UBITect: A Precise and Scalable Method to Detect
Use-before-Initialization Bugs in Linux Kernel

Yizhuo Zhai Yu Hao Hang Zhang
yzhai003@ucr.edu yhao016@ucr.edu hang@cs.ucr.edu
UC, Riverside UC, Riverside UC, Riverside
USA USA USA

Daimeng Wang Chengyu Song Zhiyun Qian
dwang030@ucr.edu csong@cs.ucr.edu zhiyunq@cs.ucr.edu
UC, Riverside UC, Riverside UC, Riverside
USA USA USA

Mohsen Lesani Srikanth V. Krishnamurthy Paul Yu

lesani@cs.ucr.edu
UC, Riverside
USA

ABSTRACT

Use-before-Initialization (UBI) bugs in the Linux kernel have se-
rious security impacts, such as information leakage and privilege
escalation. Developers are adopting forced initialization to cope
with UBI bugs, but this approach can still lead to undefined behav-
iors (e.g., NULL pointer dereference). As it is hard to infer correct
initialization values, we believe that the best way to mitigate UBI
bugs is detection and manual patching. Precise detection of UBI
bugs requires path-sensitive analysis. The detector needs to track
an associated variable’s initialization status along all the possible
program execution paths to its uses. However, such exhaustive
analysis prevents the detection from scaling to the whole Linux
kernel. This paper presents UBITECT, a UBI bug finding tool which
combines flow-sensitive type qualifier analysis and symbolic ex-
ecution to perform precise and scalable UBI bug detection. The
scalable qualifier analysis guides symbolic execution to analyze
variables that are likely to cause UBI bugs. UBITECT also does not
require manual effort for annotations and hence, it can be directly
applied to the kernel without any source code or intermediate rep-
resentation (IR) change. On the Linux kernel version 4.14, UBITECT
reported 190 bugs, among which 78 bugs were deemed by us as
true positives and 52 were confirmed by Linux maintainers.

CCS CONCEPTS

« Security and privacy — Operating systems security; Sys-
tems security.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ESEC/FSE °20, November 8—13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7043-1/20/11.

https://doi.org/10.1145/3368089.3409686

krish@cs.ucr.edu
UC, Riverside

USA

paul.L.yu.civ@mail.mil
U.S. Army Research Laboratory
USA

KEYWORDS

Use-before-Initialization, bug detection, type qualifier, symbolic
execution

ACM Reference Format:

Yizhuo Zhai, Yu Hao, Hang Zhang, Daimeng Wang, Chengyu Song, Zhiyun
Qian, Mohsen Lesani, Srikanth V. Krishnamurthy, and Paul Yu. 2020. UBI-
Tect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs
in Linux Kernel. In Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE °20), November 8—13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3368089.3409686

1 INTRODUCTION

Linux kernels provide a secure foundation upon which services
for user applications can be built. However, security vulnerabil-
ities existing inside kernel code violate the security guarantees
that it intends to provide. Among such vulnerabilities, use-before-
initialization (UBI) is an emerging threat. A recent report from a
Microsoft security team shows that the number of patched UBI
bugs is similar to the number of patched use-after-free bugs [20].
UBI bugs open up significant security threats against the operating
system: they could enable attackers to take control over the entire
system [2, 7, 16, 33], leak sensitive information [15, 19], and can be
exploited using automated means [16].

Both static analysis and dynamic analysis have been applied to
detect UBI bugs. Modern compilers provide the -Wuninitialized
option to facilitate the detection of UBI bugs at compile time. Unfor-
tunately, due to its limited analysis scope (i.e., intra-procedural), this
cannot detect UBI bugs that involve multiple functions. In practice,
many UBI bugs do occur inter-procedurally. For example, objects
can be allocated in one function, initialized in another function,
and used in a third function. Static symbolic execution like that
in Clang static analyzer (CSA) [26], can perform more accurate
analysis, but due to the path explosion, its ability to perform inter-
module holistic program analysis is limited. Dynamic analysis used
in MemorySanitizer [25] and kmemcheck [27] can also detect UBI

https://doi.org/10.1145/3368089.3409686
https://doi.org/10.1145/3368089.3409686

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

bugs, but their limited code coverage means that they will miss
many bugs.

Zeroing the allocated object is a popular mitigation strategy for
UBI bugs. For example, PaX’s STACKLEAK plugin [22] forces the ini-
tialization of kernel stacks during context switches between the
kernel and user space. UniSan [15] forces the initialization of mem-
ory objects that may be uninitialized and may leave the kernel
space (e.g., copy-to-user). Safelnit [19] does so for all stack and
heap variables. However, we point out that forced initialization can
only be used to mitigate information leaks, but not other types of
UBI bugs. The reason is that, the value @ used for initialization may
violate a program’s semantics and lead to undefined behaviors. For
instance, initializing a pointer to NULL is sufficient towards prevent-
ing information leaks, but dereferencing a NULL-pointer results in
a different type of vulnerability viz., CWE-476 [3] (which is not
desirable in OS kernels). For normal data, a few patches we submit-
ted were also rejected due to incorrect initialization values. Based
on this observation, we conclude that a better way to mitigate UBI
bugs is to warn developers and let them decide upon the correct
initialization values.

There are two particular challenges for reporting UBI bugs to
developers. First, the Linux kernel has about 27.8 million lines of
code and so, the analysis must be scalable. Second, most UBI bugs
are path-sensitive, meaning that they can only be triggered if there
is a feasible path between the allocation site and the use site, along
which the involved variable will not be initialized. Because of these,
UBI bugs are uniquely challenging to comprehensively discover
and require inter-procedural path-sensitive analysis. We are not
aware of any such analysis scaling to the whole kernel.

Flow-sensitive static analysis and symbolic execution are two
state-of-art solutions that can help towards discovering UBI bugs.
Our evaluations show that the former method scales well but gen-
erates too many warnings to inspect manually. Moreover, there
are lots of false positives in those warnings. Symbolic execution
reports fewer false positives but suffers from path explosion.

In this work, we seek to address the aforementioned two chal-
lenges, and design a tool suitable for reporting UBI bugs for manual
inspection and fixing. To this end, we have developed UBITECT,
a tool that combines flow-sensitive type qualifier inference and
symbolic execution to find UBI bugs in the Linux kernel. In the first
stage, UBITECT uses a soundy [17] flow-sensitive, field-sensitive
and context-sensitive inter-procedural analysis to find potential UBI
bugs. For each potential bug, this step also generates a guidance for
path exploration, so as to avoid paths that will never reach the use
site or paths that will initialize the involved variable. In the second
stage, UBITECT uses under-constrained symbolic execution [23] to
find a feasible path according to the guidance. If a path is found,
UsITecT will report the bug together with the corresponding path
to make the manual inspection and fix easier.

We perform a thorough evaluation of UBITECT on Linux v4.14 un-
der allyesconfig, which includes 16,163 files with 616,893 functions.
UsITECT reported 190 bugs, among which 78 bugs were deemed
by us as true positives, yielding a false positive rate of 59%. Among
true positives, we found that the corresponding code of 9 bugs have
been removed from the mainline kernel due to feature updates and
11 bugs were already fixed in the mainline. We submitted patches
for the remaining 58 bugs and 37 were confirmed and applied by

Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

1 /* file: drivers/crypto/mv_cesa.c

2 * uninteresting code lines are omitted
*/
typedef void (*crypto_completion_t)(
5 struct crypto_async_request *req, int err);

7 struct crypto_async_request {

8 crypto_completion_t complete;

N H

10

1 static int queue_manag(void *data)

12 {

13 /* backlog is defined without initialization %/
14 struct crypto_async_request *backlog;

15 if (cpg->eng_st == ENGINE_IDLE)

16 backlog = crypto_get_backlog(&cpg->queue);
17 if (backlog)

18 /* uninitialized pointer dereferenced! */
19 backlog->complete(backlog, -EINPROGRESS);
20 return 0;

21 }

Figure 1: A UBI bug in the Linux kernel. Variable backlog is
not initialized if (cpg->eng_st != ENGINE_IDLE). It allows arbi-
trary code execution once an attacker exploits the bug to
control the value left on the kernel stack.

kernel maintainers. In addition, based on these bugs, we apply some
intuitive heuristics and uncover 15 more bugs, thereby confirming
52 bugs in total. Details are provided in section 6.

