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Abstract. In this paper, we consider the problem of monitoring tempo-
ral patterns expressed in Signal Temporal Logic (STL) over time-series
data in a clairvoyant fashion. Existing offline or online monitoring algo-
rithms can only compute the satisfaction of a given STL formula on the
time-series data that is available. We use off-the-shelf statistical time-
series analysis techniques to fit available data to a model and use this
model to forecast future signal values. We derive the joint probability
distribution of predicted signal values and use this to compute the satis-
faction probability of a given signal pattern over the prediction horizon.
There are numerous potential applications of such prescient detection
of temporal patterns. We demonstrate practicality of our approach on
case studies in automated insulin delivery, unmanned aerial vehicles, and
household power consumption data.

1 Introduction

Safety-critical cyber-physical systems (CPS) such as autonomous ground vehi-
cles, unmanned aerial vehicles and medical devices often operate in highly uncer-
tain and noisy environments. It is often impossible to anticipate all possible
exogenous inputs to such systems at design-time; and most designers typically
test their applications in only a finite number of scenarios. An alternative app-
roach is to perform runtime monitoring to ensure that such systems do not have
catastrophic failures of safety. A key aspect of runtime monitoring is the ability
to raise alarms when the violation of a safety property is detected.

There has been considerable amount of recent work on the use of real-time
temporal logics such as Signal Temporal Logic (STL) to specify correctness prop-
erties of safety-critical CPS applications [1,4,5,15,16,18,19,22]. Essentially, STL
allows specification of properties of real-valued signals defined over dense time.
A basic building block of an STL formula is a signal predicate (i.e. some con-
dition over signal values for a given time), and general STL formulas can be
constructed by combining signal predicates using Boolean (∧,∨,¬) or temporal
(such as always, eventually, etc.) operators. In addition to Boolean satisfaction
of a formula ϕ by a signal trace x(t), quantitative semantics for STL allow us to
define a robust satisfaction value or robustness which can be viewed as a signed
distance between the signal x(t) and the set of signals satisfying (or violating) ϕ,
where a positive (resp. negative) sign indicates that ϕ is satisfied (resp. violated).
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Existing algorithms for monitoring STL specifications are either offline or
online, and either compute the Boolean satisfaction or the robustness value.
Offline algorithms assume that the entire signal trace is available, while online
algorithms can estimate satisfaction or violation when only a prefix of a given
signal is available. Online algorithms potentially provide early detection of safety
violations of the system; however, by their nature, online algorithms are limited
in identifying violations “as they happen.” In this paper, we propose a new
class of algorithms for clairvoyant monitoring that go beyond existing online
algorithms by predicting future signal values and give probabilistic bounds on
the satisfaction or violation of the STL formula in the future. Our notion of
clairvoyance is derived from literature on statistical techniques for forecasting
signals. In this paper, we focus on signal patterns specified by STL formulas, i.e.,
instead of the traditional use of STL to express formulas that are satisfied or
violated true over an entire trace, we focus on bounded horizon STL formulas
that are evaluated over the given prediction horizon1.

To understand the motivation for clairvoyant monitoring using patterns spec-
ified in STL, consider a weather forecasting system that decides the advent of
winter by checking if the forecasted temperature is lower than a certain thresh-
old for a certain number of days. A single day of forecasted low temperature
can easily be an outlier, and hence we want to estimate the probability of a
certain event repeating for a number of days. Such a specification can be easily
expressed in STL: F[0,10]G[0,5](θ < 40). This specification says that in the next
10 days, there is some 5 day period where the temperature is consistently lower
than 40 ◦F.

Our clairvoyant monitoring framework consists of three main components: (1)
a predictor that uses past values of a signal to produce n predictions of the signal
value at future time-points, (2) an algorithm to enumerate possible scenarios in
which the given STL formula may be satisfied, and, (3) a probability estimator,
that, given a target robustness value of the STL specification, computes the
probability of exceeding that value.

We demonstrate clairvoyant monitoring on three applications: (1) monitoring
hypo- and hyper-glycemia conditions in an automated insulin delivery system
model, (2) monitoring safety of an unmanned aerial vehicle, and (3) monitoring
power consumption.

The main technical contributions of our paper are:

1. For a given STL formula, a technique to automatically enumerate each dis-
tinct conjunction of signal predicates that lead to formula satisfaction.

2. We use statistical time-series analysis techniques to forecast future signal
values, and we derive the joint probability distribution across the predicted
time-points. We assume that the data can be modeled as a realization of
an ARMA or ARIMA process. In case these models are not a good fit, the
methods in this paper are not applicable.

