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Abstract

Emerging technologies in cargo shipping delivery have provided a way to facilitate horizontal coop-
eration in the transportation of goods to reduce the shipping cost of the cooperating firms, but an open
question in this cooperation is how to allocate the costs fairly among the participants. In this paper,
we focus on routing in real time a fleet of capacitated vehicles to satisfy requests submitted by a set of
customers with some of the requests unknown while assigning the service cost fairly among the requested
customers. We propose a Hybrid Proportional Online Cost-Sharing (HPOCS) mechanism to tackle the
cost-sharing problem and analyze its performance using simulation instances. Although HPOCS does
satisfy the desirable properties, namely online fairness, budget balance, immediate response, individual
rationality and ex-post incentive compatibility, it has a few drawbacks in certain scenarios. Therefore,
we make two extensions to HPOCS: 1) we introduce the idea of discounts to encourage customers to
request in advance to facilitate efficient vehicle routing; 2) we incorporate periodical re-optimization
within the dynamic vehicle routing framework. Experimental analysis are made in both extensions to

see the tradeoff between the performance and the loss of certain desirable properties.
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1 Introduction

The logistics sector as it is today functions in a way that is economically, environmentally, and socially
unsustainable (Montreuil, 2011). In order to compete effectively against their peers, companies have relied on
internal optimization to reduce operating costs, but have overlooked opportunities for external cooperation.
As a result, the logistics sector has become highly fragmented, with each supplier developing and operating
its own distribution network that sees low capacity usage, high energy consumption, and high greenhouse
gas emission across the entire system (Montreuil, 2011).

As opportunities for internal optimization are becoming fully exploited, fierce competition drives com-
panies to focus on reducing costs of non-value adding activities (Skjoett-Larsen, 2000), especially logistic
activities. Emerging technologies in cargo shipping delivery have provided a way to facilitate horizontal co-
operation in the transportation of goods to reduce the shipping cost of the cooperating firms. In the trucking
industry, many Uber analogue services have come into existence after the success of Uber and Lyft in the
U.S. and DiDi in China. Companies like GoShare and Traansmission are utilizing Internet and big data to
help the industry realize a horizontal supply chain. The concept of horizontal cooperation sees potential
benefits (Cruijssen et al., 2007) and is formally defined to be the cooperation between businesses operating
at the same level(s) in the market. When applying to the logistics sector, horizontal cooperation could refer
to the pooling of freight transportation networks and sharing of customers. External cooperation allows
consolidation of vehicle capacity, delivery routes, and shipment orders among different suppliers or logistic
service providers, thus creating a unified logistics network that sees increased capacity usage, reduced energy
usage, pollution, and operating costs. For example, a case study of the Swedish forest industry has shown
that potential savings of cooperation among several forest companies operating in the same region are large,
often in the range of 5 to 15 percent (Frisk et al., 2010). A shared transportation network also reduces the
total truck miles, which in turn reduces the usage of the road infrastructure that it shares with passenger
traffic. Similarly, reduced freight traffic helps alleviate traffic congestion and the safety threat it poses on
passenger traffic. Horizontal cooperation would not only generate savings for companies already in business,
but also lower the potential barrier for new (and possibly small) businesses to enter the market.

Besides, operations in any real world transportation network contain a fairly high level of uncertainties
including variable waiting and travel times due to traffic congestion, arrival of new service requests, cancel-
lation of existing requests, unknown demand sizes, etc. Under changing and gradually revealed information,
the problem of designing real-time collection and/or delivery routes from one or several depots to a set of
geographically dispersed customers falls in the scope of the Dynamic Vehicle Routing Problem (DVRP).
The DVRP derives from the Vehicle Routing Problem (VRP) when some element of the problem becomes

non-deterministic; for instance, randomness exists in the probability of customer realization which is the



source of randomness in our studied DVRP (Ghiani et al., 2012; Furuhata et al., 2013; Laporte, 2009; Pillac
et al., 2013).

One crucial component of a shared transportation system is the method used to allocate costs and/or
savings to each participant in the system. A cost-sharing mechanism serves as the basis for any economic
analysis of horizontal cooperation. While the DVRP problem focuses on minimizing the total travel distance,
a cost allocation problem’s purpose is about how to fairly share the total cost among customers. However,
the cost allocation problem in the vehicle routing context remains rarely studied in the literature, especially
for the dynamic case discussed above. For a “static” cost-sharing problem in which the set of players and the
cost function are both known and deterministic, Moulin mechanisms (Moulin, 1999) and acyclic mechanisms
(Mehta et al., 2009) are among the most studied families of cost-sharing mechanisms. In the context of
vehicle routing problems, a “static” cost-sharing problem means that the set of customers to be served is
known and the optimal total cost can be calculated. Unfortunately, neither of these two assumptions holds
in the dynamic vehicle routing problem we study.

Little work has been conducted on designing online cost-sharing mechanisms that work when the set
of players are gradually revealed, instead of known beforehand. Even less work on cost allocation has been
done in the vehicle routing context. The majority of this subset of work has assumed a static operating
environment, in which the tasks of designing vehicle routes and allocating costs can be tackled separately
and independently. Thus, there is a need for a unified solution approach that combines dynamic vehicle
routing with online cost allocation for dynamic cost-sharing transportation systems. It is important to point
out that the problem of dynamically routing vehicles and the problem of real-time cost allocation are highly
interdependent and must be considered simultaneously. In particular, the vehicle routes depend on whether
the new customers accept or decline the quote for service, and the quote (shared cost) in turn depends
on how vehicle routes are designed and what is the expected total cost of such routes. As much as these
two problems are intertwined with each other, the contribution of this paper is to develop a cost-allocation
mechanism that satisfies certain desirable properties based on the literature. Since the contribution of the
paper is in the cost mechanism, we use standard techniques in the literature to solve the routing algorithm.
That is, we provide a heuristic for solving the DVRP such that our cost allocation method which distributes
the total cost calculated by the DVRP algorithm satisfies well-established desirable properties.

The rest of the paper is organized as follows. In Section 2, a literature review of the relevant problems
is presented and our contribution to the literature is summarized. Section 3 formally defines the problem. In
Section 4, we introduce the Hybrid Proportional Online Cost-Sharing (HPOCS) mechanism. We introduce
a DVRP algorithm that helps illustrate the performance of our proposed cost-sharing mechanism. We then
prove that HPOCS satisfies all of the desirable properties we propose. Section 4.2 and Section 4.3 present

two extensions of the HPOCS mechanism that improve the performance of the baseline model. We then



analyze the base mechanism HPOCS and the two extension mechanisms via experiments in Section 5. We

conclude in Section 6.

2 Literature Review

In this section, we review the literature relevant to our research. We first focus on previous work on cost-

sharing methods, then review studies on cost allocation problems in the domain of transportation.

2.1 Cost-sharing Methods

A cost allocation problem specifies a set of players who request services that require a common and limited
resource. Each player has a private, non-negative valuation for the service. This valuation is sometimes
referred to as the willingness-to-pay value or the bid of the player. A cost function is defined on all subsets
of players. The value of the function usually denotes the minimum total cost of serving the corresponding
subset of players. The objective is to determine the cost allocated (or the price charged) to each player and
the subset of players who are willing to participate in the contention given the prices. The final solution
needs to not only specify the membership of the contention, but also provide exact ways to facilitate such
a contention in the context of the problem (Mehta et al., 2009). For example, to solve the cost allocation
problem corresponding to a vehicle routing problem, the final solution needs to specify the group of customers
to participate in the cooperation, a routing schedule that accommodates the same group of customers, and
the exact cost share for each customer in the group.

One approach for solving the cost allocation problem is to design a cost-sharing mechanism that
incentivizes all players to participate in the cooperation. A cost-sharing mechanism needs to define an
algorithm to calculate the shared cost for each player, and a process to determine the subset of players
who end up participating in the cooperation. During this process, the algorithm compares the shared cost
of each player with its willingness-to-pay value; only the players whose quotes are no larger than their
willingness-to-pay values accept the quotes and receive service.

Researchers have focused on studying three desired properties of cost-sharing mechanisms, namely
truthfulness (strategyproofness), budget balance, and economic efficiency (Moulin, 1999; Mehta et al., 2009).
Truthfulness (strategyproofness) requires that no player can strictly increase its utility by misreporting its
valuation for the service. The budget balance property requires that the sum of the prices charged to
each participant equals to the total operating cost of facilitating the cooperation. Economically efficient
mechanisms are those maximizing the welfare of all players in the problem, not only those who end up
participating in the contention (Mehta et al., 2009). Unfortunately, no mechanism could simultaneously

satisfy all of the above-mentioned constraints, as has been proved by Green et al. (1976) and Roberts (1979).



Thus researchers have focused on developing cost-sharing techniques that relax at least one of the constraints.
Approximate measures have also been proposed on budget balance and economic efficiency in Roughgarden
and Sundararajan (2009).

The only known general technique for designing truthful and approximately budget-balanced cost-
sharing mechanisms is due to Moulin (1999) and Moulin and Shenker (2001). Despite the fact that designing
such mechanisms is highly non-trivial and that the Moulin mechanisms have gained significant attention
and seen applications in a wide range of cost-sharing problems (Bleischwitz and Monien, 2009; Gupta et al.,
2008; Li et al., 2014), recent work in the literature have criticized their poor performance in terms of
budget-balance and economic efficiency (Mehta et al., 2009; Immorlica et al., 2008). Thus, new families of

cost-sharing mechanisms have been proposed, among which is the acyclic mechanism by Mehta et al. (2009).

2.2 Cost Allocation in Transportation

As transportation costs continue to increase due to increased competition, horizontal collaboration in the
logistics sector has received increasing attention from both the research community and players in the
industry. In the context of transportation, horizontal cooperation refers to the pooling of transportation
capacity and customer demands among businesses operating at the same level(s) in the market (Cruijssen
et al., 2007). A cost-sharing transportation system is formed as a result. One crucial component of such a
system is the allocation of total operating costs and/or savings to each participant in the system.

The work by Anderson and Claus (1976) represents one of the earliest attempts to study the cost
allocation problem in transportation collaboration . The authors studied and compared multiple basic cost
allocation methods as applied to a minimum cost network problem. In particular, the authors showed that
the average cost-sharing, unit (per mileage) cost-sharing and marginal cost-sharing all suffer from various
inefficiencies when applied naively. For example, average cost-sharing cannot guarantee that each rational
player will participate in the cooperation, while unit mileage pricing cannot prevent subgroups of users to
form coalitions outside the grand coalition.

Cooperative Game Theory (CGT) appears to be one of the popular approaches for solving cost allo-
cation problems in transportation research. Many CGT solution concepts have been studied, including the
Shapley value (Shapley, 1953; Krajewska et al., 2008), the core and related concepts (Gillies, 1953; Drechsel
and Kimms, 2010, 2011), the nucleolus (Schmeidler, 1995; Liu et al., 2010), and the 7—value methods (Tijs
and Driessen, 1986).

Other streams of research exist that study the cost allocation problem in transportation outside the
scope of CGT. Sayarshad and Gao (2018) proposed a dynamic pricing scheme for a multi-server queue
incorporating social welfare. The research focused on designing a competitive on-demand mobility model

that employs a Markov decision process to increase social welfare, which can be applied to the pricing of



flexible transit systems. Liu and Li (2017) studied the problem of the morning commute and transformed it
into a pricing scheme design problem for ridesharing.

It can be easily shown that typical cost-sharing mechanisms such as proportional cost-sharing and
marginal cost-sharing fail to possess desired properties when adapted naively to the dynamic setting. Indeed,
the problem of allocating costs in a real-time cost-sharing transportation system is highly non-trivial and is
ranked among the top impediments for successful horizontal cooperation (Cruijssen et al., 2007). The research
on designing online and dynamic cost-sharing mechanisms for transportation systems have been very limited.
A major line of research considering the competitive pricing problem in a dynamic transportation system is
due to Figliozzi et al. (2003, 2007, 2004). The problem is framed as a sequential auction marketplace where
new customer orders arrive stochastically and the logistics service provider must offer a competitive price
bid to win the order from its competitors. New orders arrive at the same time when existing orders are
being served. Each order served generates a reward. The objective is to maximize the profit as measured by
the total rewards collected minus the total transportation cost. The authors developed a stochastic dynamic
programming-based formulation that solves for the optimal price whenever a new order arrives.

