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Abstract 14 

Single-cell RNA sequencing technology provides an opportunity to study gene expression at 15 

single-cell resolution. However, prevalent dropout events result in high data sparsity and noise that 16 

may obscure downstream analyses in single-cell transcriptomic studies. We propose a new method, 17 

G2S3, that imputes dropouts by borrowing information from adjacent genes in a sparse gene graph 18 

learned from gene expression profiles across cells. We applied G2S3 and ten existing imputation 19 

methods to eight single-cell transcriptomic datasets and compared their performance. Our results 20 

demonstrated that G2S3 has superior overall performance in recovering gene expression, 21 

identifying cell subtypes, reconstructing cell trajectories, identifying differentially expressed genes, 22 

and recovering gene regulatory and correlation relationships. Moreover, G2S3 is computationally 23 

efficient for imputation in large-scale single-cell transcriptomic datasets. 24 

 25 

Author summary 26 

Single-cell RNA sequencing (scRNA-seq) measures the expression profiles of individual cells. 27 

However, dropouts lead to an excessive number of zeros or close to zero values in the data, which 28 

may obscure downstream analyses. In this study, we developed G2S3, an imputation method that 29 

recovers gene expression in scRNA-seq data by borrowing information from adjacent genes in a 30 

gene graph learned by graph signal processing. G2S3 was shown to have superior performance in 31 

improving data quality. Moreover, G2S3 is computationally efficient in large-scale scRNA-seq 32 

data imputation. 33 
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Introduction 34 

Singe-cell RNA sequencing (scRNA-seq) has emerged as a state-of-the-art technique for 35 

transcriptome analysis. Compared to bulk RNA-seq that measures the average gene expression 36 

profile of a mixed cell population, scRNA-seq measures the expression profile of individual cells 37 

and thus describes cell-to-cell stochasticity in gene expression. Applications of this technology in 38 

humans have revealed rare and novel cell types [1–3], cell population composition changes [4], 39 

and cell-type specific transcriptomic changes [3,5] that are associated with diseases. These 40 

findings have great potential to promote our understanding of cell function, disease pathogenesis, 41 

and treatment response for more precise therapeutic development [6,7]. However, analysis of 42 

scRNA-seq data can be challenging due to low library size, high noise level, and prevalent dropout 43 

events [8]. Particularly, dropouts lead to an excessive number of zeros or close to zero values in 44 

the data, especially for genes with low or moderate expression. These inaccurately measured gene 45 

expression levels may obscure downstream quantitative analyses such as cell clustering and 46 

differential expression analyses [6]. 47 

In the past few years, several imputation methods have been developed to recover dropout 48 

events in scRNA-seq data. A group of methods, including kNN-smoothing [9], MAGIC [10], 49 

scImpute [11], drImpute [12], and VIPER [13], assess between-cell similarity and impute dropouts 50 

in each cell using its similar cells. Specifically, kNN-smoothing uses step-wise k-nearest neighbors 51 

to aggregate information from the 𝑘 closest neighboring cells of each cell for imputation. MAGIC 52 

constructs an affinity matrix of cells and aggregates gene expression across similar cells via data 53 

diffusion to impute gene expression for each cell [10]. scImpute infers dropout events based on 54 

the dropout probability estimated from a Gamma-Gaussian mixture model and only imputes these 55 

events by borrowing information from similar cells within cell clusters detected by spectral 56 
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clustering [11]. drImpute identifies similar cells through K-means clustering and performs 57 

imputation by averaging expression levels of cells within the same cluster [12]. While these 58 

imputation methods improved the quality of scRNA-seq data to some extent, they were found to 59 

eliminate natural cell-to-cell stochasticity which is an important piece of information available in 60 

scRNA-seq data compared to bulk RNA-seq data [13]. VIPER overcomes this limit by considering 61 

a sparse set of neighboring cells for imputation to preserve variation in gene expression across 62 

cells [13]. In general, imputation methods that borrow information across similar cells tend to 63 

intensify subject variation in scRNA-seq datasets with multiple subjects, which causes cells from 64 

the same subject to be more similar than those from different subjects. To address this issue, 65 

SAVER borrows information across similar genes instead of cells to impute gene expression using 66 

a penalized regression model [14]. There are other methods that leverage information from both 67 

genes and cells. For example, ALRA imputes gene expression using low-rank matrix 68 

approximation [15], and scTSSR uses two-side sparse self-representation matrices to capture gene-69 

to-gene and cell-to-cell similarities for imputation [16]. In addition, machine learning-based 70 

methods, such as autoImpute [17], DCA [18], deepImpute [19] and SAUCIE [20], use deep neural 71 

network to impute dropout events. While computationally more efficient, these methods were 72 

found to generate false-positive results in differential expression analyses [21]. Recently, an 73 

ensemble approach, EnImpute, was developed to integrate results from multiple imputation 74 

methods using weighted trimmed mean [22]. 75 

In this article, we develop Sparse Gene Graph of Smooth Signals (G2S3), a gene graph-based 76 

method that imputes dropout events in scRNA-seq data by borrowing information across similar 77 

genes. G2S3 learns a sparse graph representation of gene-gene relationships from the data, in 78 

which each node represents a gene and is associated with a vector of expression levels in all cells 79 



 

5 

 

considered as a signal on the graph. The graph is then optimized under the assumption that signals 80 

change smoothly between connected genes. Based on this graph, a transition matrix for a random 81 

walk is constructed so that the transition probabilities are higher between genes with similar 82 

expression levels across cells. A random walk on this graph imputes the expression level of each 83 

gene using the weighted average of expression levels from itself and adjacent genes in the graph. 84 

In this way, G2S3, like SAVER, makes use of gene-gene relationships to recover the expression 85 

levels. However, unlike SAVER which uses a penalized regression model for imputation, G2S3 86 

optimizes the gene graph structure using graph signal processing that captures nonlinear 87 

correlations among genes. The computational complexity of the G2S3 algorithm is a polynomial 88 

of the total number of genes in the graph, so it is computationally efficient, especially for large 89 

scRNA-seq datasets with hundreds of thousands of cells. 90 

 91 

Results 92 

Datasets and evaluation overview 93 

We evaluated and compared the performance of G2S3 and ten existing imputation methods, 94 

SAVER, kNN-smoothing, MAGIC, scImpute, VIPER, ALRA, scTSSR, DCA, SAUCIE and 95 

EnImpute, in terms of (1) expression data recovery, (2) cell subtype separation, (3) cell trajectory 96 

inference, (4) differential gene identification, and (5) gene-gene relationship recovery. We applied 97 

these methods to eight scRNA-seq datasets that can be classified into five categories corresponding 98 

to the five criteria described above. The first category includes three unique molecular identifier 99 

(UMI)-based datasets in which down-sampling was performed to assess the method performance 100 

in recovering gene expression. These datasets are the Reyfman dataset from human lung tissue 101 

[23], the peripheral blood mononuclear cell (PBMC) dataset from human peripheral blood [24], 102 
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and the Zeisel dataset from mouse cortex and hippocampus [25]. The second category was used to 103 

evaluate the method performance in separating different cell types and includes the Chu dataset of 104 

human embryonic stem (ES) cell-derived lineage-specific progenitors from seven known cell 105 

subtypes [26]. The third category was used to reconstruct cell trajectory and includes the 106 

Petropoulos dataset of cells from human preimplantation embryos collected on different 107 

embryonic days [27]. The fourth category was chosen to evaluate the method performance in 108 

identifying differentially expressed genes. It includes the Chu dataset, which is also included in 109 

the second category, and the Trapnell dataset of differentiating human myoblasts [28]. The last 110 

category includes two datasets to evaluate the method performance in recovering gene regulatory 111 

and correlation relationships among known regulators and marker genes. These datasets are the 112 

