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Abstract

Single-cell RNA sequencing technology provides an opportunity to study gene expression at
single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that
may obscure downstream analyses in single-cell transcriptomic studies. We propose a new method,
G283, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph
learned from gene expression profiles across cells. We applied G2S3 and ten existing imputation
methods to eight single-cell transcriptomic datasets and compared their performance. Our results
demonstrated that G2S3 has superior overall performance in recovering gene expression,
identifying cell subtypes, reconstructing cell trajectories, identifying differentially expressed genes,
and recovering gene regulatory and correlation relationships. Moreover, G2S3 is computationally

efficient for imputation in large-scale single-cell transcriptomic datasets.

Author summary

Single-cell RNA sequencing (scRNA-seq) measures the expression profiles of individual cells.
However, dropouts lead to an excessive number of zeros or close to zero values in the data, which
may obscure downstream analyses. In this study, we developed G2S3, an imputation method that
recovers gene expression in scCRNA-seq data by borrowing information from adjacent genes in a
gene graph learned by graph signal processing. G2S3 was shown to have superior performance in
improving data quality. Moreover, G2S3 is computationally efficient in large-scale sScCRNA-seq

data imputation.
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Introduction

Singe-cell RNA sequencing (scRNA-seq) has emerged as a state-of-the-art technique for
transcriptome analysis. Compared to bulk RNA-seq that measures the average gene expression
profile of a mixed cell population, scRNA-seq measures the expression profile of individual cells
and thus describes cell-to-cell stochasticity in gene expression. Applications of this technology in
humans have revealed rare and novel cell types [1-3], cell population composition changes [4],
and cell-type specific transcriptomic changes [3,5] that are associated with diseases. These
findings have great potential to promote our understanding of cell function, disease pathogenesis,
and treatment response for more precise therapeutic development [6,7]. However, analysis of
scRNA-seq data can be challenging due to low library size, high noise level, and prevalent dropout
events [8]. Particularly, dropouts lead to an excessive number of zeros or close to zero values in
the data, especially for genes with low or moderate expression. These inaccurately measured gene
expression levels may obscure downstream quantitative analyses such as cell clustering and
differential expression analyses [6].

In the past few years, several imputation methods have been developed to recover dropout
events in scRNA-seq data. A group of methods, including kNN-smoothing [9], MAGIC [10],
scImpute [11], drlmpute [12], and VIPER [13], assess between-cell similarity and impute dropouts
in each cell using its similar cells. Specifically, KNN-smoothing uses step-wise k-nearest neighbors
to aggregate information from the k closest neighboring cells of each cell for imputation. MAGIC
constructs an affinity matrix of cells and aggregates gene expression across similar cells via data
diffusion to impute gene expression for each cell [10]. scImpute infers dropout events based on
the dropout probability estimated from a Gamma-Gaussian mixture model and only imputes these

events by borrowing information from similar cells within cell clusters detected by spectral
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clustering [11]. drlmpute identifies similar cells through K-means clustering and performs
imputation by averaging expression levels of cells within the same cluster [12]. While these
imputation methods improved the quality of scRNA-seq data to some extent, they were found to
eliminate natural cell-to-cell stochasticity which is an important piece of information available in
scRNA-seq data compared to bulk RNA-seq data [13]. VIPER overcomes this limit by considering
a sparse set of neighboring cells for imputation to preserve variation in gene expression across
cells [13]. In general, imputation methods that borrow information across similar cells tend to
intensify subject variation in scRNA-seq datasets with multiple subjects, which causes cells from
the same subject to be more similar than those from different subjects. To address this issue,
SAVER borrows information across similar genes instead of cells to impute gene expression using
a penalized regression model [14]. There are other methods that leverage information from both
genes and cells. For example, ALRA imputes gene expression using low-rank matrix
approximation [15], and scTSSR uses two-side sparse self-representation matrices to capture gene-
to-gene and cell-to-cell similarities for imputation [16]. In addition, machine learning-based
methods, such as autoImpute [17], DCA [18], deepImpute [19] and SAUCIE [20], use deep neural
network to impute dropout events. While computationally more efficient, these methods were
found to generate false-positive results in differential expression analyses [21]. Recently, an
ensemble approach, Enlmpute, was developed to integrate results from multiple imputation
methods using weighted trimmed mean [22].

In this article, we develop Sparse Gene Graph of Smooth Signals (G2S3), a gene graph-based
method that imputes dropout events in sSCRNA-seq data by borrowing information across similar
genes. G2S3 learns a sparse graph representation of gene-gene relationships from the data, in

which each node represents a gene and is associated with a vector of expression levels in all cells
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considered as a signal on the graph. The graph is then optimized under the assumption that signals
change smoothly between connected genes. Based on this graph, a transition matrix for a random
walk is constructed so that the transition probabilities are higher between genes with similar
expression levels across cells. A random walk on this graph imputes the expression level of each
gene using the weighted average of expression levels from itself and adjacent genes in the graph.
In this way, G2S3, like SAVER, makes use of gene-gene relationships to recover the expression
levels. However, unlike SAVER which uses a penalized regression model for imputation, G2S3
optimizes the gene graph structure using graph signal processing that captures nonlinear
correlations among genes. The computational complexity of the G2S3 algorithm is a polynomial
of the total number of genes in the graph, so it is computationally efficient, especially for large

scRNA-seq datasets with hundreds of thousands of cells.

Results

Datasets and evaluation overview

We evaluated and compared the performance of G2S3 and ten existing imputation methods,
SAVER, kNN-smoothing, MAGIC, scImpute, VIPER, ALRA, scTSSR, DCA, SAUCIE and
Enlmpute, in terms of (1) expression data recovery, (2) cell subtype separation, (3) cell trajectory
inference, (4) differential gene identification, and (5) gene-gene relationship recovery. We applied
these methods to eight scRNA-seq datasets that can be classified into five categories corresponding
to the five criteria described above. The first category includes three unique molecular identifier
(UMI)-based datasets in which down-sampling was performed to assess the method performance
in recovering gene expression. These datasets are the Reyfman dataset from human lung tissue

[23], the peripheral blood mononuclear cell (PBMC) dataset from human peripheral blood [24],
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and the Zeisel dataset from mouse cortex and hippocampus [25]. The second category was used to
evaluate the method performance in separating different cell types and includes the Chu dataset of
human embryonic stem (ES) cell-derived lineage-specific progenitors from seven known cell
subtypes [26]. The third category was used to reconstruct cell trajectory and includes the
Petropoulos dataset of cells from human preimplantation embryos collected on different
embryonic days [27]. The fourth category was chosen to evaluate the method performance in
identifying differentially expressed genes. It includes the Chu dataset, which is also included in
the second category, and the Trapnell dataset of differentiating human myoblasts [28]. The last
category includes two datasets to evaluate the method performance in recovering gene regulatory
and correlation relationships among known regulators and marker genes. These datasets are the
Paul dataset that contains a set of well-known transcriptional regulators of myeloid progenitor
populations [29] and the Buettner dataset that contains 67 periodic marker genes whose expression
level varies over cell cycle [30]. Table 1 summarizes the main features of all eight datasets. A more

detailed description of these datasets is provided in the “Real datasets” section.