The work by Furuhata et al. (2015) is concerned with a demand-responsive transport (DRT) system
where new service requests are submitted sequentially over time, but all of them are still submitted before the
vehicles start service. The authors developed a cost-sharing mechanism, namely the Proportional Online Cost
Sharing (POCS), that handles sequential customer submissions. POCS draws upon features of proportional
and marginal cost-sharing and has been proved to satisfy a list of desirable properties, including online
fairness, immediate response, individual rationality, budget balance, and ex-post incentive compatibility.
POCS is a flexible framework in the sense that no specific cost function is defined. All of the desired
properties hold as long as the cost function of choice satisfies the following two properties: 1) the total cost
is non-decreasing over time (over order submissions); 2) the total cost is independent of the submit order
of customers who have already submitted their requests. Although POCS represents a step forward in the
research on cost-sharing mechanism design because it relaxes the constraint that the entire set of players
must be known at once, limitations remain. POCS assumes that all customers submit their service requests
before vehicle operations start. In the dynamic vehicle routing environment we study, the two assumptions
may or may not hold and this shall result in loss of desirable properties.

In this paper, we focus on developing an online cost-sharing mechanism that allocates the cost to each
customer in a dynamic vehicle routing setting where only some of the customers are known in advance, and the
remaining customers become known in real time. Without lack of generality, we use the total miles travelled
as a surrogate measure of the total cost. Our approach combines two cost-sharing mechanisms originally
designed for the static and the online environment, respectively. With specially designed cost functions and

routing schedules, the hybrid mechanism is shown to possess all of the five properties originally proposed in



Furuhata et al. (2015), namely online fairness, immediate response, individual rationality, budget balance,
and ex-post incentive compatibility. We extend our work by proposing several variations of the baseline
mechanism which can be formulated by relaxing some of the model assumptions. We compare and contrast

different variations of the mechanism through extensive numerical simulations.

3 The Online Cost Allocation Problem

To study a static cost allocation problem, one needs to define the set of players, the total cost function, and
the calculation of the shared costs. In the online cost allocation problem we study, the key challenge lies in
how to incorporate the time dimension into a cost-sharing mechanism. In particular, we need to specifically
design how the set of players, the total cost function, and the calculation of shared costs evolve over time,

as more problem information becomes available.

3.1 Problem Definition

Suppose that the operation consists of routing a fleet of capacitated vehicles to collect shipments from a set
of customers and transport them to a central depot. The length of the planning horizon is T},... There are
N potential customers. Each customer has a fixed location, a known demand size, a known service time
window and a service time of fixed length. The service time window specifies the earliest and latest times
when service can be started at the corresponding customer and cannot be violated. Each customer requests
service at most once during the planning horizon. The uncertainty lies in the fact that not all customers
would request service. Some customers request service in advance (prior to the beginning of the planning
horizon), and are called advance customers. The rest of the customers are called dynamic customers, who
may or may not request service during the planning horizon. We assume that the probability a dynamic
customer requests service can be estimated from historical information. The time when a dynamic customer
requests service is called its request time. It is also the time when it becomes certain that the customer

needs to be served. The following notations are used.

N total number of customers
AC set of advance customers
DC set of dynamic customers

K total number of vehicles

C capacity of each vehicle

€; the earliest time that service can begin at customer ¢
l; the latest time that service can begin at customer ¢
V; request deadline of customer i



Uu; actual request time of customer i
d; demand of customer i

S; service time of customer i

The request time u; of dynamic customer ¢ represents the time when it becomes certain that customer
1 needs to be serviced. w; is modeled as a random variable taking values on the interval [0, v;]. The request
deadline v; denotes the latest time that the customer must make the decision on whether it needs to be
serviced or not. Generally speaking it is reasonable to set 0 < v; < e;.

We assume that the passenger cannot request service prior to its truthful request time, but may choose
to delay its request in anticipation to take advantage of a possibly lower shared cost. In such cases, we
distinguish its truthful request time, which is its earliest possible request time, from its actual, perhaps
delayed, request time. Once a dynamic customer requests service, it is called a realized dynamic customer.

The solution of a cost allocation problem usually comes in the form of a cost-sharing mechanism, which
takes the set of customers as the input and generates the shared cost of each participant as the output. A
cost-sharing mechanism should specify at least two cost functions: a total cost function that returns the total
transportation cost of serving the set of customers, and a shared cost function that returns the shared cost of
each individual participant. The total transportation costs can include both variable and fixed costs. In the
online cost allocation setting, however, the shared cost of each participant usually changes over time, possibly
due to realization of new customers, cancellation of existing customers, and changes in network conditions
that affects the total operating cost. An online cost-sharing mechanism should instead re-calculate the total
operating cost and the shared cost of each customer whenever any of these changes happen.

When a dynamic customer requests service, the total cost of serving all customers may change, so does
the shared cost of each existing customer. The dynamic customer should be immediately considered in the
cost allocation problem and be offered a shared cost. The shared cost that a customer receives at the time
of its request serves as its initial quote. Each customer may have a willingness-to-pay value that aligns with
its valuation of the service received. According to McFadden (1998), it is rather complicated to determine
the relationship between the willingness-to-pay level and the travel costs. Therefore, it is usually the case to
set the willingness-to-pay level to be proportional to the travel costs. In this paper, we constrain it to be no
less than twice the direct travel cost because a factor of two serves as a good lower bound since it represents
the total travel cost of a customer when it is not sharing rides with others (a back and forth trip). In Section
4 we show that the routing strategy we use in our proposed mechanisms is guaranteed to provide an initial
quote below this bound. The initial quote is the price that the customer would have to compare with its
willingness-to-pay value to make the decision of whether to accept or decline the service.

How the total transportation cost should be calculated and shared among both advance and realized



dynamic customers over time is a non-trivial problem for the following reasons: First, advance customers
become known at the beginning of the planning horizon and should be offered their initial quotes at the
same time, without knowledge on how many and which dynamic customers would request service. The way
cost is shared among advance customers should obey standards typically required in static cost allocation
problems, including fairness, budget balance, etc. As the planning horizon rolls out, the shared costs for
advance customers together with the shared costs for realized dynamic customers should obey the properties
required in the online setting. Second, customers should be given incentives to request service as early as
possible to allow more time for calculating routing schedules. Therefore, an ideal mechanism should ensure
that the best strategy for each individual customer to achieve the lowest possible shared cost is to request
service at its truthful request time. For the same reason, a good mechanism should be able to demonstrate
that it is more advantageous for each customer to make its service request known early as an advance
customer than to request late as a dynamic customer. Last but not least, the initial quote provided to each
customer should serve as an upper bound on the final shared cost of the customer, which is the shared cost

value for the customer at the end of the planning horizon.

3.2 Desirable Properties

Before we develop a new mechanism, we first discuss a list of properties for an ideal online cost-sharing
mechanism. Some of the properties correspond to their counterparts for static problems, such as fairness
and budget balance. The rest are derived specifically for the online environment. Consistent with the
literature, instead of focusing on the initial quotes, the following five desirable properties refer to the final
shared costs which are the actual values customers pay.

Online Fairness. At any time during the planning horizon, the shared cost per demand value of
any customer is never lower than those of customers who have requested service prior to the customer. The
property has two implications. First, since for advance customers, their request times are the same. There
should not be any notion of early and late among advance customers. Thus, fairness for advance customers
means that the shared cost per demand value of all advance customers should be the same. Second, since
all advance customers request service before all realized dynamic customers, the shared cost per demand
value of any advance customer should never be higher than that of any dynamic customer. However, the
online fairness property does not require that the initial quote per demand value provided to any customer
to be never higher than the one provided to a subsequent customer. In other words, it can happen that a
customer who requests service late receives a lower initial quote per demand value than a prior customer.
Nevertheless, in such a situation it is guaranteed that the current shared cost per demand value of the prior
customer is never higher than the initial quote per demand value provided to a subsequent customer.

Budget Balance. At any time during the planning horizon, the sum of the shared costs of all cus-



tomers equals to the total travel cost of the current routing schedule, including both traveled and untraveled
portions of the schedule. Here we say a solution is "Budget Balanced" if the costs are fully recovered. Budget
balance is practically applicable if the platform is developed by a non-profit entity such as a transportation
agency. With that being said, it does not imply that the mechanism is not applicable to for-profit firms. A
budget balanced mechanism can be adapted to a for-profit firm by adding a profit multiplier to the costs
charged. In this way, the mechanism results in a net positive payment from the customers to the mechanism
(platform) and is in this called weak budget-balance.

Immediate Response. Each customer should be provided with an upper bound on its final shared
cost at the time of its service request. Since each customer has to make the decision of whether to accept
or decline the service based on its willingness-to-pay level, this property guarantees that each customer only
has to make that decision once at the time of its request, without having to worry about being charged
against its will for a higher price than it previously agreed to.

Individual Rationality. At any time during the planning horizon, the shared cost of any customer
who has accepted its initial quote never exceeds its willingness-to-pay level. Since a customer only remains in
the cooperation as long as its shared cost does not exceed its willingness-to-pay level, individual rationality
guarantees that no customer will drop out of the cooperation once it joins since the initial quote serves as
an upper bound on any subsequent quote for that customer.

Ex-Post Incentive Compatibility. The best strategy of each customer is to request service truthfully
at its earliest possible time, provided that all other customers do not change their request times and whether
they accept or decline their initial quotes. This property has two implications. First, an advance customer
cannot decrease its final shared cost by choosing to become a dynamic customer and not request service at
the beginning of the planning horizon. Second, a dynamic customer cannot decrease its final shared cost by
delaying its actual request time to be later than its truthful request time. For similar reasons as discussed
under the online fairness property, this property is concerned with the final shared costs rather than initial
price quotes. Thus it is possible for a customer, either an advance customer or a dynamic customer, to delay
its actual request time and receive a lower initial quote than it would have received at its truthful request
time. Even if it happens, the final shared cost of the same customer in the delayed request case is guaranteed
to be no lower than in the truthful request case.

In addition to the above five desirable properties that refer to the final shared cost, we state an
additional property that refers to the initial quote and is especially desirable in an online context since
a customer most likely will compare their willingness-to-pay level to the initial quote especially for new
customers. Repeat customers may make some adjustments in their acceptance of the initial quote if they
have seen that in previous experiences their final shared cost can be significantly reduced from their initial

quote.



Early Incentive. The initial quote per demand value provided to advance customers who request
service before the operation starts should not be higher than those dynamic customers who request service
after the operation starts. This is desirable because customers most likely make their decisions on whether to
join the operation or not based on the initial quote they receive. This property then incentivizes customers
to become advance customers since it helps the system to make better routing decisions which has a lower
total cost.

In a static cost allocation problem, where the entire set of players is known and the total cost of
serving each subset of players is well defined, the most intuitive and fair way to share the cost is proportional
cost-sharing (Wang and Zhu, 2002; Sprumont, 1998), where the total cost is distributed among all customers
proportionally to their demand of the common resource. Now consider the online cost allocation problem
we study, the most intuitive way of sharing the cost is incremental cost-sharing (Moulin, 1999), where
the shared cost of each new player equals to the marginal cost generated from including the new player.
Under incremental cost-sharing, the shared cost of each customer will remain the same through the planning
horizon, and thus the final shared cost always equals to the initial quote for each customer. Another strategy
is to naively adapt proportional cost-sharing to the online setting by re-calculating shared costs each time a
dynamic customer requests service. That is to say, the shared cost of each customer may change each time
an additional customer enters the system, and there is no guarantee that the shared cost for any customer
will not increase over time. In summary, it is easy to show that proportional cost-sharing will violate the
immediate response property and incremental cost-sharing will violate the fairness property when applying
in an online setting. Thus, in the next section, we propose a hybrid mechanism and its extensions that

address the above desired properties.