Paul dataset that contains a set of well-known transcriptional regulators of myeloid progenitor 113 

populations [29] and the Buettner dataset that contains 67 periodic marker genes whose expression 114 

level varies over cell cycle [30]. Table 1 summarizes the main features of all eight datasets. A more 115 

detailed description of these datasets is provided in the “Real datasets” section. 116 

 117 

Table 1. Detailed information on the eight scRNA-seq datasets used to compare the 118 

performance of imputation methods 119 

 120 

Experiment 

Category 
Dataset # Cells Sample Type Organism Technique UMI Accession 

Expression 

data recovery 

Reyfman [23] 5,437 Lung tissue 
Homo 

Sapiens 
Drop-seq Yes 

GEO 

(GSE122960) 

PBMC  [24] 7,865 

Peripheral blood 

mononuclear 

cells 

Homo 

Sapiens 
Drop-seq  Yes 10x Genomics* 

Zeisel [25] 3,005 Brain tissue 
Mus 

Musculus 
Drop-seq  Yes Zeisel et al. 
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Cell subtype 

separation 
Chu [26] 1,018 

Embryonic stem 

cells 

Homo 

Sapiens 
Fluidigm C1 No 

GEO 

(GSE75748) 

Cell 

trajectory 

inference 

Petropoulos 

[27] 
1,529 

Preimplantation 

embryos 

Homo 

Sapiens 
Smart-seq2 No Petropoulos et al. 

Differential 

gene 

identification 

Chu [26] 1,018 
Embryonic stem 

cells 

Homo 

Sapiens 
Fluidigm C1 No 

GEO 

(GSE75748) 

Trapnell [28] 372 Myoblasts 
Homo 

Sapiens 
Fluidigm C1 No 

GEO 

(GSE52529) 

Gene-gene 

relationship 

recovery 

Paul [29] 

 
2,730 

Bone marrow 

myeloid 

progenitor 

Mus 

Musculus 
MARS-seq Yes Paul et al. 

Buettner [30] 288 
Staged 

embryonic cells 

Mus 

Musculus 
Fluidigm C1 No 

ArrayExpress 

(E-MTAB-2805) 

* URL to access the dataset: https://support.10xgenomics.com/single-cell-gene-121 

expression/datasets 122 

 123 

Hyperparameter tuning in G2S3 124 

The G2S3 algorithm used graph signal processing to learn a gene graph and performed a 𝑡-125 

step random walk to borrow information from neighboring genes for imputation. The optimal 126 

value of the hyperparameter 𝑡 was selected by minimizing the mean squared error (MSE) between 127 

the imputed and observed data. We performed down-sampling on each dataset from the first 128 

category (Reyfman, PBMC and Zeisel) and evaluated the MSE as well as the gene-wise and cell-129 

wise correlations of the G2S3 imputed data with reference data, for 𝑡 = 1, … ,10. S1 Fig shows the 130 

coefficient of variation (CV) of gene expression before and after down-sampling. In all datasets, 131 

although the CV of gene expression increased slightly after down-sampling, the correlation 132 

between the CV before and after down-sampling was 0.79 or higher, demonstrating that the down-133 

sampled data well preserved the mean-variance relationship in the reference data. S2A Fig shows 134 

that the optimal value of 𝑡 is 1 in all three datasets based on the minimization of MSE. In addition, 135 

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
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the one-step random walk in G2S3 achieved the greatest gene-wise and cell-wise correlations with 136 

the reference data (S2B Fig). This optimal choice of 𝑡 was consistent with the hyperparameter 137 

selected by another diffusion-based imputation method [31]. 138 

 139 

Expression data recovery in down-sampled datasets 140 

We used three down-sampled datasets from the first category (Reyfman, PBMC and Zeisel) to 141 

assess the performance of all eleven imputation methods in recovering gene expression. Fig 1 142 

shows the gene-wise Pearson correlation and cell-wise Spearman correlation between the imputed 143 

and reference data from each dataset. The correlation between the observed data without 144 

imputation and reference data was set as a benchmark. In all datasets, G2S3 consistently achieved 145 

the highest correlation with the reference data at both gene and cell levels; SAVER and scTSSR 146 

had slightly worse performance. EnImpute had comparable performance to G2S3 based on the 147 

cell-wise correlation but performed worse than G2S3, SAVER and scTSSR based on the gene-148 

wise correlation. VIPER performed well in the Reyfman and PBMC datasets but not in the Zeisel 149 

dataset based on the gene-wise correlation, although the cell-wise correlations were much lower 150 

than G2S3, SAVER, scTSSR and EnImpute in all datasets. The other methods, kNN-smoothing, 151 

MAGIC, scImpute, ALRA and DCA, did not have comparable performance, especially based on 152 

the gene-wise correlation. SAUCIE did not have comparable performance to the other methods in 153 

all datasets (S3 Fig). To quantify the performance improvement of G2S3, one-sided t-test was 154 

applied to compare the gene-wise and cell-wise correlations of G2S3 to those of the other methods. 155 

G2S3 had significantly higher correlations than all the other methods across three datasets for both 156 

gene-wise and cell-wise correlations (p<0.05, S1 Table). Since genes with higher expression tend 157 

to have a lower dropout rate, they are usually easier to impute and have less imputation need than 158 
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those with lower expression [8]. To demonstrate the impact of expression level on the method 159 

performance, we stratified genes into three subsets based on the proportion of cells expressing 160 

them in the down-sampled data: widely expressed (>80%, n = 155, 111, 110, respectively), mildly 161 

expressed (30%-80%, n = 615, 357, 1,902, respectively), and rarely expressed (<30%, n = 3,148, 162 

1,830, 1,617, respectively). S4 Fig shows the gene-wise and cell-wise correlations in each gene 163 

stratum. We can see that G2S3 improved both gene-wise and cell-wise correlations over the 164 

observed data for widely and mildly expressed genes. Moreover, G2S3 achieved the most superior 165 

recovery accuracy than the other methods for both widely and mildly expressed genes, although 166 

SAVER, scTSSR and EnImpute had comparable accuracy for widely expressed genes, suggesting 167 

the advantage of borrowing information from similar genes over from similar cells. For rarely 168 

expressed genes, all imputation methods did not improve the correlations compared to the 169 

observed data using both gene-wise and cell-wise correlation, suggesting that there is insufficient 170 

information for these genes to be successfully imputed. Overall, G2S3 provided the most accurate 171 

recovery of gene expression levels. 172 

 173 

Fig 1. Evaluation of expression data recovery of G2S3 by down-sampling. Performance of 174 

imputation methods measured by correlation with reference data from the first category of datasets, 175 

using gene-wise (top) and cell-wise (bottom) correlation. Box plots show the median (center line), 176 

interquartile range (hinges), and 1.5 times the interquartile (whiskers). Outlier data beyond this 177 

range are not shown. 178 

 179 

Restoration of cell subtype separation 180 

The second category of datasets was used to assess the performance of imputation methods in 181 

restoring separation between different cell types. In the Chu dataset, there were 7 cell types 182 

including two undifferentiated human ES cells (H1 and H9), human foreskin fibroblasts (HF), 183 

neuronal progenitor cells (NP), definitive endoderm cells (DE), endothelial cells (EC), and 184 
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trophoblast-like cells (TB). To quantify the performance in separating these cell subtypes, we 185 

calculated the ratio of average inter-subtype distance to average intra-subtype distance using the 186 

top 𝐾 principal components (PCs) of the data before and after imputation, for 𝐾 = 1, … ,50. We 187 

also calculated the silhouette coefficient that measures how similar cells are to cells from the same 188 

cell type compared to other cell types. In Fig 2, G2S3 and EnImpute had the highest inter/intra-189 

subtype distance ratio and silhouette coefficient. Both methods performed better than the raw 190 

unimputed data, while MAGIC, scImpute, ALRA and DCA performed worse than the raw data. 191 

