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ABSTRACT The ability of vancomycin-arginine (V-r) to extend the spectrum of activ-
ity of glycopeptides to Gram-negative bacteria was investigated. Its MIC towards
Escherichia coli, including B-lactamase expressing Ambler classes A, B, and D, was 8
to 16 pg/ml. Addition of 8 times the MIC of V-r to E. coli was acutely bactericidal
and associated with a low frequency of resistance (<232 x 10-19). In vivo, V-r mark-
edly reduced E. coli burden by >7 log,, CFU/g in a thigh muscle model. These data
warrant further development of V-r in combatting E. coli, including resistant forms.
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ovel antibiotics are desperately needed to combat priority 1 or urgent-threat

pathogens (1-3). With only four new classes of antibiotics introduced into the mar-
ket since the early 1960s (4), structural modifications of current antibiotics provide an
attractive and possibly speedier approach to fulfill this significant unmet clinical need.
Vancomycin is a standard-of-care glycopeptide antibiotic for the treatment of Gram-
positive infections (5). Numerous reports have demonstrated augmentation of its anti-
microbial activity against resistant strains via different chemical modifications (6-9).
Furthermore, its molecular structure has been successfully manipulated to create a
broader spectrum of activity in the targeting of Gram-negative bacteria via adjuvant,
formulation, and cationic/lipophilic interventions (10, 11) or synergy with existing
Gram-negative antibiotics (12, 13). Recently, the covalent conjugation of -arginine to
vancomycin, to produce vancomycin-L-arginine (V-R), led to promising Gram-negative
properties via a cell wall mode of action (14). These findings encouraged us to further
characterize the corresponding diastereomer vancomycin-p-arginine (V-r) in animal
models of E. coli infection using the p-isomer of arginine to reduce the risk of conjugate
hydrolysis (Fig. 1).

V-r was synthesized in a single chemical step from commercially available vancomy-
cin HCl (StruChem, Wujiang City, China) and p-arginine amide dihydrochloride (Aladdin
Chemical Co., Shanghai, China). The crude compound was purified and isolated as the
corresponding HCl salt at 95% purity by high-performance liquid chromatography
based on a previously described procedure (14). Identity was confirmed by 'H nuclear
magnetic resonance and time of flight mass spectrometry, and HCl content was quantified
by ion-exchange chromatography. In various physicochemical screens, V-r behaved simi-
larly to vancomycin, including no observed cellular cytotoxicity at concentrations ranging
from 100 to 750 M on human erythrocytes, HepG2, and primary renal proximal tubule
epithelial cells employing fetal bovine serum-deficient media to negate compound
quenching (15) (Table 1).
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FIG 1 Vancomycin and vancomycin-p-arginine (V-r).
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MICs were determined in alignment with CLSI guidelines as previously described
for V-R and cationic antimicrobial peptides (14, 16). The MIC range of V-r against 29 dif-
ferent E. coli strains was 8 to 16 ug/ml (MICg, 16 g/ml), including those with multiple
resistance mechanisms (Table 2). The MIC of V-r against the efflux pump mutant strain
JW0451-2 was 8 ug/ml, suggesting that V-r is unlikely to be a substrate for efflux in this
pathogen. Notably, the MIC of V-r was also 8 ug/ml against two out of five of the
Acinetobacter baumannii strains tested. In comparison, the MICs of vancomycin were
significantly higher, at 64 to 256 wg/ml, against all E. coli and A. baumannii strains
tested. Importantly, the antimicrobial potency of V-r towards a number of Gram-posi-
tive bacteria remained intact (Table 2). In frequency-of-resistance (FoR) assays at 8
times the MIC of V-r (128 ug/ml), E. coli ATCC 25922 demonstrated an extremely low
FoR, at <<2.32 x 109, which is similar to or lower than those with standard-of-care
therapies, such as ciprofloxacin (17, 18). Time-kill assays were performed against uro-
pathogenic E. coli strains, including the sequence type 131 (ST131) NCTC 13341 iso-
late. V-r, but not vancomycin, demonstrated rapid bactericidal activity to limits of
detection (i.e,, 100 CFU/ml) within 1 or 4 h of exposure, and this was maintained up
to 24 h (Fig. 2).