Contributions In this paper, our contributions are as follows:

e Design. We design UBITECT, which combines scalable type qual-
ifier inference with symbolic execution to perform scalable and
precise detection of Use-before-Initialization bugs in the Linux
kernel.

e Implementation. We implement UBITECT on the LLVM 7.0.0
compiler toolchain and KLEE with 13,446 LoC. The tool is open
sourced [5].

e Results. UsITECT found 78 bugs in the v4.14 Linux kernel, where
11 were already fixed and 37 were confirmed by Linux maintain-
ers.

2 USE-BEFORE-INITIALIZATION BUGS

In this section, we highlight the severity of UBI bugs and the chal-
lenges in detection.

2.1 From UBI to Arbitrary Code Execution

The first example is a bug that was found in the queue_manag func-
tion (simplified in Figure 1) and patched in revision 1a92b2b. The
root cause for this bug is that the pointer backlog (line 14) is only
initialized (line 16) when (cpg->eng_st == ENGINE_IDLE).
Although this case is simple, it highlights the severity of the se-
curity impact of UBI bugs. The variable backlog belongs to the type
structure crypto_async_request, which contains a function pointer
complete (line 8). When backlog is left uninitialized, it could point to
an arbitrary memory location depending on what value was stored

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel

at that address (&backlog) before, and backlog->complete could also
point to arbitrary code. Since backlog is allocated on the kernel
stack, by utilizing stack spray [16], an attacker can control backlog
and thus, the function pointer (backlog->complete). Consequently,
when this function is invoked at line 19, the attacker can achieve
arbitrary code execution.

In addition to control-flow hijacking attacks, an attacker can
also launch arbitrary reads and writes by overlapping attacker-
controlled data with uninitialized pointers (e.g., CVE-2010-2963 [7]).
Moreover, if a critical decision variable (e.g., authenticated) is unini-
tialized, an attacker can bypass security checks and induce other
unexpected control flows. A subsequent research effort has shown
that such attacks are practical and can be constructed in an auto-
mated manner [16].

2.2 Challenges in Detecting UBI Bugs

The key challenge in detecting UBI bugs is the need for high-
precision analysis (to reduce false positives), which can conflict
with our goal of scaling up the analysis to the entire Linux kernel.
Figure 2 depicts a good example: function vmw_translate_mob_ptr
takes three input arguments and an output argument *vmw_bo_p,
which is supposed to be initialized at line 16. Under normal cir-
cumstances (i.e., the lookup succeeds), *vmw_bo_p will be initialized.
However, when the callee enters an error related return path (line
15), *vmw_bo_p is left unchanged.

Need for Inter-procedural Analysis. A conservative intra-procedural
analysis can require that all the variables must be initialized at all
levels (e.g., both the pointer and the data the pointer points to),
when passed to a callee. However, since the callee may not ac-
cess all input arguments (e.g., when an error is returned at line
15), this requirement is too restrictive and will generate too many
false positives. Therefore, an inter-procedural analysis is necessary.
Moreover, since *vmw_bo_p is left unchanged upon an error return,
whether the actual argument is uninitialized or initialized depends
on the calling context (i.e., whether the caller has already initialized
it). Hence, a context-sensitive inter-procedural analysis is prefer-
able. Similarly, since the callee may not access all the fields of an
argument (e.g., sw_context), performing a field-sensitive analysis is

preferable.

Needs for Path-Sensitive Analysis. Another interesting part of
this example is that the local variable (vmw_bo) is not initialized at
first (line 10), and may not be initialized if the call to the function
vmw_user_dmabuf_lookup fails (line 12). However, since
vmw_translate_mob_ptr() checks the return value to detect the error
(line 14-15), the uninitialized value will not reach a use (line 16).
Thus, in essence, having a data-flow between where the variable is
uninitialized and used, is a necessary condition for UBI bugs but
is not sufficient (i.e., , the corresponding execution path must be
feasible). Unfortunately, no path-sensitive analysis (e.g., dynamic
analysis) can scale to cover all the paths in the kernel. As a practical
compromise, UBITECT uses under-constrained symbolic execution
to verify the feasibility of a potential buggy path.

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

1 /* file: drivers/gpu/drm/vmwgfx/vmwgfx_execbuf.c
2 * uninteresting code lines are omitted

3 */

4+ static int vmw_translate_mob_ptr(

5 struct vmw_private *dev_priv,

6 struct vmw_sw_context *sw_context,

7 SVGAMobId *id,

8 struct vmw_dma_buffer x*vmw_bo_p)

s |

10 struct vmw_dma_buffer xvmw_bo;// = NULL;
11 uint32_t handle = *id;

12 int ret = vmw_user_dmabuf_lookup(

13 sw_context->fp->tfile, handle, &vmw_bo);
14 if (unlikely(ret != 0))

15 return -EINVAL;

16 *vmw_bo_p = vmw_bo;

17 return 0;

18 }

Figure 2: An inter-procedural UBI bug in the Linux kernel.
Argument vmw_bo_p may remain uninitialized during error
return.

UBITect

Call Graph Qualifier
Analysn‘s’ /\ Inference
2° \ @

*] ..

l’ H

Source LLVM IR Functions &
Call Dependencies;
A 4

Warniﬁés Bugs
& Guidance & Paths

Function Summary = Function Summary
R - QR

- au - au
RSN
Qualifier Inference
_Aliasing Analysis

Points-To Analysis

al AN
Qualifier Inference

Aliasing Analysis
Points-To Analysis

Figure 3: The workflow of UBITECT, "QI":Qualifier Inference,
"QR":qualifier requirements, "QU": qualifier updates

3 OVERVIEW

In this section, we show how UBITECT combines type qualifier infer-
ence and symbolic execution to detect UBI bugs. Figure 3 illustrates
the workflow of UBITECT and we will explain each component in
the following content. The design of the type inference will be
presented more formally in subsection 4.2.

3.1 Pre-processing

To make the analysis easier, UBITECT first compiles Linux source
code to its LLVM Intermediate representation (IR). To improve the
scalability of the type inference, UBITECT adopts the bottom-up
style inter-procedural analysis. To support the bottom-up style
analysis, the second step is to build the call graph of the whole
code base so as to (1) resolve indirect call targets, (2) build the
dependency tree between caller and callee(s), and (3) find potential
recursive chains.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

3.2 Type Qualifier Inference

Type qualifiers have been used in previous works to detect secu-
rity bugs. For example, Johnson and Wagner [13] introduced two
qualifiers kernel and user to track the provenance of pointers (i.e.,
whether their values are controlled by user space) and find unsafe
dereferences of user-supplied pointers. In this work, we adopt the
flow-sensitive type qualifier inference [9] to detect UBI bugs.
From a high level, we introduce two new qualifiers: init and
uninit, where init < uninit (i.e., init is a subtype of uninit); and de-
fines the subtype relations between qualified types (e.g., init int <
uninit int). Besides the trivial check that an expression of uninit
cannot be assigned to a location of init, UBITECT adds additional
checks/assertions to detect use of initialized variables:

e Only expressions of init type can be dereferenced; and
e Only expressions of init type can be used in conditional
branches.

UBITECT only considers those two assertions that capture UBL
bugs with security implications here and ignore other types of uses
of such variables. For example, adding two uninitialized variables
reflects an uninitialized usage, but is not security-critical.

Since the IR generated by the compiler does not contain any qual-
ifier, UBITECT performs automated inference to assign a qualifier for
every variable at every program point within a function, including
its argument(s) and return value(s). If UBITECT can successfully
infer all the qualifiers, then the analyzed function is free of UBI
bugs. Otherwise we find potential UBI bug(s) and the corresponding
guidance will be generated and passed to UBITECT s symbolic exe-
cution engine. We will first explain how UBITECT infers qualifiers
within a function and generates function summaries; then we will
describe how inter-procedural qualifier inference works.

Intra-procedural Qualifier Inference. The intra-procedural qual-
ifier inference is done as follows. (1) UBITECT assigns each expres-
sion (LLVM value) with a symbolic type k. (2) Along different types

of expressions, UBITECT generates subtyping constraints accord-
ing to rules in subsection 4.2. (3) When encountering the security

critical operations listed above, UBITECT enforces that the corre-
sponding expression has the concrete qualifier init. (4) UBITECT

resolves the symbolic types into concrete qualified types by solving

the constraints.