Table 1. Detailed information on the eight scRNA-seq datasets used to compare the
performance of imputation methods

Experiment Dataset # Cells | Sample Type | Organism | Technique | UMI | Accession
Category
. Homo GEO

Reyfman [23] | 5,437 Lung tissue Sapiens Drop-seq Yes (GSE122960)

Expression Peripheral blood Homo
P PBMC [24] 7,865 mononuclear . Drop-seq Yes 10x Genomics*

data recovery cells Sapiens

Zeisel [25] 3,005 Brain tissue Mus Drop-se Yes Zeisel et al

’ Musculus p-seq '




Cell subtype Embryonic stem | Homo o GEO
separation Chu [26] 1,018 cells Sapiens Fluidigm C1 | No (GSE75748)
Cell Petropoulos Preimplantation | Homo
trajectory [27] P 1,529 emb lz)s Sapiens Smart-seq2 | No Petropoulos et al.
inference ry P
Embryonic stem | Homo . GEO
Differential Chu [26] 1,018 cells Sapiens Fluidigm C1 | No (GSE75748)
gene
identification 1 5 bl Homo Fluidiem C1 | N GEO
Trapnell [28] | 37 Myoblasts Sapiens uidigm o (GSE52529)
Bone  marrow
Paul [29] 2,730 myeloid ﬁﬁzculus MARS-seq Yes Paul et al.
Gen@—gen.e progenitor
relationship
recovety Staged M ArrayE
ge us o rrayExpress
Buettner [30] | 288 embryonic cells | Musculus Fluidigm C1 | No (E-MTAB-2805)

121 * URL to access the dataset: https://support.10xgenomics.com/single-cell-gene-

122  expression/datasets
123

124 Hyperparameter tuning in G2S3

125 The G2S3 algorithm used graph signal processing to learn a gene graph and performed a t-
126  step random walk to borrow information from neighboring genes for imputation. The optimal
127  value of the hyperparameter t was selected by minimizing the mean squared error (MSE) between
128  the imputed and observed data. We performed down-sampling on each dataset from the first
129  category (Reyfman, PBMC and Zeisel) and evaluated the MSE as well as the gene-wise and cell-
130  wise correlations of the G2S3 imputed data with reference data, for t = 1,...,10. S1 Fig shows the
131  coefficient of variation (CV) of gene expression before and after down-sampling. In all datasets,
132 although the CV of gene expression increased slightly after down-sampling, the correlation
133 between the CV before and after down-sampling was 0.79 or higher, demonstrating that the down-
134 sampled data well preserved the mean-variance relationship in the reference data. S2A Fig shows

135  that the optimal value of t is 1 in all three datasets based on the minimization of MSE. In addition,
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the one-step random walk in G2S3 achieved the greatest gene-wise and cell-wise correlations with
the reference data (S2B Fig). This optimal choice of t was consistent with the hyperparameter

selected by another diffusion-based imputation method [31].

Expression data recovery in down-sampled datasets

We used three down-sampled datasets from the first category (Reyfman, PBMC and Zeisel) to
assess the performance of all eleven imputation methods in recovering gene expression. Fig 1
shows the gene-wise Pearson correlation and cell-wise Spearman correlation between the imputed
and reference data from each dataset. The correlation between the observed data without
imputation and reference data was set as a benchmark. In all datasets, G2S3 consistently achieved
the highest correlation with the reference data at both gene and cell levels; SAVER and scTSSR
had slightly worse performance. Enlmpute had comparable performance to G2S3 based on the
cell-wise correlation but performed worse than G2S3, SAVER and scTSSR based on the gene-
wise correlation. VIPER performed well in the Reyfman and PBMC datasets but not in the Zeisel
dataset based on the gene-wise correlation, although the cell-wise correlations were much lower
than G2S3, SAVER, scTSSR and Enlmpute in all datasets. The other methods, kNN-smoothing,
MAGIC, sclmpute, ALRA and DCA, did not have comparable performance, especially based on
the gene-wise correlation. SAUCIE did not have comparable performance to the other methods in
all datasets (S3 Fig). To quantify the performance improvement of G2S3, one-sided t-test was
applied to compare the gene-wise and cell-wise correlations of G2S3 to those of the other methods.
(G2S3 had significantly higher correlations than all the other methods across three datasets for both
gene-wise and cell-wise correlations (p<0.05, S1 Table). Since genes with higher expression tend

to have a lower dropout rate, they are usually easier to impute and have less imputation need than
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those with lower expression [8]. To demonstrate the impact of expression level on the method
performance, we stratified genes into three subsets based on the proportion of cells expressing
them in the down-sampled data: widely expressed (>80%, n= 155, 111, 110, respectively), mildly
expressed (30%-80%, n = 615, 357, 1,902, respectively), and rarely expressed (<30%, n = 3,148,
1,830, 1,617, respectively). S4 Fig shows the gene-wise and cell-wise correlations in each gene
stratum. We can see that G2S3 improved both gene-wise and cell-wise correlations over the
observed data for widely and mildly expressed genes. Moreover, G2S3 achieved the most superior
recovery accuracy than the other methods for both widely and mildly expressed genes, although
SAVER, scTSSR and Enlmpute had comparable accuracy for widely expressed genes, suggesting
the advantage of borrowing information from similar genes over from similar cells. For rarely
expressed genes, all imputation methods did not improve the correlations compared to the
observed data using both gene-wise and cell-wise correlation, suggesting that there is insufficient
information for these genes to be successfully imputed. Overall, G253 provided the most accurate

recovery of gene expression levels.

