tRFtarget: a database for transfer RNA-derived fragment targets
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ABSTRACT

Transfer RNA-derived fragments (tRFs) are a new class of small noncoding RNAs and play important
roles in biological and physiological processes. Prediction of tRF target genes and binding sites is
crucial in understanding the biological functions of tRFs in the molecular mechanisms of human

diseases. We developed a publicly accessible web-based database, tRFtarget (http:/trftarget.net), for

tRF target prediction. It contains the computationally predicted interactions between tRFs and mRNA
transcripts using the two state-of-the-art prediction tools RNAhybrid and IntaRNA, including location of
the binding sites on the target, the binding region, and free energy of the binding stability with graphic
illustration. tRFtarget covers 936 tRFs and 135 thousand predicted targets in eight species. It allows
researchers to search either target genes by tRF IDs or tRFs by gene symbols/transcript names. We
also integrated the manually curated experimental evidence of the predicted interactions into the
database. Furthermore, we provided a convenient link to the DAVID® web server to perform
downstream functional pathway analysis and gene ontology annotation on the predicted target genes.
This database provides useful information for the scientific community to experimentally validate tRF

target genes and facilitate the investigation of the molecular functions and mechanisms of tRFs.


http://trftarget.net/

INTRODUCTION

Transfer RNA-derived fragments (tRFs) are a new class of small noncoding RNA (ncRNA) in the
length of 13-48 nucleotides (nts) (1). tRFs are the products of non-random cleavage of either the
precursor or mature transfer RNAs (tRNAs). Based on the cleavage sites of tRNA, tRFs are classified
into five categories: tRF-1s (also termed as tRNA-derived small RNAs [tsRNAs]), tRF-3s, tRF-5s, tRF-
2s and stress-induced tRNAs (tiRs) (Fig. 1) (2). tRF-1s are generated from the 3’ end of the precursor
tRNAs, whereas the other four types of tRFs are derived from different parts of the mature tRNAs with
the 3’ end for tRF-3s and the 5’ end for tRF-5s, respectively (2). tRF-3s can be further divided into two
subcategories with different lengths: short as tRF-3a and long as tRF-3b. Similarly, based on the
length from short to long, tRF-5s can be divided into three subcategories: tRF-5a, tRF-5b and tRF-5¢
(3). tiRs have two subcategories: a 5tiR starts from the 5’ end of a mature tRNA to the end of the
anticodon loop, and a 3tiR from the 3’ end to the end of the anticodon loop. tRF-2s, a new type of
tRFs, are derived from the anticodon loop of the mature tRNAs (2).

tRFs have been found to be conserved in diverse organisms from bacteria to humans (4). They
are involved in many biological and physiological processes such as regulation of gene expression,
RNA processing, tumor suppression, and cell proliferation (2). tRF dysregulation may play important
roles in human diseases including cancer (5-7). Recently, several studies revisited datasets from The
Cancer Genome Atlas (TCGA) and the NCI-60 human tumor cell lines screen, and reported tRFs as
potential biomarkers in human cancer (8,9). Experimental results suggested that tRFs function as
microRNAs (miRNAs) in post-transcriptional regulation of gene expression by partially complementary
to target messenger RNAs (mRNAs), leading to the degradation or translational repression of target
mRNAs (10,11). The results of photoactivatable-ribonucleoside-enhanced crosslinking and
immunoprecipitation (PAR-CLIP) in human HEK293 cells showed the silencing complex formation of
tRF-5s and tRF-3s in combination with Argonautes 1, 3, and 4 (4,12). RNA sequencing analysis
further demonstrated the tRF-mRNA chimeric formation in the cross-linking, ligation and sequencing
of hybrids (CLASH) data (4,13,14).