4 Proposed Mechanisms

In this section, we propose three different mechanisms and analyze their advantages and disadvantages. The

first mechanism is the base case of the other two.

4.1 Hybrid Proportional Online Cost-Sharing (HPOCS) Mechanism

For each mechanism we first explain how the shared costs are calculated and updated over time in the
dynamic vehicle routing problem. Then we prove that HPOCS satisfies all of the desirable properties except
for the early incentive property discussed in the previous section.

We develop the HPOCS mechanism as an online cost-sharing mechanism that combines proportional
cost-sharing for solving static cost allocation problems and the Proportional Online Cost-Sharing (POCS)

mechanism in Furuhata et al. (2015) for handling sequential customer requests. In particular, proportional
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cost-sharing is used to calculate the initial quotes for advance customers at the beginning of the planning
horizon, while the POCS mechanism is used to handle dynamic customer requests. The idea behind POCS
is that customers are partitioned into coalitions, where each coalition contains a sequence of customers who
request service within given time intervals. At the time of its request, each customer first forms its own
coalition. However, customers can choose to form coalitions with customers who request service directly
after them to decrease their shared costs. The formation of a coalition is determined by comparing the
pooled marginal costs shared over subsets of customers each time a new customer enters the system. A set
of specially designed total and marginal cost values for advance customers is used to initialize the POCS
process for dynamic customers. This setup ensures that the coalition can be formed across both advance
and dynamic customers. A routing technique together with the corresponding cost functions serves as the
core of HPOCS.

Let C represent the grand set of potential customers, which is the union of the set of advance customers
AC and the set of dynamic customers DC , C = ACUDC, |C| = N. Let C(t) represent the set of customers
who have requested service by time ¢. By definition, C'(0) = AC since none of the dynamic customers have
requested service but all of the advance customers are already known at time ¢ = 0. Let ¢;; and t;; represent
the minimum travel cost and travel time between location 7 and j and it is assumed that the unit cost is
the same as the unit distance traveled by any vehicle. Thus, ¢;; = t;;. Without loss of generality we assume
the only components of the total cost to recover are the variable costs. However, a fixed cost term could be
added to the total cost component without affecting any of the resulting Propositions.

We now formally define terminologies related to the HPOCS mechanism.

Definition 1. The alpha value «; of customer ¢ quantifies the utilization of all relevant resources serving
customer i. It can also be interpreted as the measure of inconvenience caused by accommodating the
customer. The alpha value is assumed to be positive and independent of the request time of the passenger.
Similarly, it is also independent of whether the customer is an advance customer or dynamic customer. We
use

Q; = Co 4 * dz‘, (1)

where cp; represents the minimum travel cost between customer i and the depot, and d; represents the

demand of customer 3.

With this definition, we formally define a coalition as a set of consecutive customer requests that have

the same shared cost per alpha value.

Definition 2. For any time ¢ € [0, T),4.] and the corresponding set of customers who have requested service
C(t), m denotes a request order of the customers in C(t). For n € [1,|C(t)|], m(n) represents the n'"

customer to request service under request order m;. For example, m;(n) = i means that customer i is the n‘"

11



customer to request service under request order 7.

Definition 3. For any time ¢ € [0, T4, and the corresponding set of customers who have requested service
C(t), m¢ denotes the special request order based on the realization of the dynamic vehicle routing problem
up to time t, where all realized dynamic customers are ordered after all advance customers. In particular,
the first part of 7; consists of all of the advance customers. Any ordering of advance customers can be used
to build the first half of 7y and the exact ordering does not affect the properties of HPOCS, which will be
proved in later sections. The second part of 7; records the ordering of realized dynamic customers based on

the ordering of their actual request times.

It is important to point out that 7; is a general symbol used to represent any request order, while 74
is the request order uniquely defined by the realization of the DVRP. Nevertheless, given time t € [0, Tpnqz],
m and 7; will always contain exactly the same set of customers, namely C(t). Although they contain the
same set of customers 7; is used to denote when a statement is true for any given ordering while 7; denotes
one particular order (i.e., the one associated with the realization of the dynamic customers). Recall that

C(0) = AC, meaning that 7y consists of all advance customers. The same is true for 7.

Definition 4. The grand schedule S is a complete routing solution to the static vehicle routing problem
corresponding to the grand set of customers C. It uses the heuristic routing algorithm by Zou (2017)
and satisfies the following requirement. For any dynamic customer ¢, the time when the assigned vehicle
is scheduled to leave from its predecessor location is no earlier than the request deadline of the dynamic
customer, v;. That is, when a vehicle finishes service at its current customer and becomes idle, if the next
customer on the schedule is a dynamic customer that has yet to request service, the vehicle should wait at its
current location and only be allowed to travel either when the dynamic customer becomes realized or when
its request deadline has been reached, whichever comes first. S takes the form of a set of vehicle routes each
assigned to a single vehicle. S = {r;} where k = 1,...,K. Each route r} specifies the sequence of customer
visits as well as the exact arrival and departure times at each customer, which satisfies the corresponding

time window constraints and the additional requirement discussed above.

Definition 5. Let S be a grand schedule corresponding to the set of customers C, and let C C C be a
subset of customers. S(C) is called the partial schedule induced by the grand schedule S and the set C,
which is constructed by removing all of the customers not in C' from the grand solution S. In particular,
each customer that is not in C is removed from the route, and its predecessor and successor scheduled on
the same vehicle are connected with a direct link. The related timings are also updated. That is, the time
when the vehicle is scheduled to leave its predecessor is now the time when the vehicle is originally scheduled
to leave from the removed customer to its successor. In other words, all of the extra slack time now present

in the route due to the removal of a customer is added to the wait time at its predecessor location.
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Given a feasible grand schedule S and any subset of customers C' C C, it can be easily shown that a
feasible induced schedule S(C) is guaranteed to exist, based on the triangle inequality property of pairwise
distances. It is also evident that such induced solutions are usually not unique. Besides, given the grand
schedule S, for any time t € [0, T)n4z], and any request order m;, we use the notation S (7 (n)) to represent the
partial schedule induced by the set of first n customers on the request order ;. More specifically, S (7; (n))
is an equivalent notation used to denote the same induced solution as S(C'), where C' = {m; (1),...,m (n)}.

The following proposition states that given the set of customers who have requested service by time ¢,

the induced partial schedule is independent from the request order among the customers within the set.

Proposition 1. For any grand schedule S, any time t € [0, Tynaz] and the corresponding set of customers

who have requested service C(t), and any two request orders m and 7}, we have

S(m) =5 (m) =S () e

’

Proof. By Definition 5, we have S (m; (n)) = S (7rt (n)) for any n € [1,]|C(¢)|]. Setting n = |C(t)|, we have

that

S (m () = 8 (m (IC@D) = S (= (C@D) = 5 (71 (m) (3)

which proves the first equality. For the second equality, we note that by definition both schedules S (T(;) and
S (C(t)) are induced by the same set of customers, namely those customers that have requested service by
time ¢. In addition, both solutions are constructed in the same way by removing customers not in C(t) from
the grand schedule S. The membership and ordering of each customer on each vehicle route is preserved. It

follows that S (71';) and S (C(t)) are exactly the same schedules. Thus we have completed the proof. O

We now define the cost functions used by HPOCS. Some cost functions are based on their counterparts
in the POCS mechanism (Furuhata et al., 2015), such as coalition cost per alpha and shared cost. In the
original POCS formulation, it is assumed that customers request service sequentially, and no two customers
will request service at the same time. In the DVRP we study, all of the advance customers request service
at the same time. Thus we extend the definitions in POCS to accommodate both advance and dynamic

customers.

Definition 6. For any grand schedule S, any time ¢ € [0, T),q.) and the corresponding set of customers who
have requested service C'(t), and any request order m;, the totalcost (S (C(t))) is the total travel cost of the
induced partial solution S (C(t)). Equivalently, totalcost (S (m;)) can be used to represent the same total
cost since the underlying partial schedules are practically the same, as stated by Proposition 1. We define

totalcost (S (0)) = 0.
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Definition 7. For any grand schedule S, any time ¢ € [0, Tjnqz) and the corresponding set of customers who
have requested service C(t), the special request order 7, and any integer n € [1,[C(t)[], totalcost (S (7 (n)))
is the total operating cost required to serve the first n customers on request order 7;. For the case of advance

customers, let 1 < n* < |AC|, so that 7;(n*) represents an advance customer. We define

totalcost (S (7, (n*))) = acpa Z Q7 (n) (4)
n=1
At n* = |AC|, T (n*) represents the last advance customer on request order 7;. We define
totalcost (S (7, (|AC|))) = totalcost (S (AC)) (5)

which is a direct result of Proposition 1 and is consistent with Definition 6. For the case of dynamic customers,
assume that |[AC| < |C(t)]. Let |AC| < n* < |C(t)], so that T;(n*) represents a realized dynamic customer.
Then totalcost (S (7 (n*))) is defined as the total travel cost of the induced partial solution corresponding

to the first n* customers on schedule 7;. Similarly as in Definition 6, we define totalcost (S (m (0))) := 0.

Definition 8. For any grand schedule S, any time ¢ € [0, )] and the corresponding set of customers
who have requested service C(t), any request order 7, any customer i € C(t), let n be the index order of
the customer on request order m;. Equivalently, m;(n) = i for some n € [1,|C(t)|]. mc(m(n)) denotes the
marginal cost of serving customer ¢ under request order m; and is defined as the increase in total cost due to

its request. That is
me (my(n)) = totalcost (S (m; (n))) — totalcost (S (m; (n — 1))) (6)

Especially in the case of advance customers, let 1 < n* < |AC|, so that 7;(n*) represents an advance

customer. Based on equations 4 and 6, we have

me (7, (n*)) = totalcost (S (7, (n*))) — totalcost (S (7, (n* — 1))) (7
n* n*—1

= acpa Z Qz,(n) — acCpa Z Qz,(n) (8)
n=1 n=1

= acpa X iz, (n+) (9)

which states that the marginal cost of an advance customer equals to the product of the advance cost per

alpha value and its alpha value.

We now define the coalition cost per alpha value, how HPOCS calculates the shared cost of each

customer, and the concept of coalition.
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Definition 9. For any time t € [0, T,q2] and the corresponding set of customers who have requested service
C(t), the special request order 7, and any two integers ni,na € [1,|C(¢t)|] with ny < ng, the coalition cost
per alpha value of customers {7 (n1),...,7 (n2)} at time ¢ under submit order 7 is

D onn, M (Te(n))

Ccpa‘ﬁ'z("lmz) = na (10)

n=ni Q7 (n)

Especially in the case of advance customers, we rename it into acpa since all advance customers share the

same coalition per alpha value (proved in Proposition 2) and we have:

totalcost (S (AC)) _ totalcost (S (C(0)))

2ieac Qi D ieac @i

(11)

acpa =

Definition 10. For any time ¢ € [0, Tyq.] and the corresponding set of customers who have requested service
C'(t), the special request order 7;, and any customer ¢ € C(t), let n be the index order of the customer on
request order 7;. Equivalently, 7,(n) = i for some 1 < n < |C(t)|. Then the shared cost of customer ¢ at
time ¢ under request order 7; is defined as

costy (Te(n)) = Qn ey i | JOAX | COPaz, () (12)

Definition 11. For any time ¢ € [0, T4, and the corresponding set of customers who have requested
service C(t), the special request order 7, and any two integers nq,ng € [1,|C(¢)|] with n1 < na, a coalition

(n1,n2) at time ¢ is a group of customers {7; (n1),..., 7t (n2)} with

costy (m(n)) _ costy (me(n1)) (13)

Q7 (n) Az (n1)

for all order indices n; < n < ng and

costy (mi(n)) , costy (7r(n1))

a'frt(n) Qr, (n1)
for both order indices with n =n; — 1 and n =ng+1 and 1 <n < |C(¢)|.