1 We can easily extend clairvoyant monitoring of unbounded horizon STL formulas
over entire traces by considering the notion of nominal robustness [10]. This would
also require us to track the robustness over the signal prefix.
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3. We use basic laws of probability to compute the probability of a signal sat-
isfying or violating a given STL formula ϕ utilizing the above two results.
We can also compute the probability of the robust satisfaction value of the
predicted signal (w.r.t. ϕ) exceeding or falling below a given threshold.

1.1 Illustrative Example

We use scenario depicted in Fig. 1 to illustrate the clairvoyant monitoring tech-
nique presented in this paper.

(a) (b)

Fig. 1. A signal behavior satisfies an STL pattern – expressed as a disjunction over
conjunctions of signal predicates – as long as there exists one satisfying disjunct. Figure
(1a)(1b) shows two different possible scenarios that the signal in future satisfies STL
formula ϕ1 in Eq. (1.1). Each green block indicates one satisfying conjunction of signal
predicates, where four consecutive time steps all have signal values greater than zero.
(Color figure online)

Suppose we are observing a series of data generated by a system and at time
t, we want to know if the formula ϕ1 in Eq. (1.1) is true over a prediction horizon
of length 6.

ϕ1 ≡ F[0,2]G[0,3](x(t) ≥ 0) (1.1)

Figure 1 shows a subset of possible predicate conjunctions that make the inner
formula G true, and in this case ϕ1 also. If we know the joint probability dis-
tribution of signal values within the prediction horizon, we can use marginal
distributions and inclusion-exclusion principle to calculate the probability of the
STL formula to be satisfied.

In order to predict future signal values and also to compute joint probability
distribution over these predictions, we rely on statistical time-series models such
as auto-regressive and moving-average models.

2 Background on Signal Temporal Logic

Definition 2.1 (Univariate Signal, Time Horizon). A time domain T is a
finite set of uniform time instants {t0, t1, . . . , tN} where t0 = 0, and ti ∈ R≥0,
and ti+1 − ti = Δ, for some Δ ∈ R>0.Let D be a bounded subset of R. A signal
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x (also called a trace or time-series is a function2 from T to D. The set D is
also called the value domain. The quantity horizon = max(T) is known as the
time horizon of the signal.

Signal Temporal Logic (STL). STL is a real-time logic, typically interpreted
over a dense-time domain for signals that take values in a continuous metric
space (such as Rm). The basic primitive in STL is a signal predicate μ that is a
formula of the form f(x(t)) > 0, where x(t) is the value of the signal x at time
t, and f is a function from the signal domain D to R. STL formulas are then
defined recursively using Boolean combinations of subformulas, or by applying
an interval-restricted temporal operator to a subformula. The syntax of STL is
formally defined as follows:

ϕ :: = μ | ¬ϕ | ϕ ∧ ϕ | GIϕ | FIϕ | ϕUIϕ | ϕRIϕ (2.1)

Here, I is an interval over R≥0. The precise Boolean semantics of STL can be
defined in recursive fashion (we omit the formal semantics for brevity). The
semantics of Boolean combinations of subformulas define the obvious meaning.
A temporal subformula, for example, ϕU[a,b]ψ holds at time t if there exists a
time t′ in [t+a, t+b] where ψ is satisfied, and for all times t′′ in [t, t′), ϕ must be
satisfied. For some interval I, the formula FIϕ is an abbreviation for trueUIϕ,
and GIϕ is equivalent to ¬FI¬ϕ. Next, we introduce the notion of quantitative
semantics for STL:

The quantitative semantics for STL defines the notion of a degree to which
a given signal satisfies an STL formula ϕ. This is technically done by defining
a function ρ that maps the signal and ϕ to a real value at each time t. This is
defined recursively on the formula structure of STL as follows:

Definition 2.2 (Robust Satisfaction Value or Robustness Value)

ρ(f(x) > c, x, t) = f(x(t)) − c
ρ(¬ϕ, x, t) = −ρ(ϕ, x, t)
ρ(ϕ1 ∧ ϕ2, x, t) = min(ρ(ϕ1, x, t), ρ(ϕ2, x, t))
ρ(GIϕ, x, t) = inf

t′∈t⊕I
ρ(ϕ, x, t′)

ρ(FIϕ, x, t) = sup
t′∈t⊕I

ρ(ϕ, x, t′)

ρ(ϕ1UIϕ2, x, t) = sup
t′∈t⊕I

(
min

(
ρ(ϕ2, x, t′), inf

t′′∈[t,t′)
ρ(ϕ1, x, t′′)

))

ρ(ϕ1RIϕ2, x, t′′) = inf
t′∈t⊕I

(
max

(
ρ(ϕ2, x, t′), sup

t′′∈[t,t′]
ρ(ϕ1, x, t′′)

))

(2.2)

2 When signals are evaluated w.r.t. Signal Temporal Logic formulas, we assume that
the signal is defined at each time point in the interval [0, tN ]. We can do this using
piecewise constant interpolation, i.e. ∀i ∈ [0, N − 1] : (ti ≤ t < ti+1) =⇒ x(t) =
x(ti).
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The robustness of a signal x w.r.t. a formula ϕ is then defined as ρ(ϕ, x, 0) by
convention. Note that if the robustness value is positive, the signal satisfies the
STL formula, and if it is negative, it violates the STL formula. The convention
is to treat the robustness value of 0 as the signal satisfying the formula.