Take aa_splitn_fgname in Figure 4 as an example. At the en-

try of the function (line 6), ns_name and ns_len are assigned with
two symbolic types k1 const char Ky * k3* and k4 size_t ks%*.
Because ns_name (%2) and ns_len (%3) in basic block (BB) %7 are
dereferenced as pointers, the qualifier of the pointer should be
init. UBITECT can then resolve their qualified types at least to be
uninit const char uninit = init+ (initialized pointer to uninitial-
ized pointer to uninitialized constant char) and uninit size_t initx
(initialized pointer to uninitialized integer).
Function Summaries Generations. After intra-procedural quali-
fier inference, UBITECT generates function summaries (FS) for every
function. Each function summary includes (1) qualifier require-
ments (QR) over the input arguments for the target function to be
invoked without triggering UBI bugs, (2) qualifier updates (QU) for
in and out parameters, and (3) qualifier of the return value.

Here, we continue using aa_splitn_fgname as an example and
focus on how we generate QR and QU for the input arguments

Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

ns_name and ns_len. Let us assume that the actual argument types
are kj const char ko * initx and k4 size_t init*, where k; is sym-
bolic (i.e, either init or uninit). By assigning the constant integer
to *ns_name (line 10) and *ns_len (line 11), their qualified types
will be updated to k1 const char init * initx and init size_t inits.
However, when the control flow merges at basic block %8 before re-
turning, because these two variables are not written-to in the other
branch (when name == NULL), the updates to the qualifier when
aa_splitn_fgname returns will be decided by the least-upper bound
of k2 and init (i.e., k2 V init), as well as k4 and init.

To enable context-sensitive inter-procedural analysis, we keep
k2 and k4 as symbolic as “updates to the parameters” in the function
summary, and calculate the actual updates according to the calling
context.

Inter-procedural Qualifier Inference. After we derive the sum-
mary of aa_splitn_fgname, we can proceed to analyze
aa_fqlookupn_profile. The arguments &ns_name (%4) and &ns_len
(%5) point to memory objects allocated on the stack and thus, the
qualified types are uninit char uninit * init+ and uninit size_t inits.
Their qualified types are compatible with the QR generated above.
After invocation, according to the QU, their types remain the same
because when k9 = uninit, uninit V init = uninit.

When processing the if statement on line 22, UBITECT enforces
that the expression used as the branch condition has a qualifier
init. However, in aa_fglookupn_profile, this subtyping constraint
cannot be satisfied because the qualified type of ns_name (%7) is
uninit char uninit*. Due to this conflict, the inference module out-
puts a potential UBI bug on line 22 (BB %3) of aa_fqglookupn_profile.
Guidance for Symbolic Execution. To mitigate the path explo-
sion problem, UBITECT generates a guidance for the symbolic execu-
tion engine (SE). The guidance includes an avoidlist and a mustlist
of basic blocks. A basic block is inserted into the avoidlist when (1)
the involved variable is initialized or (2) the basic blocks can never
lead to the use site. A basic block is inserted into the mustlist when
(1) the involved variable becomes uninitialized or (2) the unini-
tialized variable is used. For the UBI bug detected above, UBITECT
passes SE a avoidlist containing %7 where the variable is initialized
and a mustlist containing %3 where UBI happens.

3.3 Symbolic Execution

After getting the guidance, UBITECT uses under constrained sym-
bolic execution to search for a feasible path (i.e., whose symbolic

path constraints can be satisfied) from the allocation site (i.e., the

entry of aa_fqlookupn_profile) to the problematic use site %3, while

avoiding %7.If a feasible path is found (e.g., BB %3, %4, %8,%3), UBITECT
outputs a report for manual inspection, together with the path.

4 UBITECT DESIGN

This section describes the design details of UBITECT, including
points-to and aliasing analysis, the formalization of the type infer-
ence, and the symbolic execution engine.

4.1 Points-to and Aliasing Analysis

As a precursor to flow-sensitive qualifier inference [9], UBITECT per-
forms a flow-sensitive and field-sensitive intra-procedural points-to

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel

1 /* file: security/apparmor/policy.c

2 * uninteresting code lines are omitted
3 */
4+ const char xaa_splitn_fgname(
5 const char *fgname, size_t n,
6 const char *xns_name, size_t *ns_len) {
7 const char *name = skipn_spaces(fgname, n);
8 if (!name)
9 return NULL; //*ns_name is not initialized
10 *ns_name = NULL;
11 *ns_len = 0;
12 /* populate *ns_name */
13 return name;
14 }
15
16 int aa_fqlookupn_profile(struct aa_label *base,
17 const char *fgname, size_t n) {
18 const char *name, *ns_name;
19 size_t ns_len;
20 name = aa_splitn_fgname(fgname, n,
21 &ns_name, &ns_len);
22 if (ns_name) { // UBI!
23 //ns = aa_lookupn_ns(labels_ns(base),
2 //ns_name, ns_len);
25 }
26 return 0;
27}
%4:

%5 = tail call i8* @skipn_spaces(i8* %0, i32 %1)
%6 = icmp eq i8* %5, null
bri1 %6, label %8, label %7

T | F

%7:

store i8* null, i8** %2, align 8
store i32 0, i32* %3
br label %8

%8:
reti8* %5

CFG for ‘aa_splitn_fqname’ function

%3:
%4 = alloca i8*, align 8
%5 = alloca i32, align 4
%6 = call i8* @aa_splitn_fqname(i8* %1, i32 %2, i8** %4, 132* %5)
%7 = load i8*, i8** %4, align 8
%8 = icmp eq i8* %7, null
br i1 %8, label %13, label %9

T F

%9:
%10 = load i8*, i8** %4, align 8
%11 = load 132, 132* %5, align 4

%12 = call i8* @aa_lookupn_ns(i8* %0, i8* %10, i32 %11)
brlabel %13

o /

retiz2 o

CFG for ‘aa_fqlookupn_profile’ function

Figure 4: An inter-procedural UBI bug in the apparmor mod-
ule and corresponding LLVM IR with control-flow graph.

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

analysis; specifically, towards this it applies standard data-flow anal-
ysis. For each statement, a points-to map is maintained and updated
according to the control-flow. This allows UBITECT to have differ-
ent points-to sets for the same pointer at different program points
(i.e., flow-sensitive).

Because type casting is common in the Linux kernel, the points-
to map tracks all variables and (field-extended) objects regardless of
whether their types are pointers or not. This allows UBITECT to han-
dle (i) casting between pointers and integers and (ii) integer-based
pointer arithmetic. UBITECT also handles two types of castings that
are especially troublesome for points-to analysis: container_of and
casting from a void pointer. When handling such cases, UBITECT
dynamically extends the allocated object size (i.e., number of fields
in a struct type), if the destination type contains more fields than
the original object. Since such castings usually happen on function
arguments, this procedure enables more precise function summaries
which will be explained in subsection 4.3.

4.2 Qualifier Inference

Our qualifier inference component is an extension of the flow-
sensitive analysis by Foster et al. [9], and the inference rules for
basic expressions are the same. In addition, we consider pair types
which model the fields inside a C struct type and present their
corresponding type inference rules. Providing separate qualifiers
for elements of pairs (i.e., struct fields) is important as struct is
used extensively in the Linux kernel. More importantly, pointers to
struct are often passed between kernel functions, and whether a
field of a struct is or is not initialized is independent of the states
of the other fields in the struct.

Given a program in LLVM IR, we present a type qualifier in-
ference system to infer a qualifier (either init or uninit) for each
register variable (i.e, LLVM expression) and each field that belongs
to an allocated memory object. We perform the inference function-
by-function in a bottom-up fashion. If we can successfully infer the
qualifiers, then the analyzed function is correct; otherwise we find
potential UBI bug(s).

While we neither elaborate nor contribute to the sophisticated
theory behind type qualifiers here, we try to keep the narrative self-
contained by describing the notations and concepts applied in the
reference rules. Interested readers can refer to [9] for further details.
We retain the standard qualifier notation from Foster et al. [9], and
only present the type inference rules for pair expressions; the full
set of inference rules is available to the interested reader in the
supplementary material [4].

The subtyping relation between the two qualifiers is straightfor-
ward: init < uninit (i.e, init is a subtype of uninit), meaning that a
variable of init t could be valid wherever uninit t is expected, but
not vice versa. Defining the subtyping relations for qualified types,
and in particular qualified reference types, is subtle. Considering
the primitive type int, its subtyping relation of qualified int is:

0=¢
Qint < Q' int
This means that if qualifier O < Q’, then Q int is a subtype of Q’ int,
For instance, init int is a subtype of uninit int. When it comes to
references, the rule is more complicated. The following rule defines
the subtyping relation between qualified references.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Q=¢
Q ref(r) < Q" ref(r)
Specifically, it requires that the type of the (r) to which the refer-
ences point, be the same.

