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Abstract. Let S be a Gorenstein local ring and suppose that M is a finitely generated Cohen—
Macaulay S-module of codimension c¢. Given a regular sequence f7, ..., fc in the annihilator of
M weset R =S/(f1,--., fe) and construct layered S-free and R-free resolutions of M. The con-
struction inductively reduces the problem to the case of a Cohen—Macaulay module of codimension
¢ — 1 and leads to the inductive construction of a higher matrix factorization for M. In the case
where M is a sufficiently high R-syzygy of some module of finite projective dimension over S,
the layered resolutions are minimal and coincide with the resolutions defined from higher matrix
factorizations we described in [EP]. Our results provide a characterization of all MCM modules
over a complete intersection in terms of higher matrix factorizations.

Keywords. Free resolutions, complete intersections, CI operators, Eisenbud operators, maximal
Cohen—Macaulay modules

1. Introduction

Recall that if R is a local ring, then a finitely generated R-module N is called a maximal
Cohen—Macaulay module (abbreviated MCM) if depth(N) = dim(R).
Let S be a regular local ring and suppose that M is a finitely generated Cohen—

Macaulay S-module of codimension c. Given a regular sequence fi, ..., f. in the an-
nihilator of M, so that M is a MCM S/(f1, ..., f.)-module, we construct an S-free res-
olution

LTS(Mv flv ) fC)v
and an R := S/(f1, ..., fc)-free resolution
L\LR(Ma .fl’ ""fc)

of M. These resolutions are constructed through an induction on the codimension, and
each of them comes with a natural filtration by subcomplexes; we call them layered res-
olutions.
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The inductive construction of the resolutions follows a pattern often seen in results
about complete intersections in singularity theory and algebraic geometry. It allows us to
exploit the fact that we can choose the regular sequence to be in general position with re-
spect to M. In this way we achieve minimality for high R-syzygies, and we give necessary
and sufficient conditions for minimality in general.

We now explain the inductive constructions. For brevity, we will always abbreviate
the phrase “maximal Cohen—Macaulay” to “MCM”.

In the base case of the induction, ¢ = 0, M is 0 and the layered resolutions are
trivial. For the inductive step we think of R as a quotient, R = R’/(f.), where R’ =
S/(f1, ..., fe—1) and consider the MCM approximation

a: M &By-»M

of M as an R’-module, in the sense of Auslander—Buchweitz [AB]: here By is a free R’-
module, M’ is an MCM R’-module without free summand and the kernel B; of the sur-
jection « has finite projective dimension. In our case B is a free R’-module (Lemma 3.4)
and we write BS for the complex of free S-modules

B : Bls — Bg
obtained by lifting the map B LA By back to S. See Section 3 for details.

Layered resolution over S (Section 4)

For the layered resolution of M over S we let K be the Koszul complex resolving R’ as
an S-module and let L' = LTS (M, fi, ..., fe—1) be the layered resolution constructed

earlier in the induction. There is an induced map BIS ﬂ) L6 which, in turn, induces a
map of complexes K ® BS — L’ whose mapping cone we define to be the layered S-free
resolution of M with respect to fi, ..., fc.

Layered resolution over R (Section 6)

One way to construct the layered resolution of M over R, is to show (Section 9) that there
is a periodic exact sequence

...>R®B - RQIM ®By)) > R®B - R® (M & By) - M — 0;

this generalizes the periodic R-free resolution for a module over a hypersurface described
in [Eil] (Corollary 9.2). In the case ¢ = 1, the module M’ is zero, and the layered resolu-
tion is this periodic complex.

As M’ is an MCM module over R’, the complex R @ L| p/(M’, f1,..., fe—1) is an
R-free resolution of R ® M’. The layered resolution of M over R can be constructed from
the double complex obtained by replacing R ® M’ with R @ L g (M, f1, ..., fe—1)s
but it is simpler to do something a little different, explained in Section 6: Set T' =
L¢R/ (M', f1,..., fe—1), the layered resolution constructed earlier in the induction. The
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layered R-free resolution of M with respect to f, ..., f. is obtained from T’ by the
Shamash construction applied to the box complex

T : R T2/ Tll Té
@ R'®y ®
B By

b

where b and  are the maps listed above.

Filtrations and layers

Each of the layered resolutions has a natural filtration, whose subquotients are the layers;
these will be described in Subsections 4.2 and 6.2. However the subcomplexes in the
filtration are easy to describe:

Let R(i) := S/(f1, ..., fi), and let M (i) be the essential MCM approximation of M
over R(i) as defined in Section 3. The layered resolution LTS(M , f1, ..., fe) is filtered
by the sequence of subresolutions:

LAS(M), fi) CLAS(MQ), fi, o) C -+ .

Similarly, the layered resolution L | r (M, fi, ..., f.) is filtered by the sequence of sub-
resolutions:

RQLIgay(M(D), fi) CRQLIgp)(M(2), fi, f2) T+ .

Minimality
Our criteria for the minimality of the layered resolutions is presented in Section 7. They
imply that, when the residue field of S is infinite, the layered resolutions can be taken

to be minimal for any sufficiently high R-syzygy of a given R-module N. The precise
statement is given in Section 8.

Higher matrix factorizations

It is well-known that when R is a complete intersection of codimension 1 in a regular
local ring, the MCM R-modules are described by matrix factorizations:

Theorem 1.1 ([Eil], see also [EP, Theorem 2.1.1]). Let 0 # f be a non-zerodivisor in
a regular local ring S. Set R = S/(f). A finitely generated R-module N is MCM if and
only if it is a matrix factorization module, that is, N is the cokernel of amap d : Uy — Uy
of finitely generated free modules such that there exists a homotopy for f1 on the complex

0— U11>U0.

This simply means that dh = f -1dy, and hd = f - 1dy,.
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The matrix factorization is called minimal if both d and h have entries in the maximal
ideal of S. To include all MCM modules in the result, we must allow non-minimal matrix
factorizations (though only for modules with R/(f) as a summand).

In [EP] we introduced higher matrix factorizations, and showed that any sufficiently
high syzygy module over a complete intersection is the module of a minimal higher matrix
factorization; note that high syzygy modules are MCM. Using the theory in Section 4, we
can extend this to arbitrary MCM modules and (not-necessarily minimal) higher matrix
factorizations: in Section 10 we prove Theorem 10.5 which is our extension of Theo-
rem 1.1.

Remark. Though the case when S is regular is our primary interest, the constructions
work more generally when S is a local Gorenstein ring; this is described in the rest of the
paper. In some of the results one can also do without the local hypothesis; we leave this
to the interested reader.