Plasma pharmacokinetics (PK) of V-r after subcutaneous (s.c.) administration (20 and
121 mg/kg) was determined in naive male CD-1 mice (n=3/group) using liquid chro-
matography-tandem mass spectrometry for analysis with a lower limit of quantitation
of 5ng/ml (Table 3). V-r displayed first-order elimination, similar to vancomycin, after
s.c. administration (19, 20). Prior to efficacy studies, a single s.c. administration of V-r

TABLE 1 Physicochemical properties of vancomycin-arginine (V-r) and vancomycin

Physicochemical properties”® V-r Vancomycin
Mol wt (free base) 1,604 1,449

LogD (octanol/buffer) Less than —4.01 —5.14°

TD solubility in saline (mg/ml) 373 > 50

PPB (mouse/human % bound) 65/76 50/50

Red blood cell lysis (CC,,, M) =750 =750

HepG2 cell cytotoxicity (CC,,, #M) =750 =750

hRPTEC biomarkers© (CC,, M) =100 =100

FoR (at 8 x MIC) <232x107'° Not determined

“TD, thermodynamic; PPB, plasma protein binding; hRPTEC, human renal proximal tubular epithelial cells; CC.,,
concentration at which 50% cytotoxicity is observed; FoR, frequency of resistance.

5_ogD vancomycin reported according to Dave and Morris (29).

9dndudes cell count, nudlear size, DNA structure, mitochondrial mass, mitochondrial membrane potential,
phospholipidosis, and glutathione content.
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TABLE 2 Antimicrobial susceptibility profiles of V-rand vancomycin

Antimicrobial Agents and Chemotherapy

MIC (ug/ml) of:
Organism Strain Source, resistance mechanism or genotype? Ambler class V-r Vancomycin
E coli ATCC 25922 CLSI susceptible reference strain 16 128
E coli uTI89 Clinical isolate from patient with acute bladder infection 16 128
E coli NCTC 13441 Uropathogenic E coli ST131, blacy 15, blGoya 1, Dlas gy A,D 16 128
aac6"-1b-cr, mph(A), catB4, tet(A), dfrA7, aadAS5, sull
E coli NCTC 13462 blay A 16 128
E. coli NCTC 13846 Clinical isolate, bacteremia, UK 2013, EUCAST reference 8 64
isolate, mcr-1
E. coli ARO55 blaypy . mph(A), blagy,y ., dfrA17, sull, tet(A), rmtC, aac(3)-lla, B,C,D 16 128
blagy , ., aadA5
E. coli AR089 strB, blay.,, tet(B), strA, sul2 C 16 128
E. coli ARO114 strB, bla,gpy 1 blayec 5, aadB, dfrAS, sull, strA, sul2, cmiA1 A 16 256
E coli AR0137 blanowme blaoya o, MPh(A), blare 1a Blacay 12, Dlacis s B 16 128
dfrA17, qnrS1, sull, tet(B), aadA 1, aac(3)-lla, blagy, ,, aadA5
E coli AR0150 bl s MP(A), bl gy, 160 DAy 43 ATAT7, sull, tet(A), A,B,C 8 128
aadA5
E coli ARO0346 mcr-1, ESBL A 16 256
E coli AR0349 mcr-1, ESBL A 16 128
E coli ARO0350 mcr-1 - 16 128
E coli AR0493 mcr-1, ESBL A 16 256
E coli AR0494 mcr-1 - 8 128
E coli B096a Clinical isolate (UK) 2016, AmpC C 16 128
E coli B808 Clinical isolate (UK) 2016, bla, g, , blacy 15 A 16 256
E coli ATCC BAA-2340 bla,, A 16 128
E coli ATCC BAA-2469 blayom B 16 128
E. coli ExPEC H5 Clinical isolate (UK) 8 128
E coli H4/5 Clinical isolate, bla, gy, 1, blacryp 15 A 16 256
E coli IR3 Clinical isolate, blaypy, , B 8 128
E coli IR45 Clinical isolate, blay,, , B 16 128
E coli IR57 Clinical isolate, blayp, , B 16 256
E. coli Swiss 2 (AF45) Clinical isolate (South Africa) ST101, mcr-1 16 128
E. coli Swiss 13 Clinical isolate (France) ST69, mcr-1 16 128
E coli Swiss 15 Clinical isolate (Switzerland) ST446, mcr-1, blay A 16 128
E coli BW25113 Parent strain of BW25113AacrB=kan mutant 8 128
E coli JW0451-2 BW25113AacrB::kan, AcrB-deficient mutant, defective in 8 128
ArcAB-TolC multidrug efflux system
A. baumannii ATCC 19606 Isolated from urine, genome-sequenced strain 32 128
A. baumannii ACC00527 Clinical respiratory isolate (USA) 2012, blagya 24 D 8 128
A. baumannii B803 Clinical isolate (UK) 2016 32 128
A. baumannii GS2AB1 Multiresistant clinical isolate (southern Europe) 2017 16 128
A. baumannii Naval-81 Clinical isolate (USA) 2006 8 128
S. aureus ATCC 29213 CLSI susceptible reference strain 2 2
S. aureus NRS 384 USA300-0114 MRSA, community associated 0.5 2
E faecalis ATCC 29212 CLS1QC strain 1 2
E. faecalis B575 Clinical isolate (northwest UK) 1 2
S. agalactiae B057 Clinical isolate (northwest UK) 0.06 0.5
S. agalactiae B063 Clinical isolate (northwest UK) 0.06 1
S. pneumoniae ATCC49619 Reference strain 0.25 0.5
S. pneumoniae 3259-03 Clinical isolate (northwest UK) 0.5 0.5