Definition 11 suggests that the membership of a coalition is determined solely by the shared cost per
alpha value of each customer. A sequence of customers who request service consecutively in time and have
the same shared cost per alpha value are said to be in the same coalition. In terms of coalition formation, it
is irrelevant whether a customer is an advance customer or a dynamic customer; a single coalition can consist
of both advance and dynamic customers. Nor is it relevant whether the group of customers are assigned on

the same vehicle or not.
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The following statements are concerned with the way coalitions form and evolve over time under the

special request order 7.

Proposition 2. At any time t € [0, Tihaz), under the special request order 7y, the coalition cost per alpha
value of any coalition consisting solely of advance customers is a constant value. The value is fized given the

set of advance customers AC and is independent from the actual subset of advance customers in the coalition.

Proof. For any grand schedule S, any time ¢ € [0, Tynq.] and the corresponding set of customers who have
requested service C(t), the special request order 7, and any two integers ni,ne € [1,|C(¢)|] with ny < na,
suppose that both n; and ny represent advance customers. That is, ny,ne € [1,|AC|]. Then the coalition
cost per alpha value of customers {7 (n1),..., 7t (n2)} at time ¢ under submit order 7; is
Do, me (Te(n))
CCPAz, (ny,na) = 712771121 (15)

n=ny Ar, (n)

_ 222:”1 acpa X Qz,(n)
Zn:nl Q7 (n)

= acpa (17)

The second equality follows from equation 9. Note that the coalition cost per alpha value equals to the
advance cost per alpha value, which only depends on the set of advance customers AC and is independent
of n1, ny, and even the request order 7;. Equivalently speaking, given the set of advance customers, the
coalition cost per alpha value of any coalition formed solely by advance customers is the same. Thus we have

completed the proof. O

Proposition 3. At time t = 0, under the special request order Ty, all advance customers form a single

coalition.

Proof. At time t = 0, for any customer i € AC, let n be the index order of the customer on the special
request order 7y. Equivalently, 7o(n) = i for some 1 < n < |AC|. By Definition 10, the shared cost of
customer ¢ at time ¢ = 0 under request order 7 is

costo (To(n)) = @z (m) ngg}igﬂlmc\ 1< m gy CPIT ) (18)

= ax min max acpa 19
T (M) <|AC] 1<n” <n/ P (19)

= Qiz,(n) X QCPQ (20)

The second equality follows from the fact that both 7g(n’) and 7o(n”) represent advance customers and that
the coalition cost per alpha value of any coalition consisting solely of advance customers is always equal to

acpa (Proposition 2). The third equality follows since the term inside the minimization and maximization
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operator is a constant and independent from both operators. Equation 20 shows that the shared costs among
advance customers at time ¢ = 0 under the special request order 7y obey the proportional cost-sharing rule.
It then follows that the shared cost per alpha values of any two advance customers 7(n1) and 7o(n2) with
n1,ng € [1,]AC|] must be the same, which in turn proves that all advance customers form a single coalition

at time ¢ = 0 under the special request order 7. O

Corollary 3.1. For any timet € [0, Tnaz] and the corresponding set of customers who have requested service
C(t), the special request order 7y, and any customer i € C(t), let n be the index order of the customer on

request order 7y. Equivalently, w:(n) =14 for some 1 <n < |C(t)|. Then

costy (Ty(n)) — o costu_ ., (T(n'))

Q7 (n) n<n’/<|C(¢)] Az (n')

(21)
where Uz, (nr) s the request time of customer m(n') and cost_ ., (7 (n')) represents the initial quote this
customer receives at the time of its request.

Proof. Consider any time t € [0, Tj,q,] and the corresponding set of customers who have requested service
C(t), the special request order 7;, and any customer ¢ € C(t), let n be the index order of the customer on

request order 7;. Equivalently, 7;(n) = ¢ for some 1 <n < |C(t)]. Then we have

costy (T¢(n))

= min max CCplz,(n” n') (22)
Oz, (n) n<n/<|C(t)| 1<n” <n’ '
= min min max  CCpaz,(n”,m) (23)

n<n/<|C(t)| n'<m<n’/ 1<n”’ <m
— /
costu,, ., (me(n”))

min
n<n’/<|C(t)] Az (n')

where the first and third equalities both follow from Definition 10. O

Lemma 1. Under the special request order m;, once a group of customers forms a coalition at time t, they
will remain in the same coalition until the end of the planning horizon. More customers may join the same

coalition over time, but the original group of customers will never depart the coalition.

Proof. For any time t1 € [0, T)nqz) and the corresponding set of customers who have requested service C(t1),
let (n1,n2) be a coalition at time ¢; under the special request order 7y, , where 1 < ny < ny < |C(t1)|. Let

to € (t1, Timaz] be any later point of time in the planning horizon. Now consider any customer with the order

17



index n1 < n < ng under the special request order 7,. Then

COStuﬂl(n/) (ﬁn (n/)) _ costy, (ﬁ'tl (n))

min = (25)
n<n/<|C(t1))] Az, (n) A7y (n)
_ costy, (T, (n1)) (26)
aﬁtl (n1)
costy_ ., (7, (n'))
_ tq (n”) 1 (27)

min
n1<n’<|C(t1)] aﬁ'tl (n’)

where the first and third equalities both follow from Corollary 3.1 and the second equality follows from
Definition 11. In addition, since ¢; < to < Tinqq, request order 7y, is an extension of the order 7y, . Thus

Tty (M) = Ty, (m) for all 1 <m < |C(t1)| by definition. Equation 27 can be rewritten as follows

_ ’ - /

_ COStu, () (7, (') . COStu, () (T, (n'))
min = min
n<n’<[C(t)] A7y, (n)) m s/ <[C (0] Aty (n')

(28)

Now consider adding the following set of terms to the minimization operators on both sides of equation 27.

{ COStu, () (7, (7)) (29)

Az, (5) }c(t1)<j§|0(t2)|

Since the same set of terms are added to both minimization operators, the equality is preserved. Equation

27 can be rewritten as follows

_ COStu,, () (T, (n')) . C0Stu,, (o, (T4, (1))
min = min (30)
n<n’<|C(t2)] Az, () n1<n/<|C(t2)] Az, (n)
which by Corollary 3.1 is equivalent to
costy, (T, (n)) _ costy, (e, (n1)) (31)

aﬁtz (n) aﬁ-tg (nl)

We have established that all of the customers in the original coalition at time t; have the same shared cost
per alpha value at any future time t5. By the definition of coalition, all of these customers must be in the

same coalition at time t5. Thus we have completed the proof. O

Remark. Directly from Proposition 38 and Lemma 1, we have that the set of advance customers will remain

in the same coalition throughout the planning horizon.

We now present the HPOCS mechanism. For a realization of the dynamic vehicle routing problem, the
shared costs are calculated as follows.
Initialization. ¢t = 0. Formulate a static vehicle routing problem corresponding to the set of customers

C = ACUDC and construct the grand solution S. Construct the special request order 7, consisting of all
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advance customers. Any ordering among advance customers can be used.

Quoting advance customers. All advance customers receive their initial quotes at time ¢ = 0. This
step calculates the advance cost per alpha value acpa based on Definition 9 and then calculates the total
cost, marginal cost, coalition cost per alpha, and the shared cost of each advance customer under the special
request order Ty by Definition 7, equation 9, Definition 9, and equation 20. And for each advance customer
i € AC, suppose that n is its order index on request order m. Provide costy (To(n)) as the initial quote for
customer 4.

Quoting dynamic customers. A dynamic customer ¢ receives its initial quote when it requests
service at time ¢ = w;. It first appends customer 7 to the end of the special request order 7,,_1 to form
the new special request order 7,,. Recall that |C(t)| represents the total number of customers who have
requested service. By definition, 7, (|C'(u;)|) = ¢. Then it constructs the partial schedule induced by C(u;)
and the grand schedule S. After that, it calculates and updates the total costs, marginal costs, coalition
cost per alpha values, and the shared costs of all existing customers on request order 7,, by Definition 7,
equation 6, Definition 9, and Definition 10. Lastly, it provides cost,, (7., (|C(u;)|)) as the initial quote for
customer <.

Final shared costs. At time t = T},4,, all of the randomness in the system has been realized. The

special request order 7, consists of all advance and realized dynamic customers, namely the set C(T}qz)-

max

For 1 < n < |C(Tmaz)|, the shared cost of customer 77, . (n) at time T4, under the special request order

is costr, .. (Tr,,..(n)). This is also the final cost of service for customer 7, (n).

7TT max

max

4.1.1 Analysis of Properties

The HPOCS mechanism defines a way to allocate the total travel cost to each customer in the dynamic vehicle
routing problem. By definition, this mechanism follows the same framework as the POCS mechanism, with
the exception that the total cost function is defined differently. Given that the original POCS mechanism
satisfies the first five desirable properties discussed in Section 3.2, it follows that the HPOCS mechanism also
possess these properties, if it can be shown that the new total cost function satisfies the same assumptions
as made by the POCS framework.

The POCS framework makes two assumptions of the total cost function. First, the total cost is
non-decreasing over time. Second, the total cost at any time is independent of the request order among
the group of customers that have requested service. These assumptions are, for example, satisfied for the
minimal operating cost, which is the cost function used in the original POCS paper. However, optimality is
not required in order for all of the desirable properties to be satisfied, as long as the cost function follows

the two assumptions.

Proposition 4. For any grand schedule S, any time t € [0, Tynaz] and the corresponding set of customers

19



who have requested service C(t), the special request order 7y, and any integer n € [1,|C(t)]], the HPOCS total
cost function totalcost (5’ (7 (n))) is nondecreasing in n and is independent of the request order of customers
{7 (1),...,m (n)}. That is, for any request order m satisfying {7 (1),..., 7 (n)} = {m: (1),...,m (n)},

totalcost (S (7, (n))) = totalcost (S (m; (n))).

Proof. We first prove that totalcost (5’ (7 (n))) is nondecreasing in n. Without loss of generality, let n; be
any order index satisfying 1 < ny < |C(t)| and let ny = ny + 1. By definition, the partial schedule S (7; (n1))
is constructed by removing customer 7; (ng) from the schedule S (7; (n2)). Let i~ and it represent the

predecessor and successor locations of customer 7, (n3) in the schedule S (7; (n2)). Then we have

totalcost (S (T (n1))) = totalcost (S (T (n2))) — Ci-ry(na) — Cry(na)it + Cimi+ (32)

Based on the triangle inequality property of pairwise distances, we have

Ci—7i(ns) T Cry(no)it — Ci—i+ 20 (33)

Thus equation 32 implies that
totalcost (S (7 (n1))) < totalcost (S (7 (n2))) (34)
We next prove the total cost is independent of the request order of customers {7 (1),...,7: (n)}. Let m; be
any request order satisfying {7 (1),...,7 (n)} = {m (1),...,m (n)}. That is to say, the first n positions of

7, and of 7, consist of the same group of customers. By Definition 5, S (7; (n)) and S (7, (n)) represent the

same induced partial schedule. It then follows that totalcost (S (7 (n))) = totalcost (S (m; (n))) O

When implementing the HPOCS mechanism to solve the cost allocation problem associated with a
DVRP, one must specify the way vehicles are routed in real time. Thus the objective of this paper is
to minimize the total cost used in the mechanism such that it satisfies the proposed desirable properties.
Without lack of generality, we use the total miles travelled as a surrogate measure of the total cost. In
order to satisfy all of the desirable properties, we need to define a dynamic vehicle routing strategy that can
guarantee that the actual total travel cost incurred by the vehicles equals to the total cost calculated by the
HPOCS mechanism. Since the VRP is a NP-hard problem heuristics are commonly used to find a routing
solution, especially for the dynamic VRP. Thus, we next present a dynamic routing heuristic that satisfies

this requirement.
1. Vehicles are routed based on the grand schedule S.