4.2.1 Syntax. Our qualifier inference is performed on LLVM IR
after the alias analysis. For simplicity of the discussion, we use the
following abstract syntax following the one used in Foster et al. [9],
instead of the full LLVM IR syntax.

x| n|Axite| eres |

e =
| refPe | le | e;:=e
| (e1,ez2) | fst(e) | snd(e)
| fst(er) := ez | snd(er) :=e2 |
| assert(e,Q) | check(e, Q)
t:=a | int | ref(p) | t =Lt | (t1,12)
L= {p...p}

An expression e can be a variable x, a constant integer n, a function
AL x: t. e with argument x of type ¢, effect set L and body e. The
effect set, L, is the set of abstract locations p that the function
accesses, which is calculated as part of our alias analysis. A type ¢
is either a type variable @, an integer type int, a reference ref(p) (to
the abstract location p), a function type t —% #’ (that is decorated
with its effects L) or a pair type (t1, t2). The expression e; e is the
application of function e; to argument e. The reference creation
expression ref? e (decorated with the abstract location p) allocates
memory to store the value e. The expression !e dereferences the
reference e. The expression e; := ey assigns the value of ez to
the location e; points to. The expression (e, e2) is the pair of e;
and ey. The expressions fst(e) and snd(e) are the first and second
elements of the pair e, respectively. The expressions fst(e;) := ez
and snd(e;) := ey assign the value of ey to the first and the second
elements of the location e; points to, respectively.

Note that, following the style of Foster et al. [9], we use explicit
qualifiers to both annotate and check the initialization status of
expressions. The expression assert(e, Q) annotates the expression e
with the qualifier Q, which is used to manually annotate types (e.g.,
the from argument of copy_to_user). The expression check(e, Q) re-
quires the top-level qualifier of e to be at most Q. We automatically
insert the check(e, init) expressions by a simple program transfor-
mation before every security critical use to enforce the safety of
the operations. Specifically, we consider a pointer dereference (le)
to be security critical; a similar connotation applies when e is used
as the predicate of a conditional branch.

4.2.2 Qualified Types and Type Stores. Given the subtyping rela-
tions, we now define the qualified types.

=00

Q := k| init | uninit

o= int | ref(p) | (C,1) = (C",7") | (r1,72)
C := € | Assign(C,p:7) | ...

n:=01]1]w

The qualified types 7 can have qualifiers at different levels. Q can
be a qualifier variable k or a constant qualifier init or uninit. The
flow-sensitive analysis associates a ground store C to each program
point that is a vector that associates abstract locations to qualified
types. Thus, function types are now extended to (C,7) — (C’,7’)

Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

INT< REF<
0= 0=
Qint <Q"int Qref(p) < Q" ref(p)
Fun<
0<=Q0" mn=n = G=2G C1 =G
Q (Cr,m) =" (CL 7)) = Q' (Cao 1) = (Ch 1)
STORE<
T 21 ni <1 i=1..n
’7’ ’ ; ’
{p;’1 STh L i) < {p,' i 7fsonns py" cT)}
ATR <
0=<0Q <1 <t

Q(r,) < Q' (7], 1)

Figure 5: Store subtyping.

where C is the store that the function is invoked in and C” is the
store when the function returns.

To track when strong/weak updates should be performed, each
location in a store C also has an associated linearity 7 that can take
three values: 0 for unallocated locations, 1 for linear locations (i.e.,
only point-to a single abstract location and thus, admits strong
updates), and w for non-linear locations (i.e., can point-to multiple
different abstract locations and thus, only admits weak updates).
An abstract location is linear if the type system finds that it corre-
sponds to a single concrete location in every execution. An update
that changes the qualifier of a location is called a strong update;
otherwise, it is called a weak update. Strong updates can be ap-
plied to only linear locations. The three linearities form a lattice
0 < 1 < . Addition on linearities is as follows: 0+x = x, 1+ 1 = o,
and w + x = w. The type inference system tracks the linearity of
locations to allow strong updates for only the linear locations.

Since a store C maps from each abstract location p; to a type 7;
and a linearity n;, we write C(p) as the type of p in C and Cy;,(p)
as the linearity of p in C. Store variables are denoted as €. We
use the following store constructor to represent the store after an
assignment expression as a function of the store before it.

Assign(C, p’: 7)(p) =
v/ wheret <1t/ if p=p’ ACpn(p) # @
7 U C(p) if p=p’ AClin(p) = ©
C(p) otherwise
Assign(C, p" : D)iin(p) = Ciin(p)
Assign(C, p: 1) overrides C by mapping p to a type 7’ such that
7 < 7’.(r can be any super-type of 7.) The condition 7 < 7’ allows
assigning a subtype 7 of resulting type 7’ to p. If p is linear then its
type in Assign(C, p :) is 7’; otherwise its type is conservatively
the least-upper bound of 7 and its previous type C(p).

The type inference system generates subtyping constraints be-
tween stores. We define store subtyping in Figure 5. Constraints
between stores yield constraints between linearities and types,
which in turn yield constraints between qualifiers and linearities.
The rule INT < requires a corresponding subtyping relation for the
qualifiers of the type int. The rule REF < requires the same subtyp-
ing relation between qualifiers and further, the equality of the two
locations. The rule FUN < requires the subtyping relation between
the top-level qualifiers, and contra-variance for the argument and
input store and co-variance for the return value and output store.
The rule STORE < requires both subtyping and stronger linearity

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel

for corresponding locations. The rule PAIR< requires subtyping be-
tween the top-level qualifiers, and also subtyping for corresponding
elements of the two pair type.

4.2.3 Type Inference System. A type inference system consists a
set of rules which define the preconditions for each expression
(with the analyzed function) to be executed safely without UBIL
Such preconditions will impose subtyping constraints between each
expression. Anchored by the (automatically inserted) check(e, init)
and (manually inserted) assert(e, init) expressions, we can infer the
qualifiers of the remaining expressions. Again, if the constraints
are satisfiable, the analyzed function is free from UBI bugs and the
inference can succeed; otherwise there may exist UBI bug(s) and
the conflicting constraint(s) will reveal the reason.

Because the main difference between our system and the one in
Foster et al. [9], is field-sensitivity, we only present the rules for
the pair expressions in this Section (Figure 6). The complete set of
rules are in the supplementary material [4]. The judgments are of
the form I',C + e: 7, C’ that is read as: in the type environment T
and store C, evaluating e yields a result of type 7 and a new store
c’.

The rule PAIR type-checks the expressions e; and ey in order
and results in an initialized pair type. The rule FsT checks that the
expression e is of a pair type and types fst(e) as the first element
of the pair type. The qualifier Q of the pair type is unconstrained;
qualifiers are only checked by the check expressions discussed
above. The rule FsTAssIGN checks that the expression e; is of a
reference type ref(p), the post-store C”’ (after checking e; and ez)
maps the reference p to a supertype of a pair type k (@1, a2), and the
type 71 of ez is a subtype of @;. The resulting store remaps p to a new
pair type where the first element is the type of 7; and the second
element is unchanged. We elide the rules for snd that are similar
to the rules for fst. The constraints generated by the new rules
PAIR, FsT and FSTASSIGN are type and store subtyping constraints
that were also generated by the basic rules. Further, by the rule
PAIR <, subtyping constraints between pair types are decomposed
into subtyping constraints between qualifier and simpler types that
are inductively decomposed into constraints between qualifiers
and linearities. Thus, the added inference rules do not increase the
complexity of the generated constraints.

4.3 Inter-Procedural Analysis

Given a function F in the call graph, after applying the type infer-
ence to each callee function separately, the summaries generated
for all of these are used in the analysis of the caller function F.
The function summary is represented as (1) the qualifier require-
ments for the input arguments (of the function), (2) the qualifier of
returned value, and (3) the updates to in and out arguments. The re-
quirements specify the weakest qualifiers for the formal arguments
that are necessary for the function to be invoked safely without trig-
gering any UBI bug. This means that if the actual arguments have
weaker qualifiers, UBI bug(s) may occur. The updates record the
qualifiers of outputs, which in the C language, are output pointer
arguments. To support context-sensitive inter-procedural analysis,
the updates and return value are polymorphic, i.e., based on the
qualifiers of the actual arguments from the callers, the qualifiers of
the outputs may change.