Fig 1. Evaluation of expression data recovery of G2S3 by down-sampling. Performance of
imputation methods measured by correlation with reference data from the first category of datasets,
using gene-wise (top) and cell-wise (bottom) correlation. Box plots show the median (center line),
interquartile range (hinges), and 1.5 times the interquartile (whiskers). Outlier data beyond this
range are not shown.
Restoration of cell subtype separation

The second category of datasets was used to assess the performance of imputation methods in
restoring separation between different cell types. In the Chu dataset, there were 7 cell types

including two undifferentiated human ES cells (H1 and H9), human foreskin fibroblasts (HF),

neuronal progenitor cells (NP), definitive endoderm cells (DE), endothelial cells (EC), and
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trophoblast-like cells (TB). To quantify the performance in separating these cell subtypes, we
calculated the ratio of average inter-subtype distance to average intra-subtype distance using the
top K principal components (PCs) of the data before and after imputation, for K = 1, ...,50. We
also calculated the silhouette coefficient that measures how similar cells are to cells from the same
cell type compared to other cell types. In Fig 2, G2S3 and Enlmpute had the highest inter/intra-
subtype distance ratio and silhouette coefficient. Both methods performed better than the raw
unimputed data, while MAGIC, scImpute, ALRA and DCA performed worse than the raw data.
SAUCIE performed the worst. These results suggest that G2S3 greatly improved the separation
between different cell types by enhancing the biologically meaningful information in the top PCs.
Its performance was comparable to Enlmpute, the ensemble method that takes advantage over

several methods.

Fig 2. Evaluation of G2S3 in improving cell subtype separation. Average inter/intra-subtype
distance ratio (top) and silhouette coefficient (bottom) to demonstrate cell subtype separation using
the top principal components of the raw unimputed and imputed data by each method in the Chu
dataset.

To demonstrate the comparison using cell clustering results, we generated uniform manifold
approximation and projection (UMAP) plots in which cells were colored to represent the seven
cell types in the original dataset. The normalized mutual information (MI) and adjusted rand index
(RI) were calculated to measure the consistency between cell clustering results and true cell
subtype labels. Fig 3 shows that the imputed data by G2S3 and Enlmpute had better separation of
all cell subtypes than the raw unimputed data, except for H1 and HO cells. Given that both H1 and

HO are undifferentiated human ES cells, it is expected that separating them is more difficult due to

the relative homogeneity of human ES cells compared to the progenitors. In contrast, the other
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imputation methods did not have comparable improvement that some of which even reduced the
separation of different cell types. Specifically, DE cells were mixed with EC and TB cells in the
raw data and were not separated from the other cell subtypes by all methods except G2S3 and
EnImpute. MAGIC was able to separate EC, HF and TB cells from each other and from the rest
of the cell subtypes, while SAVER was able to separate EC and HF cells from each other and from
the rest of the cell subtypes. VIPER, ALRA, scTSSR and DCA only separated HF cells from the
rest, similar to the raw data. The imputed data by kNN-smoothing formed many small clusters.
scImpute tended to mix different cell types into one cluster. SAUCIE overly smoothed the data
and was not able to separate any cell types. Based on the two measures of consistency between
cell clustering results and true cell subtype labels, Enlmpute had the best separation of the cell
subtypes (MI=0.77, RI=0.70) and G2S3 was the second best (MI=0.74, RI1=0.64), while the other
methods did not have comparable performance. Notice that Enlmpute is an ensemble method that
combines imputation results from multiple methods, and G2S3 is the only method that achieved

comparable performance to Enlmpute.

Fig 3. Plots showing 2D-Visualization of the Chu dataset. UMAP plots of the raw unimputed
and imputed data by all methods. Cells are colored by true cell subtype labels. The normalized
mutual information (MI) and adjusted rand index (RI) are calculated to measure the consistency
between cell clustering results and true cell subtype labels.

S5 Fig demonstrates the expression of two cell subtype marker genes GATA6, a marker gene
of DE cells, and NANOG, a marker gene of HI/H9 cells [26], across all cells in the raw unimputed
and imputed data by all methods. The normalized MI and adjusted RI that measure the consistency

between cell clustering results, based on these two marker genes and true cell labels for DE and

HI1/H9 cells, were also calculated. We can see that G253 provided the best separation between

11
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H1/H9 cells, DE cells and other cell subtypes. Specifically, while the raw data mixed H1/H9 cells
with other cell subtypes, G2S3 successfully recovered the expression of GATA6 and NANOG to
better separate DE and H1/H9 cell subtypes both from each other and from the other cell subtypes.
The cell clustering results on the G2S3 imputed data achieved the highest consistency with true
cell subtype labels, indicating its best performance. None of the other methods had comparable
performance. DCA separated H1/H9 cells but had DE cells marginally overlapped with other cell
types. We observed many small clusters of cells after imputation by kNN-smoothing, similar to
the pattern displayed in Fig 3. The other methods did not improve cell subtype separation compared
to the raw data. In addition, the imputed data by VIPER, kNN-smoothing and ALRA still had a
large proportion of dropout events. These results suggest that G2S3 had the best performance in
restoring the separation of different cell types, preserving biological meaningful variations, and

reducing technical noise.

Improvement in cell trajectory inference

Reconstruction of cell trajectories using scRNA-seq data is important for investigating a
dynamic process. However, dropout events may impair pseudo-time inference. We used the
Petropoulos dataset to evaluate the performance of all imputation methods in cell trajectory
inference. This dataset consists of human preimplantation embryonic cells from five embryonic
days (E3-E7) that represent differentiation stage or age of the embryonic cells. We used Monocle
2 to infer pseudo-time from the raw unimputed and imputed data by each method [32] and
compared this to the actual embryonic days of the cells for performance evaluation. The
pseudotemporal ordering score (POS) and Kendall rank correlation coefficient (Cor) were

calculated to measure the consistency. Fig 4 shows cell trajectories in the raw and imputed data by
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all methods. The cell trajectory plots showed the sequential layout of cells from earlier to later
embryonic days. The imputed data by G2S3, scImpute, VIPER and Enlmpute had the highest
consistency with the actual embryonic days, indicating their best performance among all methods.
SAVER, kNN-smoothing, MAGIC, ALRA and DCA formed the second tier of methods with
lower consistency. scTSSR performed worse than the raw data. SAUCIE had significantly lower
consistency (POS=0.07, Cor=0.07) compared to all other methods in cell trajectory inference.
Furthermore, the cell trajectory plots showed an increased heterogeneity among cells from later
embryonic days, especially starting from embryonic day 5. This was consistent with the

observation of a significant embryonic cell differentiation event on embryonic day 5 [27].

Fig 4. Visualization of cell trajectories in the raw and imputed data by all methods. Cells are
projected into two-dimensional space using reversed graph embedding. Pseudotemporal ordering
score (POS) and Kendall rank correlation coefficient (Cor) are used to measure the consistency
between the actual embryonic days and the reconstructed pseudo-time.
Improvement in differential expression analysis

One common analytical task for scRNA-seq studies is to identify genes differentially expressed
between cells from two groups of subjects or two cell types. In this section, we used two datasets
to evaluate and compare the improvement in downstream differential expression analysis before
and after imputation by all methods: the Chu dataset of different cell types and the Trapnell dataset
of differentiating human myoblasts. Besides the scRNA-seq data, both datasets provide bulk RNA-
seq data on the same samples with each sample consisting of cells from only one cell type. We
expect that the differentially expressed genes identified from the bulk RNA-seq data overlap with

that from the scRNA-seq data. Therefore, we treated the differentially expressed genes in the bulk

RNA-seq data as ground truth and compared methods by assessing the prediction accuracy of the
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ground truth in the scRNA-seq data imputed by different methods using receiver operating
characteristic (ROC) curves.