There are more than 30 web-based miRNA target prediction databases which have served as
powerful tools for experimental validation of miRNA targets in multiple species (15,16), and

accelerated the investigation of the biological functions of miRNAs by providing the binding sites on



mRNAs. However, to our knowledge, there is no such target database available for tRFs. A previous
study inferred the targeting modes of tRFs based on the limited experimental CLASH datasets that
cover 26 human Argonaute-loaded tRFs (14). However, the bindings may be biased in the context of
tissues and cells. Another approach to infer potential tRF targets is via co-expression network
analysis or chromatin immunoprecipitation sequencing (ChlP-seq), which do not directly consider the
complementary pairing between sequences (8,9). Site-directed mutations using reporter genes is a
fundamental approach to seek the binding sites in the target genes, however, it requires the known
regions where the binding site(s) is located.

In this study, we established a publicly accessible web-based transcriptome-wide tRF target

prediction database, tRFtarget (http://trftarget.net), for eight species including human, mouse,

Drosophila, C. elegans, S. pombe, R. sphaeroides, Xenopus tropicalis, and Zebrafish. It was hosted
by the Extreme Science and Engineering Discovery Environment (XSEDE) (17). tRF target genes
were computationally predicted based on the interactions between tRFs and mRNA transcripts using
the two state-of-the-art algorithms RNAhybrid (18,19) and IntaRNA (20). The contents of the database
include maximum complementary length (MCL) of the paired tRF and target transcript, binding sites
on the transcript (from 5’ end) and binding regions of 5’ untranslated region (UTR), coding sequence
(CDS), or 3’ UTR of the transcript, free energy which is a measure of the stability of the binding
between a tRF and a candidate target transcript, and graphic illustration of the pairing sequences.
tRFtarget allows researchers to search tRF-target interactions by either tRF ID, or transcript or gene
symbol, and demonstrates the pairing regions between a tRF and target transcripts as well as their
locations. It facilitates researchers to use such information to perform various experiments such as
amplifying the interested regions, making mutations in the regions for clone and plasmid construction,
and constructing reporter assays for validation of target genes. The database also provides
experimental evidence of the predicted tRF-mRNA interactions and functional studies on tRFs based
on manually curated publications. In addition, the predicted target genes can be further used for
functional pathway analysis and gene ontology annotation, providing the potential biological functions

of tRFs.

MATERIAL AND METHODS

Data source


http://trftarget.net/

A workflow of the tRFtarget database construction is shown in Fig. 2. The tRF sequences were

retrieved from tRFdb (http://genome.bioch.virginia.edu/trfdb/) (3) and a tsRNA study (21). The

transcript sequences were currently restricted to protein-coding transcripts, and downloaded from
GENCODE (version GRCh38.p13 for human and version GRCm38.p6 for mouse,

https://www.gencodegenes.org/) (22). Human gene symbols and the corresponding Ensembl gene

IDs were downloaded from HGNC BioMart (https://biomart.genenames.org/) (23), and mouse gene

symbols and Ensembl gene IDs were downloaded from MGI (http://www.informatics.jax.org/) (24).

The transcript names and the corresponding Ensembil transcript IDs were downloaded from Ensembl
BioMart (version GRCh38.p13 for human and version GRCm38.p6 for mouse,

http://www.ensembl.org/biomart/martview/) (25). The genes and protein-coding transcripts of other

species were downloaded from Ensembl BioMart (version BDGP6.28 for Drosophila, version
WBcel235 for C. elegans, version Xenopus_tropicalis_v9.1 for Xenopus tropicalis, and version
GRCz11 for Zebrafish), EnsemblFungi BioMart (version ASM294v2 for S. pombe,

http://fungi.ensembl.org/biomart/martview/) and EnsemblBacteria (version ASM1640v1 for R.

sphaeroides, https://bacteria.ensembl.org/Rhodobacter sphaeroides atcc 17025/Info/Index) (25).

RNAhybrid prediction

RNAhybrid (version 2.1.2, https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid) is a computational tool for

predicting interactions between a short RNA and a long target RNA based on free energy (18,19). We
set an energy threshold of -15 kcal/mol and provided 5 best binding sites per RNA pair given by
RNAhybrid. As this algorithm only allows an input of a target sequence of no more than 50 kilobases
(kb) in length, all transcripts longer than 50 kb are excluded for prediction and archived in the
database. Other parameters were set at the default values of the algorithm. We ran RNAhybrid for all
pairs of tRFs and transcripts, parsed the unstructured results, extracted important features, and then
stored them in the database. MCL is the length of the longest successively complementary
sequences for a specific interaction. Entries with a MCL less than 6 nts were excluded because such

a short complementary sequence is unlikely to result in a functional interaction (26).