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

As shown in subsection 4.2, a qualified function could be repre-
sented in the format of O (C, 7) =L (C’, 7’) where Q is the qualifier
of the function object itself, C maps locations p to their types 7
before the function is called, 7 is the parameter type, C’ maps lo-
cations p to their (possibly) updated types 7 after the function is
called, 7’ is the return type, and L is the set of locations accessed by
the function. The concept is further exemplified by the following
example:

init ([p — uninit int, p’ > init int], ref(p))
—{p.r'}

([p o init int, p’ > init int], init int)

It represents an (initialized) function that starts with a pre-store
where p is uninitialized and p’ is initialized. The input is the refer-
ence for p, and the function accesses both p and p’. The function
initializes p and leaves p’ initialized. This function is summarized
as follows - no initialization requirements for its parameter and one
update: update parameter p to initialized.

4.3.1 Calculating and Using Summaries. Requirements over input
arguments can be directly fetched from the inference result. While
updates are a little complicated, they are calculated as follows. For
any pointer argument, UBITECT maintains a copy of the alias set
of its abstract location at both the entry and exit of the function. If
the alias set changes, then the corresponding argument is updated
during the execution, and the output qualifier is the least-upper
bound of the qualifiers of all variables from the alias set at the exit
of the function. If the points-to set still contains the initial value
from the alias set at the entry of the function, then its qualifier is
kept as symbolic, so as to support polymorphism. For a concrete
example, please refer to section 3.

The qualifier of the return value is handled similarly: if it de-
pends on the qualifier of the input value(s), UBITECT keeps them as
symbolic so that the return value can have the appropriate qualifier
based on the calling context.

Using function summaries, the implementation of context-sensitive
inter-procedural analysis is straightforward.

o Inference constraints: Each actual argument must be a subtype of
the corresponding formal argument (i.e., requirements). Adding
this constraint allows us to (1) check if the callee can be safely
invoked (if not, type inference over the current function will fail).
and (2) automatically propagate the requirements from the callee
to the caller, in case the caller passes its argument(s) to the callee.

o Apply updates: After the invocation of a function, the qualifiers
of values inside the points-to set of pointer type argument(s) are
updated according to the updates. Further, the qualifier of the
value used to receive the return value is the same as the qualifier
of the return value.

o Indirect calls: For indirect calls, the actual arguments have to
satisfy the requirements of all possible call targets, and the up-
dates are conservatively calculated as the least-upper bound of
all updates.

4.3.2 Special Cases. There are some nuances that are associated
with summary-based inter-procedural analysis; here, we describe
two that we belive are important.

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Pair
ICtre:1n,C

T, C'+ ey: Ty, c’

Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

FsT

k fresh I,Cre:Q(r, 1), C

T, Ct (e, ez): init {1y, 12), C”

FSTASSIGN

T,Cter: Qref(p), C’ I,C'vrey: 1, C”

K (a1, az) < C"(p)

T, C+fst(e): 71, C’

71 20 K, a1, az fresh

T, C+ fst(er) := e2: 71, Assign(C”, p: (z1, snd(C”(p))))

Figure 6: Type inference rules for the pair expressions (C struct fields).

Heap Objects. Because our points-to analysis is intra-procedural,
it cannot track aliases created or removed outside the current func-
tion. More importantly, the concurrent nature of the kernel also
makes it hard to precisely reason about the qualifier for heap data.
For example, thread A stores an initialized data to heap address
addry; however, when A tries to load from the same address, the
data may no longer be initialized because a concurrent thread B
could have written an uninitialized data to the same address. To
handle this, we (1) track the provenance of memory objects; any
object that is not allocated in the current scope is conservatively
considered to be a heap object (i.e., globally visible); and (2) enforce
a conservative rule for writing to heap objects: the variable has
to be fully initialized (i.e., with qualifier init); if the variable is of
pointer type, we also require that the data it points to are initialized.
By doing so, we can safely assume all data loaded from heap are
also initialized but false positives are introduced because of this
strategy.

Recursion. After building the call graph, we observed recursions
among functions calls. Fixed point analysis is adopted to handle
such recursions. Specifically, a function in the circular dependency
graph is randomly picked to start the qualifier analysis. For callees
whose summaries are not available, the subtyping constraints are
temporarily ignored. As a result, an imprecise summary of the as-
sociated function is constructed by the first-time analysis. Then
UBITECT moves on to analyze its callers using this imprecise sum-
mary. Following the dependency circle, the function is analyzed
again. Because this time the summaries of its callees will be avail-
able, despite being imprecise, a new summary would be generated.
This process is repeated until there are no changes to the summaries.

4.4 Symbolic Execution

Up to this point, the type qualifier inference reported all the sus-
picious UBI locations. Next, UBITECT uses under-constrained sym-
bolic execution to find true positives.

For each potential bug output by the static analysis module,
the symbolic execution (SE) module first links all the bitcode files
related to the bug. It then starts searching for a feasible path from the
beginning of the function where the involved variable is allocated.
During the exploration, the SE module will prune paths that include
any basic block in the avoidlist or paths that do not include all basic
blocks in the mustlist. In this way, type qualifier inference reduces
the searching space for SE and makes it more scalable.

Since a partial path (the portion between uninitialization and
use) is explored instead of a full execution path from entry to the
kernel (e.g., system call) to the use, some false positives could still
pass the filter. Similarly, false positives caused by an imprecise call

Table 1: LoC for different analysis of UBITECT.

Analysis Line of Code
Call Graph 708

Points-To 1,652

Alias 375

Qualifier Inference 4,460

Utility Functions 3,412
Symbolic Execution 2,839

Total 13, 446

graph (i.e., indirect call targets) will not be filtered. However, we
ensure that no true positives are wrongly excluded.

Finally, despite the use of under-constrained symbolic execution
and guided path exploration, due to path explosion and complex
path constraints, the tool may still take a long time and/or a large
amount of memory to verify a warning. To handle the large vol-
ume of warnings from the static analysis, we rank the remaining
warnings by “the time taken to find a feasible path between the
uninitialization site and the use site”. Our observations are (1) bug
reports with a feasible path are much easier for developers to verify
and (2) the less complex the path is, the sooner symbolic execution
will find it.

5 IMPLEMENTATION

UBITECT is built upon the LLVM compiler infrastructure. We adopt
the whole kernel analysis infrastructure from KINT [29] and modify
it to match the bottom-up analysis. Points-to analysis is based on the
structure analysis code from [1] while under-constrained symbolic
execution stands on KLEE [6]. Overall, 13,446 LoC are added, the
distributions of which are shown in Table 1.

We manually summarize 26 functions from three major cate-
gories. (the reasons for doing so are provided within the discussion
pertaining to each category):

o LLVM intrinsics and assembly functions: We do not have access
to intrinsic functions like memset and memcpy or functions imple-
mented in pure assembly; thus, in these cases we cannot construct
summaries through automatic inference.

o Heap allocation functions: For reasons discussed earlier, we man-
ually summarize typical kernel heap allocation functions, in-
cluding the kmalloc series and the kmem_cache_alloc series. Since
these functions accept flag GFP_ZERO, which will initialize the
allocated memory, we set the initial qualifier for the allocated
object according to this flag. Because our points-to analysis is
field-sensitive (instead of byte-sensitive) and the allocation size
to these functions are in bytes, to determine the type of allocated
object, we will follow the def-use chain of the returned address

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel

Table 2: Evaluation I: UBI bugs patched since 2013. All of
the uninitialized variables are located on stack. UBITECT can
successfully detect all of them.

Commit or CVENo Type UsITEcTt

bde6f9d intra-procedural Yes
1a92b2b intra-procedural Yes
8134233 inter-procedural Yes
c94a3d4 inter-procedural Yes
da5eftf inter-procedural Yes
CVE 2010-2963 inter-procedural Yes
7814657 inter-procedural Yes
6fd4b15 inter-procedural Yes

and check for a bitcast operation. If we cannot find one, we treat
the object as having a single field (i.e., void type).

o Security related functions: As mentioned in section 2, we can use
qualifiers to explicitly express security policies we want to en-
force. For example, copy_to_user() copies the kernel data to the
user space. To avoid information leakage because of uninitialized
data, we manually create a summary for this function, requiring
the source object to be fully initialized.