2. No re-optimization is done during the planning horizon.
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3. At the time when a vehicle is scheduled to depart from its current location and travel to a dynamic
customer, if the customer has yet to request service, it is skipped and the vehicle travels directly from

the predecessor location to the successor location of the dynamic customer.

Recall that by Definition 4, the grand schedule S requires that the time when a vehicle starts to travel
to a dynamic customer is no earlier than the request deadline of the customer. If the customer has yet
to request service by this time, it is certain that the customer will not request service at all. Thus if the
customer is removed from the current schedule, it will not request service at a later time. The only diversion
of vehicles happen when an unrealized dynamic customer is skipped, and no traveling is wasted due to the
absence of dynamic customers. As a result, the total travel cost incurred by the vehicles is always equal to the
total cost of the induced partial solution as calculated in Definition 7. Thus, we can conclude that under the
dynamic routing strategy defined above, the HPOCS mechanism satisfies the first five desirable properties
discussed in Section 3.2. The proofs follow directly from the proofs presented in Furuhata et al. (2015)®.
Additionally, under this routing strategy, we can see that the upper bound of any customer’s shared cost
is twice its direct travel cost. Due to the immediate response property, a customer’s highest shared cost
throughout the timeline occurs at the initial quote. For any initial quote, it will be lower than twice that
customer’s direct travel cost because if that customer is the first customer in the coalition, its initial quote is
equal to twice its direct travel cost, and if the customer is not the first customer in the coalition, its shared
cost will be less than or equal to twice its direct travel cost due to the triangular inequality.

As for the early incentive property, HPOCS fails to satisfy this property. A simple counter-example
would be when there is only one advance customer request, the initial quote per alpha value for this advance
customer is the back and forth travel cost divided by its alpha value. When a dynamic customer makes its
request and suppose the two customers form into a coalition, then their shared cost per alpha value will be
the same which is the initial quote per alpha value for the dynamic customer. This value is no larger than
that of the first customer because HPOCS satisfies the immediate response property. With this in mind,
we device another mechanism based on HPOCS to see if we can solve this problem. In Section 4.2, we use
non-decreasing discount functions to provide an extra incentive for customers to request early at the expense
of losing the budget balance property.

We note it is possible that the solution to the static VRP is infeasible while the dynamic VRP is feasible.
But HPOCS is designed to only consider dynamic VRP solutions from feasible static VRP solutions in order
to ensure that the first five properties hold. However, we derive an extended mechanism, HPOCSrO, which
relaxes this assumption but at the expense of the loss of the ex-post incentive compatibility property. As

shown in Section 4.3, we incorporate a re-optimization method in generating total costs for partial schedules

1The proof of the individual rationality property is a general proof such that the customer can have any willingness-to-pay
level and the property still holds.
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to improve the performance of the HPOCS mechanism by reducing the overall shared cost. Compared with
the DVRP solution (grand schedule and induced partial schedule) used in HPOCS, this extension fails to
satisfy one of the major assumptions for the total cost which leads to the loss of the ex-post incentive

compatibility property.

4.2 Hybrid Proportional Online Cost-Sharing with Discount (HPOCSD)

In this section, we introduce a modification of the HPOCS mechanism that aims to incentivize customers to
request service early. Generally speaking, this can be achieved by offering discounts to advance customers
and applying overcharge to dynamic customers. The same discount factor should be used for all advance
customers in order to maintain the online fairness property. However, the overcharge factor can be different
for different dynamic customers, and may be dependent on their actual request times. We design and
study the exponential overchage heuristic method for calculating the suitable overcharge factor for realized
dynamic customers, based on their request orders and the discount factor for advance customers. In the
following sections, we formally define the Hybrid Proportional Online Cost-Sharing with Discount (HPOCSD)

mechanism and study its properties.

4.2.1 Mechanism Design

The idea behind HPOCSD is to use the modified charges to substitute for the HPOCS shared costs and offer
the modified charges to the customers. All of the calculations of the total costs, marginal costs, coalition cost
per alpha values, shared costs, and the definition of coalitions remain the same as defined by the HPOCS

mechanism. Additional notations and definitions are as follows.

) the discount factor
Y the cost modifier of customer ¢

g(n,d) the overcharge function

We require that 0 < § <1 and that g(n,0) > 1,Vn,d.

Definition 12. For any time ¢ € [0, T}, and the corresponding set of customers who have requested service
C(t), the special request order 7;, and any customer i € C(t), let n be the index order of the customer on
request order 7;. Equivalently, T:(n) = ¢ for some 1 < n < |C(¢)|]. Then the cost modifier of customer 4

under request order 7; is defined as

(1-9) for 1 <n <|AC]|
)\ﬁ-t(n) - (35)
(1+g(n.8)) for [AC| < n < |C()]
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The cost modifier for all advance customers is the same, and is equal to 1 — §. The cost modifier for a
dynamic customer depends on the value of the function g(n,d), which returns the overcharge factor based

on the request index of the customer and the discount factor used for advance customers.

Definition 13. For any time ¢ € [0, T)pq.] and the corresponding set of customers who have requested service
C(t), the special request order 7, and any customer ¢ € C(t), let n be the index order of the customer on
request order ;. Equivalently, 7;(n) = ¢ for some 1 < n < |C(t)|. Then the charge of customer ¢ at time ¢

under request order 7; is defined as
charge; (7:(n)) = costy (T1(n)) Az, (n) (36)

where cost; (T:(n)) denotes the HPOCS shared cost as defined in Definition 10. charge; (7:(n)) is the value

that is provided to the customer.

We define the HPOCSD mechanism by using the same structure as the HPOCS mechanism presented in
Section 4.1, except that all cost; (7+(n)) values are replaced with charge; (7:(n)) values. The same dynamic

routing strategy presented in Section 4.1.1 is used for scheduling and routing vehicles.

4.2.2 Analysis of Properties
We now discuss the properties of the HPOCSD mechanism.

Proposition 5. The HPOCSD mechanism satisfies the online fairness, immediate response, individual
rationality, and ex-post incentive compatibility properties, provided that the overcharge function g(n,d) is

nondecreasing in n.

Proof. We first prove the online fairness property. For any time t € [0, ;4] and the corresponding set of
customers who have requested service C(t), the special request order 7;, and any customer i € C(t), let ny
and ny be two indices representing advance customers, 1 < ny < ng < |AC|. Since the HPOCS mechanism

satisfies the online fairness property, we have

costy (T¢(ny)) _ costy (7¢(n2))

QF(n1) Qxy(ng)

(37)

Since both n; and ny are advance customers, their cost modifiers are the same and are equal to §. The

equation above then implies that

charge; (71 (n1)) _ costy (T¢(n1)) (1 — 0) _ costy (Ty(n2)) (1 — 0) _ charge; (71 (n2)) (39)

A7y (n1) A7y (n1) A7y (n2) A7, (n2)

which proves the online fairness property for advance customers. Now suppose n; and ns be two indices
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representing dynamic customers, |AC| < ny < ny < |C(t)]. Since the HPOCS mechanism satisfies the online

fairness property, we have
costy (Te(n)) < costy (Te(na))

Azri(n)  Qr(ng)

(39)

Given that both n; and ny are dynamic customers and that function g(n,d) is nondecreasing in n, we have

1 < g(n1,9) < g(ne,d). It then follows that

charge, (my(n1)) _ costy (m(m)) (1 + g(n,8)) _ costy (mi(n2)) (1 + g(ns,8)) _ charge, (z(n2))

(40)

« [ « [0

m(n1) Te(n1) Te(n2) i (n2)

We have now proved that the online fairness property is satisfied for both advance and realized dynamic
customers.

Similarly, given that for each customer 4, the cost modifier A; is fixed and independent of time, and
that the overcharge function g(n,d) is nondecreasing in n, it can be proved that the HPOCSD mechanism
inherits the immediate response, individual rationality, and ex-post incentive compatibility properties from

the HPOCS mechanism. O

Proposition 6. The HPOCSD mechanism is d—budget balanced. That is to say, at any time during the
planning horizon, the sum of the charges for all customers that have become realized recovers at least 100 x

(1 — 8) percent of the total travel cost of the corresponding induced partial schedule.

Proof. For any grand schedule S, at time t = 0, C'(0) = AC. We have

|AC] [AC|

> chargeq (7o(n)) =Y _ costo (7o(n)) (1 = 6) (41)
= (1 —§) X totalcost (S’ (7o (|A(CD)) (42)
= (1 — &) x totalcost (S (C(0))) (43)

which means that at time ¢ = 0, the sum of the charges for advance customers using the HPOCSD mechanism

recovers exactly 100 x (1 — &) percent of the total travel cost of the partial solution induced by S and the
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set AC. Now consider any time during the planning horizon, 1 <t < T},4,. We have

@l |AC| @)l
S charger (=) = S costy ((m) (L—0) + 3. coste (m(m) (L4 g(n.)  (44)
n=1 n=1 n=|AC|+1
|AC]| [C(t)]
> Z costy (Te(n)) (1 —9) + Z costy (Te(n)) (1 —9) (45)
n=1 n=|AC|+1

@l

=(1-9¢)x Z costy (T(n)) (46)

= (1—6) x totalcost (S (C(t))) (47)

where the inequality follows from the fact that the cost modifier of any dynamic customer is always greater
than or equal to the cost modifier of any advance customer, g(n,d) > (1—19),Vn,d. Equation 47 implies that
the sum of the charges for all customers who have requested service recovers at least 100 x (1 — ) percent of
the total travel cost of the corresponding induced partial solution. Thus we can conclude that the HPOCSD

mechanism is 6—budget balanced. O

In addition, we note that the equality in equation 45 is achieved if and only if 1+ g(n,d) =1—4,n, .
This can only be true if g(n,d) = 6 = 0. Without the discounts and overcharges, the HPOCSD mechanism
reduces to the HPOCS mechanism. In the HPOCSD setup with strictly positive discounts and overcharges,
equation 45 will always imply an inequality relationship. It then follows that
IC@)l

Z charge; (T¢(n)) > (1 — 8) x totalcost (S (C(t))) (48)

n=1

at any time 1 < ¢t < T},4,- This means that the worst-case budget deficit scenario always happens at time
t = 0, when there is no realized dynamic customer and the sum of the HPOCSD charges recover exactly
100 x (1 — §) percent of the total travel cost.

We have shown that the HPOCSD mechanism is approximately budget balanced. The loss of the
budget balance property is the sacrifice that is made to encourage customers to request early. Proposition 6
provides an upper bound on the worst-case budget deficit, which is dependent on the discount factor provided
to the advance customers. Intuitively speaking, the larger the discount, the more incentive it provides to
encourage customers to request early, and the bigger the risk of not being able to recover the total operating
cost. On the other hand, Proposition 6 does not state that the HPOCSD mechanism will always incur
a budget deficit. It could happen that the overcharge on dynamic customers recovers fully the discounts
provided to advance customers and a budget balance is achieved. It could also happen that the overcharge
over compensates for the discounts, such that a budget surplus is generated.

As for the early incentive property, HPOCSD does not guarantee that the property holds for all cost
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modifiers. Referring to Definition 12, whether this property is satisfied depends on the choice of the discount
factor ¢ and the overcharge function g(n, d). In fact, we can select the parameters such that the early incentive

property holds. For example, by setting acpa(l — §) < st ))Ut9Mid) gor al] AC| < n; < |C(t)], the

Xzt (ng)

early incentive property holds. In Section 5.2, we show in the experiments that the early incentive property

is satisfied given a proper choice of these two parameters.