We remark that in this paper, we focus on signal patterns expressed using
STL. A signal pattern is essentially a bounded horizon STL formula, i.e. the scope
of any temporal operator is upper bounded by some (small) finite time constant.
A signal pattern is evaluated in the future of a given time t, and the robustness of
signal pattern ϕ at time t is simply ρ(ϕ, x, t). Examples of signal patterns include:
F[0,3](x < 0), F[0,2]G[0,3](x > 0), F[0,1](x > 0 ∧ F[0,1](x < −1 ∧ F[0,1](x > 0))).

3 Background on Signal Forecasting

In this section, we give basic background on stochastic processes, and some key
results that help us derive some guarantees on monitoring STL formulas in a
predictive fashion in Sect. 4. Most of the definitions in this section have been
adapted from the following reference: [8].

Definition 3.1 (Probability Space, Random Variables). A probability
space is a triple (Ω,F ,P), where Ω is a finite or infinite set describing possible
outcomes, F is the σ-algebra over Ω (i.e. a collection of subsets of Ω including
the empty set, that is closed under complement, countable unions and intersec-
tions), and P is a probability measure. Given a measurable state-space E, a
random variable x is measurable function x : Ω → E.

Definition 3.2 (Stochastic Process, Realizations, and Purely Random
Process). A stochastic process x is a finite or infinite collection of random vari-
ables ordered in (discrete or continuous) time. We denote the random variable at
time t by x(t) if time is continuous, and by xt if time is discrete. A realization
of a stochastic process is a signal that assigns concrete values from the signal
range to each of the random variables x(t). A discrete-time process consisting of
a sequence of random variables zt that are mutually independent and identically
distributed is called a purely random process.

Example 1 (Random Walk). Suppose zt is a discrete, purely random process
with mean μ and variance σ2

z . A process xt is said to be a random walk if
xt = xt−1 + zt

Definition 3.3 (Stationary Processes). A stochastic process x is called
strictly stationary if the joint distribution of x(t1), . . . , x(tn) is the same as the
joint distribution of x(t1+h), . . . , x(tn+h), for all t1, . . . , tn, h. A stochastic pro-
cess is called weakly stationary if its expected value is constant, and its covariance
function only depends on the lag, formally,

E[x(t)] = μ Cov(x(t), x(t + h)) = γ(h) (3.1)
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Definition 3.4 (Autocovariance Function and Autocorrelation Func-
tion). Let xt be a stationary time series. The autocovariance function (ACVF)
denoted γ(h) is defined in Eq. (3.2) and autocorrelation function (ACF) ρ(h) is
defined as γ(h)

γ(0) .

γ(h) = E[x(t) − μ][(x(t + h) − μ] = Cov[x(t), x(t + h)] (3.2)

3.1 Linear Process and ARMA (ARIMA) Process

We first define the notion of a linear process.

Definition 3.5 (Linear Process). A stochastic process x is called a linear
process if it can be represented as: xt =

∑∞
j=−∞ ψjzt−j, where for all t, {zt} ∼

N (0, σ2
z) and ψj is a constant series with

∑∞
j=−∞ |ψj | < ∞.

Linear processes include all of the autoregressive (AR) processes, moving-
average processes (MA), AR with MA (ARMA) processes and AR with inte-
grated moving-average (ARIMA) models. Linear process models provide basic
properties for studying ARMA, ARIMA, SARIMA and any other linear models.
In what follows, it is convenient to define a new operator called the backward
operator B, essentially, Bx(t) = x(t + 1), Bhx(t) = x(t + h), etc. Using this
operator, we can define an AR process with moving average.

Definition 3.6 (ARMA). An ARMA process represents a combination of
an autoregressive process (a process that can be represented as φ(B)xt), and a
moving average process (a process that can be represented as θ(B)zt). Here, φ(B)
and θ(B) are polynomials in the operator B, i.e. φ(B) = 1 − ∑p

i=1 φiB
i, and

θ(B) = 1 +
∑q

j=1 θjB
j. An ARMA process thus has the following form:

φ(B)xt = θ(B)zt (3.3)

ARMA models are one of the most popular models used for forecasting values
of a time-series. ARMA models are used for time-series data that can be viewed
as a realization of a stationary stochastic process. However, ARMA models may
not be adequate when the underlying process is not stationary, i.e. has trends.
In such a case, an ARIMA (AR with integrated moving average) process model
can be used.