6 EVALUATION

Our experiments are systematically performed with the objective
of answering the following research questions:

e RQ1: Can UBITECT detect previously known bugs?
e RQ2: Can UBITECT detect new bugs?

e RQ3: Compared with UBITECT, how do other open sourced static
analyzers perform for finding UBI bugs in the Linux kernel?

Experimental Setup. To answer these three questions, we first
gathered eight previously patched Linux kernel UBI bugs studied
in [16] and validate our tool. Then, we apply UBITECT to the x86_64
Linux kernel, version 4.14, with allyesconfig. It was tested on
machines with Intel(R) Xeon(R) E5-2695v4 processors and 256GB
RAM. The operating system is the 64 bit Ubuntu 16.04 LTS.

Data Availability. Linux kernel is an open sourced project. We
will also open source UBITECT for aiding the reproducibility of the
experimental results.

6.1 Detecting Known UBI Bugs

To answer RQ1, we evaluate UBITECT in terms of finding eight previ-
ously patched Linux kernel UBI bugs studied in [16]. Table 2 shows
the results i.e., UBITECT can detect all of them. Two of these bugs
can be detected by intra-procedural analysis but the rest require
inter-procedural analysis.

6.2 Detecting New UBI Bugs

It took UBITECT about a week to fully analyze the entire Linux
kernel with 616,893 functions. Specifically, it took 7 and 205 days
of CPU time for qualifier inference and symbolic execution (SE),
respectively. After qualifier inference, for each function, generated
warnings were immediately fed into SE, which ran on more than
30 CPU cores, on average (and was complete in a week of real
time). The qualifier inference component generated 147,643 poten-
tial uninitialized use of stack variables. Each warning represents

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

a unique use of an uninitialized variable, meaning that repeated
accesses to the same uninitialized variable in different statements
and accesses to different fields of the same object are considered as
different warnings. Since our modeling of heap variables is very
conservative and the number of warnings for stack variables is
already large enough, we exclude the warnings relating to writing
uninitialized values to heap variables.

UBITECT s under-constrained symbolic execution (SE) compo-
nents filtered 4,150 warnings as false positives because it was unable
to find a feasible path based on the guidance. 1,190 cases could not
be handled by our SE component due to a mixture of 32-bit and
64-bit pointers. We then manually inspected 190 bugs where our SE
component can find a feasible path within 2 minutes. 6 of the 190
bugs are due to the use of uninitialized function pointers, 125 are
due to use of uninitialized data pointers, and 59 are related to use
of uninitialized data (that affect control flow). Our manual analysis
confirmed 78 of them as true positives, yielding a false positive rate
of 59%. We interpret a reported bug as a false positive if the path
returned by SE is infeasible, or the variable is actually initialized
along the path.

To confirm our manual inspection results with kernel main-
tainers, we tried to create patches for the 78 true positive cases.
During this process, we found that the buggy code of 9 cases have
been removed in the mainline due to feature updates and 11 are
already fixed in the mainline. We also found that many bugs were
related to missing checks over the return value [14] of the function
regmap_read(). Further (manual) checks over the remaining callers
led to an additional 60 bugs. We submitted patches for all the un-
fixed 118 cases to Linux developers. 52 bugs have been confirmed,
35 cases were categorized as “will not happen in reality,” and the
remaining 31 are still in process (we are awaiting feedback). The
detailed list of the confirmed bugs is shown in Table 3. We point
out here that among the 52 bugs, 37 of them were reported auto-
matically while 15 are identified from the additional manual check.
In fact, if we extend the time and memory limitations for symbolic
execution, we expect that these cases can be reported automatically
as well.

For 112 warnings we deemed as false positives, we also analyzed
the root causes.The major ones include (1) Incomplete black and
whitelist (39 cases): when the path crosses multiple functions. (2)
Imprecise indirect call resolution (26 cases): the indirect call target is
infeasible. (3) LLVM optimization (16 cases): wherein LLVM converts
a struct with two u32 types, directly to a u64 type; this optimization
makes certain function summaries inaccurate. (4) The limitations
of under-constrained symbolic execution: we treat input arguments
as unconstrained symbolic values; however, in reality, such uncon-
strained inputs are impossible according to the program logic (e.g.,
constraints incurred outside the scope of the symbolic execution).
and (5) Assembly code (10 cases).

6.3 Sensitivity and Precision

We showcase how different sensitivity levels affect UBITECT’s qual-
ifier inference. First, we use a simple syntax analysis as the baseline,
where we check for stack variables that are not initialized immedi-
ately after their declaration. This baseline flagged 1,373,174 abstract
locations (expanded to be field-sensitive) out of 2,179,399 as not

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

Table 3: Evaluation II: New bugs detected by UBITEcT. The
Line No. column gives the place where uninitialized uses
happens. The last column: A-Patch Applied; C-Confirmed
by developers

No. Sub-System Module Variable Line No. Patch
1 iommu/amd iommu.c unmap_size 1523 A
2 asoc/rt565 rt5651.c ret 1759 A
3 asoc/rt274 t274.c buf 364 A
4 asoc/rt275 1t274.c val 1133 A
5 net/stmmac dwmac-sun8i.c val 646 A
6 clk/gemini clk-gemini.c val 320 C
7 iio/adc meson_saradc.c regval 286 C
8 iio/adc meson_saradc.c regval 313 C
9 iio/adc meson_saradc.c val 454 C
10 iio/adc meson_saradc.c regval 631 C
11 iio/adc meson_saradc.c regval 789 C
12 regulator pfuze100-regulator.c val 635 A
13 drm/bridge sii902x.c status 122 C
14 iio/trigger stm32-timer-trigger.c ccer 136 C
15 iio/trigger stm32-timer-trigger.c crl 140 C
16 iio/trigger stm32-timer-trigger.c ccer 168 C
17 iio/trigger stm32-timer-trigger.c crl 173 C
18 iio/trigger stm32-timer-trigger.c crl 222 C
19 iio/trigger stm32-timer-triggerc psc 224 C
20 iio/trigger stm32-timer-trigger.c arr 225 C
21 iio/trigger stm32-timer-trigger.c dat 411 C
22 iio/trigger stm32-timer-trigger.c dat 454 C
23 media atmel-isc.c isc_intsr 1255 C
24 media atmel-isc.c isc_intmask 1255 C
25 mfd fsl-imx25-tsadc.c status 40 C
26 mfd ti_am335x_tscadc.c reg 58 C
27 net/ethernet hns_mdio.c reg_value 165 A
28 clk/axi-clkgen clk-axi-clkgen.c d 314 C
29 power/supply max17042_battery.c read_value 485 C
30 power/supply max17042_battery.c viSoc 667 C
31 power/supply max17042_battery.c viSoc 682 C
32 pwm pwm-stm32-Ip.c val 163 C
33 pwm pwm-stm32-Ip.c prd 163 C
34 power/supply max17042_battery.c full_cap0 681 C
35 power/supply max17042_battery.c val 1082 C
36 power/supply rt5033_battery.c val 33 C
37 iio/adc bem_iproc_ade.c intr_status 161 C
38 iio/adc bem_iproc_ade.c intr_mask 162 C
39 iio/adc bem_iproc_ade.c intr_status 187 C
40 iio/adc bem_iproc_ade.c ch_intr_status 194 C
41 iio/adc bem_iproc_ade.c channel_status 201 C
42 iio/adc bem_iproc_ade.c val_check 299 C
43 pwm pwm-stm32.c psc 100 C
44 pwm pwm-stm32.c arr 100 C
45 pwm pwm-stm32.c ccer 295 C
46 pwm pwm-stm32.c ccer 312 C
47 regulator 1tc3589.c irgstat 419 C
48 regulator max8907-regulator.c val 303 A
49 media pvrusb2-hdw.c qetrl.flags 793 A
50 x86/hpet hpet.c msg.f2 503 C
51 staging/ddk750 ddk750_chip.c plLOD 58 C
52 power/supply max17042_battery.c val 837 C

being initialized when declared. If we add flow-sensitive analysis
(but without inter-procedural analysis), the number of warnings
was 10,267,357.

This number is higher than the baseline in line with what one
might expect, because this is on the basis of uses (i.e., different
uses will be considered as different warnings) instead of decla-
rations. If we add inter-procedural analysis but without context-
sensitivity, the number of warnings was 242,934. After adding
context-sensitivity to the analysis, UBITECT s static analysis com-
ponent reported 147,644 warnings. Again, because each warning
from static analysis is based on a unique use, the reduction rate is
actually higher than 90%.

