin-balanced
superfluidity. These inconsistencies between MF theory and
experiments suggest beyond-mean-field effects play a sig-
nificant role in the experiments. To capture these effects, it

could be interesting to develop an approach starting from the
exact t = 0 Bethe Ansatz and incorporating weak tunneling
between the tubes, as, for example, suggested by Ref. [88].
The 1D-ness of many of the experimental results suggests that
such an approach, if it can be carried out, would be fruitful.
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