Definition 3.7 (ARIMA). An ARIMA model can be described by Eq. (3.4).

φ(B)(1 − B)dxt = θ(B)zt (3.4)

Here, when d = 1, an ARIMA model is suitable to model linear trends in the
data, and for higher values of d, the model can be used to handle higher order
trends (quadratic, cubic, etc.).
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3.2 Forecasting Procedure

Given a signal-prefix up to time tn, a forecasting procedure predict h future
values of the signal, i.e. x(tn+1), . . . , x(tn+h). Here, h is called the prediction
horizon. Forecasting signal values involves several steps. The first step is to
assume that the signal is the realization of a particular stochastic process, and
then estimate the parameters of the stochastic process model from the signal
values. This usually involves estimating the autocovariance and autocorrelation
of the signal, and then using these to do model fitting. Model fitting attempts
to identify the parameters of the chosen model (say ARMA), by solving certain
optimization problems. A popular technique to do model fitting is based on Yule
Walker equations [8].

After fitting the model, we have to forecast a time series. Since either ARMA
or ARIMA model are all linear process, the best linear predictor is the optimal
predictor for forecasting future values for the signal [8]. We now define the best
linear predictor, and explain how it is computed.

Definition 3.8 (Best linear predictor). The best linear predictor based on
observation {x1, x2, . . . , xn} of an ARMA or ARIMA process {xt} is given by
Eq. (3.5). Let xt denote the predicted value of xt.

xn+h = ah
0 +

∑n
i=1 ah

i xn+1−i

where, arg minah
0 ,ah

1 ,...,ah
n

E[xn+h − xn+h]2. (3.5)

The optimized ai is determined by two variables: since {xt} is a stationary
process, denoting γx(h) = Cov(xt+h, xt).

Γn = [Cov(xn−i+1, xn−j+1)]ni,j=1 = [γx(|i − j|)]ni,j=1 (3.6)

γn(h) = [γx(h + i − 1)]ni=1 (3.7)

With these two variables we can define ai as (a1, a2, . . . , an)	 = Γ−1
n γn(h)

and a0 = μx(1 − ∑n
i=1 ai).

Now we see the prediction value for a single time step, in Sect. 4.1 we intro-
duce how to derive a joint distribution for multiple time steps.

4 Clairvoyant Monitoring Procedure

To perform clairvoyant monitoring, we essentially need to forecast signal values
using an appropriate stochastic process model, and more importantly compute
the probability that a signal pattern is satisfied by the predicted signal values.
To do the latter, we need to compute the joint distribution of the predicted
values for the given stochastic process.
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4.1 Deriving the Joint Distribution of Predictions

We first consider this computation for ARMA processes. By Definition 3.6 and
Eq. (3.5), we can see the signal prediction values xn+h produced by the best
linear predictor are linear combinations of xt and a. We show that we can con-
struct the joint distribution of multiple prediction values {xn+1, . . . , xn+h} by a
sequence of linear transformations. First, we recall a standard result on linear
combinations of normally distributed variables in Lemma 1.

Lemma 1. If a random variable X ∼ N (μx, Σx), and Y = CX + D is some
linear transformation of X using matrices C and D, then Y ∼ N (Cμx +
D,CΣxC	).

Theorem 1. The joint distribution of h predicted values using the best lin-
ear predictor for an ARMA process x has a multivariate normal distribution
N (a, Σ), where a is vector [a1

0, . . . , a
h
0 ]	, Σ is given by the following equation:

Σ = AΦ+ Θ Σz Θ	 (Φ+)	 A	. (4.1)

Here, A, Φ and Θ are matrices of coefficients used in the ARMA model
Definition 3.6 and the best linear predictor (3.5). (Precise definitions of each
follow in the proof).