9ESBL, extended-spectrum S-lactamase.

was shown to be well tolerated in male CD-1 mice (n=3) at the highest dose tested

(800 mg/kg).

Using a screening-based strategy, preliminary proof-of-concept studies with V-r
employed an abbreviated 9-h thigh muscle infection model in male CD-1 mice ren-
dered neutropenic (21). To that end, an E. coli ATCC 25922 isolate was inoculated at
9.7 x 10* CFU into both thigh muscles per mouse (n=5 per experimental group). V-r
was administered s.c. every 2 h (110 to 880 mg/kg total dose) starting 1 h postinfection.
At 9 h, thigh homogenates were prepared, and CFU were enumerated after culture on
CLED (cystine-, lactose-, and electrolyte-deficient) agar. Compared to pretreatment and
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FIG 2 Time-kill of vancomycin-arginine (V-r) and vancomycin against E. coli uropathogens UTI89 and
NCTC 13441.

vehicle burdens of 5.1 + 0.2 and 7.1 * 0.1 log,, CFU/g tissue, respectively, V-r exhibited
a dose-dependent reduction in bacterial burden of 1.2 to 3.4 log,, compared with vehi-
cle (Kruskal-Wallis one-way analysis of variance using StatsDirect Statistical Analysis
Software) (Table 4). V-r doses at 440 and 880 mg/kg afforded 1.0- and 1.3-log,, reduc-
tions below stasis, respectively, with an extrapolated static dose of 215mg/kg. As
anticipated, vancomycin failed to significantly impact E. coli burden at a dose equiva-
lent to the highest dose of V-r. In a 24-h thigh muscle infection model, E. coli UTI89
was inoculated at 7.8 x 10* CFU into one thigh muscle per mouse (n=5 to 8 per group)
and treated with V-r (total dose, 200 to 1,400 mg) using an every-6-h dosing regimen
from 1 h postinfection. All doses of =200 mg/kg significantly reduced burden below
stasis by up to 2.7 log,, CFU/g. These bactericidal effects of V-r were statistically supe-
rior to those of ciprofloxacin, which induced a 1.4 log,, reduction from stasis (Fig. 3
and Table 5). Overall, V-r caused an ~4 to 7.5 log,, reduction in bacterial burden, com-
pared with vehicle control, over the entire dose range.

The MIC data confirm previous findings that the coupling of arginine with vancomy-
cin bestows significant antimicrobial activity of the V-r conjugate against E. coli infec-
tion while remaining effective against methicillin-resistant Staphylococcus aureus
(MRSA) (14). Such in vitro findings were effectively translated into thigh muscle infec-
tion models, where a total 24-h dose of 250mg/kg V-r reduced E. coli burden to pre-
treatment (stasis) levels. Since area under the curve over 24 h in the steady state di-
vided by the MIC (AUC/MIC ratio) is the primary PK/pharmacodynamic predictor of
vancomycin (5), this static dose corresponds to a total AUC/MIC of 47.3. Based on a
free (f) fraction of 35%, as determined in plasma protein binding studies (Table 1),
the fAUC/MIC of V-r was 16.5. As an approximation of exposure using allometric scaling
(22), this would be equivalent to a human dose of ~20 mg/kg, with a dose of 28 mg/kg