Notation 1.2. Throughout the paper we will use the following conventions. Let (W, 8%)
and (Y, 8¥) be complexes. Our sign conventions are as follows: We write W[—a] for the
shifted complex with

W[—al]; = Wi,

and differential (—1)?8", in particular the complex W[—1] has differential —3". The
complex W ® Y has differential

3 = Y (0 e+ a0 ).
i+j=q

If  : W[—1] — Y is a map of complexes, so that —pd" = 8¥ ¢, then the mapping cone
Cone(y) is the complex Cone(¢p) = Y & W with modules

Cone(p); =Y, & W;

and differential
Y; Wi

vio (0] @i
Wi_1 0 al-W ’

As is well-known, a free resolution over a local ring is minimal if its differentials
become 0 on tensoring with the residue class field k. We extend this definition and say
that a map of (possibly non-free) modules is minimal if it becomes 0 on tensoring with k.

2. Review of MCM approximations

For the reader’s convenience we review the basic ideas of MCM approximations from
[AB] (see also [Di] and [EP, Section 7.3]). For simplicity, we deal only with finitely
generated modules over a local Gorenstein ring S.

Let P be an MCM S-module without free summands. For ¢ > 0, we denote by
Syz;lg (P) the g-th syzygy module of P over S. Note that P has a unique cosyzygy module
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Syz% 1 (P), which is also MCM, defined as the dual of the first syzygy of the dual of P.
Since P is MCM over a local Gorenstein ring, the first syzygy module Syzf (P) cannot
have free summands, as one sees by reducing to the O-dimensional case, and it follows
from the description above that the cosyzygy module Syz’S | (P) cannot have free sum-
mands either. This can be applied repeatedly to obtain Syz> ¢(P) for any g > 1: there
exists a unique MCM g-th cosyzygy module T := Syz> ¢(P) without free summands
such that P is isomorphic to Syzg(T) (see [EP, Lemma 7.1.3]).

The essential MCM approximation of a finitely generated S-module N is by def-
inition an MCM module Appg(N) without free summands together with a map ¢ :
Appg(N) — N determined as follows: choose an integer ¢ > depth S —depth N and set

Appg(N) := Syz® (Syz; (N)),

considered together with amap ¢ : Appg(N) — N induced by the comparison map of the
S-free resolutions of Appg(/N) and N. By the uniqueness of cosyzygies, this is indepen-
dent of the choice of g. In particular, if N is an MCM module, we let ¢ : Appg(N) — N
be the inclusion of the largest non-free summand of N. The following result is [EP, The-
orem 7.3.3 and Corollary 7.3.4]; we recall the proof for the reader’s convenience.

Theorem 2.1. Let S — R be a surjection of local Gorenstein rings, and suppose that R
has finite projective dimension as an S-module. Let N be a finitely generated R-module.

(1) Foranyi >0,
App(Syzf (N)) = Syz’ (Appg(N)).
If N is an MCM module without free summands, then the statement is also true for
i <O.
(2) If j > depth S — depth N, then

Apps(Syzf (N)) = Syz} (N).

(3) Apps(Appg(N)) = Appg(N).

Proof. (1) It suffices to do the cases of first syzygies and cosyzygies. Let
0N —>F—>N-=0

be a short exact sequence, with F free as an R-module. It suffices to show that Syz;9 (N")
= Syszrl (N) for some i.

We may obtain an S-free resolution of N as the mapping cone of the induced map
from the S-free resolution of N’ to the S-free resolution of F'; if the projective dimension
of R as an S-module (and thus of F as an S-module) is u, it follows that SyZSH(N/) =
Syz3 (N).

Parts (2) and (3) follow easily from (1). ]
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3. Codimension-one MCM approximations

The constructions of our layered resolutions use the codimension-one case of essential
MCM approximations which we describe in this section.

Assumptions 3.1. In the rest of the paper, we use the following notation. Let
S—+R — R

be surjections of local Gorenstein rings and suppose that R = R’/(f), with f a non-
zerodivisor in R’. We write k for the common residue field of R, R’ and S. We consider
a finitely generated MCM R-module M, and we may harmlessly assume that M has no
free summand as an R-module.

3.2. Codimension one MCM approximations

We may construct the MCM approximation of M as an R’-module in the following way.
Let M), be the second syzygy of M as an R’-module, and let M’ be the minimal second
cosyzygy of M} as an R’-module, which is well-defined, up to isomorphism and has no
free summand because R’ is local and Gorenstein. In the notation of Figure 1, G is the
minimal R’-free resolution of M’ and the module M) is the common kernel of F| — F
and G; — Gy.

\J J {ti)
Fy Fy M 0

Fig. 1. Construction of M’ from a minimal resolution of M over R’.

The module M’, together with the induced map ¢ : M’ — M, is the essential MCM
approximation Appg (M) of M over R'.
Let
& : Bp — Coker ¢

be a surjection from a free R’-module of minimal rank to Coker ¢, and let
y:By—> M
be a lift of this map, so that
a:=(,y): M OBy M

is a surjection. The MCM approximation of M over R’ is defined to be the module M’ ® By
or, more properly, the map «.
Let
B:B — M & By
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be the kernel of o. We write
}[fﬁBl—>M/, b!Bl—>BO

for the components of §. Thus we have the short exact sequence, which we call the MCM-
approximation sequence over R,

(v
B= -
OeBlgM/EBBo?—MMeO. (3.3)

Lemma 3.4. By is a free R'-module.

Proof. By the diagram in Figure 1, TorlR/ M, k) = Torl.R/(M, k) for i > 1, so the long
exact sequence in Tork’ (—, k) obtained from (3.3) shows that Torl.R/(B 1,k)=0fori > 1
and it follows that By is an R’ module of finite projective dimension.

Since the depth of M is 1 less than the depth of the MCM R’-module M’ & By, the
short exact sequence (3.3) implies that By is an MCM R’-module. It follows from the
Auslander—Buchsbaum formula that B is free. O

We will use the following proposition to derive minimality criteria for the layered resolu-
tions.

Proposition 3.5. The map b is minimal. The map  is minimal if and only if the induced
map
kQop k@M - kM

is a monomorphism.

Proof. The short exact sequence (3.3) yields a right exact sequence

k@Y
k®¢, k
k®31ﬂ>k®M’@k®Bowk®M—>o.