Proof. After using a standard technique to fit an ARMA model with order p
and q [8], we obtain the set of equations in (4.2). This is simply the repeated
application of Definition 3.6.

xp+1 + φ1xp + φ2xp−1 + · · · + φ1px1 = zp+1 + θ1zp + θ2zp−1 + · · · + θqz1+p−q

xp+2 + φ1xp+1 + φ2xp + · · · + φpx2 = zp+2 + θ1zp+1 + θ2zp + · · · + θqz2+p−q

...
xn + φ1xn−1 + φ2xn−2 + · · · + φpxn−p = zn + θ1zn−1 + θ2zn−2 + · · · + θqzn−q

(4.2)
We can write (4.2) as a matrix with appropriate zero padding to get:

Φ

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = Θ

⎛
⎜⎜⎜⎝

z1+p−q

z2+p−q

...
zn

⎞
⎟⎟⎟⎠ (4.3)

Here, Θ is (n − p) × (n − p + q) matrix, and Φ is a (n − p) × n matrix. For a
matrix M , let M+ denote its Moore-Penrose inverse or its pseduo-inverse. We
can multiply both sides of Eq. (4.3) Φ+ to get Eq. (4.4).

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ = Φ+Θ

⎛
⎜⎜⎜⎝

z1+p−q

z2+p−q

...
zn

⎞
⎟⎟⎟⎠ (4.4)
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Recall the definition of best linear predictor in Definition 3.5:

xn+h = ah
0 +

n∑
i=1

ah
i xn−i+1 (4.5)

Writing this equation for each of the prediction steps from n + 1 to n + h, we
get Eq. (4.6). ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xn+1 = a1
nx1 + a1

n−1x2 + · · · + a1
1xn + a1

0

xn+2 = a2
nx1 + a2

n−1x2 + · · · + a2
1xn + a2

0

...

xn+h = ah
nx1 + ah

n−1x2 + · · · + ah
1xn + ah

0

(4.6)

This can be further written compactly as follows:⎛
⎜⎜⎜⎝

xn+1

xn+2

...
xn+h

⎞
⎟⎟⎟⎠ = A

⎛
⎜⎜⎜⎝

x1

x2

...
xn

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

a1
0

a2
0
...

ah
0

⎞
⎟⎟⎟⎠ , (4.7)

where A denotes the following coefficient matrix.

A =

⎛
⎜⎜⎜⎝

a1
n a1

n−1 . . . a1
1

a2
n a2

n−1 . . . a2
1

...
...

. . .
...

ah
n ah

n−1 . . . ah
1

⎞
⎟⎟⎟⎠ . (4.8)

Finally, substituting vector [x1, x2, . . . , xn]	 from Eq. (4.4), we achieved in re-
writing the vector of predicted values into a linear transformation of white noise:⎛

⎜⎜⎜⎝
xn+1

xn+2

...
xn+h

⎞
⎟⎟⎟⎠ = AΦ+Θ

⎛
⎜⎜⎜⎝

z1+p−q

z2+p−q

...
zn

⎞
⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎝

a1
0

a2
0
...

ah
0

⎞
⎟⎟⎟⎠ (4.9)

As white noise is normally distributed, from Lemma 1 we have the joint proba-
bility distribution of predictions of h steps for an ARMA process. �
Theorem 2. The normalized prediction value in an ARIMA process xh has
a multivariate normal distribution N (0, Σ), where Σ is given by the following
equation:

Σ = T2T1ΣzT
	
1 T	

2 . (4.10)

Here, T2, T1 are matrices representing terms appearing in the best linear predic-
tor expression (3.5) across h predictions and the ARIMA model Definition (3.4).

Proof. (Sketch) We omit the proof due to lack of space, but it follows a very
similar recipe as the proof for the ARMA model. See [21] for details.
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4.2 Enumerating Distinct Conjunctions of Signal Predicates

This is essentially a combinatorial problem. First, we assume that the formula
is in Negation Normal Form (NNF), i.e. all negations are pushed to the signal
predicates. This can always be done, cf. [14]. Further, note that we can replace
negated atomic predicates by new atomic predicates, e.g. ¬(x > 0) ≡ (x ≤ 0).
The basic idea of the algorithm is to expand the evaluation of the satisfaction
probability of the STL formula (over the prediction horizon) into a disjunctive
formula, where each disjunct is a conjunction of atomic predicates. This is an
expensive step because of the complexity of a CNF to DNF conversion, but for
small prediction horizons, this does not become prohibitive. The exact procedure
to do this is through Algorithm 1, which essentially computes an expanded DNF
representation for an STL formula. The above algorithm is invoked with the
value i = n + 1. Each value of i is a time instant for predictions, so i ranges
over [n + 1, n + h]. It essentially recursively travels the STL formula building
the desired expression. We omit the case for the release operator for brevity, but
the expansion follows the definition of the release operator. The following lemma
can be easily proved using properties of Boolean operators ∨ and ∧.