SAUCIE performed the worst. These results suggest that G2S3 greatly improved the separation 192 

between different cell types by enhancing the biologically meaningful information in the top PCs. 193 

Its performance was comparable to EnImpute, the ensemble method that takes advantage over 194 

several methods. 195 

 196 

Fig 2. Evaluation of G2S3 in improving cell subtype separation. Average inter/intra-subtype 197 

distance ratio (top) and silhouette coefficient (bottom) to demonstrate cell subtype separation using 198 

the top principal components of the raw unimputed and imputed data by each method in the Chu 199 

dataset. 200 

 201 

To demonstrate the comparison using cell clustering results, we generated uniform manifold 202 

approximation and projection (UMAP) plots in which cells were colored to represent the seven 203 

cell types in the original dataset. The normalized mutual information (MI) and adjusted rand index 204 

(RI) were calculated to measure the consistency between cell clustering results and true cell 205 

subtype labels. Fig 3 shows that the imputed data by G2S3 and EnImpute had better separation of 206 

all cell subtypes than the raw unimputed data, except for H1 and H9 cells. Given that both H1 and 207 

H9 are undifferentiated human ES cells, it is expected that separating them is more difficult due to 208 

the relative homogeneity of human ES cells compared to the progenitors. In contrast, the other 209 
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imputation methods did not have comparable improvement that some of which even reduced the 210 

separation of different cell types. Specifically, DE cells were mixed with EC and TB cells in the 211 

raw data and were not separated from the other cell subtypes by all methods except G2S3 and 212 

EnImpute. MAGIC was able to separate EC, HF and TB cells from each other and from the rest 213 

of the cell subtypes, while SAVER was able to separate EC and HF cells from each other and from 214 

the rest of the cell subtypes. VIPER, ALRA, scTSSR and DCA only separated HF cells from the 215 

rest, similar to the raw data. The imputed data by kNN-smoothing formed many small clusters. 216 

scImpute tended to mix different cell types into one cluster. SAUCIE overly smoothed the data 217 

and was not able to separate any cell types. Based on the two measures of consistency between 218 

cell clustering results and true cell subtype labels, EnImpute had the best separation of the cell 219 

subtypes (MI=0.77, RI=0.70) and G2S3 was the second best (MI=0.74, RI=0.64), while the other 220 

methods did not have comparable performance. Notice that EnImpute is an ensemble method that 221 

combines imputation results from multiple methods, and G2S3 is the only method that achieved 222 

comparable performance to EnImpute. 223 

 224 

Fig 3. Plots showing 2D-Visualization of the Chu dataset. UMAP plots of the raw unimputed 225 

and imputed data by all methods. Cells are colored by true cell subtype labels. The normalized 226 

mutual information (MI) and adjusted rand index (RI) are calculated to measure the consistency 227 

between cell clustering results and true cell subtype labels. 228 

 229 

S5 Fig demonstrates the expression of two cell subtype marker genes GATA6, a marker gene 230 

of DE cells, and NANOG, a marker gene of H1/H9 cells [26], across all cells in the raw unimputed 231 

and imputed data by all methods. The normalized MI and adjusted RI that measure the consistency 232 

between cell clustering results, based on these two marker genes and true cell labels for DE and 233 

H1/H9 cells, were also calculated. We can see that G2S3 provided the best separation between 234 
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H1/H9 cells, DE cells and other cell subtypes. Specifically, while the raw data mixed H1/H9 cells 235 

with other cell subtypes, G2S3 successfully recovered the expression of GATA6 and NANOG to 236 

better separate DE and H1/H9 cell subtypes both from each other and from the other cell subtypes. 237 

The cell clustering results on the G2S3 imputed data achieved the highest consistency with true 238 

cell subtype labels, indicating its best performance. None of the other methods had comparable 239 

performance. DCA separated H1/H9 cells but had DE cells marginally overlapped with other cell 240 

types. We observed many small clusters of cells after imputation by kNN-smoothing, similar to 241 

the pattern displayed in Fig 3. The other methods did not improve cell subtype separation compared 242 

to the raw data. In addition, the imputed data by VIPER, kNN-smoothing and ALRA still had a 243 

large proportion of dropout events. These results suggest that G2S3 had the best performance in 244 

restoring the separation of different cell types, preserving biological meaningful variations, and 245 

reducing technical noise. 246 

 247 

Improvement in cell trajectory inference 248 

Reconstruction of cell trajectories using scRNA-seq data is important for investigating a 249 

dynamic process. However, dropout events may impair pseudo-time inference. We used the 250 

Petropoulos dataset to evaluate the performance of all imputation methods in cell trajectory 251 

inference. This dataset consists of human preimplantation embryonic cells from five embryonic 252 

days (E3-E7) that represent differentiation stage or age of the embryonic cells. We used Monocle 253 

2 to infer pseudo-time from the raw unimputed and imputed data by each method [32] and 254 

compared this to the actual embryonic days of the cells for performance evaluation. The 255 

pseudotemporal ordering score (POS) and Kendall rank correlation coefficient (Cor) were 256 

calculated to measure the consistency. Fig 4 shows cell trajectories in the raw and imputed data by 257 
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all methods. The cell trajectory plots showed the sequential layout of cells from earlier to later 258 

embryonic days. The imputed data by G2S3, scImpute, VIPER and EnImpute had the highest 259 

consistency with the actual embryonic days, indicating their best performance among all methods. 260 

SAVER, kNN-smoothing, MAGIC, ALRA and DCA formed the second tier of methods with 261 

lower consistency. scTSSR performed worse than the raw data. SAUCIE had significantly lower 262 

consistency (POS=0.07, Cor=0.07) compared to all other methods in cell trajectory inference. 263 

Furthermore, the cell trajectory plots showed an increased heterogeneity among cells from later 264 

embryonic days, especially starting from embryonic day 5. This was consistent with the 265 

observation of a significant embryonic cell differentiation event on embryonic day 5 [27]. 266 

 267 

Fig 4. Visualization of cell trajectories in the raw and imputed data by all methods. Cells are 268 

projected into two-dimensional space using reversed graph embedding. Pseudotemporal ordering 269 

score (POS) and Kendall rank correlation coefficient (Cor) are used to measure the consistency 270 

between the actual embryonic days and the reconstructed pseudo-time. 271 

 272 

Improvement in differential expression analysis 273 

One common analytical task for scRNA-seq studies is to identify genes differentially expressed 274 

between cells from two groups of subjects or two cell types. In this section, we used two datasets 275 

to evaluate and compare the improvement in downstream differential expression analysis before 276 

and after imputation by all methods: the Chu dataset of different cell types and the Trapnell dataset 277 

of differentiating human myoblasts. Besides the scRNA-seq data, both datasets provide bulk RNA-278 

seq data on the same samples with each sample consisting of cells from only one cell type. We 279 

expect that the differentially expressed genes identified from the bulk RNA-seq data overlap with 280 

that from the scRNA-seq data. Therefore, we treated the differentially expressed genes in the bulk 281 