By construction, k ® M is the direct sum of the image of k ® p and k ® y,and k ® y is a
monomorphism. Thus the kernel of (k ® ¢, k ®y) is contained in k@ M’, and k @b = 0.
It follows that k ® ¢ = 0 if and only if k ® ¢ is a monomorphism. O

4. The layered S-free resolution of M

We let M be a Cohen—Macaulay S-module of codimension ¢, and we suppose that
f1, ..., fe is a regular sequence in the annihilator of M. We will now construct the lay-
ered S-free resolution LTS(M , f1,---, fe) of M. For simplicity we work in the case
where M has finite projective dimension over S. See Remark 4.3 for the changes neces-
sary in the general case. We do this by an induction on c. Set R = S/(f1,..., fc). We
may harmlessly assume that M has no free summands as an R-module.

In the case ¢ = 0 the module M is O since we have assumed that M is an MCM
R-module without free summands, and we take the resolution to be 0.
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For simplicity, let R = S/(f1,..., fe—1) and let f = f.. We now describe the
inductive step. Given an S-free resolution L’ of the essential MCM approximation M’ of
M over R’, we construct an S-free resolution LTS(L’, f) of M. In the induction, we will
take L' = LAS(M’, fi,..., fe—1) and

LSM, fi, ..., fo) = LS, ).

With notation as in Section 3, we use the MCM approximation sequence (3.3):

=) _
O—>Bl—b>M/€BBOLM>M—>0.

Denote by B the 2-term complex
s. ps b s
B°: By — By,

where Bf and Bg are free S-modules such that BIS ® R’ = By and Bg ® R’ = By, and
b® is any lift to S of the map b : By — Bo.
Let K be the Koszul complex resolving R over S. Let

S BS[-1] > L’

be the map of complexes whose component 1/;05 : BIS — Ly is a lift of the map ¢ :
B — M’. Choose a map of complexes

S K®s¢B3[-1]—> L’

extending the map ¥> : BS[—1] — L’. We define L4S(L/, f) to be the mapping cone
of W.

Theorem 4.1. The complex LAS (L, ) is an S-free resolution of M. It is minimal if and
only if L is minimal and the induced map

OQk Mk > MOk

is a monomorphism.

Proof. Neither the homology nor the minimality of the mapping cone changes if we re-
place WS with a homotopic map of complexes, and any two liftings of 15 are homotopic.

Minimality: Because M’ is an R’-module there is a map u : K® L’ — L’ inducing
the multiplication map R’ ® M’ — M’. By the remark above, we may take W* to be the
composition

19y$
KoB[-1] - KoL 4 Kel.

Since v is 0 on By, it follows that W5 is zero on K ® B . The mapping cone of ¥5
is minimal if and only if 1 ® v2 is minimal. By Proposition 3.5, this is true if and only if
¢ ® k is a monomorphism.
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Exactness: Because W vanishes on K® BS, the mapping cone M(W¥9) is isomorphic
to the mapping cone of the map of free resolutions,

S Id®bs S S ’
T = wS| :K® (BY[-1D) - K® (By[—1]) & L,
K®(B7[-11)

which extends the maps b5 : B — Bj and (W5)g = v : B; — L. It follows from
the long exact sequence of the mapping cone that M(YS) is a minimal S-free resolution
of M. O

4.2. Layers of the S-resolution
Fori =0,...,c,let RG) = S/(f1,..., fi) and set
M (i) := Appg)(M).
By Theorem 2.1, for i > 0 we get
M(i — 1) = Appg—1)(M) = Appg(;_1)(M(i)).

It is clear from the construction that the layered resolution LTS (M, fi,..., fe)is filtered
by the sequence of subresolutions

L CLASWMG =), i, fim) CLASMG), fi, oo fi) e
We define the i-th layer to be the quotient
LAS(M@), f1..... f)

LASM@G —1), fi,..., fi—1)

where K(fi, ..., fi—1) is the Koszul complex on fi, ..., fi_; and B5(i) is the S-free
complex lifting the 2-term complex

=K(f1,..., fi-1) ® BS(i),

B@):  Bi(i) = Bo(i)
derived from the MCM approximation sequence for M (i) as an R(i — 1)-module,
0— Bi(i) > M@ —1)® By(i) > M(@i) — 0.

Remark 4.3. When M does not have finite projective dimension over S the MCM ap-
proximation of M over § is not free, and the inductive construction must start with a given
free resolution PS of the essential MCM approximation M3 of M over S. In this case we
write LTS (PS , f1, ..., fe) for the layered resolution over S. By Theorem 2.1(3), the es-
sential MCM approximation of M’ over S is the same as that of M. Given this, we may
simply replace L4S(M, f1, ..., f)byLAS®PS, fi, ..., f)and LAS(M’, f1,..., fe_1)
by LTS(PS, fi, ..., fe—1) in the proof above. Thus in the base case, ¢ = 0, we take
LAS(PS, fi,..., f.) to be PS itself.

Corollary 4.4. If the ring S is regular and the layered resolution LAS(M, f1, ..., fo) is
minimal, then the Betti numbers of M satisfy ,BiS(M) > (lc) foralli > 0.
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5. Review of CI operators and the Shamash construction

We will make use of the CI operators (= Complete Intersection operators) introduced in
[Eil, Section 1] (see also [EP, Section 4.1]) and the Shamash construction [Sh] (see also
Construction 4.3.1 in [EP]). For the reader’s convenience we provide a summary.

5.1. ClI operators

Suppose that f1, ..., fc € Sisaregular sequence and (V, ) is a complex of free modules

over R = S /(f1, - fc) Suppose that V is a liftingof Vto S, that is, a sequence of free

modules V, and maps 81+1 B V,+1 — V, such that 0 = R ® 3. Since 3% = 0 we can

choose maps t] 2 Vigr — V, 1, where 1 < j < ¢, such that 92 = ijl f]t]. We set
=R® tj.

By [Eil], the ¢; are maps of complexes V[—2] — V that are functorial (and thus in
particular commutative) up to homotopy.

If (V, 0) is the minimal free resolution of a finitely generated R-module N then, writ-
ing k for the residue field of S, the CI operators ¢; induce well-defined, commutative
maps x; on Extg(N, k), and thus make Extg (N, k) into a module over the polynomial
ring k[x1, ..., xc], where the variables x; have degree 2. The yx; are also called CI oper-
ators.

For a short proof of the following result, Theorem 5.2, see [EP, Theorem 4.2.3]. A ver-
sion of it was first proved by Gulliksen [Gu], who used a different construction of opera-
tors on Ext. The relations between the CI operators and various constructions of operators
on Ext were explained by Avramov and Sun.