4.3 Hybrid Proportional Online Cost-Sharing with Re-optimization (HPOC-
SrO)

In this section, we propose to incorporate re-optimization to tackle the problem in HPOCS that the grand
solution used to calculate total cost may perform poorly when the request probability is low and the number
of realized customers is small since the operation cost of the grand schedule is less representative of the actual
total cost. This problem will not only cause the early incentive property to fail, but also drive the final total
cost far away from optimal, making all the customers’ final cost less than ideal. In general, we address
the above problem by replacing the grand solution in HPOCS with repeated re-optimization to compute
the schedule that can reduce the total cost and therefore boost the overall performance of the HPOCS
mechanism. However, this modification itself has a major issue of violating one of the desired properties
of a well-designed cost-sharing scheme, the ex-post incentive compatibility property. We first introduce the

mechanism design for HPOCSrO and then we analyze the properties of this mechanism.

4.3.1 Mechanism Design

The HPOCSrO mechanism shares the same framework as the HPOCS mechanism, with the exception that
the total cost function is defined differently. Recall in Section 4.1 that the grand schedule S is calculated
based on solving a deterministic VRP problem. Differently, the HPOCSrO mechanism calculates a partial
schedule initially as well as throughout the whole time horizon. The general framework of the proposed
mechanism can be summarized as follows.

Initialization. ¢t = 0. Formulate a static vehicle routing problem corresponding to the set of customers
AC and construct the partial solution S (AC) using the same heuristics as the grand solution S.

Quoting advance customers. All advance customers receive their initial quotes at time ¢ = 0. This
step calculates the advance cost per alpha value acpa and the shared cost of each advance customer using
the same method as in HPOCS (see Section 4.1).

Quoting dynamic customers. A dynamic customer ¢ receives its initial quote when it requests
service at time ¢ = u;. Customer ¢ is added into the existing partial schedule using the cheapest insertion
method (Zou and Dessouky, 2018). Then the mechanism updates the total cost and calculates the shared

cost accordingly.
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Re-optimizing and updating the costs. At each decision epoch, the same heuristics in Zou and
Dessouky (2018) are used to optimize the current partial schedule resulting in a reduction in the total cost
and the shared cost of all customers who have requested service by this decision epoch are updated.

Final shared costs. At time t = T,,,44, all of the randomness in the system has been realized. The
solution schedule consisting of all advance and realized dynamic customers is produced and the shared cost

of these customers at time T,,,, is outputted as the final cost of service for them.

4.3.2 Analysis of Property

Given that the HPOCS mechanism is proven to possess the first five desirable properties discussed in Section
4.1.1, it follows that the HPOCSrO mechanism also possesses these properties except for the ex-post incentive
compatibility property.

Recall in Section 4.1.1, we explain that for a proportional online cost-sharing mechanism to satisfy
all five desirable properties, its total cost function should be non-decreasing over time and be independent
of the request order at any time. It is trivial to show that the HPOCSrO mechanism does not satisfy the
first assumption. The total cost function over time is not an optimal solution to the current customer group
but rather a good solution obtained by local search heuristics. In other words, adding a customer into the
dynamic vehicle route after a re-optimization is executed may have less total cost than before. Removing
this assumption will lead to the loss of ex-post incentive compatibility property which implies that if we can
prove that the total cost function in the HPOCSrO mechanism satisfies the independence assumption, the

first four desirable properties are maintained (Furuhata et al., 2015).

Proposition 7. For any partial solution St, t € [0, Timaz] and the corresponding set of customers who have
requested service C(t), the special request order Ty, and any integer n € [1,|C(¢)|], the HPOCSrO total cost

function totalcost(Sy(7:(n))) is independent of the request order of customers {m (1),...,m (n)}.

Proof. The partial solution S¢(m;(n)) is constructed by inserting a new dynamic customer using the cheapest
insertion method. As a result, Si(m¢(n)) is only concerned with the set of customers that have requested
service, but not about the ordering of the requests. Therefore, for any two different orderings m; and 7r;

containing the same n customers, we have S;(m(n)) = Si(m;(n)). O

Given Proposition 7, and following the same framework as in HPOCS, we can conclude that the
HPOCSrO mechanism satisfies the online fairness, immediate response, individual rationality and budget
balance properties. Regarding the early incentive property, there is no guarantee that the HPOCSrO satisfies
this property. However, using re-optimization to achieve a lower total cost for all the customers results in

lower initial quotes for all the customers and the experiments in Section 5.3 show that the initial quotes
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for the advance customers are generally lower than those for the dynamic customers and thus providing an

incentive for customers to request early.

5 Experimental Analysis

In this section, we present the simulation results to study the effectiveness of the proposed mechanisms
in terms of maintaining the desirable properties and providing desirable final costs to customers. We first
present the results for the HPOCS mechanism and then the results for the two extension mechanisms,
HPOCSD and HPOCSrO.

All simulations are performed on a modified Solomon RC201 instance for the vehicle routing problem
with time windows (VRPTW). The instance is representative of the benchmark cases in the literature for
VRP (Solomon, 1987). The instance specifies all of the deterministic information on customer locations,
demands, service time windows, and fleet capacity. There are 100 customers, N' = 100. The length of
the planning horizon is 960 time steps, Tyqa: = 960. A dynamic vehicle routing instance is constructed by
specifying two parameters, namely the percentage of advance customers - AC Percent, and the probability
that a dynamic customer requests service - RequestProb. These two parameters jointly determine the
mixture between the number of advance customers and the expected number of realized dynamic customers
in the problem. We assume that all dynamic customers have the same probability of requesting service.
q; = RequestProb,Vi. We use a triangular distribution function to model f;(¢), the conditional probability
density function of request time u;. In particular, the minimum value of the distribution is set to 0, and the
maximum value of the distribution is set to be equal to the request deadline, v;. The mode of the distribution
is set to %Ui. Within this time frame, the dynamic customers are more likely to make the request close to
the time they need service. A realization of the problem specifies the actual set of advance customers, a
group of dynamic customers who are to make requests, and the precise request times of these customers.
For each dynamic instance, we simulate 50 realizations and report the average results. The grand schedule
of each realization is calculated based on the assumption that all customers (both advance and dynamic) are
known at the beginning of the planning horizon and must be served. According to our problem definition in
Section 3.1, we assume the willing-to-pay level of customer i, W;, has the following form: W,; = (; * o; where
B; > 2. In the next set of experiments, we set all 3; to 2. We note that if 5; is less than 2 then it is possible
that some customers may decline the service. However, this does not fundamentally change the proposed
methodology (mechanism and routing strategy) since these customers will be treated like potential dynamic
customers who do not eventually request service on that particular day.

The shared cost gets updated each time when a new dynamic customer requests service because existing

customers can choose to form a coalition with the new customer if it can lower their shared costs. It is worth
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exploring how the sequence of the shared costs changes over time and how the overall pattern may be different

for different customers.

5.1 Analysis for HPOCS

To test the performance of the HPOCS mechanism, we set the demand scenario to be AC Percent = 0.25
and RequestProb = 0.75. This setup reflects an operating environment with a relatively high proportion
of dynamic customers. The number of advance customers is 100 % 0.25 = 25 and the expected number of
realized dynamic customers is 100 * (1 — 0.25) * 0.75 = 57.

Figure 1 illustrates a graph of a series of HPOCS shared costs of selected customers in the demand
scenario, where The horizontal axis represents the request order. In this scenario, the first 25 positions of
the request order correspond to advance customers. The vertical axis represents the shared cost per alpha
value. Each data point on the graph represents the shared cost per alpha value of a selected customer at
the time when the dynamic customer whose order index corresponds to the horizontal axis value requests
service. Each trajectory on the graph represents the series of shared cost per alpha values of a selected
customer. The first data point on each trajectory shows the initial quote per alpha value of the customer.

For example, the first trajectory shows the series of shared cost per alpha values of the first advance
customer on the special request order. Since all advance customers have the same shared cost per alpha
value at any time throughout the planning horizon, it is sufficient to use the first advance customer to
represent the entire set. The following four series correspond to four dynamic customers. “Dynamic 1”
corresponds to the first dynamic customer to request service. “Dynamic 2” represents the dynamic customer
whose request position falls around the first 3-quantiles of the total expected number of realized dynamic
customers. Similarly, “Dynamic 3” represents the dynamic customer whose request position falls around the
second 3-quantiles of the total expected number of realized dynamic customers. The last series represents
a dynamic customer positioned near the end of the request order. It is worth pointing out that the request
order shown by the horizontal axis is not equivalent to time.

It is evident from the graph that the shared cost of any customer is nonincreasing over the request
order, which is a direct outcome of the way shared costs are calculated in the HPOCS mechanism. In
particular, each time when a new customer requests service, existing customers will have the opportunity to
form a coalition with the new customer. They will choose to form a new coalition if and only if their shared
cost per alpha values can be lowered. Otherwise, existing customers will choose to stay in their current
coalitions.

Figure 2 illustrates a graph of the HPOCS initial quotes and the final shared costs of all customers
in the base case demand scenario. Recall that the initial quote is the first shared cost value a customer

receives and is the value that the customer has to use to make the decision of whether to accept the service
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Figure 1: Trajectories of the HPOCS shared cost per alpha values in base case

or not. The final shared cost is the price that the customer actually pays for the service. These two values
are the two most important shared cost values. All of the values shown on the graph are on the per-alpha
basis. Similar to Figure 1, the horizontal axis represents the request order and the vertical axis represents
the shared cost per alpha value. The upper series contains the initial quotes of all customers and the lower
series contains the corresponding final shared costs. For each customer, its initial quote is always greater
than or equal to its final shared cost, as guaranteed by the immediate response and individual rationality

properties.

1. We first study the initial quotes provided to all customers. By Proposition 2, the initial quote per
alpha value at time ¢ = 0 of all advance customers are the same, and are equal to the advance cost
per alpha acpa value. This is reflected by the level segment on the initial quote curve. For the realized
dynamic customers, their initial quotes start higher than that of the advance customers, but drop very
quickly as more dynamic customers become realized. Recall that the HPOCS mechanism calculates
the total costs based on the total travel costs of induced partial solutions. All of these partial solutions
are induced by a single grand solution that is constructed at time ¢ = 0 and is fixed throughout the
planning horizon. As more customers request service, the grand schedule is gradually recovered and
the synergy among the group of customers who have requested service increases. The marginal cost
decreases, which makes it more attractive and likely for existing customers to form a new coalition
with the customer who just requested. This in turn causes the initial quote offered to the dynamic
customer that just became realized to decrease over time. This phenomenon can be undesirable since
higher initial quotes offered to early request dynamic customers may turn them away if a lower §; is

implemented. If those early request dynamic customers decline service, the similar high level initial
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Figure 2: The HPOCS initial quotes and final shared cost values in base case

quotes will be offered to subsequent dynamic customers who request service, and the same problem
remains. For the same reason, it fails to satisfy the early incentive property since the initial quotes

offer to many realized dynamic customers drop below the initial quote of advance customers.

. We then study the final shared costs of all customers. It can be clearly seen from the graph that the
final shared cost curve nearly represents a flat line. The final shared cost per alpha values across all
advance and realized dynamic customers tend to be the same, which suggests that all of the customers
tend to form a single coalition. The synergy among customers becomes so high that existing customers
almost always can lower their shared costs by forming a new coalition with the dynamic customer that
just became realized. This may be undesirable since customers that request early do not have any
advantage over customers that request late. The lack of differentiation in the final shared costs fails to

encourage customers to request service early.

To improve the performance of the HPOCS mechanism, we proposed HPOCSD and HPOCSrO, their

experimental results are shown in the following subsections.

5.2 Analysis for HPOCSD

We use the same experimental setup as introduced in the beginning of Section 5. For each realization of the

dynamic vehicle routing problem, we solve the corresponding cost allocation problem using the HPOCSD

mechanism paired with the exponential overcharge heuristic method for calculating the overcharge factors.

Exponential overcharge. The overcharge factor is designed to be exponentially increasing over the

request order, which provides smaller penalties for early request dynamic customers and larger penalties for
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late request dynamic customers as compared to a constant or linear overcharge heuristic.