IntaRNA prediction
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IntaRNA (version 3.1.3, http:/rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp) is another

computational tool to predict interactions between two RNA molecules based on a combination of free
energy and accessibility (20,27). We used the exact mode in IntaRNA to get more accurate target
gene prediction. We set a seed length threshold of 6 nts and provided 5 best binding sites per RNA
pair. Other parameters were set at the default values of the algorithm. We ran IntaRNA for all pairs of
tRFs and transcripts, parsed the results, and then stored them in the database. Interactions between
the same tRF and transcript with similar pairing sequences and almost identical binding locations
were considered as duplicated entries, and only the entry with a minimal free energy was kept (see

manual webpage (http://trftarget.net/manual) for an example of duplicated entries).

Consensus between predictions with RNAhybrid and IntaRNA

We evaluated the concordance of binding sites predicted from RNAhybrid and IntaRNA. A consensus
pair of predictions was defined as similar pairing sequences and almost identical binding locations on
a transcript (allowing 2 nts offset in the start and/or end of the pairing sequences, see manual

webpage (http://trftarget.net/manual) for an example of consensus predictions). Users have an option

to search for consensus predictions in the database.

Functional pathway analysis

In the database, we provided users a list of the predicted target genes to perform downstream
functional pathway analysis and gene ontology annotation. The gene list was obtained based on the
free energy and MCL of the interactions with a tRF. The interactions between a tRF and all target
transcripts were ranked by an ascending order of free energy, and the interactions with the same free
energy were further ranked by a descending order of MCL. When ranking genes from consensus
interactions, free energy generated by IntaRNA was used. We then selected the top interactions to
create a list of gene Ensemble IDs. The default number of the top interactions is 2000. Users can also
specify the number of genes to be included in the top gene list. The gene list is copied to clipboard
automatically and can be pasted into the input box on the DAVID® web server

(https://david.ncifcrf.gov/) for functional pathway analysis (28,29).

RESULTS


http://rna.informatik.uni-freiburg.de/IntaRNA/Input.jsp
http://trftarget.net/manual
http://trftarget.net/manual
https://david.ncifcrf.gov/

Database overview

tRFtarget includes 936 tRFs, 135 thousand target genes and 294 million interactions across eight
species. The database can be queried in 3 ways:

1) search by tRF ID for all predicted target transcripts;

2) search by transcript Ensembl ID or name for all potential interacting tRFs;

3) search by gene Ensembl ID or symbol for all tRFs which potentially interact with any transcripts
of a given gene.

In each query method, additional filter criteria on the binding regions, free energy and MCL can be
specified by users to narrow the prediction results. Results are displayed in a tabular form and can be
downloaded as a CSV file. Sorting or filtering by table column is also supported. There are two
columns in the table that demonstrate the experimental evidence at the gene and site levels for each
predicted interaction, respectively. Furthermore, hyperlinks to the relevant information from other
databases were provided in the search results for users to browse detailed information of tRFs, genes
and transcripts. A click button allows users to perform downstream functional pathway analysis on
tRF target genes. Table 1 summarizes the total number of tRFs, genes and transcripts, and the
prediction results by RNAhybrid and IntaRNA across eight species. A detailed description of this

information can be found on the statistics webpage of the database (http://trftarget.net/statistics).