Algorithm 1: Expandh(ϕ,i)
1 switch ϕ do
2 case f(x(ti)) > c
3 return f(x(ti)) > c

4 case ϕ1 ∧ ϕ2

5 A ←Expandh(ϕ,i)
6 B ←Expandh(ϕ,i)
7 Res ←{ };
8 foreach C ∈ A do
9 foreach D ∈ B do

10 Res ←Res ∪ {C ∧ D}

11 case ϕ1U[a,b]ϕ2

12 Res ←{}
13 foreach j ∈ [i, h − horizon(ϕ2)] do
14 Resj ←{}
15 Aj ←Expandh(ϕ1,j)
16 foreach k ∈ [i, j] do
17 Bk ←Expandh(ϕ2, k)

18 Resj ←Expandh(Aj ∧ ∧
k Bk, j)

19 Res ←Expandh(
∧

j Resj , i)

Lemma 2. The result of calling Expandh(ϕ, n+1) on an STL formula results in
a disjunction over terms, where each term is a conjunction of atomic predicates
at some times in [n + 1, n + h].
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4.3 Calculating Probabilistic Guarantees for Monitoring

Now we have the joint distribution (across multiple time steps) for predicted
signal values using Theorem 1 (for ARMA) and Theorem 2 (for ARIMA), and
the disjunction over conjunctions of signal predicates corresponding to the STL-
based signal pattern. The next step is to accumulate probabilities of these con-
junctions of signal predicates. Direct addition will result in parts of joint distri-
bution be integrated more than once. We use the inclusion-exclusion principle
for computing probability of unions shown in (4.11) to solve the problem of
calculating P (∪n

i=1Ai).

n∑
i=1

P (Ai) −
∑
i<j

P (Ai ∩ Aj) +
∑

i<j<k

P (Ai ∩ Aj ∩ Ak) − · · · + (−1)n−1P (∩n
i=1Ai)

(4.11)
Probabilities of each conjunctions of atomic predicates in (4.11) can easily be
done by marginalizing all other variables. Formally, let K indicate the set of
times over which we want to compute the joint PDF. Then, we can compute the
marginal probability using Eq. (4.12).

P (
∧

k∈K

Ak) =
∫

. . .

∫
P (A1; . . . ;Ah)dAj1 . . . dAj�

(4.12)

Here, {j1, . . . , j�} = {1, . . . , h} \ K.

4.4 Complexity of the Algorithm

The complexity of our clairvoyant monitoring procedure depends on the exact
form of STL formula involved. In this section, we list the upper bound of com-
plexity for some formula forms. Assume that querying the marginal probability
from the joint distribution is of complexity O(1).

Consider the signal pattern FI1GI2 . For this pattern, the complexity of
computing the probability bounds is O(2
 |I1|

Δ �), as there are |I1| disjunctive
marginal probability terms, and applying Eq. (4.11) will cost O(2n), where n

equals to 
 |I1|
Δ �. Similarly, for a formula of the form GI1FI2, the complexity will

be O(2
 |I2|
Δ �� |I1|

Δ
�
). For a general signal pattern, the worst-case complexity will

depend on the number of conjunctions that will be enumerated.

5 Experimental Evaluation

In this section we experimentally demonstrate the power of predictive monitoring
on interesting examples from the cyber-physical systems domain.



Clairvoyant Monitoring for Signal Temporal Logic 189

Table 1. The probability of predicted traces satisfying the specified STL pattern and
runtime for computing the probabilities for the case studies on blood glucose prediction
in insulin delivery and velocity prediction for a UAV.

Case Study ψ ϕ1 ϕ2 ϕ3 ϕ4

I P (BG(t) |= ψ) (σ1 = 50, σ2 = ∞) 1 1 1 1

Time (s) 0.1068 0.1107 0.0944 2.9037

P (BG(t) |= ψ) (σ1 = 50, σ2 = 150) 0.3836 0.3838 0.3846 0.8462

Time (s) 0.1067 0.3551 0.0705 26.9337

II P (v(t) |= ψ)(σ1 = −0.5, σ2 = 0.5) 0.1452 0.3446 0.4160 0.2723

Time (s) 0.0615 0.0792 0.0634 2.3367

Case Study I: Automated Insulin Delivery. Monitoring blood glucose lev-
els is a crucial task for diabetes patients. In certain kinds of severe diabetes
(e.g., type I diabetes), patients use automated insulin delivery systems (such as
infusion pumps) to give a basal dose of insulin, and to optionally provide a bolus
if the patient thinks that they are exceeding their usual intake of food (e.g. rich
in carbohydrates). The tricky aspect of such devices is that while the response
of the blood glucose to insulin is very slow, the response to carbohydrates is rel-
atively fast. Thus, a patient upon seeing a high blood glucose level may exceed
their required insulin dose. This can lead to a life-threatening condition called
hypoglycemia. Thus, it is crucially important to monitor the blood glucose level
in a predictive fashion. Similarly, if the blood glucose remains too high for a pro-
longed period of time (also known as prolonged hyperglycemia), then the patient
can suffer long term consequences that can also eventually lead to death.