RNA-seq data as ground truth and compared methods by assessing the prediction accuracy of the 282 
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ground truth in the scRNA-seq data imputed by different methods using receiver operating 283 

characteristic (ROC) curves. 284 

In the Chu dataset, we identified marker genes that differentiate the two cell types: H1 and NP 285 

cells. Fig 5A shows that G2S3 had the highest area under the curve (AUC) in detecting 286 

differentially expressed genes. kNN-smoothing, DCA and EnImpute had an AUC score lower than 287 

G2S3 but higher than the raw data. The other methods had comparable performance to the raw 288 

data except MAGIC, which had the lowest AUC. This is likely due to the fact that a small cluster 289 

of NP cells were mixed with H1 cells after imputation by MAGIC (Fig 3), resulting in 290 

compromised performance in marker gene identification. Our results were largely consistent with 291 

a previous evaluation of imputation methods in identifying differentially expressed genes using 292 

Fluidigm C1 data [33]. No genes achieved significance in the imputed data by SAUCIE, so the 293 

result of SAUCIE could not be shown. DE cells had two or more sub-clusters in UMAP and one 294 

subcluster was mixed with EC cells (Fig 3). Similar to H1, H9 cells are undifferentiated human ES 295 

cells. To demonstrate results on comprehensive cell types, we further compared H1 cells with all 296 

other cell types except H9 and DE cells (S6 Fig). The results on three out of the four cell types 297 

compared to H1 cells demonstrated the best performance of G2S3. TB cells is the only cell type 298 

for which G2S3 did not achieve the best performance. All other methods, except EnImpute, did 299 

not achieve higher AUC than the raw data, indicating the lack of benefit by performing data 300 

imputation for genes differentially expressed between H1 and TB cells, regardless of imputation 301 

methods. In the Trapnell dataset, we performed differential expression analysis between 302 

undifferentiated primary human myoblasts and mature myotubes captured 72 hours after inducing 303 

differentiation. Fig 5B shows that G2S3 achieved the highest AUC indicating its best performance, 304 

followed by VIPER. kNN-smoothing and DCA had much worse performance than the raw data. 305 
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No genes achieved significance in the imputed data by MAGIC and SAUCIE, so their results could 306 

not be shown. Altogether, the results from both datasets showed that G2S3 had the best 307 

improvement in the downstream differential expression analysis. 308 

 309 

Fig 5. Receiver operating characteristic (ROC) curves demonstrating improvement in 310 

differential expression analysis. ROC curves measuring the prediction accuracy in scRNA-seq 311 

data on differentially expressed genes identified in bulk RNA-seq data from the same samples in 312 

the Chu (A) and Trapnell (B) datasets. 313 

 314 

Gene-gene relationship recovery 315 

We compared the method performance in recovering gene regulatory and correlation 316 

relationships using two scRNA-seq dastasets. In the Paul dataset, we examined the regulatory 317 

relationships between ten well-known transcription factors in the development of blood cells 318 

before and after imputation [34]. In the Buettner dataset, we investigated the correlation among a 319 

set of 67 periodic marker genes before and after imputation, in which 16 genes have peak 320 

expression in the G1/S phase and 51 genes have peak expression in the G2/M phase [30]. 321 

In the Paul dataset, the regulatory relationships among the ten key regulators of the 322 

transcriptional differentiation of megakaryocyte/erythrocyte progenitors and 323 

granulocyte/macrophage progenitors in the raw data and the imputed data by each method were 324 

used for performance evaluation. The gene regulatory network (GRN) of these regulators was 325 

established in a previous study based on biological experiments [35–37] and served as the ground 326 

truth. We reconstructed GRNs using four methods, PIDC [38], GENIE3 [39], GRNBoost2 [40], 327 

and PPCOR [41], in the raw and imputed datasets. The inferred GRNs were compared to the 328 

ground-truth network to measure the prediction accuracy using the area under the receiver 329 

operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). 330 
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For each imputation method, we reported the AUROC and AUPRC ratio (AUROC/AUPRC 331 

divided by that of a random predictor) with 50 replications. Fig 6 shows that G2S3 achieved the 332 

highest AUROC ratio in three out of the four GRN inference methods and performed slightly 333 

worse than scImpute using GENIE3. The prediction accuracy of scImpute was much lower than a 334 

random predictor using GRNBoost2 and PPCOR. The AUROC ratios of GRNs inferred from the 335 

imputed data by MAGIC and ALRA were either equal to or much lower than that from a random 336 

predictor, suggesting that the gene regulatory relationships were distorted after imputation. S7 Fig 337 

demonstrates the results based on the AUPRC ratio. G2S3 and kNN-smoothing had better 338 

prediction accuracy than other imputation methods in restoring gene regulatory relationships 339 

across all GRN inference methods. 340 

 341 

Fig 6. Performance of G2S3 in recovering gene regulatory relationships. Boxplots showing 342 

the area under the receiver operating characteristic curve (AUROC) ratios that measure the 343 

accuracy of inferred GRNs using the imputed data by different imputation methods. PIDC, 344 

GENIE3, GRNBoost2 and PPCOR are used to infer GRNs. Red line indicates the performance of 345 

a random predictor. 346 

 347 

We also examined the pairwise correlations between these ten key regulators. Based on 348 

previous studies [35–37],  inhibitory and activatory gene pairs were defined, among which 349 

inhibitory pairs were expected to have negative correlation while activatory pairs were expected 350 

to have positive correlation. The mutually inhibitory pairs of genes include Fli1 vs. Klf1, Egr1 vs. 351 

Gfi1, Cebpa vs. Gata1, and Sfpi1 vs. Gata1; and the mutually activatory pairs include Sfpi1 vs. 352 

Cebpa, Zfpm1 vs. Gata1, Klf1 vs. Gata1. S8 Fig shows that most of the methods were able to 353 

enhance the pairwise correlations in the correct direction after imputation. Overall, G2S3 and 354 

SAVER showed the greatest enhancement of pairwise correlations for both inhibitory and 355 

activatory pairs, followed by kNN-smoothing and EnImpute. Although MAGIC intensified the 356 
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pairwise correlations, most activatory pairs had correlations close to 1 after imputation. ALRA and 357 

DCA strengthened the pairwise correlations for activatory pairs but did not improve much for 358 

inhibitory pairs. Imputation by SAUCIE resulted in all gene pairs to be highly positively correlated. 359 

We further examined the correlation enhancement of each method by plotting all gene pairs (S9-360 

10 Fig). While many methods, for example, G2S3, SAVER, kNN-smoothing, ALRA, DCA and 361 

EnImpute, had good performance in enhancing positive correlations, most of them had less 362 

satisfactory performance in negatively correlated gene pairs. For inhibitory gene pairs (S9 Fig), 363 

only G2S3 and SAVER displayed negatively correlated curves in which the expression level of 364 

one gene decreased with an increase of the other. kNN-smoothing, DCA and EnImpute tended to 365 

over-impute to the extent that only one gene was expressed in the same cell after imputation. This 366 

goes against the observation from the raw data and previous literature showing that the higher 367 

expression of one gene, the lower, rather than completely shutting off, the expression of the other. 368 

Additionally, SAUCIE imputed all mutually inhibitory gene pairs to be positively correlated. For 369 

activatory gene pairs (S10 Fig), most methods enhanced the pairwise correlations except scImpute 370 

and VIPER, which did not improve much compared to the raw data. In addition, the imputed data 371 

by MAGIC and SAUCIE formed a nearly straight diagonal line, suggesting that the imputed data 372 

was over-smoothed such that the cell-level biological variation was attenuated. 373 