In the Chu dataset, we identified marker genes that differentiate the two cell types: HI and NP
cells. Fig 5A shows that G2S3 had the highest area under the curve (AUC) in detecting
differentially expressed genes. KNN-smoothing, DCA and Enlmpute had an AUC score lower than
G2S3 but higher than the raw data. The other methods had comparable performance to the raw
data except MAGIC, which had the lowest AUC. This is likely due to the fact that a small cluster
of NP cells were mixed with H1 cells after imputation by MAGIC (Fig 3), resulting in
compromised performance in marker gene identification. Our results were largely consistent with
a previous evaluation of imputation methods in identifying differentially expressed genes using
Fluidigm C1 data [33]. No genes achieved significance in the imputed data by SAUCIE, so the
result of SAUCIE could not be shown. DE cells had two or more sub-clusters in UMAP and one
subcluster was mixed with EC cells (Fig 3). Similar to H1, H9 cells are undifferentiated human ES
cells. To demonstrate results on comprehensive cell types, we further compared H1 cells with all
other cell types except H9 and DE cells (S6 Fig). The results on three out of the four cell types
compared to H1 cells demonstrated the best performance of G2S3. TB cells is the only cell type
for which G2S3 did not achieve the best performance. All other methods, except Enlmpute, did
not achieve higher AUC than the raw data, indicating the lack of benefit by performing data
imputation for genes differentially expressed between H1 and TB cells, regardless of imputation
methods. In the Trapnell dataset, we performed differential expression analysis between
undifferentiated primary human myoblasts and mature myotubes captured 72 hours after inducing
differentiation. Fig 5B shows that G2S3 achieved the highest AUC indicating its best performance,

followed by VIPER. kNN-smoothing and DCA had much worse performance than the raw data.
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No genes achieved significance in the imputed data by MAGIC and SAUCIE, so their results could
not be shown. Altogether, the results from both datasets showed that G2S3 had the best

improvement in the downstream differential expression analysis.

Fig 5. Receiver operating characteristic (ROC) curves demonstrating improvement in
differential expression analysis. ROC curves measuring the prediction accuracy in sScRNA-seq
data on differentially expressed genes identified in bulk RNA-seq data from the same samples in
the Chu (A) and Trapnell (B) datasets.

Gene-gene relationship recovery

We compared the method performance in recovering gene regulatory and correlation
relationships using two scRNA-seq dastasets. In the Paul dataset, we examined the regulatory
relationships between ten well-known transcription factors in the development of blood cells
before and after imputation [34]. In the Buettner dataset, we investigated the correlation among a
set of 67 periodic marker genes before and after imputation, in which 16 genes have peak
expression in the G1/S phase and 51 genes have peak expression in the G2/M phase [30].

In the Paul dataset, the regulatory relationships among the ten key regulators of the
transcriptional differentiation of megakaryocyte/erythrocyte progenitors and
granulocyte/macrophage progenitors in the raw data and the imputed data by each method were
used for performance evaluation. The gene regulatory network (GRN) of these regulators was
established in a previous study based on biological experiments [35-37] and served as the ground
truth. We reconstructed GRNs using four methods, PIDC [38], GENIE3 [39], GRNBoost2 [40],
and PPCOR [41], in the raw and imputed datasets. The inferred GRNs were compared to the

ground-truth network to measure the prediction accuracy using the area under the receiver

operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC).

15



331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

355

356

For each imputation method, we reported the AUROC and AUPRC ratio (AUROC/AUPRC
divided by that of a random predictor) with 50 replications. Fig 6 shows that G2S3 achieved the
highest AUROC ratio in three out of the four GRN inference methods and performed slightly
worse than scImpute using GENIE3. The prediction accuracy of scImpute was much lower than a
random predictor using GRNBoost2 and PPCOR. The AUROC ratios of GRNs inferred from the
imputed data by MAGIC and ALRA were either equal to or much lower than that from a random
predictor, suggesting that the gene regulatory relationships were distorted after imputation. S7 Fig
demonstrates the results based on the AUPRC ratio. G2S3 and kNN-smoothing had better
prediction accuracy than other imputation methods in restoring gene regulatory relationships

across all GRN inference methods.

Fig 6. Performance of G2S3 in recovering gene regulatory relationships. Boxplots showing
the area under the receiver operating characteristic curve (AUROC) ratios that measure the
accuracy of inferred GRNs using the imputed data by different imputation methods. PIDC,
GENIE3, GRNBoost2 and PPCOR are used to infer GRNs. Red line indicates the performance of
a random predictor.

We also examined the pairwise correlations between these ten key regulators. Based on
previous studies [35-37], inhibitory and activatory gene pairs were defined, among which
inhibitory pairs were expected to have negative correlation while activatory pairs were expected
to have positive correlation. The mutually inhibitory pairs of genes include F/il vs. Kif1, Egrl vs.
Gfil, Cebpa vs. Gatal, and Sfpil vs. Gatal; and the mutually activatory pairs include Sfpil vs.
Cebpa, Zfpm1 vs. Gatal, KIf1 vs. Gatal. S8 Fig shows that most of the methods were able to
enhance the pairwise correlations in the correct direction after imputation. Overall, G2S3 and

SAVER showed the greatest enhancement of pairwise correlations for both inhibitory and

activatory pairs, followed by kNN-smoothing and Enlmpute. Although MAGIC intensified the
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pairwise correlations, most activatory pairs had correlations close to 1 after imputation. ALRA and
DCA strengthened the pairwise correlations for activatory pairs but did not improve much for
inhibitory pairs. Imputation by SAUCIE resulted in all gene pairs to be highly positively correlated.
We further examined the correlation enhancement of each method by plotting all gene pairs (S9-
10 Fig). While many methods, for example, G2S3, SAVER, kNN-smoothing, ALRA, DCA and
EnImpute, had good performance in enhancing positive correlations, most of them had less
satisfactory performance in negatively correlated gene pairs. For inhibitory gene pairs (S9 Fig),
only G2S3 and SAVER displayed negatively correlated curves in which the expression level of
one gene decreased with an increase of the other. KNN-smoothing, DCA and Enlmpute tended to
over-impute to the extent that only one gene was expressed in the same cell after imputation. This
goes against the observation from the raw data and previous literature showing that the higher
expression of one gene, the lower, rather than completely shutting off, the expression of the other.
Additionally, SAUCIE imputed all mutually inhibitory gene pairs to be positively correlated. For
activatory gene pairs (S10 Fig), most methods enhanced the pairwise correlations except sclmpute
and VIPER, which did not improve much compared to the raw data. In addition, the imputed data
by MAGIC and SAUCIE formed a nearly straight diagonal line, suggesting that the imputed data
was over-smoothed such that the cell-level biological variation was attenuated.