Fig. 2. BG signal with 5 prediction
steps (Color figure online)

We have developed a simple linear
Simulink R© model representing the blood-
glucose dynamics in a patient. For this exper-
iment, we obtained the blood glucose (BG)
signal by simulating the model with a fixed
eating pattern by the patient. We simulated
the patient behavior for one week, where BG
was monitored at 15 min intervals. We fit
an ARIMA process with order p = 5, d =
2, q = 1 to the BG signal, and used that for
prediction. We checked various requirements
(Eqs. (5.1)-(5.4)) on the blood glucose signal.
For brevity, we write the formulas in a way
that 1 time unit in the formula refers to 15 min of time.

ϕ1 ≡ G(F[0,1]G[0,2](σ1 < x(t) < σ2)) (5.1)
ϕ2 ≡ G(x(t) ≤ σ1 =⇒ F[0,1]G[0,2](σ1 < x(t) < σ2)) (5.2)
ϕ3 ≡ G(x(t) ≤ σ1 =⇒ F[0,2](σ1 < x(t) < σ2)) (5.3)
ϕ4 ≡ G(F[0,1](σ1 < x(t) < σ2)) (5.4)
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In formulas (5.1)–(5.4), we assume that x is BG. Formula (5.1) is an artificial
requirement that says that any time, within the next 15 min the BG signal
should remain within the given bounds for 30 min. Formula (5.2) says that if
the BG signal is ever lower than the safe threshold, it should return to the safe
threshold within 15 min, and stay in the threshold for 30 min. Formula (5.3) is a
weaker requirement demanding the BG signal to simply return to the safe region.
Finally, formula (5.4) says that eventually always within 15 min the BG signal
should return to the safe region. We picked these formulas more to highlight
that our algorithm works with different STL formulas with different temporal
operator alternations. Some of these formulas are similar to the ones found in
[9]. We picked a prediction horizon of 5 time steps (i.e. 75 min). In Fig. 2, we
show the predicted blood glucose traces. We conducted two experiments, one
where we picked σ2 to be ∞ and the other where σ2 was 150 mg/dL. σ1 was
fixed to 50 mg/dL. The results are shown in Table 1.

The first row of Table 1 shows that the patient can never become hypo-
glycemic, with very high probability3. From the third row, we can see that the
controller that we implemented for automated insulin delivery does not do a
good job with the hyperglycemia requirements (except for the last formula).
From Fig. 2, we can see that for a small prediction horizon, the decreasing value
of the BG signal (shown in red) gives enough confidence that in the next 15 min,
the patient will not be hyperglycemic.

Case Study II: UAV Vertical Velocity. Now we look into the case of
Unmanned Aerial Vehicle (UAV). We apply our technique to monitor verti-
cal velocity, which is a crucial component affecting how vehicle control system
adjust its rudder angle.

Fig. 3. UAV vertical velocity signal
and predictions

Monitoring Vertical Velocity. Vertical
velocity is hard to directly observe, we obtain
it through the observed acceleration signal
given by gyroscope. The vertical velocity is
vital for UAVs, as if the vertical velocity
exceeds some threshold it will cause the vehi-
cle to be damaged. We observed the auto-
correlation function for the velocity trajec-
tories, and used that to set the parameters
p = 12, d = 4, q = 8 for the ARIMA model
then do a 5 step look-ahead prediction. Con-
ducting 5 steps look-ahead prediction in our
data is equivalent to predicting 1 s ahead.
The transverse velocity of UAV can achieve over 130 m/s, which makes behav-
iors that may happen in future 5 steps meaningful. The prediction results are

3 Our implementation was done in Matlab, and Matlab has a certain precision when
computing probabilities, and the number 1 is actually 1 − δ, where δ is smaller
than the machine precision. This indicates that the probability is so high that it is
practically 1.



Clairvoyant Monitoring for Signal Temporal Logic 191

shown in Fig. 3, and the probability guarantees of the predicted trace satisfy the
STL requirement are shown in Table 1.

Case Study III: Monitoring Power Consumption Patterns. Household
power consumption is an important factor that allows utility companies to esti-
mate the overall power demand. In this case study, we study various STL formu-
las representing typical queries a utility company may find valuable. To perform
this study, we use data from the UCI Machine Learning Repository [11]. The
dataset is a multivariate time series dataset that describes the power consump-
tion for a single household over four years. Each time step represents the average
power consumption over a day. We fit an ARIMA model to this data with the
model parameters p = 5, d = 2, q = 1. We are interested in computing the proba-
bilistic guarantees on the STL formulas depicted in Eq. (5.5). In these formulas,
p(t) represents the power consumption at time t in KW, and c represents a
threshold value.