Theorem 5.2. Let f1, ..., f. be aregular sequence in a local ring S with residue field k,
and set R = S/(f1, ..., fo). If N is a finitely generated R-module with finite projective
dimension over S, then the action of the CI operators makes Extg(N, k) into a finitely
generated k[x1, ..., xc]-module.

5.3. Higher homotopies and the Shamash construction

We need only the version for a single element, due to Shamash [Sh]; the more general
case of a collection of elements is treated by Eisenbud [Eil].

Definition 5.4. Let G be a complex of finitely generated free R’-modules. A system of
higher homotopies o for f € R’ on G is a collection of maps

0j:G— G[-2j + 1]
for j =0, 1, ... of the underlying modules such that
e 0y is the differential on G,
e the map ogo; + o109 is mulﬁplication by f on G,
o forevery j > 2 wehave }°) _, 040j—¢ = 0.

Proposition 5.5 ([Ei2, Sh]). If G is a free resolution of an R’-module annihilated by
elements f, then there exists a system of higher homotopies on G for f.
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Construction 5.6 ([Eil, Sh]). Suppose that (G, ) is a free complex over R’ with a sys-
tem 0 = {0} of higher homotopies for f € R’. We will define a new complex over
R := R'/(f). We write R{y} for the divided power algebra over R on one variable y;
that is,

R{y} = Homgraded R-modules (R[], R) = @ Ry(i)
i

where the y) form the dual basis to the basis ¢/ of the polynomial ring R[¢]. The graded
module R{y} ® G, where y has degree 2, becomes a free complex over R when equipped
with the differentials _

§:=Y t/®0;®R.
This complex is called the Shamash complex of (G, o) and denoted Sh(G, o) or simply
Sh(G).

We now record the properties of the Shamash construction that we will use. The minimal-
ity was first proven by Avramov—Gasharov—Peeva [AGP, Proposition 6.2]. See also [EP,
Corollary 4.3.5], where a different proof is given.

Proposition 5.7. Let G be an R'-free resolution of a finitely generated module N annihi-
lated by a non-zerodivisor f. The Shamash complex Sh(G) is a free resolution of N over
R = R'/(f), and is minimal if and only if the Cl-operator x corresponding to f acts as
a monomorphism on Extg (N, k). This happens if and only if

Extg(N, k)

Extp/ (N, k) & ————.
R NK) = (N 6

6. The layered R-free resolution of M

We let M be a Cohen—Macaulay S-module of codimension ¢, and we suppose that
f1, ..., feisaregular sequence in the annihilator of M. We do this by induction on c¢. We
will now construct the layered R-free resolution L| (M, fi, ..., f.) of M. For simplic-
ity we work in the case where M has finite projective dimension over S. See Remark 6.3
for the changes necessary in the general case.

In the case ¢ = 0 the module M is O since we have assumed that M is an MCM
R-module without free summands, and we take the resolution to be 0.

For simplicity, let R = R/(f1,..., fe—1) and let f = f.. We now describe the
inductive step. Given an R’-free resolution L’ of the essential MCM approximation M’ of
M over R’, we construct an R-free resolution L z (I, f) of M. In the induction, we will
take L' = L{ g (M', fi,..., fec1)-

With notation as in Section 3, we use the MCM approximation sequence (3.3):

(v
0%&1&1M@%E&3M%0
We write
B: By — By
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for the R’-free 2-term complex with differential 5. The map v : By — M’ lifts to a map
Yo : By — L, which in turn defines a map of complexes

Ve : B[—1] — L.
Let C(v0, b) be the mapping cone of /,, as shown in Figure 2.

) 0

RN L/2 L/1 L6
C(¥yp. b) : e Yo ®
B.—" B

Fig. 2. The box complex.

We call C (Y, b) the box complex. We define L, g (L', f) to be the Shamash complex
Sh(C (g, b)) defined in Construction 5.6.

Theorem 6.1. With notation as above, the box complex C (Y, b) is an R'-free resolution
of M. Thus the complex L] x (I, f) is an R-free resolution of M.
Further C(\yrg, b) is minimal if and only if L is minimal and the induced map

kQop kM - kM
is a monomorphism. Thus L g (L', f) is minimal if, in addition, the CI operator induced
by the expression R = R’ /(f,) is a monomorphism on Extg(M, k).

Proof. Using the notation in Figure 2,

(91 Vo
- )

is the first differential of C (v, b). We have

b

Also, fori > 2 we have H; (C (o, b)) = H; (L) = 0, so it is enough to show that C (v, b)
is exact at L @ Bj.

Suppose that (x, y) € Ker4. It follows that by = 0 and oy € 91(L}). Composing &
with the surjection L, & By — M’ @ By we see that the image z of y in M’ @ By is zero.
Since z = ( 11/; )y and the map

Coker 6 = Coker <¢) =M.

(g):BlﬁM/@B()

is a monomorphism by (3.3), it follows that y = 0. Hence d;x = 0. Since L’ is acyclic,
x € Im 5. Thus C (o, b) is exact at L} & Bj.

The box complex C (g, b) is minimal if and only if L’ is minimal and the maps v
and b are minimal. By Proposition 3.5, ¥ and b are minimal if and only if k ® ¢ is a
monomorphism.
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Since C (g, b) is an R’-free resolution of M the complex Sh(C (v, b)) is an R-free
resolution of M. By [AGP, Proposition 6.2] (see [EP, Corollary 4.3.5] for a second proof),
the minimal R-free resolution of M is obtained by applying the Shamash construction to
the minimal R’-free resolution of M if and only if the CI operator x : Extg(M, k) —
Extgp (M, k)[2] is injective. m]

6.2. Layers of the R-resolution

We use the same notation as in Subsection 4.2. It is clear from the construction that the
layered resolution L | r (M, f1, ..., fc) is filtered by the sequence of subcomplexes

CR®L‘LR(I—1)(M(Z_1)7f11’fl—l)CR®L‘l’R(l)(M(l)7flv1fl)C )

which are themselves resolutions because fi1, ..., f¢ is a regular sequence on M (i) for
each i.
We define the i-th layer to be the quotient

R®L»LR([)(M(Z)1 fl’ cees ﬁ)
R ®L¢R(i71)(M(l’ -, fi,..., fifl).