Nac « (exp ('Vezp (n +1- NAC)) - 1) 4

gemp(na §) = X Yeap (49)

~ Nerpc (exp (YeapNERDC) — 1)

The above definition states that the exponential overcharge factor is calculated based on and in proportion
to the discount factor, and is exponentially increasing over the request index n. Two parameters 7.z, and
vémp are needed to adjust the actual overcharge level to avoid bias.

Intuitively speaking, the larger the discount, the more significant the effect of incentivizing customers to
request early. At the same time, the mechanism may be subject to bigger risks of not being able to recover the
total operating cost. Thus, it is worth examining the performance of the exponential overcharge heuristic
using different discount factor levels. We perform simulations using four discount factors, namely § =
0.1,0.2,0.3 and 0.4. We use the same base case demand scenario as used in Section 5.1, where AC Percent =
0.25 and RequestProb = 0.75.

Figure 3 shows graphs of the initial quote per alpha and the final charge per alpha values of all customers
under the HPOCSD mechanism, when paired with the exponential overcharge heuristic. The figure contains
four panels, and each panel contains the graph of the initial quotes and the final charges corresponding to one
of the four discount factors that we have tested. All of the values shown on the graph are on the per-alpha

basis. The legends and axis in each graph are arranged in the same manner as in Figure 2.
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Figure 3: Initial quotes and final charges under HPOCSD with exponential overcharge
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1. We start our analysis by focusing on the initial quote curve. When comparing the shape of the initial
quote curve to that of the HPOCS model, it is evident that the flat segment corresponding to advance
customers is lowered and the part corresponding to the realized dynamic customers is raised. As a
result, the probability that an advance customer accepts its initial quote is increased. Meanwhile,
dynamic customers are effectively penalized and the probability that they accept their initial quotes
may decrease. This phenomenon can be observed for the exponential overcharge heuristic using any of
the discount factors we have tested. Similarly, it is shown to be more effective when a larger discount
factor is used. We also notice that when the discount factor is larger than 0.3, the early incentive

property is satisfied.

2. As discussed in Section 3.2, the online fairness property is only concerned with the final charges of
customers, rather than the initial quotes. Thus it is possible for a mechanism that satisfies the online
fairness property to have undesirable behavior associated with the initial quotes as indicated in Section
5.1. In order to correct this issue, an effective overcharge heuristic should raise the initial quotes for
dynamic customers high enough such that all of them are at least as high as that offered to advance
customers. Based on Figure 3, a discount of 30% is sufficient for the exponential heuristic to be

effective.

3. We now focus on the segment of the initial quote curve that corresponds to realized dynamic customers.
The exponential heuristic tends to flatten the segment of the initial quote curve corresponding to
realized dynamic customers, since it assigns increasingly larger overcharge factors to customers who
request late. In particular, it can be observed that the decreasing trend can even be reversed at the

tail of the initial quote curve when using a discount factor that is large enough.

4. We then analyze the effect of discounts and overcharges on the final charges. Recall that under the
HPOCS mechanism, the final shared costs of all the customers tend to be the same as many dynamic
customers become realized, as the synergy among customers becomes too high. Figure 3 shows that
the exponential overcharge heuristic can prevent the advance and realized dynamic customers to have
the same final charge per alpha value, even when a small discount factor is used. In particular, a jump
in the final charge value can be observed for the first dynamic customer that becomes realized. In
addition, it also causes the final charges for dynamic customers to resemble an exponential pattern

respectively. Both effects are more significant when a larger discount factor is used.

The simulation results discussed above suggest that larger discount factors are generally more effective
in terms of promoting customers to request early. Meanwhile, based on Proposition 6, a larger discount factor
could also lead to a bigger budget deficit in the worst case. Thus it is worth examining the performance of

the HPOCSD mechanism paired with the exponential overcharge heuristic on budget balance when using
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different discount factors. We use the percentage of the cost recovered as the performance measure. For
each realization of the problem, and each discount factor, we calculate the percentage of the total travel cost
that can be recovered by the sum of the final HPOCSD charges for all customers that become realized. In

particular, the percentage of the cost recovered per is calculated as

1O charger,,., (7r,... (1))

totalcost(C (Timaz))

per = (50)

Table 1 summarizes the percentage of the cost recovered values under the exponential overcharge
heuristic using different discount factors ranging from 0.1 to 0.4. We simulate the heuristic paired with
each discount level on 50 realizations of the DVRP. The same set of realizations are used for all of the
discount level. For each discount level, we report the average percentage of the cost recovered, the minimum
percentage of the cost recovered among all realizations, and the maximum percentage of the cost recovered

among all realizations.

Percentage of the Cost Recovered

Avg. Min. Max.
Discount Exponential
0.1 100.0%  99.4% 100.8%
0.2 100.1%  98.8% 101.5%
0.3 100.1%  98.2% 102.3%
0.4 100.2%  97.6% 103.0%

Table 1: Budget balance analysis of HPOCSD for the base case

1. The average percentage of the cost recovered of the exponential overcharge heuristic at all discount
levels are close to 100%, which is the target value we use when fine tuning the model parameters.
Besides, for each discount level, the minimum and maximum percentage values of the cost recovered
are generally positioned symmetrically around the corresponding mean value. Equivalently speaking,
the maximum deficit and the maximum surplus incurred among all realizations are generally the same.
This implies that the parameter settings that we use are not biased towards budget balance or surplus,

and lead to budget balanced cost allocations in general.

2. There is bigger variation in the performance measure when a larger discount factor is used. For example,
when using a discount of 40%, even though the HPOCSD mechanism is generally budget balanced on
average, it could incur either a 2.4% budget deficit or a 3.0% budget surplus in the worst case. If a

10% discount is used, the worst-case deviations are both less than 1%.

Based on the above analysis, it can be concluded that the HPOCSD mechanism can indeed resolve
the problems observed for the HPOCS mechanism, at the cost of losing the budget balance property of the

original formulation. Nevertheless, the HPOCSD mechanism remains approximately budget balanced. And
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it is shown that the exponential heuristic we have tested is effective in providing an incentive to make an

advance or early dynamic request.

5.3 Analysis for HPOCSrO

We now present simulation results to show the effectiveness of the HPOCSrO mechanism in improving the
overall performance of the HPOCS mechanism. For HPOCSrO, the number of decision epochs which we
use to re-optimize the partial solution is set at 20 which is shown to be a nice balance between identifying
improvements in the solution quality and computation time (Zou and Dessouky, 2018).

The HPOCS mechanism holds all the desirable properties of a cost-sharing mechanism but could
perform poorly in terms of the final shared cost when the number of dynamic customers is small, and this
effect is magnified when the number of customers requesting service is small. We use the scenarios where
RequestProb = 0.25,0.5 and the number of advance customers is 10 which is a small value to compare the
differences between the two above routing strategies.

Figures 4 and 5 show graphs of the initial quote per alpha value (with legend "Initial quote") and the
final shared cost per alpha value (with legend "Final price") of all customers under the two strategies in each
scenario. Fach graph represents a scenario and the 2 panels within the graph are the routing performances
corresponding to the two strategies: HPOCS and HPOCSrO.

Scenario 1: # Advance Customers = 10; RequestProb = 0.25
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Figure 4: Initial quote and final shared cost of the two methods in scenario 1

Based on the simulation results, we can make the following observations:

1. We first examine the initial quotes. We find that the HPOCS results exhibit a downward trend with
customers who call in later having a lower initial quote than the earlier customers, favoring those who
request later than advance customers as described in Section 5.1. The HPOCSrO results have a smaller
slope which implies dynamic customers benefit less by delaying. This is favorable because even though
the early incentive property does not strictly hold, fewer dynamic customers have a lower initial quote

than that of the advance customers.
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Scenario 2: # Advance Customers = 10; RequestProb = 0.5
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Figure 5: Initial quote and final shared cost of the two methods in scenario 2

2. We then examine the final shared cost. We find that HPOCSrO has a smaller final shared cost
indicating the efficiency of the re-optimization approach in reducing the final shared cost of each
customer. Additionally, the gap of the final costs between the two methods is getting smaller as
Request Prob gets higher which supports our assumption that the final cost performance of HPOCS is

acceptable when the number of realized customers is large.

3. Next, when we fix the number of advance customers, as the probability of a dynamic customer calling

in (RequestProb) gets higher, both methods encounter a lower final price.

Given the above analysis, we can conclude that the HPOCSrO mechanism does help improve the overall
performance of the proportional cost-sharing design. However, we need to keep in mind that it suffers from
the consequences of losing the ex-post incentive compatibility property which we will investigate in the next
section.

To test the impact of losing the ex-post incentive compatibility property, we look into scenarios where
there are 21 dynamic customers and the number of advance customers is 0, 10, and 20 respectively. Notice
that each scenario has 100 instances that share the same generating method as the previous simulations.
We then introduce the concept of Delay Slot which is a slot where the first dynamic customer is delayed
to. For example, delay slot 6 means the previous 1% dynamic customer is now the 6" dynamic customer
in the ex-post instance. For each scenario, all 100 instances are evaluated, and for each instance, we select
5 slots that are evenly distributed, namely the 2°9, 6", 11" 16" and 21%¢ slots. This results in altogether
100 x 5 = 500 samples for each scenario. And if we aggregate all scenarios into one, the 1500 samples with
300 instances for each delay slot give us the general impact of losing ex-post incentive compatibility property
regardless of scenario settings.

All scenarios are compared based on the final shared cost per alpha value. The average results of the
500 samples for each scenario are displayed in Table 2. The 274, 3'4 and 4*" columns of the table display

the percentage of getting a lower or higher or the same final shared cost when a dynamic customer delays
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5t column depicts the percentage increase in the final shared cost for a delayed

its request submission. The
customer. Table 2 shows that as the number of advance customers increases, both the chances of resulting in
a higher final shared cost and a lower final shared cost increase. And in total, 32.1% of the time, a customer
who delays its request submission shall end up with lower final shared cost while 55% of the time the cost
ends up higher. We note that the results in the table show the grand average across all the scenarios. For

brevity, we do not show the detailed results for the different delay slots but note there is little impact with

delaying to slot 2 but a delay to slot 21 can increase the final shared cost on average by 54.4%.

Scenarios % Better off | % Worse | % Same | AVG Price Change
0AC_ 21DC 27.2% 50.6% 22.2% 8.871%
10AC_21DC 32.4% 56.8% 10.8% 8.623%
20AC_21DC 36.6% 57.6% 5.8% 5.921%

Total 32.1% 55.0% 12.9% 7.805%

Table 2: Average gap results of 500 samples in each scenario

5.4 Comparison of the Different Routing Strategies

We next want to compare the effectiveness of the two dynamic routing heuristics proposed in this paper,
the ones used in HPOCS and HPOCSrO. Note that the same routing heuristic is used in HPOCSD as in
HPOCS. We perform this analysis by comparing the total cost of the dynamic routing solutions against the
static solution. Since it is difficult to identify optimal dynamic solutions, we compare them against a static
solution where all the information is known at the time of scheduling. We choose the same experimental
setting as in Section 5.1 with scenarios summarized in Table 3. We run 50 instances. For each instance,
the static solution is determined by using the same algorithm as the grand schedule while assuming all
the realized customers’ information are known in advance. That is, both the advanced and the generated
dynamic customers are known in advance and now the problem can be treated as a static routing problem.
In this case the grand schedule only includes the advanced and the "realized" dynamic customers so there is
no need for rescheduling. Therefore, this static solution serves as a good benchmark to the dynamic routing
heuristics where the full information of realized customers is not known when generating the grand schedule
and at each schedule update. The results are presented in Table 4. Each column represents the different
routing strategy while each row represents the different scenarios. The "static" column refers to the solution
when all the "realized customers" are known in advance. The "base" column refers to the solution from
the routing strategies used in HPOCS and HPOCSD. The "Re-Optimization" refers to the solution from
the routing strategy in HPOCSrO. The gap in Table 4 is the average percentage increase in the total cost
of the dynamic routing heuristic from the static solution. The routing algorithm used in HPOCS has at
most an average gap of 21% of the static solution and a minimum average gap of 1.09% attained in the last

scenario. We can see that when we fix the number of advance customers to be 25, as the request probability
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of dynamic customers increases, the solution of the base routing strategy improves significantly from a gap
of 20.8% to 5.5%. When we fix the request probability to be 50%, we observe that as the number of advance
customers increases, the solution quality improves from a gap of 12.6% to 2.7%. Thus we can conclude that
for the routing strategy that is used in HPOCS and HPOCSD, the more "realized" total customers we have
in the system, the better the solution quality. The re-optimization routing strategy, on the other hand is
within 13% across all the scenarios. It significantly outperforms the base routing strategy especially when
the dynamic request probability is low (e.g., .25). For the other cases, there is not much difference between

the two routing strategies since the base performs reasonably well in these scenarios.