Validation of prediction

A previous study investigated interactions between small ncRNAs and mRNAs in the HEK293 cells
using the CLASH experiments (13) and identified many tRF-mRNA chimeras, especially tRF-3-mRNA
chimeras (4,14). We used the top 10 most abundant tRF-3-mRNA experimental interactions (4) for
validation of our prediction results. Among the top 10 interactions in the CLASH data, four tRFs, tRF-
3034a, 3035a, 3036a, and 3037a, were not present in human tRFdb (3) and as a result were not
included in the database. For tRF-3014a, the MCL of the reported interaction is 5 nts which is less
than the threshold value of 6 nts, so this interaction structure was not indexed in the database. We
then considered the experimental interactions from the remaining 5 tRFs to validate the prediction
results. Fig. 3 shows the interactions with mRNAs of the 5 tRFs illustrated by the predicted

interactions of the CLASH tRF-3-mRNA chimeras using mfold, a computational tool for the prediction


http://trftarget.net/statistics

of the RNA secondary structure (30), and the predicted interactions in the tRFtarget database whose
structures are most similar to the mfold predictions. All 5 CLASH chimeras have matched entries in
the database. Moreover, our database provided more interactions with target mRNAs. For example,
we found another interaction between tRF-3001a and the target MRNA RABEPK-203, besides the
interactions of tRF-3001a with the two mRNAs DCTPP1-201 and DCTPP1-203 in the CLASH data.

All three interactions have the same pairing sequences.

Comparison with gene correlation analysis

In our previous study of tRFs in breast cancer, five tRFs, tRF-50243a, ts-34, ts-49, ts-58 and 5P_tRNA-
Leu-CAA-4-1, were significantly associated with breast cancer patient survival. Among the five tRFs,
tRF-5024a had the largest number of correlations with mRNA transcripts in which there were 404
positively and 2,292 negatively correlated genes (31). Here, we compared the predicted targets of
tRF-5024a with the genes identified in correlation analysis. Among the 2,292 genes that were
negatively correlated with tRF-5024a, 625 genes are noncoding genes and were not indexed in the
database. In the remaining 1,667 genes, 1,506 genes (90.3%) had at least one consensus interaction
with tRF-5024a. Among the 404 genes that were positively correlated with tRF-5024a, 50 genes are
noncoding genes and were not indexed in the database. In the remaining 354 genes, 296 genes
(83.6%) had at least one consensus interaction with tRF-5024a. The target gene information and
binding sites for the 1,667 positively and 354 negatively correlated genes with tRF-5024a were shown

in Table S1.

DISCUSSION

tRFs are a novel class of regulatory ncRNAs and have been found to be dysregulated in cancer (1).
Although previous studies have revealed the roles of tRFs in biological processes, there are still many
features of tRFs, such as the biogenesis of tRF-3s and tRF-5s, and the functions of tRFs, yet to be
fully characterized (2). To facilitate the research on tRFs, serval tRF-related databases have been
developed based on omics data. For example, PtRFdb collects detailed information of plant tRFs (32);
tRFdb includes a standardized nomenclature of tRFs in eight organisms (3); tRFexplorer provides
expression profiles of identified tRFs in every cell line in NCI-60 and for each TCGA cancer type (9);

MINTbase contains the abundance of tRFs identified in all TCGA projects (33); and tRF2Cancer not



only provides the expression of identified tRFs in TCGA but supports searching for novel tRFs from
user uploaded sequencing data (34). However, to our knowledge, there is no database available for a
comprehensive prediction of tRF targets. tRFtarget developed in this study is the first tRF target
prediction database to fill this gap. In tRFtarget, interactions between tRFs and mRNA transcripts
were predicted by two algorithms, RNAhybrid (18,19) and IntaRNA (20). Both methods are free
energy-based tools to predict RNA-RNA interaction. RNAhybrid is a popular tool to discover the
targeting modes of small ncRNAs (14) and achieves more precise prediction than alignment-based
methods (35,36). It utilizes the dynamic programming technique to efficiently calculate the optimal
binding sites and can be easily run in parallel. RNAhybrid achieves high sensitivity but low precision in
a comprehensive comparison study (36). IntaRNA, on the other hand, uses the “accessibility” feature
(20,27) to improve the accuracy of target prediction (35-37). “Accessibility” is calculated as the free
energy needed to unfold the binding sites in both RNAs to make the sites accessible for hybridization.
It measures the likelihood that a short RNA is able to bind a specific site on the target mRNA and
leads to a higher but more diverse free energy. As a result, IntaRNA achieves high sensitivity and
high precision in target prediction (35,36).