In the Buettner dataset, we expect pairs of periodic genes whose expression peak in the same 374 

phase of cell cycle to be positively correlated and those that peak during different phases to be 375 

negatively correlated. There are 67 marker genes for G1/S and G2/M phases [34]. We examined 376 

the correlation of all 2,211 marker gene pairs in the raw data and imputed data by each method. 377 

The proportion of gene pairs whose correlations are in the correct direction was used for 378 

performance comparison. Table 2 shows that all methods had comparable performance in 379 
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maintaining a high proportion of positively correlated gene pairs, whereas their performance varied 380 

in restoring negatively correlated gene pairs. G2S3, SAVER and EnImpute were able to recover 381 

28% or more of the negatively correlated gene pairs. All gene pairs became positively correlated 382 

after imputation by MAGIC, scImpute, VIPER, ALRA, DCA and SAUCIE, thus no negative 383 

correlation was observed after imputation. Similar observations were found in a previous study in 384 

which some of these methods introduced a large number of positive gene correlations after 385 

imputation, many of which may be spurious [14]. 386 

 387 

Table 2. Fraction of periodic gene pairs with correct direction of correlation in the raw and 388 

imputed data by each method 389 

 390 

Imputation Methods Positive Pairs Negative Pairs 

Raw 1.00 0.00 

G2S3 0.91 0.32 

SAVER 0.94 0.28 

kNN-smoothing 0.97 0.17 

MAGIC 1.00 0.00 

scImpute 1.00 0.00 

VIPER 1.00 0.00 

ALRA 1.00 0.00 

scTSSR 0.98 0.11 

DCA 1.00 0.00 

SAUCIE 1.00 0.00 

EnImpute 0.91 0.46 

 391 

In summary, the results from both datasets suggested that G2S3 enhanced gene-gene 392 

relationships especially for negatively correlated gene pairs. In negatively correlated gene pairs, 393 

the expression of one gene is inhibited by the other, resulting in one of the genes being lowly 394 

expressed. In general, as genes with low expression are more difficult to impute, restoring negative 395 

correlation is thus a more challenging task for imputation. 396 

 397 
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Summary of method performance 398 

We evaluated and compared the performance of G2S3 and the other ten imputation methods 399 

using five evaluation criteria corresponding to five downstream analyses of scRNA-seq data. Fig 400 

7 summarizes the overall performance of all methods. G2S3 was ranked first in three out of the 401 

five evaluation criteria, second in cell clustering, and third in cell trajectory inference. For those 402 

criteria under which G2S3 did not achieve the best performance, it had close or comparable 403 

performance to the best method. No other method achieved the best performance in as many 404 

criteria as G2S3. Overall, G2S3 performed the best among all the methods, followed by EnImpute, 405 

SAVER and VIPER. 406 

 407 

Fig 7. Summary of performance of G2S3 and other imputation methods. A heatmap 408 

demonstrating method performance based on the five evaluation criteria. The left five columns 409 

display performance rank using each of the five evaluation criteria. The rightmost column displays 410 

the overall performance rank based on the sum of the five ranks. 411 

 412 

Computation time 413 

While SAVER and EnImpute have comparable performance to G2S3 in some datasets, G2S3 414 

is computationally more efficient (S2 Table). Since both G2S3 and SAVER are gene network-415 

based imputation methods, their computation time is expected to increase with the number of genes 416 

to be imputed. This makes gene network-based methods more suitable than those based on cell 417 

similarity for large scRNA-seq datasets with tens or even hundreds of thousands of cells. In real 418 

data analysis, G2S3 was on average about twenty times faster than SAVER. EnImpute is an 419 

ensemble method that relies on imputation results from multiple methods and therefore is slower 420 

than SAVER. On the other hand, the computation time of imputation methods that borrow 421 

information from similar cells increases dramatically with the number of cells in the data. As 422 
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demonstrated in a previous study, scImpute and VIPER were unable to scale beyond 10K cells 423 

within 24 hours [19]. In our assessment, VIPER took about two days to impute the down-sampled 424 

datasets with several thousands of genes, while other methods finished within several minutes. 425 

 426 

Discussion 427 

We have developed a new method, G2S3, to impute dropouts in scRNA-seq data. G2S3 learns 428 

a sparse gene graph from scRNA-seq data and borrows information from nearby genes in the graph 429 

for imputation. We evaluated and compared the performance of G2S3 and ten existing imputation 430 

methods in terms of recovering gene expression, restoring cell subtype separation, reconstructing 431 

cell trajectories, identifying differentially expressed genes, and restoring gene regulatory and 432 

correlation relationships using eight scRNA-seq datasets. Overall comparison based on the five 433 

evaluation criteria showed that G2S3 achieved the best performance. Furthermore, G2S3 is 434 

computationally efficient for large-scale scRNA-seq data imputation. 435 

Unlike imputation methods that borrow information across similar cells, G2S3 harnesses the 436 

structural relationship among genes obtained through graph signal processing to perform 437 

imputation. Using eight real datasets, we showed that methods relying on cell similarity tend to 438 

remove biological variation among cells and intensify subject-level batch effects. In contrast, 439 

G2S3 enhances cell subtype separation and thus relatively reduces variations in cells from the 440 

same cell type and subject. The down-sampling and differential expression analysis results showed 441 

that G2S3 outperformed the other methods. Of note, imputation methods such as SAVER, 442 

scImpute and VIPER used parametric models for gene expression. However, as the noise 443 

distribution varies across different scRNA-seq platforms, assumptions of the parametric models 444 

may be violated, particularly for new technologies. Graph signal processing extracts signals from 445 
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data by optimizing a smoothness regulated objective function, so in principle, it is less sensitive to 446 

the noise distribution. To our knowledge, there are two imputation methods that use gene 447 

graph/network for imputation in scRNA-seq data, published during the preparation of this 448 

manuscript: netNMF-sc [42] uses network-regularized non-negative matrix factorization to 449 

leverage gene-gene interactions for imputation; and netSmooth [43] incorporates protein-protein 450 

interaction networks to smooth gene expression values. Both methods require prior information 451 

on gene-gene interactions from RNA-seq or microarray studies of bulk tissue. In contrast, G2S3 452 

learns gene network structure in an unbiased way from scRNA-seq data. In our experiments, G2S3 453 

had comparable performance to EnImpute, an ensemble learning method that combines results 454 

from multiple imputation methods. 455 

G2S3 learns gene-gene relationship by optimizing a sparse gene graph and at the same time 456 

allows expression levels to change smoothly between closely connected genes. Since many gene 457 

networks and biochemical networks are sparse [32,44,45], the sparsity property is important for 458 

inferring gene network. There are several methods available for constructing gene network, many 459 

of them are kernel-based, which result in full weight matrices where sparsity is to be imposed 460 

afterwards, for example, thresholding the adjacency weights. We found that the top eigenvectors 461 

of graph Laplacian on the gene networks learned from Gaussian kernel were highly correlated with 462 

dropout rate, suggesting that dropout events tend to bias the construction of gene network in 463 

scRNA-seq data. Based on our evaluation of the hyperparameter in G2S3, we chose to use a one-464 

step random walk for datasets in this article to avoid over-smoothing, because multiple steps in a 465 

random walk tend to overly smooth the data and lead to compromised performance. Nevertheless, 466 

we implemented a MSE-based tuning on the number of steps in the algorithm. Similar observations 467 

were reported in a recent study discussing parameter tuning for diffusion-based imputation 468 
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methods in scRNA-seq data [31]. It showed that for many diffusion-based methods including 469 