In the Buettner dataset, we expect pairs of periodic genes whose expression peak in the same
phase of cell cycle to be positively correlated and those that peak during different phases to be
negatively correlated. There are 67 marker genes for G1/S and G2/M phases [34]. We examined
the correlation of all 2,211 marker gene pairs in the raw data and imputed data by each method.
The proportion of gene pairs whose correlations are in the correct direction was used for

performance comparison. Table 2 shows that all methods had comparable performance in
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maintaining a high proportion of positively correlated gene pairs, whereas their performance varied
in restoring negatively correlated gene pairs. G2S3, SAVER and Enlmpute were able to recover
28% or more of the negatively correlated gene pairs. All gene pairs became positively correlated
after imputation by MAGIC, sclmpute, VIPER, ALRA, DCA and SAUCIE, thus no negative
correlation was observed after imputation. Similar observations were found in a previous study in
which some of these methods introduced a large number of positive gene correlations after

imputation, many of which may be spurious [14].

Table 2. Fraction of periodic gene pairs with correct direction of correlation in the raw and
imputed data by each method

Imputation Methods Positive Pairs Negative Pairs
Raw 1.00 0.00
G2S3 0.91 0.32
SAVER 0.94 0.28
kNN-smoothing 0.97 0.17
MAGIC 1.00 0.00
scImpute 1.00 0.00
VIPER 1.00 0.00
ALRA 1.00 0.00
scTSSR 0.98 0.11
DCA 1.00 0.00
SAUCIE 1.00 0.00
Enlmpute 0.91 0.46

In summary, the results from both datasets suggested that G2S3 enhanced gene-gene
relationships especially for negatively correlated gene pairs. In negatively correlated gene pairs,
the expression of one gene is inhibited by the other, resulting in one of the genes being lowly
expressed. In general, as genes with low expression are more difficult to impute, restoring negative

correlation is thus a more challenging task for imputation.
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Summary of method performance

We evaluated and compared the performance of G2S3 and the other ten imputation methods
using five evaluation criteria corresponding to five downstream analyses of sScRNA-seq data. Fig
7 summarizes the overall performance of all methods. G2S3 was ranked first in three out of the
five evaluation criteria, second in cell clustering, and third in cell trajectory inference. For those
criteria under which G2S3 did not achieve the best performance, it had close or comparable
performance to the best method. No other method achieved the best performance in as many
criteria as G2S3. Overall, G2S3 performed the best among all the methods, followed by Enlmpute,

SAVER and VIPER.

Fig 7. Summary of performance of G2S3 and other imputation methods. A heatmap
demonstrating method performance based on the five evaluation criteria. The left five columns
display performance rank using each of the five evaluation criteria. The rightmost column displays
the overall performance rank based on the sum of the five ranks.
Computation time

While SAVER and Enlmpute have comparable performance to G2S3 in some datasets, G2S3
is computationally more efficient (S2 Table). Since both G2S3 and SAVER are gene network-
based imputation methods, their computation time is expected to increase with the number of genes
to be imputed. This makes gene network-based methods more suitable than those based on cell
similarity for large scRNA-seq datasets with tens or even hundreds of thousands of cells. In real
data analysis, G2S3 was on average about twenty times faster than SAVER. Enlmpute is an
ensemble method that relies on imputation results from multiple methods and therefore is slower

than SAVER. On the other hand, the computation time of imputation methods that borrow

information from similar cells increases dramatically with the number of cells in the data. As
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demonstrated in a previous study, scImpute and VIPER were unable to scale beyond 10K cells
within 24 hours [19]. In our assessment, VIPER took about two days to impute the down-sampled

datasets with several thousands of genes, while other methods finished within several minutes.

Discussion

We have developed a new method, G2S3, to impute dropouts in scCRNA-seq data. G2S3 learns
a sparse gene graph from scRNA-seq data and borrows information from nearby genes in the graph
for imputation. We evaluated and compared the performance of G2S3 and ten existing imputation
methods in terms of recovering gene expression, restoring cell subtype separation, reconstructing
cell trajectories, identifying differentially expressed genes, and restoring gene regulatory and
correlation relationships using eight sScRNA-seq datasets. Overall comparison based on the five
evaluation criteria showed that G2S3 achieved the best performance. Furthermore, G2S3 is
computationally efficient for large-scale scRNA-seq data imputation.

Unlike imputation methods that borrow information across similar cells, G2S3 harnesses the
structural relationship among genes obtained through graph signal processing to perform
imputation. Using eight real datasets, we showed that methods relying on cell similarity tend to
remove biological variation among cells and intensify subject-level batch effects. In contrast,
(G2S3 enhances cell subtype separation and thus relatively reduces variations in cells from the
same cell type and subject. The down-sampling and differential expression analysis results showed
that G2S3 outperformed the other methods. Of note, imputation methods such as SAVER,
scImpute and VIPER used parametric models for gene expression. However, as the noise
distribution varies across different sScRNA-seq platforms, assumptions of the parametric models

may be violated, particularly for new technologies. Graph signal processing extracts signals from
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data by optimizing a smoothness regulated objective function, so in principle, it is less sensitive to
the noise distribution. To our knowledge, there are two imputation methods that use gene
graph/network for imputation in scRNA-seq data, published during the preparation of this
manuscript: netNMF-sc [42] uses network-regularized non-negative matrix factorization to
leverage gene-gene interactions for imputation; and netSmooth [43] incorporates protein-protein
interaction networks to smooth gene expression values. Both methods require prior information
on gene-gene interactions from RNA-seq or microarray studies of bulk tissue. In contrast, G2S3
learns gene network structure in an unbiased way from scRNA-seq data. In our experiments, G253
had comparable performance to Enlmpute, an ensemble learning method that combines results
from multiple imputation methods.