TABLE 3 PK parameters of V-rin CD-1 mice after s.c. administration

PK parameter® V-r at 20 mg/kg V-rat 121 mg/kg
Half-life (h) 0.87 1.29

G, (mg/liter) 20.4 984

Clearance (ml/min/kg) 78 54

AUC (mg - h/liter) 42.7 366

V, (liter/kg) 0.59 0.60

9, ..w Maximum concentration of drug in plasma; AUC, area under the curve; V,,, volume of distribution.
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TABLE 4 Efficacy of V-rin an E. coli ATCC 25922 thigh muscle infection model (9 h) in
neutropenic CD-1 mice

Group, total dose over Log,, (group geometric Log,, change from Pvalue (versus
9h (mm) mean % SD GU/g_) vehicle (CFU/g) vehicle)
Pretreatment 51+0.18 —2.01 0.0045

Vehicle 7.11 2012 0 0

V-r, 110 5.87 +0.60 —1.24 0.0415

V-r, 440 4.14 063 —297 <0.0001

V-r, 880 3.76 + 040 —335 <0.0001
Vancomycin, 800 6.60 * 0.66 —0.51 Not significant

required to elicit an additional 1-log,, kill. Such allometric doses of V-r are in line with
the daily and loading doses of vancomycin in humans (5).

The positive efficacy data support the notion that the cationic feature of arginine
within V-r allows for breaching of the stubborn outer membrane of E. coli isolates and
possibly other Gram-negative bacteria (14). The sequelae of events leading to V-r-
mediated E. coli eradication likely involve (i) improved cell surface association with
negatively charged groups, (ii) effective translocation across the outer membrane lead-
ing to enhanced drug uptake, and (iii) disruption of peptidoglycan synthesis within the
periplasmic space (6, 14). To our knowledge, the current findings describe the first
report of a marked abrogation of E. coli burden in vivo with a minimally modified van-
comycin-cationic transporter conjugate. Previously, it was reported that vancomycin-
QC14, a strongly lipophilic/cationic molecule, reduced thigh muscle infection of a car-
bapenem-resistant A. baumannii strain (23). Because V-r was highly effective in time-kill
assays against E. coli NCTC 13441, a pandemic uropathogenic clone (24), a logical next
step would be to evaluate the conjugate in a model of urinary tract infection (UTI).
Based on the high renal elimination of vancomycin in humans (25) in a nonmetabol-
ized form (26), it is reasonable to hypothesize that V-r may drive a highly targeted ther-
apeutic intervention to combat E. coli-associated UTls.

These data further underscore a precedent for creating a novel Gram-negative
active agent by transforming a commonly used and selective Gram-positive antibiotic
by introducing certain cationic features through a simple and scalable synthesis proto-
col (14). Such an approach, in consort with effective in silico predictions (27, 28), might
expedite antibiotic development and increase the overall probability of success of
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FIG 3 Efficacy of V- in reducing E. coli UTI89 burden in a 24-h thigh muscle infection model in
neutropenic CD-1 mice.
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TABLE 5 Efficacy of V-rin reducing E. coli UTI89 burden in 24-h thigh muscle infection model
in neutropenic CD-1 mice

Group, total dose over Log,, (group geometric Log,, change from Pvalue (versus
24h (mg&_) mean % SD CFU/g_) vehicle (CFU/g) vehicle)
Pretreatment 476 +0.18 —495 0.0248

Vehicle 9.71 £ 0.17 0 0

V-r, 200 5.60 +2.28 —4.11 0.0217

V-r, 400 3.27 +1.88 —6.43 <0.0001

V-r, 700 2.58 +0.25 -7.13 <0.0001

V-r, 1,050 2.08 +0.89 —763 <0.0001

V-r, 1,400 268 + 138 —7.03 <<0.0001
Vancomycin, 1,272 8.48 + 1.31 —1.23 Not significant
Ciprofloxacin, 20 332 +0.14 —6.39 <0.0007

drug candidates. Most important, this would help to arrest the insidious pandemic of
difficult-to-treat bacterial infections.
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