To describe this quotient we begin with the complexes
L' :=Llgi_y(MG = 1), fi..... fi—1).

and
B@): Bi(i) — Bo(),

corresponding to the essential MCM approximation M (i — 1) of M over R(i — 1). With
notation as in Figure 2, the homotopy for f; on the box complex C(vg, b) induces a map
h from L;, to By, and from this we get the complex

L': - > R®L, — R®L)> R®Bi1() > R® Boli).
From the inductive construction we see that the i-th layer of L| p (M, f1, ..., fc)is
R{y}®r L".

Remark 6.3. The situation is an analogue to that in Remark 4.3. When M does not have
finite projective dimension over S the essential MCM approximation of M over S is not 0,
and the inductive construction must start with a given free resolution PS of the essen-
tial MCM approximation M S of M over S. In this case we write Ly R(PS s S fo)
for the layered resolution over R. We note that the essential MCM approximation of
M’ over § is the same as that of M by Theorem 2.1(3). Given this, we may simply
replace L‘LR(M’ flv e fc) by L‘LR(PS’ flv cee fc) and L\LR’(M/v fl’ RN fcfl) by
L¢R/(PS, f1s ..., fe—1) in the proof above. Thus in the base case, ¢ = 0, we take the
layered resolution to be PS itself.
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7. When is k£ ® ¢ a monomorphism?

Theorem 7.1. Let P be an MCM R-module, and let M = Syzf(P). Let x be the CI
operator on Extg (P, k) derived from the expression R = R'/(f). If the CI operator

X : Bxth(P, k) — Extht*(P, k)

is injective for j = 0, 1, then the essential MCM approximation ¢ : M' — M of M over
R’ induces a monomorphism

kQp: k@M —> kM.

Proof. Figure 3 exhibits the modules and maps that will be used. Let F be a minimal R-
free resolution of P, so that M is the image of 8 : F» — Fj. Let F' be alifting of F to R/,
and let  : F — F[—2] denote the CI operator derived from the expression R = R'/(f).

We may define maps ¢’ : Fj’Jr2 — F.’ for j < 1 by the formula 3> = ft’. From
the assumption that x : Ext’ r(P. k) — Extj +2(P, k) is a monomorphism, we see using
Nakalyama s Lemma that the maps ¢ : Fj4p — Fjand ¢’ F]/+2 — Fj’ are surjections for
i<l

\ ’ d ’
. Y —F *>G0_F — P —0
P
J\[\J_>< 7
0
F3 F ? _— P—0
| 71/

Fig. 3
For j =0,1 wesetG; = Fj/, and we define

G2 = Ker(F} = F})

which is free because ¢’ is surjective. Let § : G, — G be the map induced by 9’ :
F} — F|. It follows at once that

G: GziGlgGo

is a minimal R’-free complex. Let M’ be the image of § : G, — Gy, and write ¢ :
M’ — M for the induced map. We will show that M’ is the essential MCM approximation
of M over R’.
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First we prove that G is the beginning of an R’-free resolution of P. Since 3> = ft' :
F; — F{, we see that the cokernel of 3’ : F{ — F{ is annihilated by f. After tensoring
with R, the cokernel is P. Thus the cokernel of 3" : F| — F itself is P.

Next we prove the exactness of G at G1. Suppose £1 € G| = F goesto 0in Go = F.
It follows from the exactness of F at F; that there is an element £, € FZ/ such that
€y — 3"y = fm/ for some m/ € F|. The surjectivity of ¢’ : Fj — F| shows that we may
write fm) = Z)’zm’3 for some m’ € F;. Thus £1 = 9’ (¢2+'m}). Since 8/2(€2+8/m/3) =
d'¢1 = 0 by hypothesis, we see that £, 4 8'm’; € G2, proving the exactness at G1. This
shows that G, — G| — G| is the beginning of the minimal R’-free resolution of P.

It follows that M’ = Syzf/P. Because depthg P = depth R’ — 1 and M = SyzX P,
it follows from the construction in Subsection 3.2 and Theorem 2.1(3) that ¢ : M’ — M
is the essential MCM approximation of M over R’. Since G, is a direct summand of F,
we see that the induced map k ® ¢ : k ® M’ — k ® M is injective. O

8. High syzygies and the criterion for minimality

Throughout this section, N denotes a finitely generated Cohen—Macaulay S-module of
codimension ¢ that has finite projective dimension as an S-module. We suppose that f =
f1, ..., fcis aregular sequence in the annihilator of N and write R = S/(f1, ..., fc) as
usual. Fori =0, ..., c we set

R(@i) :=8/(f1.--.. fi);

in particular, R = R(c). Let R(i) = k[x1,..., xi] be the ring of CI operators corre-
sponding to fi,..., fi.

To prove the minimality of the layered resolutions, we will need the y; to form a
quasi-regular sequence on Extr (N, k). This can always be achieved when k is infinite.
We review the relevant ideas: A sequence of elements 4., ..., h1 in a ring T is said to
be quasi-regular on a T-module E if, for each i, the annihilator of %; in the module
E/(he, ..., hit1)E has finite length. The case of interest for us is that of the finitely
generated graded module Extz (N, k) over the polynomial ring R(c). In addition to the
hypotheses of Section 3, we now suppose that S contains an infinite field k. Then, any suf-
ficiently general choice of the variables x; forms a quasi-regular sequence on Extg (N, k).
More precisely, for g € GL.(k), let

= (f1,.... fog

be the sequence of k-linear combinations of the f; corresponding to g. Since the y; form
a dual basis to the f;, there is an open subset U C GL.(k) such that for g € U the
sequence of Cl operators (xc)g., - - ., (X1), corresponding to f8 is a quasi-regular sequence
on Extr (N, k); see for example [EP, Lemma 6.1.9].

For the minimality criteria we will make use of the Castelnuovo—Mumford regularity
of Extgr(N, k) as an R-module, defined in the usual way in terms of the top degrees of
non-vanishing components of the local cohomology with respect to (x1, ..., x¢) C R.
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As R-modules we have
Extg (N, k) = Ext3°"(N, k) & Ext®4(N, k),

so the regularity is the maximum of the regularities of these two submodules (where
Ext‘;edd(N , k) inherits its grading from Extg (N, k)). In particular, if N is not R-free then
reg Extg (N, k) > 1 since Extg(N, k) is not generated in degree 0.