G283 learns gene-gene relationship by optimizing a sparse gene graph and at the same time
allows expression levels to change smoothly between closely connected genes. Since many gene
networks and biochemical networks are sparse [32,44,45], the sparsity property is important for
inferring gene network. There are several methods available for constructing gene network, many
of them are kernel-based, which result in full weight matrices where sparsity is to be imposed
afterwards, for example, thresholding the adjacency weights. We found that the top eigenvectors
of graph Laplacian on the gene networks learned from Gaussian kernel were highly correlated with
dropout rate, suggesting that dropout events tend to bias the construction of gene network in
scRNA-seq data. Based on our evaluation of the hyperparameter in G253, we chose to use a one-
step random walk for datasets in this article to avoid over-smoothing, because multiple steps in a
random walk tend to overly smooth the data and lead to compromised performance. Nevertheless,
we implemented a MSE-based tuning on the number of steps in the algorithm. Similar observations

were reported in a recent study discussing parameter tuning for diffusion-based imputation
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methods in scRNA-seq data [31]. It showed that for many diffusion-based methods including
MAGIC, single step (t = 1) yielded better performance than multiple steps or iterations until
convergence. For UMI-based datasets, to account for the effect of varying sequencing depths, we
recommend normalizing UMI counts before applying G2S3 for accurate construction of gene
graph and imputation of expression levels.

Despite the advantages of G253 over the other imputation methods shown in this article, G2S3
can be improved in several directions. First, G2S3 uses a lazy random walk on the gene graph to
recover dropout events, i.e., weighted average of the observed expression of the gene of interest
and that from neighboring genes. The weights currently depend only on between gene similarity
which can be improved by considering the reliability of observed read counts, cell library size, and
dispersion of gene expression, similar to the weights used in SAVER. Second, G253 does not
consider dropout rate and therefore imputes all values at once. This can be improved by calculating
the probability of being a dropout for each observed read count and only performing imputation
on those with a high dropout probability. Third, we used the MSE criterion for hyperparameter
tuning to select the optimal number of steps in G253 following a diffusion-based imputation
method in a recent study [31]. It should be noted that this is a heuristic approach. Although we
performed a real dataset-based validation experiment for this procedure, it is possible that a
theoretical approach may give better hyperparameter tuning. Fourth, our model can be further
improved by adding two tuning parameters for the second and third terms in the objective function
that control the degree of smoothness and sparsity of the resulting gene network. The tuning
parameters can be chosen based on the complexity and structure of sScRNA-seq data. Finally, G2S3
does not consider the potential subject effect in the data, which has been shown to be prevalent

and dominant in certain cell types. One way to address this issue is to consider subject effect as
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“batch” effect and remove it using batch effect removal tools. This is effective only when there are
no other effects of interest confounding the subject effect, for example, disease effect, because
they will also be removed together with “batch” effect. When there are other effects that confound
with subject effect and are the interest of study, G2S3 can be improved to consider subject effect

and disease effect at the same time in imputation.

Materials and methods

G283 algorithm

To borrow information from similar genes for data imputation, G2S3 first builds a sparse graph
representation of gene network under the assumption that expression levels change smoothly
between closely connected genes. Let X = [xq, X3, ..., X, ] € R™™ denote the observed transcript
counts of m genes in n cells, where the column x; € R™ represents the expression vector of gene
j,forj =1,..,m. We regard each gene j as a vertex V; in a weighted gene graph G = (V,E), in
which the edge between genes j and k is associated with a weight Wj.

The gene graph is then determined by the weighted adjacency matrix W € RT*>*™. G2S3
searches for a valid adjacency matrix W from the space

W ={WeRM™m: W =WwT,diag(W) = 0}

that is optimal under the assumption of smoothness and sparsity on the graph. To achieve this, we

use the objective function adapted from Kalofolias’s model [46]:
min |[|W e Z||l;; — 17 log(W1) + L W |2 (1)
Wew 11 2 Fr

. .. . . . 2
where Z € RT™™ is the pairwise Euclidean distance matrix of genes, defined as Zj, = ||xj — X || ,

1 is a vector of ones, ||||; 1 is the elementwise L-1 norm, o is the Hadamard product, and ||-||¢ is
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the Frobenius norm. The first term in Eq. (1) is equivalent to 2 tr(XTLX) that quantifies how
smooth the signals are on the graph, where L is the graph Laplacian and tr(.) is the trace of a
matrix. This term penalizes edges between distant genes, so it prefers to put a sparse set of edges
between the nodes with a small distance in Z. The second term in Eq. (1) represents the node
degree which requires the degree of each gene to be positive to improve the overall connectivity
of the gene graph. The third term in Eq. (1) controls sparsity to penalize the formation of large
edges between genes.

The optimization of Eq. (1) can be solved via primal dual techniques [47]. We rewrite Eq. (1)

as

m(m-1)
mEin Iiwsoy + 2wTz — 1" log(d) + |lw|?, where w = {w eER, ? }, (2)
wew

where w and z are vector forms of W and Z, respectively; I} is the indicator function that takes
value 0 when the condition in the brackets is satisfied, infinite otherwise; d = Kw € R™ and K is
the linear operator that satisfies W1 = Kw. After obtaining the optimal W, a lazy random walk
matrix can be constructed on the graph:

M= (DWW +1)/2, 3)
where D is an m-dimensional diagonal matrix with D;; = Y., Wjy, the degree of gene j, and I is
the identity matrix.

The imputed count matrix Xjpyputeq 1 then obtained by taking a t-step random walk on the
graph which can be written as

Xluputea = MEXT. @)

By default, G2S3 takes a one-step random walk (¢t = 1) to avoid over-smoothing. Adapted from a

previous study on diffusion-based imputation method [31], we also implement an option of tuning
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the hyperparameter t based on an objective function that minimizes the MSE between the imputed
and observed data, i.e.

t* = argmin ||MtXT — XT||.
t

We assume that a good imputation method is not expected to deviate too far away from the raw
data structure in the process of denoising. This criterion enables us to denoise the observed gene
expression through attenuating noise due to technical variation while preserving biological
structure and variation.

Similar to other diffusion-based methods, G2S3 spreads out counts while keeping the sum
constant in the random walk step. This results in the average value of non-zero matrix entry
decreasing after imputation. To match the observed expression at the gene level, we rescale the

values in Xjmpyteq 80 that the mean expression of each gene in the imputed data matches that of

the observed data. The pseudo-code for G2S3 is given in Algorithm 1.

Algorithm 1: Pseudo-code of G253
1: Input: X
2. Result: X, ,uteq = G2S3(X)
3: Z = distance(X)
4 W = min  Tp,sop + 2w’z — 17 log(d) + ||w||?
urE]RT_:(m_l)'/z -
5. D = degree(W)
6: M =(D7'W +1)/2
7: t* = argmin||M!XT — X7T||
t

. T _ At v T
8: X-é'rnp'uted =M" X

: Xrescaied = rcscalc(ximputed)
10: Xim-puted = Xrescaled

11: End

Real datasets
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We evaluated and compared the performance of G2S3 and ten existing imputation methods
using datasets from eight scRNA-seq studies. Among them, four datasets were generated using the
UMI techniques and four were generated by non-UMI-based techniques.