Scenarios | ACPercent | RequestProb
AC25C25 0.25 0.25
AC25C50 0.25 0.50
AC25C75 0.25 0.75
AC50C25 0.50 0.25
AC50C50 0.50 0.50
AC50C75 0.50 0.75
ACT75C25 0.75 0.25
ACT75C25 0.75 0.50
AC75C25 0.75 0.75

Table 3: Experiment Scenarios

Scenarios | Static Base Gap Re-Optimization Gap

AC25C25 | 703.8 850.14 | 20.79% 764.5 8.62%
AC25C50 | 904.66 1018.3 | 12.56% 995.44 10.03%
AC25C75 1090 1150.4 | 5.54% 1169.7 7.31%
AC50C25 | 822.24 | 993.99 | 20.89% 898.42 9.26%
AC50C50 | 1023.68 | 1100.84 | 7.54% 1126.56 10.05%
AC50C75 | 1157.16 | 1195.24 | 3.29% 1240.8 7.23%
ACT75C25 | 977.72 | 1134.46 | 16.03% 1098.84 12.39%
AC75C50 | 1154.2 | 1184.87 | 2.66% 1181.4 2.36%
AC75C75 | 1204.28 | 1217.46 | 1.09% 1235.74 2.61%

Table 4: Comparisons of Different Routing Strategies

6 Conclusions

In this paper, we study the problem of building a real-time cost-sharing transportation system, which results
from horizontal cooperation among multiple suppliers. In this problem, part of the customer requests are
known at the beginning of the planning horizon, while the rest of the requests become realized dynamically
over time. There are two major research issues closely related to the problem we study, namely the dynamic
vehicle routing problem (DVRP) and cost-sharing mechanism design, and this paper focuses on designing
the cost-sharing mechanism in a dynamic vehicle routing setting.

We develop the Hybrid Proportional Online Cost-Sharing (HPOCS) mechanism as an online cost-
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sharing mechanism that combines proportional cost-sharing for calculating the initial quotes for advance
customers and the Proportional Online Cost-Sharing (POCS) mechanism (Furuhata et al., 2015) for handling
dynamic customer requests. The idea behind HPOCS is that customers can choose to form coalitions with
customers who request service directly after them to decrease their shared costs. It is proved that the
HPOCS mechanism satisfies five out of six the desirable properties we propose, including online fairness,
budget balance, immediate response, individual rationality, and ex-post incentive compatibility.

The baseline HPOCS model is extended in two directions. One extension is to incorporate discounts
for advance customers and overcharges for dynamic customers, which both help to incentivize customers
to request early. The new HPOCSD mechanism is proved to be approximately budget balanced. All of
the other properties of HPOCS are preserved. We propose the exponential overcharge heuristic method for
calculating the overcharge factors. Simulation results show that it appears to be quite effective. The other
extension is to incorporate periodic re-optimization to improve the performance on the final shared cost for
the customers. In experiments across multiple scenarios, though losing the ex-post incentive compatibility
property, HPOCSrO is shown to be a good mechanism design alternative to HPOCS when the RequestProb
is low and the number of all realized customers is small since the grand schedule in HPOCS assumes all
customers request service before operating service and is therefore less representative of the actual total cost.
Experimentally it is shown that the HPOCS mechanism performs poorly for the early incentive property.
Only the HPOCSD mechanism can ensure that the early incentive property holds given a proper selection of
the discounting parameters. Furthermore, experiments show that in general both HPOCSD and HPOCSrO
perform much better than HPOCS in lowering the initial quotes of the advance customers.

More work can be done along the lines of improving the HPOCS mechanism. For example, while
incorporating the dynamic vehicle framework to calculate the shared costs, we can add customer forecasting
to see if it can further reduce the final shared costs. Additionally, we can target reducing the initial quote for
the dynamic customers while maintaining all the desirable properties. There may also exist other approaches

to improve the HPOCS mechanism, possibly at the cost of sacrificing one or more of the desirable properties.

Acknowledgement

The research reported in this paper was partially supported by Metrans and the National Science Foundation

under grant CNS-1932615.

References

R. C. Anderson and A. Claus. Cost allocation in transportation systems. Southern Economic Journal, 43(1):793-803, 1976.

39



Y. Bleischwitz and B. Monien. Fair cost-sharing methods for scheduling jobs on parallel machines. Journal of Discrete

Algorithms, 7(3):280-290, 2009.

F. Cruijssen, M. Cools, and W. Dullaert. Horizontal cooperation in logistics: Opportunities and impediments. Transportation

Research Part E: Logistics and Transportation Review, 43(2):129-142, 2007.

J. Drechsel and A. Kimms. Computing core allocations in cooperative games with an application to cooperative procurement.

International Journal of Production Economics, 128(1):310-321, 2010.

J. Drechsel and A. Kimms. Cooperative lot sizing with transshipments and scarce capacities: Solutions and fair cost allocations.

International Journal of Production Research, 49(9):2643-2668, 2011.

M. A. Figliozzi, H. Mahmassani, and P. Jaillet. Framework for study of carrier strategies in auction-based transportation

marketplace. Transportation Research Record, (1854):162 — 170, 2003.

M. A. Figliozzi, H. Mahmassani, and P. Jaillet. Competitive performance assessment of dynamic vehicle routing technologies

using sequential auctions. Transportation Research Record, (1882):10 — 18, 2004.

M. A. Figliozzi, H. S. Mahmassani, and P. Jaillet. Pricing in dynamic vehicle routing problems. Transportation Science, 41(3):
302-318, 2007.

M. Frisk, M. Gothe-Lundgren, K. Jornsten, and M. Ronnqvist. Cost allocation in collaborative forest transportation. Furopean

Journal of Operational Research, 205(2):448-458, 2010.

M. Furuhata, M. Dessouky, F. Ordonez, M.-E. Brunet, X. Wang, and S. Koenig. Ridesharing: The state-of-the-art and future
directions. Transportation Research Part B: Methodological, 57:28-46, 2013.

M. Furuhata, K. Daniel, S. Koenig, F. Ordonez, M. Dessouky, M. E. Brunet, L. Cohen, and X. Wang. Online cost-sharing
mechanism design for demand-responsive transport systems. IEEE Transactions on Intelligent Transportation Systems, 16

(2):692-707, 2015.

G. Ghiani, E. Manni, and B. W. Thomas. A comparison of anticipatory algorithms for the dynamic and stochastic traveling

salesman problem. Transportation Science, 46(3):374-387, 2012.
D. B. Gillies. Some theorems on n-person games. PhD thesis, 1953.

J. Green, E. Kohlberg, and J. J. Laffont. Partial equilibrium approach to the free-rider problem. Journal of Public Economics,
6(4):375-394, 1976.

A. Gupta, A. Srinivasan, and E. Tardos. Cost-sharing mechanisms for network design. Algorithmica, 50(1):98-119, 2008.

N. Immorlica, M. Mahdian, and V. S. Mirrokni. Limitations of cross-monotonic cost-sharing schemes. ACM Transactions on

Algorithms, 4(2):1-25, 2008.

M. A. Krajewska, H. Kopfer, G. Laporte, S. Ropke, and G. Zaccour. Horizontal cooperation among freight carriers: Request

allocation and profit sharing. Journal of the Operational Research Society, 59(11):1483-1491, 2008.
G. Laporte. Fifty years of vehicle routing. Transportation Science, 43(4):408-416, 2009.

G. D. Li, D. L. Du, D. C. Xu, and R. Y. Zhang. A cost-sharing method for the multi-level economic lot-sizing game. Science
China Information Sciences, 57(1):1-9, 2014.

40



P. Liu, Y. Wu, and N. Xu. Allocating collaborative profit in less-than-truckload carrier alliance. Journal of Service Science

and Management, 03(01):143-149, 2010.

Y. Liu and Y. Li. Pricing scheme design of ridesharing program in morning commute problem. Transportation Research Part

C: Emerging Technologies, 79:156—177, 2017.
D. McFadden. Measuring willingness-to-pay for transportation improvements. 1998.

A. Mehta, T. Roughgarden, and M. Sundararajan. Beyond Moulin mechanisms. Games and Economic Behavior, 67(1):125-155,
2009.

B. Montreuil. Toward a physical internet: Meeting the global logistics sustainability grand challenge. Logistics Research, 3
(2-3):71-87, 2011.

H. Moulin. Incremental cost sharing: Characterization by group strategyproofness. Social Choice and Welfare, 16(2):279-320,
1999.

H. Moulin and S. Shenker. Strategyproof sharing of submodular costs: Budget balance versus efficiency. Economic Theory, 18

(3):511-533, 2001.

V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia. A review of dynamic vehicle routing problems. FEuropean Journal of

Operational Research, 225(1):1-11, 2013.

K. Roberts. The characterization of implementable choice rules. In Aggregation and revelation of preferences, volume 12, pages

321-349. 1979.

T. Roughgarden and M. Sundararajan. Quantifying inefficiency in cost-sharing mechanisms. Journal of the ACM, 56(4):1-33,
2009.

H. R. Sayarshad and H. O. Gao. A scalable non-myopic dynamic dial-a-ride and pricing problem for competitive on-demand

mobility systems. Transportation Research Part C: Emerging Technologies, 91:192—208, 2018.

D. Schmeidler. The nucleolus of a characteristic function game. In Game and economic theory: selected contributions in honor

of Robert J. Aumann, chapter The Nucleo, pages 231 — 238. 1995.
L. S. Shapley. A value for n-person games. Annals of Mathematics Studies, 28(2):307-317, 1953.

T. Skjoett-Larsen. European logistics beyond 2000. International Journal of Physical Distribution & Logistics Management,
30(5):377-387, 2000.

M. M. Solomon. Algorithms for the vehicle-routing and scheduling problems with time window constraints. Operations Research,

35(2):254-265, 1987.
Y. Sprumont. Ordinal cost sharing. Journal of Economic Theory, 81(1):126-162, 1998.
S. H. Tijs and T. S. H. Driessen. Game theory and cost allocation problems. Management Science, 32(8):1015-1028, 1986.
Y.-T. Wang and D. Zhu. Ordinal proportional cost sharing. Journal of Mathematical Economics, 37(3):215-230, 2002.
H. Zou. An Online Cost Allocation Model for Horizontal Supply Chains. dissertation, University of Southern California, 2017.

H. Zou and M. M. Dessouky. A look-ahead partial routing framework for the stochastic and dynamic vehicle routing problem.

Journal on Vehicle Routing Algorithms, 1:73—78, 2018.

41



	Introduction
	Literature Review
	Cost-sharing Methods
	Cost Allocation in Transportation

	The Online Cost Allocation Problem
	Problem Definition
	Desirable Properties

	Proposed Mechanisms
	Hybrid Proportional Online Cost-Sharing (HPOCS) Mechanism
	Hybrid Proportional Online Cost-Sharing with Discount (HPOCSD)
	Hybrid Proportional Online Cost-Sharing with Re-optimization (HPOCSrO)

	Experimental Analysis
	Analysis for HPOCS
	Analysis for HPOCSD
	Analysis for HPOCSrO
	Comparison of the Different Routing Strategies

	Conclusions
	Acknowledgement
	References