For example, if c = 0 then R = S and R = k. In this case,

regp Exts(N, k) = reg; Exts(N, k) = max{i | Exts(N, k) # 0} = c,

since we have assumed that N is Cohen—Macaulay of codimension c. In general, the
invariant we will use is

r(f,N) := max regr ;) Extr(i) (Appg)(N), k).
<i<c

Theorem 8.1. Let N be a finitely generated Cohen—Macaulay S-module of codimen-

sion ¢ that has finite projective dimension as an S-module, and let f = f1,..., f; be
a regular sequence in the annihilator of N. Suppose that the sequence of CI operators
Xc» Xe—1s - - > X1 on Extg (N, k) corresponding to £ is quasi-regular. If

n > 3+ max{c — 2, r(f, N)},

and M is the n-th syzygy of N over R, then the layered resolutions of M with respect to f,
both over S and over R, are minimal.

Proof. First, by a descending induction on i we will prove that x;, ..., x1 is a quasi-
regular sequence on Extg;)(N, k). For i = c this is part of our hypothesis. We may
assume, by induction, that x; 1, ..., x1 is a quasi-regular sequence on Extg1)(N, k).
Choose a g such that x;41 is a non-zerodivisor on Exti% +1)(N ,k). Let U be the g-th
syzygy of N over R(i + 1). By Proposition 5.7, we get

Extg()(U, k) = Extgi+1 (U, k) /xi+1Extri+1) (U, k).

By Theorem 2.1, Ext%?})(U, H[—q] = Exti?}) (N, k) for m > 0. Thus the R(i)-modules
Extry(N, k) and Extg(1)(N, k)/xi+1Extg+1)(N, k) become isomorphic after a suf-
ficiently high truncation, completing the induction.

As the modules N and Appg((N) have a common syzygy over R(i), we see
that the modules Extg(;)(NV, k) and ExtR(,-)(AppR(i)(N), k) become isomorphic after
a sufficiently high truncation. Therefore, y;,..., x1 is a quasi-regular sequence on
Extr(i) (Appg)(N), k) as well.

Since n > 1, the module M is an MCM module over R with no free summands. As
in4.2,fori =0,...,cweset

M(i) = Appg()(M).
Fori > 0wehave M(i — 1) = AppR(i_l)(M(i)) by Theorem 2.1, and we write
éi * Appgr(i—1(M (i) — M(i)

for the essential MCM approximation map. We will show that k ® ¢; is a monomorphism.
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Suppose i = 1. Since both N and R have finite projective dimension over S, it follows
that M has finite projective dimension as well. Therefore, M (0) = 0, so ¢1 = 0.
Next, for i > 2, we will show that the inequality

n = 3+ max{c — 2, regr ;) Extgi) (Appg(;)(N), k)}

implies that k ® ¢; is a monomorphism.

Let P be the minimal (n — 2)-th syzygy of N over R(i). Sincen —2 > 14 c — i, the
module P is an MCM module over R(i) without free summands. Note that Syzée @ (P) =
SyzX® (N). By Theorem 2.1(2) this is the module M (i).

We have shown, above, that the element x; is quasi-regular on the module
Extgr() (AppR(i) (N), k). Since

n—2>1+regr ;) Extr)(Appg)(N), k),
the largest submodule of Extg ;) (Appg;)(N), k) of finite length does not meet

Ext%ﬁ;%AppR(l)(N), k) = EXtR(i)(P, k)[_n + 2]’

and thus x; is a non-zerodivisor on Extg;)(P, k). From Theorem 7.1 we conclude that
the map
kQdi  kQM3IE—1)—> kQ M(®>)

is a monomorphism.

We now prove the minimality of the layered resolutions of M (i) over S and over R (i)
by induction on i. The case i = 0 is obvious. By Theorems 4.1 and 6.1, the minimality
for M (i) follows from the fact that k ® ¢; is a monomorphism and the minimality of the
layered resolutions of M (i — 1). O

Remark 8.2. There is a version of Theorem 8.1 that does not depend on information
about the approximations Appg ;) (N) at the expense of a slight weakening of the bound,
by using
r'(£, N) = 212_ax regR i Extr)(N, k).
1=c

Proposition 8.3. We use the notation in 3.1. Let M be a finitely generated MCM R-

module of codimension c that has finite projective dimension over S. Let £ = fi1,..., fe
be a regular sequence in the annihilator of M, and R' = S/(f1, ..., fe—1), R = R'/(f.).
Denote by R’ = k[x1, ..., xc—1] the ring of CI operators corresponding to fi, ..., fe_1.
We have

regrs Extr/ (Appr (M), k) < regp, Extg (M, k).
Proof. From the exact sequence (3.3) we get the exact sequence
Hompg/ (B, k) = Extg/ (M, k) — Extr/ (Appr/ (M), k) — 0.

By [Eil], it follows that it is an exact sequence of R’-modules. Thus the 0-th local co-
homology of Extg/ (Appgr (M), k) as an R’-module is a homomorphic image of the 0-th
local cohomology of Extg/ (M, k) as an R’-module, and the higher local cohomology
modules coincide, proving the desired regularity inequality. O
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In order to make use of the sharper estimate involving the r(f, N) and thus depending
On regp Extg ) (App R() (N), k), we would like to understand the relationship between
regr iy EXtr(i)(Appg()(N), k) and regr ;) Extr(j)(Appg(j)(N), k). In the examples we
have tried using the Macaulay 2 package “MCMApproximations”, the following question
has a positive answer:

Question 8.4. With hypotheses as in Theorem 8.1, is it true that

< S regr—1) EXtri—1)(Appg(i—1)(N), k) < regr ) Extr)(Appgg)(N), k) < ---
so that the maximum is attained by regR ) EXtr(c (N,k)?
Since Appgg)(N) = 0 and Appg(;)(N) is by definition an MCM R(1)-module with-
out free summands, we have at least
0 = regr o) Extr)(Appr(o)(N). k) < regry Extr)(Appg)(N), k) < 1,
where the latter inequality follows from [EP, Theorem 2.1.1].
The answer to Question 8.4 is also positive for high syzygies:

Corollary 8.5. As in 4.2 and the proof of Theorem 8.1, fori =0, ..., c we set M(i) =
Appg iy (M). With hypotheses as in Theorem 8.1, if M (i) # O then

regr ) Extrpy(M (i), k) =1
foreveryi > 1.

Proof. We will prove the corollary by a descending induction on i. First, we discuss the
base of the induction i = ¢. By assumption, M (c) = M is the n-th syzygy of an MCM-
module N over R(c¢) = R and

n>3+ Ie8R(c) Extr(c) (AppR(c) (N), k).
It follows that
>
Extg(e) (M (c). k) = Extz{ (Appg( (N). K)[n]
has the desired regularity, since if M(c) # O then Extg((M(c), k) is generated in de-
grees 0 and 1.