MAGIC, single step (𝑡 = 1) yielded better performance than multiple steps or iterations until 470 

convergence. For UMI-based datasets, to account for the effect of varying sequencing depths, we 471 

recommend normalizing UMI counts before applying G2S3 for accurate construction of gene 472 

graph and imputation of expression levels. 473 

Despite the advantages of G2S3 over the other imputation methods shown in this article, G2S3 474 

can be improved in several directions. First, G2S3 uses a lazy random walk on the gene graph to 475 

recover dropout events, i.e., weighted average of the observed expression of the gene of interest 476 

and that from neighboring genes. The weights currently depend only on between gene similarity 477 

which can be improved by considering the reliability of observed read counts, cell library size, and 478 

dispersion of gene expression, similar to the weights used in SAVER. Second, G2S3 does not 479 

consider dropout rate and therefore imputes all values at once. This can be improved by calculating 480 

the probability of being a dropout for each observed read count and only performing imputation 481 

on those with a high dropout probability. Third, we used the MSE criterion for hyperparameter 482 

tuning to select the optimal number of steps in G2S3 following a diffusion-based imputation 483 

method in a recent study [31]. It should be noted that this is a heuristic approach. Although we 484 

performed a real dataset-based validation experiment for this procedure, it is possible that a 485 

theoretical approach may give better hyperparameter tuning. Fourth, our model can be further 486 

improved by adding two tuning parameters for the second and third terms in the objective function 487 

that control the degree of smoothness and sparsity of the resulting gene network. The tuning 488 

parameters can be chosen based on the complexity and structure of scRNA-seq data. Finally, G2S3 489 

does not consider the potential subject effect in the data, which has been shown to be prevalent 490 

and dominant in certain cell types. One way to address this issue is to consider subject effect as 491 
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“batch” effect and remove it using batch effect removal tools. This is effective only when there are 492 

no other effects of interest confounding the subject effect, for example, disease effect, because 493 

they will also be removed together with “batch” effect. When there are other effects that confound 494 

with subject effect and are the interest of study, G2S3 can be improved to consider subject effect 495 

and disease effect at the same time in imputation. 496 

 497 

Materials and methods 498 

G2S3 algorithm 499 

To borrow information from similar genes for data imputation, G2S3 first builds a sparse graph 500 

representation of gene network under the assumption that expression levels change smoothly 501 

between closely connected genes. Let 𝑋 = [𝑥1, 𝑥2, … , 𝑥𝑚] ∈ ℝ𝑛×𝑚 denote the observed transcript 502 

counts of 𝑚 genes in 𝑛 cells, where the column 𝑥𝑗 ∈ ℝ𝑛 represents the expression vector of gene 503 

𝑗, for 𝑗 = 1, … , 𝑚. We regard each gene 𝑗 as a vertex 𝑉𝑗 in a weighted gene graph 𝐺 = (𝑉, 𝐸), in 504 

which the edge between genes 𝑗 and 𝑘 is associated with a weight 𝑊𝑗𝑘. 505 

The gene graph is then determined by the weighted adjacency matrix 𝑊 ∈ ℝ+
𝑚×𝑚 . G2S3 506 

searches for a valid adjacency matrix 𝑊 from the space 507 

𝒲 = {𝑊 ∈ ℝ+
𝑚×𝑚:   𝑊 = 𝑊𝑇 , diag(𝑊) = 0} 508 

that is optimal under the assumption of smoothness and sparsity on the graph. To achieve this, we 509 

use the objective function adapted from Kalofolias’s model [46]: 510 

min
𝑊∈𝒲

   ‖𝑊 ∘ 𝑍‖1,1 − 𝟏𝑇 log(𝑊𝟏) +
1

2
‖𝑊‖𝐹

2 ,                                           (1) 511 

where 𝑍 ∈ ℝ+
𝑚×𝑚 is the pairwise Euclidean distance matrix of genes, defined as 𝑍𝑗𝑘 = ‖𝑥𝑗 − 𝑥𝑘‖

2
, 512 

𝟏 is a vector of ones, ‖⋅‖1,1 is the elementwise L-1 norm, ∘ is the Hadamard product, and ‖⋅‖𝐹 is 513 
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the Frobenius norm. The first term in Eq. (1) is equivalent to 2 tr(𝑋𝑇𝐿𝑋) that quantifies how 514 

smooth the signals are on the graph, where 𝐿 is the graph Laplacian and tr(. ) is the trace of a 515 

matrix. This term penalizes edges between distant genes, so it prefers to put a sparse set of edges 516 

between the nodes with a small distance in 𝑍. The second term in Eq. (1) represents the node 517 

degree which requires the degree of each gene to be positive to improve the overall connectivity 518 

of the gene graph. The third term in Eq. (1) controls sparsity to penalize the formation of large 519 

edges between genes. 520 

The optimization of Eq. (1) can be solved via primal dual techniques [47]. We rewrite Eq. (1) 521 

as 522 

min
𝑤∈𝜔

  𝕀{𝑤≥0} + 2𝑤𝑇𝑧 − 𝟏𝑇 log(𝑑) + ‖𝑤‖2, where 𝜔 = {𝑤 ∈ ℝ+

𝑚(𝑚−1)
2 },            (2) 523 

where 𝑤 and 𝑧 are vector forms of 𝑊 and 𝑍, respectively; 𝕀{.} is the indicator function that takes 524 

value 0 when the condition in the brackets is satisfied, infinite otherwise; 𝑑 = 𝐾𝑤 ∈ ℝ𝑚 and 𝐾 is 525 

the linear operator that satisfies 𝑊𝟏 = 𝐾𝑤. After obtaining the optimal 𝑊, a lazy random walk 526 

matrix can be constructed on the graph: 527 

𝑀 = (𝐷−1𝑊 + 𝐼)/2,                                                                   (3) 528 

where 𝐷 is an 𝑚-dimensional diagonal matrix with 𝐷𝑗𝑗 = ∑ 𝑊𝑗𝑘𝑘 , the degree of gene 𝑗, and 𝐼 is 529 

the identity matrix. 530 

The imputed count matrix 𝑋imputed is then obtained by taking a 𝑡-step random walk on the 531 

graph which can be written as 532 

𝑋imputed
𝑇 = 𝑀𝑡𝑋𝑇 .                                                                  (4) 533 

By default, G2S3 takes a one-step random walk (𝑡 = 1) to avoid over-smoothing. Adapted from a 534 

previous study on diffusion-based imputation method [31], we also implement an option of tuning 535 
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the hyperparameter 𝑡 based on an objective function that minimizes the MSE between the imputed 536 

and observed data, i.e. 537 

𝑡∗ = argmin
𝑡

 ‖𝑀𝑡𝑋𝑇 − 𝑋𝑇‖. 538 

We assume that a good imputation method is not expected to deviate too far away from the raw 539 

data structure in the process of denoising. This criterion enables us to denoise the observed gene 540 

expression through attenuating noise due to technical variation while preserving biological 541 

structure and variation. 542 

Similar to other diffusion-based methods, G2S3 spreads out counts while keeping the sum 543 

constant in the random walk step. This results in the average value of non-zero matrix entry 544 

decreasing after imputation. To match the observed expression at the gene level, we rescale the 545 

values in 𝑋imputed so that the mean expression of each gene in the imputed data matches that of 546 

the observed data. The pseudo-code for G2S3 is given in Algorithm 1. 547 

 548 

 549 

Real datasets 550 
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We evaluated and compared the performance of G2S3 and ten existing imputation methods 551 

using datasets from eight scRNA-seq studies. Among them, four datasets were generated using the 552 