Reyfman refers to the SCRNA-seq dataset of human lung tissue from healthy transplant donors
in Reyfman et al. [23]. The raw data include 33,694 genes and 5,437 cells. To generate the
reference dataset, we selected cells with a total number of UMIs greater than 10,000 and genes
that have nonzero expression in more than 20% of cells. This resulted in 3,918 genes and 2,457
cells.

PBMUC refers to human peripheral blood mononuclear cells from a healthy donor stained with
TotalSeq-B antibodies generated by the high-throughput droplet-based system [24]. This dataset
was downloaded from 10x Genomics website (https://support.10xgenomics.com/single-cell-gene-
expression/datasets). The raw data include 33,538 genes and 7,865 cells. To generate the reference
dataset, we selected cells with a total number of UMIs greater than 5,000 and genes that have
nonzero expression in more than 20% of cells. This resulted in 2,308 genes and 2,081 cells.

Zeisel refers to the scRNA-seq dataset of mouse cortex and hippocampus in Zeisel et al. [25].
The raw data include 19,972 genes and 3,005 cells. To generate the reference dataset, we selected
cells with a total number of UMIs greater than 10,000 and genes that have nonzero expression in
more than 40% of cells. This resulted in 3,529 genes and 1,800 cells.

Chu refers to the dataset investigating separation of cell subpopulations in Chu et al. [26]. It
measured gene expression of 1,018 cells including undifferentiated H1 and H9 human ES cells
and the Hl1-derived progenitors. The cells were annotated with seven cell subtypes: neuronal
progenitor cells (NP), definitive endoderm cells (DE), endothelial cells (EC), trophoblast-like cells

(TB), human foreskin fibroblasts (HF), and undifferentiated Hl and H9 human ES cells. We
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performed preliminary filtering to remove genes expressed in less than 10% of cells, which
resulted in 13,829 genes.

Petropoulos refers to the dataset studying cell lineage in human embryo development in
Petropoulos et al. [27]. It measured expression profiles of 26,178 genes in 1,529 cells from 88
human embryos. Cells were labeled as E3-E7 representing their embryonic day. We performed
preliminary filtering to remove genes expressed in less than 5 cells and cells with less than 200
expressed genes. After the filtering, we ended up with 22,934 genes and 1,529 cells.

Trapnell refers to the dataset studying the transcriptional dynamics of human myoblasts in
Trapnell et al. [28]. scRNA-seq data were collected on undifferentiated primary human myoblasts
at time 0 and differentiating myoblasts at 24, 48 and 72 hours. Most of the cells are mature
myotubes 72 hours after inducing differentiation. The raw data include 47,192 genes and 372 cells.
We performed preliminary filtering to remove genes expressed in less than 10% of cells, which
resulted in 13,286 genes.

Paul refers to the dataset from a study on the transcriptional differentiation landscape of
myeloid progenitors [29]. This dataset includes 3,451 informative genes and 2,730 cells. We used
this dataset to evaluate the performance of imputation methods in restoring gene regulatory
relationships between well-known regulators.

Buettner refers to the dataset in Buettner et al. [30]. This dataset includes mouse ES cells
labeled by three cell cycle phases — G1, S, and G2/M via flow sorting. The raw data include 38,390
genes and 288 cells. We used this dataset to evaluate the performance of imputation methods in
enhancing gene correlations between periodic marker genes of cell cycle phase. We performed
preliminary filtering to remove genes expressed in less than 20% of cells, which resulted in 13,355

genes.
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Performance evaluation

Expression data recovery. We first compared the method performance in recovering gene
expression using down-sampled datasets. Down-sampling was performed on three independent
UMI-based scRNA-seq datasets (Reyfman, PBMC, and Zeisel) to generate benchmarking
observed datasets in a similar framework to previous studies [14,19]. In each dataset, we selected
a subset of genes and cells with high expression to be used as the reference dataset and treated
them as the true expression. Details on the thresholds chosen to generate the reference datasets are
described in the “Real datasets” section. However, unlike previous studies that simulated down-
sampled datasets from models with certain distributional assumptions [14] which may incur
modeling bias, we performed random binary masking of UMISs in the reference datasets to mimic
the inefficient capturing of transcripts in dropout events. The binary masking process masked out
each UMI independently with a given probability. In each reference dataset, we randomly masked
out 80% of UMIs to create the down-sampled observed dataset.

All imputation methods were applied to each down-sampled dataset to generate imputed data
separately. Because imputation methods such as SAVER and MAGIC output the normalized
library size values, we performed library size normalization on all imputed data. We calculated the
gene-wise Pearson correlation and cell-wise Spearman correlation between the reference data and
the imputed data generated by each imputation method. The correlations were also calculated
between the reference data and the observed data without imputation to provide a baseline for
comparison. One-sided t-test was used to evaluate whether G2S3 significantly improved the gene-
wise and cell-wise correlations compared to other imputation methods. To investigate whether the

performance depends on the true expression level, we stratified genes into three categories: widely,
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mildly, and rarely expressed genes, based on the proportion of cells expressing each gene in the
down-sampled observed datasets. Specifically, widely expressed genes are those with non-zero
expression in more than 80% of cells, rarely expressed genes are those with non-zero expression
in less than 30% of cells, and mildly expressed genes are those that lie in between. The gene-wise
and cell-wise correlations in each stratum were used to demonstrate the impact of expression level

on the performance of imputation methods.

Restoration of cell subtype separation. We applied all imputation methods to the Chu dataset to
evaluate their performance in separating different cell types. A good imputation method is
expected to stabilize within cell-subtype variation (intra-subtype distance) while maintaining
between cell-subtype variation (inter-subtype distance). Principal component analysis was
conducted on the raw and imputed data for dimension reduction. We calculated the inter-subtype
distance as the Euclidian distance between cells from different cell types, and the intra-subtype
distance as the distance between cells of the same cell type, using the top K PCs of the data, for
K =1, ...,50. The ratio of the average inter-subtype distance to the average intra-subtype distance
was used to quantify the performance. The higher this ratio is, the better performance the method
has. We also calculated silhouette coefficient, a composite index reflecting both the compactness
and separation of different cell types, using the top PCs and the true cell subtype labels. The
silhouette coefficient ranges from -1 to 1, with a higher value indicating a better match with the
cell subtypes and a value close to zero indicating random clustering [48]. To demonstrate the
comparison using cell clustering results, we visualized the raw and imputed data with UMAP plots
using the top three PCs and colored cells by the cell subtype labels. The normalized mutual

information (MI) and adjusted rand index (RI) were used to measure the consistency between cell
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clustering results and true cell subtype labels. To demonstrate cell subtype separation based on cell
subtype marker genes, we further displayed DE and H1/H9 cells by plotting the log-transformed
counts using their marker genes [26]: GATA6, a marker gene of DE cells, and NANOG, a marker

gene of H1/H9 cells.