Now, fix an i < c. Suppose M (i) # 0. The proof of Theorem 8.1 shows that x; is
regular on Extg(;)(M (i), k) since M (i) = Syzg(’)(P) (where P is the module introduced
in the proof of Theorem 8.1). By Proposition 5.7 it follows that
Extry(M(i), k)

Extri_ny(M(»(), k) = - .
R0 XiExtr) (M (D), k)

Therefore,
regri—1) EXtri—1)(M (i), k) = regr ) Extra (M (i), k) =1
by induction hypothesis. By Proposition 8.3 we have
The regularity on the left-hand side vanishes if and only if M (i — 1) = 0. O

In general, we can establish a weaker inequality than the one in Question 8.4:
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Proposition 8.6. With hypotheses as in Theorem 8.1,

regri—1) EXtri—1)(Appg(i—1)(N), k) < 2 +regpr ;) Extr(i) (Appg()(N), k).
Proof. We may assume i = ¢, which simplifies the notation: we write R’ for R(i — 1)
and N’ for N(i — 1). Set r = regrz Extg(N, k), and let T be the (r + 1)-st R-syzygy

of N. The operator . is a non-zerodivisor on Extz (7', k) so, by Proposition 5.7,
Extg (T, k
Extg (T, k) = L.
xcExtr (T, k)

The module
Extg(T, k) = Extz" ' (N, K)[r + 1]

has regularity 1 over R, hence regp, Extp/ (T, k) = 1.
Since T is an MCM module over R, we may apply Proposition 8.3 to get

regr: Extr/(Appr/(T), k) < regp, Extg/(T, k) = 1.
By Theorem 2.1, Appp/(T) = Syzﬁ/_ (N") and so
Extg (Appp/ (T), k)[—r — 1] = Ext%,rJrl(N/, k).

We conclude reg Extz,r+1 (N', k) < r + 2. From the exact sequence

0 — Extz T (N, k) — Extg/(N', k) — Exti (N, k) — 0

we see that Extg/(N’, k) has regularity at most r + 2, as required. O

9. Generalized matrix factorization of an element

As explained in the introduction, an alternative presentation of the layered resolution
over R could be deduced from the following generalization of a result on periodic resolu-
tions over hypersurfaces in [Eil].

Theorem 9.1. Let f € A be an element of a commutative ring, and let

O—>N11>N0£>P—>O

be a short exact sequence of A-modules. If f is a non-zerodivisor on No and on Ny but
fP =0, then there is a unique map h : Ny — Ny such that dh = f *1d. The map h is
a monomorphism and satisfies hd = f % 1d. Further, if we write — for A/(f) ® —, then
the complex

Nliﬁogp—)o

I=

SN AN
is exact.
Proof. From the left exactness of the functor Hom we see that
0 — Hom(Ng, N1) — Hom(Ng, Ng) — Hom(Ny, P)

is exact. Since f * Id € Hom(Ny, Np) goes to 0 in Hom(Ng, P), it comes from a unique
map h € Hom(Ny, N1) with the property that dh = f * 1d.
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We claim that hd = f = Id as well. Since f is a non-zerodivisor on N it suffices
to prove this after inverting f. However, if f is a unit then the equation dh = f * Id
shows that d is surjective. Since d is a monomorphism, it follows that d, and therefore
also i, become isomorphisms on inverting f, so & can be cancelled on the right from the
expression

hdh = h(f =1d) = (f *1d)h,

yielding hd = f *Id as required.

The right exactness of A/(f) ® — shows that

Y

N] N()i)P—)O

is exact.
To show that the infinite sequence is exact at N, suppose that da = 0 for some

a € Ni. Thenda = fe for some e € Ny, and so da = fe = dhe, which implies a = he.
A similar argument proves exactness at No. O

Theorem 9.1 applies to the setting of MCM approximations, and yields:
Corollary 9.2. Suppose that R’ is a Gorenstein ring, f € R’ a non-zerodivisor, and M
an MCM module over R := R'/(f). Let (3.3) be the corresponding MCM-approximation
sequence over R'. There is a unique map

h:M & By— B
such that Bh = f x1d. The map h is a monomorphism and satisfies hp = f x1d. Further,
the complex

SBoREE MaB)oR™E B oRPE MoBYRS M0

of R-modules is exact.

10. Maximal Cohen-Macaulay modules from matrix factorization

In this section we provide a description of all MCM modules over a complete intersection.
In keeping with the inductive nature of layered resolutions, we give an inductive definition
of a CI matrix factorization essentially equivalent to the corresponding definitions in [EP];
see Remark 10.4.

We write K(c¢ — 1) for the Koszul complex K(f1, ..., fe—1) over Son f1,..., fe—1.
Let 0 be its differential, and let {e;} be a basis of K(c — 1) such that d(e;) = f; €
K( - 1) =S.

Definition 10.1. By an initial homotopy h for f € S on a 3-term complex
U i) U i) Uy
we mean a map of degree 1 with components  : U; — Ujy1 such that
dh Uy —> Uy, dh+hd:U — U

are both multiplication by f.
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Definition 10.2. Let S be a local ring. A CI matrix factorization complex with initial
homotopies with respect to a regular sequence fi,..., f. in S is defined as a 3-term
complex of free finitely generated S-modules
Ue): 45 u %o,
with initial homotopies h; for f; on U(c), such that:
If ¢ = 1 then U(1) has the form
b
U(l): 0— Bi(1) = By(1)

with a homotopy /1 for multiplication by f]. (This structure is the same as that of a matrix
factorization introduced in [Eil].)
If ¢ > 1 then

(1) U(c) has a subcomplex
Uc—1): U;— U — U

with initial homotopies h’l, R h’c_1 that is a CI matrix factorization complex with
respect to f1, ..., fc—1. Furthermore, U(c) has a quotient complex U(c)/U(c — 1) of
the form

KB: (K(fi..... fou1) ®s (0> Bi(©) %> Bo(0)),

for some complex of finitely generated free S-modules

0 — Bi(c) 25 By(c).

(2) With this decomposition, U(c) is isomorphic to the mapping cone of a map of com-

plexes
Y. :KB[—1] = U(c — 1)

that vanishes on K(c — 1) ® By(c), while W,. restricted to the summand ¢; ® Bj(c) is
equal to —h’ ., where ¥ is the component of W, from B;(c) to U} = @l‘;ll By(c)
(see the diagram below).

(3) For p < c, the initial homotopy 4, is equal to h;} when restricted to U(c — 1) and is
equal to (— l)s“ep ® Id when restricted to K(c — 1) ® B, (c).