6.4 Comparison with other Static Analyzers

To answer RQ3, we compare UBITECT with two open sourced tools
which are able to detect UBI bugs. We first compare the perfor-
mance of UBITECT with that of cppcheck [18]. Both UBITEcT and

Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

cppcheck need the access to the source code and do not need man-
ual annotations. While UBITECT’s static analysis is inter-procedural
and reports the warnings at the use site, cppcheck’s analysis is only
intra-procedural and reports the warning when the uninitialized
variable is read. We ran the cppcheck on the whole Linux ker-
nel, version 4.14. It reported 191 UBI bugs, from which 164 bugs
were within our analysis scope (i.e., code enabled by allyesconfig).
Among the overlapped 164 bugs, only 2 are true positives (i.e., a
much higher false positive rate of 98%). From these 2 true positives,
UBITECT catches only one via its static analysis component; the
other is missed by UBITECT because the use site is not explicitly
marked by us. Specifically, the uninitialized value is leaked through
the network layer but we only explicitly marked copy_to_user()
to detect potential leaks. 29 false positives are shared between
UBITECT’s static analysis and cppcheck. The remaining 131 false
positives were correctly filtered by UBITECT’s inter-procedure static
analysis.

Opposite to the cppcheck’s lightweight and imprecise analysis,
the Clang Static Analyzer (CSA) is another open source tool which
applies the expensive and precise symbolic execution to catch UBI
bugs. As with any symbolic execution, it is hard to scale to large
programs due to the path explosion problem. Therefore, CSA only
performs inter-procedural analysis within a module. Unfortunately,
even without inter-module whole program analysis, it is difficult to
scale CSA to all the source code files in Linux kernel. Alternatively,
we ran CSA over the 78 files in which our true positives were
located. CSA took about 1.5 hours (96m 8.171s) to finish (had it
performed inter-module analysis, the time is likely to blow up much
more). Because our analysis was performed over 16,163 files in total,
at this speed, CSA will run for ~ 13 days to finish analyzing the
entire kernel. Within the 78 files, CSA reported only 22 uninitialized
variables. 3 were false positives that were filtered by UBITECT. 2
were not reported by UBITECT due to complex assembly which are
hard to verify. For the remaining 17 true positives, 12 were within
the 78 bugs UBITECT reported in subsection 6.2, while the remaining
5 can be verified by UBITECT’s SE component with longer times
(more than 2 minutes). The majority of the true positives found
by UBITECT were not found by CSA; the main reason is that these
bugs fundamentally require analysis across multiple modules.

In UBITECT, we take the best of both qualifier inference and
symbolic execution. We apply the expensive and precise symbolic
execution only selectively under the guidance of qualifier infer-
ence, e.g., to go across the boundary of modules (files) and to focus
on a subset of all the program paths. This allowed us to discover
more vulnerabilities than pure symbolic execution (i.e., more scal-
able) with better accuracy than pure static analysis (i.e., less false
positives).

6.5 Threats to Validity

There are three major threats to the validity of our evaluation. First,
although the theoretical foundation of type inference is sound,
compromises made during the design could affect the soundness of
our analysis results and hence, our static analysis component may
miss some bugs. Such compromises include imprecise modeling of
assembly code, undefined behaviors (e.g., out-of-bound memory
access), and data structure padding. The second threat is potential

UBITect: A Precise and Scalable Method to Detect Use-before-Initialization Bugs in Linux Kernel

bugs in our prototype implementation. We have used previously
known UBI bugs to test our prototype, but the test set is small
and thus, could not cover all corner cases. Finally, classifying bugs
reported by UBITECT was done by the authors. As we are not Linux
kernel maintainers, we could have made mistakes on whether a
reported bug is a true positive or false positive. We tried to mitigate
this threat by reporting the bugs that we believe were true positives
to the kernel maintainers, but we did not hear back for all the cases.

7 RELATED WORK

Mitigating UBI Bugs. Automated mitigation of UBI bugs is pio-
neered by PaX’s STACKLEAK plugins [22], which forces the initializa-
tion of kernel stacks during context switches between the kernel
and user space; STRUCTLEAK optimizes STACKLEAK by only initializ-
ing objects that may be exposed to user space. Two recent related
works are Safelnit [19] and UniSan [15]. Safelnit [19] is a compiler
extension that initializes all allocated memory to zero. However,
this blind initialization strategy is often undesired and can mask the
real bug. According to our interaction with kernel developers, it is
actually believed that in many cases the right approach is to leave a
variable uninitialized when it is first created. The reasoning is that
the real initial value will be computed dynamically later anyway;
assigning zero or some arbitrary value is not only unnecessary
but can also mask a real bug where the desired (correct) initializa-
tion procedure fails and the variable gets used subsequently. The
correct way to fix such bugs is to make sure that the use-before-
initialization path is eliminated (e.g., by properly checking for the
absence of initialization and returning). UniSan [15] detects and ze-
ros uninitialized data that can leak from the kernel space. So, it only
eliminates information leakage resulting from uninitialized reads.
This work attempts to detect all use-before-initialization bugs. For
instance, an uninitialized function pointer may be dereferenced in
the kernel to cause arbitrary code execution as discussed earlier. At
this stage, UBI bugs still need to be patched manually case by case,
and we believe that the identification of such bugs with UBITECT is
a necessary first step.

Static Detection of Kernel Bugs. With the increasing popularity
of LLVM, many LLVM-based static analysis tools have been devel-
oped to find bugs in the Linux kernel source. KINT [29] put together
a number of static analysis techniques such as taint and range anal-
ysis to discover integer overflow vulnerabilities in the Linux kernel.
Juxta [21] detects semantic bugs in Linux file systems by finding
deviant behaviors in different file system implementations [8]. Dr.
Checker [17] is a static taint analysis engine that can be used to
find taint-style vulnerabilities in the Linux kernel. K-Miner [10]
performs context-sensitive value-flow analysis to identify memory-
corruption vulnerabilities. Deadline [30] and Check-it-Again [28]
detect a special type of time-of-check-to-time-of-use (TOCTTOU)
bugs due to lack of re-checks. CRIX [14] detects missing security
checks in the Linux kernel. PeX [32] detects missing permission
checks. To our knowledge, no analysis has attempted to discover
the increasing number of UBI bugs.

Type Qualifiers. Type qualifiers have been shown to be a powerful
way to represent invariants in programs. A type qualifier is general
and expressive enough to conduct a variety of security analysis and
bug finding tasks, including the popular taint analysis [12]. Some

ESEC/FSE 20, November 8-13, 2020, Virtual Event, USA

examples of applying type systems for bug finding include finding
user/kernel pointer bugs [13], format string vulnerabilities [24],
integer-overflow-to-buffer-overflow [31], null pointer deference
bugs [11], lock/unlock bugs and file descriptor bugs [9].

8 CONCLUSIONS

In this paper, we target the principled detection of the underrated
yet dangerous use-before-initialization (UBI) bugs in the Linux
kernel. These bugs pose a security threat not only because they
can lead to unpredictable behaviors but also because they are ex-
ploitable to gain root privileges. We design and implement UBITECT,
a framework that combines flow-, field-, and context-sensitive type
qualifier inference with symbolic execution to identify UBI bugs
with low false positive rates. A key characteristic that distinguishes
UBITECT from other efforts is that it takes the best of the two meth-
ods and performs scalable inter-procedural analysis to catch the
uninitialized use of variables across functions. We apply UBITECT to
the Linux 4.14 kernel and 138 new bugs are unearthed from which
52 of them are confirmed by Linux maintainers.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their insight-
ful comments that helped improve the quality of the paper. We
thank Manu Sridharan for his useful comments, and Weiteng Chen
for his assistance. This research was partially sponsored by the U.S.
Army Combat Capabilities Development Command Army Research
Laboratory and was accomplished under Cooperative Agreement
Number W911NF-13-2-0045 (ARL Cyber Security CRA). The views
and conclusions contained in this document are those of the authors
and should not be interpreted as representing the official policies, ei-
ther expressed or implied, of the Combat Capabilities Development
Command Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation
here on. It was also partially supported by NSF award CNS-1718997
and ONR under grant N00014-17-1-2893.