ϕ1 = G[0,n](p(t) > c) ϕ2 = G[0,n](p(t) < c)
ϕ3 = F[0,n](p(t) > c) ϕ4 = F[0,2]G[0,5](p(t) > c) (5.5)

The formula ϕ1 seeks to answer if there are n consecutive future days where
the power consumption exceeds the threshold c. The formula ϕ2 is true if the
expected power consumption over the next n consecutive days is always below
c. The formula ϕ3 checks if it is always true if there is some day within the next
two week period where the power consumption exceeds a threshold. Finally, ϕ4

checks if there is some future time within two time steps where it is true that
starting from that point, the power consumption always exceeds some threshold
c. For each experiment, we assumed that the prediction horizon was 15. Our tool
reads the first 139 samples to fit the ARIMA model, and then does its predictions
on the next 15 time steps. We summarize the results in Fig. 4b.

(a) Power consumption signal and
predictions

Formula Parameters Probability
n c

ϕ1 3 500 1
ϕ1 3 1010 0.4139
ϕ1 3 1120 0

ϕ2 10 500 0
ϕ2 10 1120 0.0531
ϕ2 10 1200 0.3633
ϕ2 10 1400 0.9976

ϕ3 14 500 1
ϕ3 14 1120 0.5468
ϕ3 14 1500 0

ϕ4 – 500 1
ϕ4 – 1100 0.2968
ϕ4 – 1500 0

(b) The probability guarantee of power consumption

Fig. 4. Power consumption case study
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While the results generally agree with the ground truth data shown in Fig. 4a,
in case of the formula ϕ2, the experiments indicate that there is over 99% chance
of never exceeding 1400 KW of power consumption. Clearly, the ground truth
data shows otherwise. The problem here is that the ARIMA model has an effect
of smoothing the data and focussing on the trends. If we were to fit the ARIMA
model to data over a smaller granularity, it is possible that the model would track
sharp local variations more faithfully. In general, if the time-step of the model is
too coarse to capture all meaningful trends, the predictive monitoring algorithm
can give misleading answers. For this case study, the runtime for fitting the
ARIMA model and computing the probabilities was less than 3 s on a standard
laptop machine with a 2.6 GHz processor.

6 Related Work and Conclusion

Related Work. Monitoring techniques for specifications in real-time temporal
logics such as STL, Timed Propositional Temporal Logic (TPTL) and Metric
Temporal Logic (MTL) have received considerable attention recently. See [6]
for a recent survey. In [27], the authors define predictive semantics for LTL:
these are similar to the three-valued semantics for LTL on incomplete traces
and use a system model and model checking over trace suffixes to compute
one of the three values (true, false or unknown). However, this approach does
not compute violation probabilities. In [2,3], the authors define an interesting
predictive monitoring approach. The key idea is to construct an Hidden Markov
Model abstraction of a system and use that to predict satisfaction of a given
temporal property. This is an alternate way of modeling probabilities in the
system, and represents a different take on the same problem. In future work,
we will consider extending our signal predictors to those based on Markovian
assumptions on the underlying process. We note that these papers focus on LTL
with Boolean predicates rather than STL (which has signal predicates).

Also of relevance is the work in the R2U2 monitoring framework [13,20,23,24].
The R2U2 framework uses efficient temporal observers for LTL coupled with
dynamic Bayesian networks to probabilistically estimate the state and health of
system components. The work proposed in [7,17,26] also addresses a similar prob-
lem. In many ways, these are also monitoring problems that are predictive in
nature, but the prediction here is regarding hidden system states, rather than
predictions in time. Seminal work on monitorability of various kinds of stochastic
dynamical models (typically with Markovian assumptions) refers to this problem
as internal monitoring [25], and we distinguish our work in its clairvoyant abilities.

7 Conclusion

In this paper, we present monitoring framework for signal patterns expressed
using Signal Temporal Logic (STL). The main contribution of this paper is an
algorithm for clairvoyant monitoring that computes the probability of a sig-
nal pattern being satisfied/violated by a set of future/unseen signal values. To
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achieve clairvoyance, the algorithm utilizes using statistical time-series modeling
techniques, assuming that observed data is the realization of a linear stochastic
process (such as ARMA or ARIMA). The key technical result is a technique
to compute the joint probability distribution of the predicted values and use it
to compute the satisfaction probability of the given temporal pattern. In future
work, we will consider techniques that help calibrate the prediction result, give
expected value for robustness and also explore techniques based on reachability,
such as those in [12], to compute forward reachable sets to estimate satisfaction
probabilities of STL formulas.
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