(4) There exists an initial homotopy %, for f. on U(c).

We define the CI matrix factorization module M of U(c) to be

M = Coker(U; 5 Up).

The resulting CI matrix factorization with respect to f1, ..., f. is the pair (d, h), where
d is the component of the differential in U(c) mapping

P Bi(») — Vo =P Bo(p)
p=1 p=1

(thus, d is the collection of maps b; and ;), and 4 is the collection of the components of
the initial homotopies /; mapping €B),_; Bo(p) — @), Bi1(p).



866 David Eisenbud, Irena Peeva

The following diagram may help to visualize the definition. We denote by 9 the differen-
tial in the Koszul complex, and U, (c) is the direct sum of the modules in the r-th column:

U U Up = @5} Bo(p)

¢ ®br>—h] Y (b)

Bo(c)

Ple; ® Bo(c)

1
DiZiei © Bi() 1d®b,

—o®Id

Di<icj<c—1€ N e @ Bolo)

Remark 10.3. The construction above is consistent with the construction preceding
Theorem 4.1. The complex U(c) is the beginning of the layered resolution described
in Theorem 4.1.

Remark 10.4. Our concepts of matrix factorizations here and in [EP] are equivalent in
the sense that the following three properties are equivalent:

(1) M is the module of a CI matrix factorization.
(2) M isthe module of a higher matrix factorization (introduced in [EP, Definition 1.2.2]).
(3) M is the module of a strong matrix factorization (introduced in [EP, Definition 1.2.3]).

It is immediate that (1) implies (2), and that (3) implies (2). By [EP, Theorem 5.3.1],

(2) implies (3). Furthermore, (2) implies that M is a MCM R-module by [EP, Corol-
lary 3.11], and then Theorem 4.1 implies (1).

We can now state a complete analogue of Theorem 1.1:

Theorem 10.5. Let f1, ..., f. be a regular sequence in a regular local ring S. Set R =
S/(f1, ..., fe)- A finitely generated R-module N is MCM if and only if it is a CI matrix
factorization module for the sequence fi, ..., fc.

Proof. Suppose that N is a CI matrix factorization module. Then it is a higher matrix
factorization module in the sense of [EP, Definition 1.2]. By [EP, Corollary 3.11], it
follows that N is a MCM R-module.

Suppose that N is MCM. The free resolution in Theorem 4.1 implies that N is a CI
matrix factorization module. m]

As far as minimality goes, we have
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Theorem 10.6 ([EP, Theorem 1.4]). Let S be a regular local ring with infinite residue
field, and let I C S be an ideal generated by a regular sequence of length c. Set R = S/1,
and suppose that W is a finitely generated R-module. Let f1, ..., f. be a generic choice
of elements minimally generating 1. If M is a sufficiently high syzygy of W over R, then
M is the module of a minimal CI matrix factorization (d, h) with respect to fi, ..., fe.
Moreover d ® R and h ® R are the first two differentials in the minimal free resolution of
M over R.

Acknowledgments. We are grateful to Alexander Pavlov for helpful observations about MCM-
approximations, and to Daniel R. Grayson and Mike Stillman, the makers of Macaulay2 [M2]; the
packages CompletelntersectionResolutions.m2 and MaximalCohenMacaulay Approximations.m2
implement the constructions in this paper.

The work on this paper profited from the good conditions for mathematics at MSRI, and was
partially supported by the National Science Foundation under Grant 0932078000. The authors are
grateful to the National Science Foundation for partial support under Grants DMS-1502190 and
DMS-1406062.

References

[AB] Auslander, M., Buchweitz, R.-O.: The homological theory of maximal Cohen—-Macaulay
approximations. In: Colloque en ’honneur de Pierre Samuel (Orsay, 1987), Mém. Soc.
Math. France (N.S.) 38, 5-37 (1989) Zbl 0697.13005 MR 1044344

[AGP] Avramov, L., Gasharov, V., Peeva, I.: Complete intersection dimension. Publ. Math. IHES
86, 67-114 (1997) Zbl 0918.13008 MR 1608565

[Di]  Ding, S.: Cohen—Macaulay approximations over a Gorenstein local ring, Ph.D. Thesis,
Brandeis Univ. (1990) MR 2638535

[Eil] Eisenbud, D.: Homological algebra on a complete intersection, with an application to
group representations. Trans. Amer. Math. Soc. 260, 35-64 (1980) Zbl 0444.13006
MR 0570778

[Ei2] Eisenbud, D.: Enriched free resolutions and change of rings. In: Séminaire d’Algebre
Paul Dubreil (Paris, 1975-1976), Lecture Notes in Math. 586, Springer, 1-8 (1977)
7Zbl 0352.13004 MR 0568883

[EP] Eisenbud, D., Peeva, I.: Minimal Free Resolutions over Complete Intersections. Lecture
Notes in Math. 2152, Springer (2016) Zbl 1342.13001 MR 3445368

[Gu] Gulliksen, T.: A change of ring theorem with applications to Poincaré series and intersection
multiplicity. Math. Scand. 34, 167-183 (1974) Zbl 0292.13009 MR 0364232

[M2] Macaulay2—a system for computation in algebraic geometry and commutative algebra pro-
grammed by D. Grayson and M. Stillman, http://www.math.uiuc.edu/Macaulay2/

[Sh]  Shamash, J.: The Poincaré series of a local ring. J. Algebra 12, 453-470 (1969)
7Zbl 0189.04004 MR 0241411


http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0697.13005&format=complete
http://www.ams.org/mathscinet-getitem?mr=1044344
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0918.13008&format=complete
http://www.ams.org/mathscinet-getitem?mr=1608565
http://www.ams.org/mathscinet-getitem?mr=2638535
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0444.13006&format=complete
http://www.ams.org/mathscinet-getitem?mr=0570778
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0352.13004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0568883
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1342.13001&format=complete
http://www.ams.org/mathscinet-getitem?mr=3445368
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0292.13009&format=complete
http://www.ams.org/mathscinet-getitem?mr=0364232
http://www.math.uiuc.edu/Macaulay2/
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0189.04004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0241411

	1. Introduction
	2. Review of MCM approximations
	3. Codimension-one MCM approximations
	4. The layered S-free resolution of M
	5. Review of CI operators and the Shamash construction
	6. The layered R-free resolution of M
	7. When is k a monomorphism?
	8. High syzygies and the criterion for minimality
	9. Generalized matrix factorization of an element
	10. Maximal Cohen–Macaulay modules from matrix factorization
	References