We provided 5 best binding sites per RNA pair rather than the one with minimal free energy in
tRFtarget for the following considerations. First, similar to miRNAs, each tRF may have multiple
binding sites with a target transcript in the process of gene regulation (38). Second, the accuracy of
target prediction commonly decreases as the length of target transcript increases when we use
prediction based on minimal free energy. Providing more binding sites will be more likely to include
the true interaction even when the target transcript is long (35,36). Third, the interaction with minimal
free energy may not be biologically active. We also provided the suboptimal interactions with a bit
higher free energy than the minimal one for users’ reference (36). When comparing the predicted
targets in tRFtarget with the CLASH data (4), our database covered the most abundant tRF-mRNA
interaction structures of the CLASH dataset, suggesting the reliability of target prediction. We also
evaluated the overlap of the predicted targets and the correlated genes of tRF-5024a. More than 80%
of the correlated genes were found to interact with tRF-5024a. Because correlation based on gene
expression does not necessarily suggest interaction, there were some correlated genes that were not

the predicted targets of tRF-5024a.



tRFtarget can be further improved in the following aspects. First, tRFs in the current version of the
database were retrieved from tRFdb (3), and novel tRFs will continuously be identified by
experiments. We will regularly update the database to include more tRFs and their targets. Second,
tRFs interacted with a variety of RNAs including mRNAs, miRNAs and long intergenic ncRNAs
(lincRNAs) in the CLASH data (14). We will expand the database by including ncRNAs as potential
targets. Third, the motifs of tRFs based on interactions with different transcripts will be included in the
database for query. Lastly, tRFtarget may include false positive interactions, but still provides useful
information for further cost-effective experimental validation.

In conclusion, we developed tRFtarget, a transcriptome-wide tRF target prediction database for
querying interactions between tRFs and transcripts in eight species. Manually curated experimental
evidence was integrated into the database. This database provides useful information to guide
biological experiments and target validation, as well as accelerates the understanding of the function

and mechanism of tRFs.
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TABLE AND FIGURES LEGENDS

Table 1. Summary statistics of tRFtarget database

Figure 1. lllustration of the five categories of tRFs. tRF-1 or tsRNA is generated from the 3’ end of the
precursor tRNA, whereas tRF-3, tRF-5, tiR and tRF-2 are derived from different parts of the mature
tRNA. tRF, transfer RNA-derived fragment. tsRNA, tRNA-derived small RNA. tiR, stress-induced

tRNA. ANG, angiogenin.

Figure 2. Flow diagram of constructing tRFtarget database. tRFtarget can be retrieved through web

service. tRF, transfer RNA-derived fragment.

Figure 3. lllustration of the interaction structures of tRF-3-mRNA chimeras from CLASH and the
corresponding binding sites in tRFtarget. The interaction structures of tRF-3-mRNA chimeras were
inferred by mfold RNA Folding Form using default settings, and the reads of the chimeras and the
delta G values (dG) given by mfold are shown at the right. The binding sites in tRFtarget are shown
below the mfold prediction. The transcript names are shown at the left, and the prediction algorithms
and free energy (FE) are shown at the right. Black represents non-interaction sequences; blue
represents interaction sequences of tRFs, green and red represent paired and non-paired bases of

MRNA, respectively. CLASH, cross-linking, ligation and sequencing of hybrids.



Table 1. Summary statistics of tRFtarget database

Species tRFs Target transcripts Target genes  Target interactions
Human 270 100,291 20,355 153,284,308
Mouse 164 67,125 22,385 60,074,771
Drosophila 86 30,588 13,947 14,822,386
C. elegans 47 33,552 20,191 7,685,677
S. pombe 104 5,146 5,145 3,105,075
R. sphaeroides 87 3,111 3,111 1,433,321
Xenopus tropicalis 51 54,848 19,983 16,449,592
Zebrafish 127 51,259 30,149 37,389,780
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