REFERENCES

[1] 2014. Andersen’s inclusion-based pointer analysis re-implementation in LLVM.
https://github.com/grievejia/andersen/graphs/contributors.

[2] 2018. CVE-2018-6981. https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2018-6981.

[3] 2020. CWE-476: NULL Pointer Dereference. https://cwe.mitre.org/data/
definitions/476.html.

[4] 2020. Qualifier Type Inference. https://github.com/seclab-ucr/UBITect/blob/
master/QualifierTypelnference.pdf.

[5] 2020. UBITect. https://github.com/seclab-ucr/UBITect

[6] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In USENIX Symposium on Operating Systems Design and Implementation (OSDI).

[7] K. Cook. 2011. Kernel Exploitation Via Uninitialized Stack. https:
//www.defcon.org/images/defcon-19/dc- 19-presentations/Cook/DEFCON-19-
Cook-Kernel-Exploitation.pdf..

[8] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review 35, 5, 57-72.

[9] Jeffrey S Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-sensitive type
qualifiers. Vol. 37. ACM. https://doi.org/10.1145/512529.512531

[10] David Gens, Simon Schmitt, Lucas Davi, and Ahmad-Reza Sadeghi. 2018. K-Miner:
Uncovering Memory Corruption in Linux. In Annual Network and Distributed
System Security Symposium (NDSS). https://doi.org/10.14722/ndss.2018.23326

https://github.com/grievejia/andersen/graphs/contributors
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6981
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-6981
https://cwe.mitre.org/data/definitions/476.html
https://cwe.mitre.org/data/definitions/476.html
https://github.com/seclab-ucr/UBITect/blob/master/QualifierTypeInference.pdf
https://github.com/seclab-ucr/UBITect/blob/master/QualifierTypeInference.pdf
https://github.com/seclab-ucr/UBITect
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf.
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf.
https://www.defcon.org/images/defcon-19/dc-19-presentations/Cook/DEFCON-19-Cook-Kernel-Exploitation.pdf.
https://doi.org/10.1145/512529.512531
https://doi.org/10.14722/ndss.2018.23326

ESEC/FSE ’20, November 8-13, 2020, Virtual Event, USA

[11]

[12]

[13]

[14

=
)

[16]

[17]

[18

[19]

[20]

[21]

David Hovemeyer, Jaime Spacco, and William Pugh. 2005. Evaluating and tuning
a static analysis to find null pointer bugs. In ACM SIGSOFT Software Engineering
Notes, Vol. 31. ACM, 13-19. https://doi.org/10.1145/1108768.1108798

Wei Huang, Yao Dong, and Ana Milanova. 2014. Type-Based Taint Analysis
for Java Web Applications. In IEEE/ACM International Conference on Automated
Software Engineering (ASE). https://doi.org/10.1007/978-3-642-54804-8_10

Rob Johnson and David Wagner. 2004. Finding User/Kernel Pointer Bugs with
Type Inference. In USENIX Security Symposium (Security), Vol. 2. https://dl.acm.
org/doi/10.5555/1251375.1251384

Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting Missing-Check Bugs
via Semantic-and Context-Aware Criticalness and Constraints Inferences. In
USENIX Security Symposium (Security).

Kangjie Lu, Chengyu Song, Taesoo Kim, and Wenke Lee. 2016. UniSan: Proactive
kernel memory initialization to eliminate data leakages. In ACM Conference on
Computer and Communications Security (CCS). https://doi.org/10.1145/2976749.
2978366

Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Niirnberger, Wenke Lee,
and Michael Backes. 2017. Unleashing use-before-initialization vulnerabilities in
the Linux kernel using targeted stack spraying. In Annual Network and Distributed
System Security Symposium (NDSS).

Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. DR. CHECKER: A Soundy Analysis for
Linux Kernel Drivers. In USENIX Security Symposium (Security).

Daniel Marjaméki. 2019. Cppcheck: a tool for static ¢/c++ code analysis. http:
//cppcheck.sourceforge.net/.

Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. 2017. Safelnit: Com-
prehensive and Practical Mitigation of Uninitialized Read Vulnerabilities. In
Annual Network and Distributed System Security Symposium (NDSS). https:
//doi.org/10.14722/ndss.2017.23183

Matt Miller. 2019. Trends, Challenges, and Strategic Shifts in the Software
Vulnerability Mitigation Landscape. In BlueHat IL.

Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song, and Tae-
soo Kim. 2015. Cross-checking semantic correctness: The case of finding file
system bugs. In Proceedings of the 25th Symposium on Operating Systems Principles.
361-377. https://doi.org/10.1145/2815400.2815422

[22]

(23]

[24]

[29

[30

@
=

[32

[33

Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani, S. V. Krishnamurthy, P. Yu

PaX Team. 2013. PaX - gcc plugins galore. https://pax.grsecurity.net/docs/
PaXTeam-H2HC13-PaX-gcc-plugins.pdf.

David A Ramos and Dawson R Engler. 2015. Under-Constrained Symbolic Ex-
ecution: Correctness Checking for Real Code. In USENIX Security Symposium
(Security).

Umesh Shankar, Kunal Talwar, Jeffrey S Foster, and David Wagner. 2001. Detecting
format string vulnerabilities with type qualifiers. In USENIX Security Symposium
(Security).

Evgeniy Stepanov and Konstantin Serebryany. 2015. MemorySanitizer: fast
detector of uninitialized memory use in C++. In International Symposium on Code
Generation and Optimization (CGO). https://doi.org/10.1109/CG0.2015.7054186
The Clang Team. 2019. Clang Static Analyzer. https://clang-analyzer.llvm.org/.
Vegard Nossum. 2015. Getting Started With kmemcheck. https://www.kernel.
org/doc/Documentation/kmemcheck.txt.

Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018. Check it again: Detecting
lacking-recheck bugs in os kernels. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 1899-1913. https://doi.
org/10.1145/3243734.3243844

Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M. Frans Kaashoek.
2012. Improving Integer Security for Systems with KINT. In USENIX Symposium
on Operating Systems Design and Implementation (OSDI).

Meng Xu, Chenxiong Qian, Kangjie Lu, Michael Backes, and Taesoo Kim. 2018.
Precise and scalable detection of double-fetch bugs in OS kernels. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
https://doi.org/10.1109/SP.2018.00017

Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. 2010. IntPatch:
Automatically fix integer-overflow-to-buffer-overflow vulnerability at compile-
time. In European Symposium on Research in Computer Security (ESORICS).
Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. PeX: A Permission Check Analysis Framework for Linux
Kernel. In USENIX Security Symposium (Security).

Hanqing Zhao, Yanyu Zhang, Kun Yang, and Taesoo Kim. 2019. Breaking Turtles
All the Way Down: An Exploitation Chain to Break out of VMware ESXi. In
USENIX Workshop on Offensive Technologies (WOOT).

https://doi.org/10.1145/1108768.1108798
https://doi.org/10.1007/978-3-642-54804-8_10
https://dl.acm.org/doi/10.5555/1251375.1251384
https://dl.acm.org/doi/10.5555/1251375.1251384
https://doi.org/10.1145/2976749.2978366
https://doi.org/10.1145/2976749.2978366
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://doi.org/10.14722/ndss.2017.23183
https://doi.org/10.14722/ndss.2017.23183
https://doi.org/10.1145/2815400.2815422
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://pax.grsecurity.net/docs/PaXTeam-H2HC13-PaX-gcc-plugins.pdf
https://doi.org/10.1109/CGO.2015.7054186
https://clang-analyzer.llvm.org/
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://www.kernel.org/doc/Documentation/kmemcheck.txt
https://doi.org/10.1145/3243734.3243844
https://doi.org/10.1145/3243734.3243844
https://doi.org/10.1109/SP.2018.00017

	Abstract
	1 Introduction
	2 Use-before-Initialization Bugs
	2.1 From UBI to Arbitrary Code Execution
	2.2 Challenges in Detecting UBI Bugs

	3 Overview
	3.1 Pre-processing
	3.2 Type Qualifier Inference
	3.3 Symbolic Execution

	4 UbiTect Design
	4.1 Points-to and Aliasing Analysis
	4.2 Qualifier Inference
	4.3 Inter-Procedural Analysis
	4.4 Symbolic Execution

	5 Implementation
	6 Evaluation
	6.1 Detecting Known UBI Bugs
	6.2 Detecting New UBI Bugs
	6.3 Sensitivity and Precision
	6.4 Comparison with other Static Analyzers
	6.5 Threats to Validity

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