UMI techniques and four were generated by non-UMI-based techniques. 553 

Reyfman refers to the scRNA-seq dataset of human lung tissue from healthy transplant donors 554 

in Reyfman et al. [23]. The raw data include 33,694 genes and 5,437 cells. To generate the 555 

reference dataset, we selected cells with a total number of UMIs greater than 10,000 and genes 556 

that have nonzero expression in more than 20% of cells. This resulted in 3,918 genes and 2,457 557 

cells. 558 

PBMC refers to human peripheral blood mononuclear cells from a healthy donor stained with 559 

TotalSeq-B antibodies generated by the high-throughput droplet-based system [24]. This dataset 560 

was downloaded from 10x Genomics website (https://support.10xgenomics.com/single-cell-gene-561 

expression/datasets). The raw data include 33,538 genes and 7,865 cells. To generate the reference 562 

dataset, we selected cells with a total number of UMIs greater than 5,000 and genes that have 563 

nonzero expression in more than 20% of cells. This resulted in 2,308 genes and 2,081 cells. 564 

Zeisel refers to the scRNA-seq dataset of mouse cortex and hippocampus in Zeisel et al. [25]. 565 

The raw data include 19,972 genes and 3,005 cells. To generate the reference dataset, we selected 566 

cells with a total number of UMIs greater than 10,000 and genes that have nonzero expression in 567 

more than 40% of cells. This resulted in 3,529 genes and 1,800 cells. 568 

Chu refers to the dataset investigating separation of cell subpopulations in Chu et al. [26]. It 569 

measured gene expression of 1,018 cells including undifferentiated H1 and H9 human ES cells 570 

and the H1-derived progenitors. The cells were annotated with seven cell subtypes: neuronal 571 

progenitor cells (NP), definitive endoderm cells (DE), endothelial cells (EC), trophoblast-like cells 572 

(TB), human foreskin fibroblasts (HF), and undifferentiated H1 and H9 human ES cells. We 573 

https://support.10xgenomics.com/single-cell-gene-expression/datasets
https://support.10xgenomics.com/single-cell-gene-expression/datasets
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performed preliminary filtering to remove genes expressed in less than 10% of cells, which 574 

resulted in 13,829 genes. 575 

Petropoulos refers to the dataset studying cell lineage in human embryo development in 576 

Petropoulos et al. [27]. It measured expression profiles of 26,178 genes in 1,529 cells from 88 577 

human embryos. Cells were labeled as E3-E7 representing their embryonic day. We performed 578 

preliminary filtering to remove genes expressed in less than 5 cells and cells with less than 200 579 

expressed genes. After the filtering, we ended up with 22,934 genes and 1,529 cells. 580 

Trapnell refers to the dataset studying the transcriptional dynamics of human myoblasts in 581 

Trapnell et al. [28]. scRNA-seq data were collected on undifferentiated primary human myoblasts 582 

at time 0 and differentiating myoblasts at 24, 48 and 72 hours. Most of the cells are mature 583 

myotubes 72 hours after inducing differentiation. The raw data include 47,192 genes and 372 cells. 584 

We performed preliminary filtering to remove genes expressed in less than 10% of cells, which 585 

resulted in 13,286 genes. 586 

Paul refers to the dataset from a study on the transcriptional differentiation landscape of 587 

myeloid progenitors [29]. This dataset includes 3,451 informative genes and 2,730 cells. We used 588 

this dataset to evaluate the performance of imputation methods in restoring gene regulatory 589 

relationships between well-known regulators. 590 

Buettner refers to the dataset in Buettner et al. [30]. This dataset includes mouse ES cells 591 

labeled by three cell cycle phases – G1, S, and G2/M via flow sorting. The raw data include 38,390 592 

genes and 288 cells. We used this dataset to evaluate the performance of imputation methods in 593 

enhancing gene correlations between periodic marker genes of cell cycle phase. We performed 594 

preliminary filtering to remove genes expressed in less than 20% of cells, which resulted in 13,355 595 

genes. 596 
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 597 

Performance evaluation 598 

Expression data recovery. We first compared the method performance in recovering gene 599 

expression using down-sampled datasets. Down-sampling was performed on three independent 600 

UMI-based scRNA-seq datasets (Reyfman, PBMC, and Zeisel) to generate benchmarking 601 

observed datasets in a similar framework to previous studies [14,19]. In each dataset, we selected 602 

a subset of genes and cells with high expression to be used as the reference dataset and treated 603 

them as the true expression. Details on the thresholds chosen to generate the reference datasets are 604 

described in the “Real datasets” section. However, unlike previous studies that simulated down-605 

sampled datasets from models with certain distributional assumptions [14] which may incur 606 

modeling bias, we performed random binary masking of UMIs in the reference datasets to mimic 607 

the inefficient capturing of transcripts in dropout events. The binary masking process masked out 608 

each UMI independently with a given probability. In each reference dataset, we randomly masked 609 

out 80% of UMIs to create the down-sampled observed dataset. 610 

All imputation methods were applied to each down-sampled dataset to generate imputed data 611 

separately. Because imputation methods such as SAVER and MAGIC output the normalized 612 

library size values, we performed library size normalization on all imputed data. We calculated the 613 

gene-wise Pearson correlation and cell-wise Spearman correlation between the reference data and 614 

the imputed data generated by each imputation method. The correlations were also calculated 615 

between the reference data and the observed data without imputation to provide a baseline for 616 

comparison. One-sided t-test was used to evaluate whether G2S3 significantly improved the gene-617 

wise and cell-wise correlations compared to other imputation methods. To investigate whether the 618 

performance depends on the true expression level, we stratified genes into three categories: widely, 619 
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mildly, and rarely expressed genes, based on the proportion of cells expressing each gene in the 620 

down-sampled observed datasets. Specifically, widely expressed genes are those with non-zero 621 

expression in more than 80% of cells, rarely expressed genes are those with non-zero expression 622 

in less than 30% of cells, and mildly expressed genes are those that lie in between. The gene-wise 623 

and cell-wise correlations in each stratum were used to demonstrate the impact of expression level 624 

on the performance of imputation methods. 625 

 626 

Restoration of cell subtype separation. We applied all imputation methods to the Chu dataset to 627 

evaluate their performance in separating different cell types. A good imputation method is 628 

expected to stabilize within cell-subtype variation (intra-subtype distance) while maintaining 629 

between cell-subtype variation (inter-subtype distance). Principal component analysis was 630 

conducted on the raw and imputed data for dimension reduction. We calculated the inter-subtype 631 

distance as the Euclidian distance between cells from different cell types, and the intra-subtype 632 

distance as the distance between cells of the same cell type, using the top 𝐾 PCs of the data, for 633 

𝐾 = 1, … ,50. The ratio of the average inter-subtype distance to the average intra-subtype distance 634 

was used to quantify the performance. The higher this ratio is, the better performance the method 635 

has. We also calculated silhouette coefficient, a composite index reflecting both the compactness 636 

and separation of different cell types, using the top PCs and the true cell subtype labels. The 637 

silhouette coefficient ranges from -1 to 1, with a higher value indicating a better match with the 638 

cell subtypes and a value close to zero indicating random clustering [48]. To demonstrate the 639 

comparison using cell clustering results, we visualized the raw and imputed data with UMAP plots 640 

using the top three PCs and colored cells by the cell subtype labels. The normalized mutual 641 

information (MI) and adjusted rand index (RI) were used to measure the consistency between cell 642 



 