Cell trajectory inference. We assessed the performance of imputation methods in restoring cell
trajectory using human preimplantation embryos from different embryonic days in the Petropoulos
dataset. We considered the actual embryonic days to represent the true cell differentiation stage or
age. Monocle 2 was used to infer pseudo-time from the normalized raw and imputed data [32]. To
measure the consistency between the actual embryonic days and the reconstructed pseudo-time,
we calculated the pseudotemporal ordering score (POS) and Kendall rank correlation coefficient
(Cor). Cell trajectories were visualized by embedding cells into two-dimensional space using
reversed graph embedding, a recently developed machine learning method to reconstruct complex

single-cell trajectories in the R package Monocle 2 [32].

Differential expression analysis. To assess the performance in identifying differentially
expressed genes, we compared gene expression between two cell subtypes: H1 and NP cells, using
both imputed scRNA-seq and bulk RNA-seq data from the Chu dataset. We also compared gene
expression profiles of undifferentiated myoblasts to mature myotubes collected 72 hours after
inducing differentiation from the Trapnell dataset. The raw and imputed data were normalized and
log-transformed before evaluation. We used t-test in the bulk RNA-seq data to identify
differentially expressed genes and selected the top 200 genes based on P-value as ground truth.

We then performed differential expression analysis in the scRNA-seq data using the same test. All
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the differential expression analysis in the sSCRNA-seq data was performed using the Seurat R
package (version 3.0) with a default threshold to keep genes with at least 1.5-fold change. The
prediction accuracy was measured by the area under an ROC curve by comparing the differentially
expressed genes identified in the raw and imputed scRNA-seq data at different P-value threshold

with ground truth.

Gene-gene relationship restoration. We evaluated the method performance by investigating the
enhancement in gene regulatory relationships using the Paul dataset and the recovery of gene-gene
correlations between periodic marker genes in the Buettner dataset. In gene regulation, a Boolean
network constructed by a systematic review on the interactions of core transcription factors to
model myeloid differentiation [35] was used as ground truth. The same network was used in the
evaluation of DCA [18]. Among the eleven key regulators in the network with known inhibitory
and activatory relationships in blood development, ten were present in the Paul dataset. We
reconstructed GRN on these ten regulators in the raw and imputed datasets by different methods,
using the top four GRN inference algorithms from a review paper [49], PIDC [38], GENIE3 [39],
GRNBoost2 [40], and PPCOR [41]. The prediction accuracy of each method was evaluated by
comparing the inferred GRN to the ground-truth network using AUROC and AUPRC. The
AUROC/AUPRC ratio was calculated by dividing AUROC/AUPRC by that of a random predictor,
and the process was repeated for 50 times. The estimated pairwise correlations between genes
using the raw unimputed and imputed data by each method were compared for performance
evaluation. The Beuttner dataset contains 67 periodic marker genes with peak expression in G1/S
and G2/M phases established in a previous study [34]. As marker gene expression varies over cell

cycle, we expect pairs of periodic genes whose expression peak during the same cell cycle phase
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to be positively correlated, and pairs of genes whose expression peak at different phases to be
negatively correlated. Pairwise correlations were calculated in the raw and imputed data by each
method. The proportion of gene pairs with correct direction of correlation was used to compare

the method performance.

Code availability

G2S3 is an open-source MATLAB package that is freely available on GitHub
https://github.com/ZWang-Lab/G2S3 under the MIT license. The detailed list of data sets used in
the study is described in the “Real datasets” section. The code to reproduce all the analyses

presented in the paper are available on GitHub https://github.com/ZWang-Lab/G2S3 paper2020.
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Supporting information

S1 Fig. Comparison of the mean-variance relationship in gene expression before and after
down-sampling. For each gene, the coefficient of variation (CV) across all cells after down-
sampling (y-axis) is plotted against the CV of non-zero cells in the reference data (x-axis).

S2 Fig. Optimal value of hyperparameter in G2S3. A. Mean squared error (MSE) at different
diffusion steps in three down-sampled datasets. B. Gene-wise and cell-wise correlations of G2S3
imputed data at different diffusion steps and the reference data.

S3 Fig. Evaluation of expression data recovery of all imputation methods by down-sampling.
Performance of imputation methods measured by correlation with reference data from the first
category of datasets, using gene-wise (top) and cell-wise (bottom) correlation. Box plots show the
median (center line), interquartile range (hinges), and 1.5 times the interquartile (whiskers). Outlier
data beyond this range are not shown.

S4 Fig. Evaluation of expression data recovery of all imputation methods by down-sampling
in three gene strata. Performance of imputation methods measured by correlation with reference
data from the first category of datasets, using gene-wise (top) and cell-wise (bottom) correlation.
Genes are stratified into three groups: widely (>80%, left), mildly (30%-80%, middle), and rarely
(<30%, right) expressed.

S5 Fig. Cell subtype marker gene expression in the Chu dataset. Scatter plot showing
expression level of marker genes for DE cells (GATA6) and H1/H9 cells (NANOG). Cells are
colored by the cell subtype labels.

S6 Fig. Receiver operating characteristic (ROC) curves demonstrating improvement in
differential expression analysis in the Chu dataset. ROC curves measuring the prediction
accuracy in scRNA-seq data on differentially expressed genes identified in bulk RNA-seq data
comparing H1 to other homogeneous cell types (H1 vs. EC, H1 vs. HF, and H1 vs. TB).

S7 Fig. Performance of G2S3 in recovering gene regulatory relationships. Boxplots showing
the area under the precision-recall curve (AUPRC) ratios that measure the accuracy of inferred
GRNs using the imputed data by different imputation methods. PIDC, GENIE3, GRNBoost2 and
PPCOR are used to infer GRNs. Red line indicates the performance of a random predictor.

S8 Fig. Evaluation of recovering gene correlation relationship of all imputation methods in
the Paul dataset. Heatmaps of pairwise correlations between well-known blood regulators.
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S9 Fig. Expression patterns on four inhibitory gene pairs in the Paul dataset. Each row shows
the scatterplots of a mutually inhibitory gene pair in the raw and imputed data by all methods.

S10 Fig. Expression patterns on three activatory gene pairs in the Paul dataset. Each row
shows the scatterplots of a mutually activatory gene pair in the raw and imputed data by all
methods.

S1 Table. Comparison of the gene-wise and cell-wise correlations of G2S3 and other methods
in down-sampling experiments. P-values of testing the difference of correlations of G2S3 and
other methods with the reference data.

S2 Table. Computation time of all imputation methods. Runtime in minutes for each imputation
task using a single processor on an 8-core, 50 GB RAM, Intel Xeon 2.6 GHz CPU machine.
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