30 

 

clustering results and true cell subtype labels. To demonstrate cell subtype separation based on cell 643 

subtype marker genes, we further displayed DE and H1/H9 cells by plotting the log-transformed 644 

counts using their marker genes [26]: GATA6, a marker gene of DE cells, and NANOG, a marker 645 

gene of H1/H9 cells. 646 

 647 

Cell trajectory inference. We assessed the performance of imputation methods in restoring cell 648 

trajectory using human preimplantation embryos from different embryonic days in the Petropoulos 649 

dataset. We considered the actual embryonic days to represent the true cell differentiation stage or 650 

age. Monocle 2 was used to infer pseudo-time from the normalized raw and imputed data [32]. To 651 

measure the consistency between the actual embryonic days and the reconstructed pseudo-time, 652 

we calculated the pseudotemporal ordering score (POS) and Kendall rank correlation coefficient 653 

(Cor). Cell trajectories were visualized by embedding cells into two-dimensional space using 654 

reversed graph embedding, a recently developed machine learning method to reconstruct complex 655 

single-cell trajectories in the R package Monocle 2 [32]. 656 

 657 

Differential expression analysis. To assess the performance in identifying differentially 658 

expressed genes, we compared gene expression between two cell subtypes: H1 and NP cells, using 659 

both imputed scRNA-seq and bulk RNA-seq data from the Chu dataset. We also compared gene 660 

expression profiles of undifferentiated myoblasts to mature myotubes collected 72 hours after 661 

inducing differentiation from the Trapnell dataset. The raw and imputed data were normalized and 662 

log-transformed before evaluation. We used t-test in the bulk RNA-seq data to identify 663 

differentially expressed genes and selected the top 200 genes based on P-value as ground truth. 664 

We then performed differential expression analysis in the scRNA-seq data using the same test. All 665 
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the differential expression analysis in the scRNA-seq data was performed using the Seurat R 666 

package (version 3.0) with a default threshold to keep genes with at least 1.5-fold change. The 667 

prediction accuracy was measured by the area under an ROC curve by comparing the differentially 668 

expressed genes identified in the raw and imputed scRNA-seq data at different P-value threshold 669 

with ground truth. 670 

 671 

Gene-gene relationship restoration. We evaluated the method performance by investigating the 672 

enhancement in gene regulatory relationships using the Paul dataset and the recovery of gene-gene 673 

correlations between periodic marker genes in the Buettner dataset. In gene regulation, a Boolean 674 

network constructed by a systematic review on the interactions of core transcription factors to 675 

model myeloid differentiation [35] was used as ground truth. The same network was used in the 676 

evaluation of DCA [18]. Among the eleven key regulators in the network with known inhibitory 677 

and activatory relationships in blood development, ten were present in the Paul dataset. We 678 

reconstructed GRN on these ten regulators in the raw and imputed datasets by different methods, 679 

using the top four GRN inference algorithms from a review paper [49], PIDC [38], GENIE3 [39], 680 

GRNBoost2 [40], and PPCOR [41]. The prediction accuracy of each method was evaluated by 681 

comparing the inferred GRN to the ground-truth network using AUROC and AUPRC. The 682 

AUROC/AUPRC ratio was calculated by dividing AUROC/AUPRC by that of a random predictor, 683 

and the process was repeated for 50 times. The estimated pairwise correlations between genes 684 

using the raw unimputed and imputed data by each method were compared for performance 685 

evaluation. The Beuttner dataset contains 67 periodic marker genes with peak expression in G1/S 686 

and G2/M phases established in a previous study [34]. As marker gene expression varies over cell 687 

cycle, we expect pairs of periodic genes whose expression peak during the same cell cycle phase 688 
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to be positively correlated, and pairs of genes whose expression peak at different phases to be 689 

negatively correlated. Pairwise correlations were calculated in the raw and imputed data by each 690 

method. The proportion of gene pairs with correct direction of correlation was used to compare 691 

the method performance. 692 

 693 

Code availability 694 

G2S3 is an open-source MATLAB package that is freely available on GitHub 695 

https://github.com/ZWang-Lab/G2S3 under the MIT license. The detailed list of data sets used in 696 

the study is described in the “Real datasets” section. The code to reproduce all the analyses 697 

presented in the paper are available on GitHub https://github.com/ZWang-Lab/G2S3_paper2020. 698 
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Supporting information 840 

S1 Fig. Comparison of the mean-variance relationship in gene expression before and after 841 

down-sampling. For each gene, the coefficient of variation (CV) across all cells after down-842 

sampling (y-axis) is plotted against the CV of non-zero cells in the reference data (x-axis). 843 

 844 

S2 Fig. Optimal value of hyperparameter in G2S3. A. Mean squared error (MSE) at different 845 

diffusion steps in three down-sampled datasets. B. Gene-wise and cell-wise correlations of G2S3 846 

imputed data at different diffusion steps and the reference data. 847 

 848 

S3 Fig. Evaluation of expression data recovery of all imputation methods by down-sampling. 849 

Performance of imputation methods measured by correlation with reference data from the first 850 

category of datasets, using gene-wise (top) and cell-wise (bottom) correlation. Box plots show the 851 

median (center line), interquartile range (hinges), and 1.5 times the interquartile (whiskers). Outlier 852 

data beyond this range are not shown. 853 

 854 

S4 Fig. Evaluation of expression data recovery of all imputation methods by down-sampling 855 

in three gene strata. Performance of imputation methods measured by correlation with reference 856 

data from the first category of datasets, using gene-wise (top) and cell-wise (bottom) correlation. 857 

Genes are stratified into three groups: widely (>80%, left), mildly (30%-80%, middle), and rarely 858 

(<30%, right) expressed. 859 

 860 

S5 Fig. Cell subtype marker gene expression in the Chu dataset. Scatter plot showing 861 

expression level of marker genes for DE cells (GATA6) and H1/H9 cells (NANOG). Cells are 862 

colored by the cell subtype labels. 863 

 864 

S6 Fig. Receiver operating characteristic (ROC) curves demonstrating improvement in 865 

differential expression analysis in the Chu dataset. ROC curves measuring the prediction 866 

accuracy in scRNA-seq data on differentially expressed genes identified in bulk RNA-seq data 867 

comparing H1 to other homogeneous cell types (H1 vs. EC, H1 vs. HF, and H1 vs. TB). 868 

 869 

S7 Fig. Performance of G2S3 in recovering gene regulatory relationships. Boxplots showing 870 

the area under the precision-recall curve (AUPRC) ratios that measure the accuracy of inferred 871 

GRNs using the imputed data by different imputation methods. PIDC, GENIE3, GRNBoost2 and 872 

PPCOR are used to infer GRNs. Red line indicates the performance of a random predictor. 873 

 874 

S8 Fig. Evaluation of recovering gene correlation relationship of all imputation methods in 875 

the Paul dataset. Heatmaps of pairwise correlations between well-known blood regulators. 876 

 877 
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S9 Fig. Expression patterns on four inhibitory gene pairs in the Paul dataset. Each row shows 878 

the scatterplots of a mutually inhibitory gene pair in the raw and imputed data by all methods. 879 

 880 

S10 Fig. Expression patterns on three activatory gene pairs in the Paul dataset. Each row 881 

shows the scatterplots of a mutually activatory gene pair in the raw and imputed data by all 882 

methods. 883 

 884 

S1 Table. Comparison of the gene-wise and cell-wise correlations of G2S3 and other methods 885 

in down-sampling experiments. P-values of testing the difference of correlations of G2S3 and 886 

other methods with the reference data. 887 

 888 

S2 Table. Computation time of all imputation methods. Runtime in minutes for each imputation 889 

task using a single processor on an 8-core, 50 GB RAM, Intel Xeon 2.6 GHz CPU machine. 890 


