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1. Introduction

We study Betti numbers—that is, the ranks of the free modules in minimal free
resolutions—of graded finitely generated modules over a quadratic complete intersection
R:=Ek[x1,...,zn]/(f1,-.., fc) using the theory of higher matrix factorizations in [9].

In Section 5 we obtain a simplification and sharpening, in the case of quadratic com-
plete intersections, of the formulas for Betti numbers given, in the more general case,
in [9]. Tt follows from [9] that the graded Betti numbers are eventually given by the
formula in Theorem 5.6 which involves the ranks of certain free k[z1,...,z,]-modules
By(p) and Bi(p), with 1 < p < ¢, associated to a higher matrix factorization of the
quadratic regular sequence f1, ..., f.. In Theorem 5.8 we sharpen this result by giving
an explicit formula for the ranks of the modules B;(p) in terms of the ranks of the
modules By(p).

We begin in Section 2 by sharpening the known results in codimension 1. In the case
of modules over a hypersurface ring, it is well known that free resolutions correspond to
matrix factorizations, and in the case of a quadratic hypersurface f = 0 defined over a
field K these correspond to Z/2-graded modules over the Clifford algebra Cliff i (f) of
f. In Theorem 2.1 we prove that for a natural class of quadratic forms f, the Clifford
algebra is a division ring. This implies such quadrics have only very large non-trivial
matrix factorizations. In terms of Betti numbers, this yields a result for generic quadratic
hypersurfaces:

Theorem 1.1. Suppose that S is a reqular local ring with mazimal ideal m whose residue
field characteristic is not 2, and that fi,..., fm € m?> C S are elements such that the
quadratic forms f; mod (m3) generate an ideal of codimension c. Let 8" = S[z1,...,2m],

where the z; are indeterminates, and consider the local ring 8" = S, o . If M is any
finitely generated module over the hypersurface ring S’”/ Yot zifi, then the Betti num-

bers of M are eventually given by a constant divisible by 2°71.

To treat complete intersections of codimension > 1 we use the ideas of higher matrix
factorizations in [9], which we briefly review in Section 3.

Section 4 is focused on the number rank B (1) = rank By(1). This number is equal
to the Betti degree (if the complexity is maximal). In Theorem 4.3 we show for any
finitely generated module over a (not-necessarily quadratic) complete intersection that
its Betti degree is equal to the size of a minimal matrix factorization of a generic com-
bination Y z;f;, where z; are new variables. This relates the Betti degree to the MCM
Conjecture 4.1 of Buchweitz-Greuel-Schreyer [6], and leads to Conjecture 4.2. Matrix
factorizations of a generic combination were considered in a different way by Burke,
Orlov, Polishchuk, Vaintrob, Walker and others (Remark 4.5).
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2. The Clifford algebra and the matrix factorizations of a generic combination of
quadrics

A matriz factorization of an element f in a commutative ring S, in the sense of [§],
is an ordered pair of square matrices (A, B) with entries in S such that AB and BA are
both equal to f times an identity matrix, which we denote fId. Matrix factorizations
are useful in many fields, from the study of maximal Cohen-Macaulay modules and
singularity theory to knot theory and mathematical physics.

Recall that if f: V — K is a quadratic function on a vector space V over a field K,
then the Clifford algebra of f is

Cliff x (f) = <®V)/({v®vf(v) |ng}>.

Matrix factorizations of a quadratic form f on a vector space V over a field K are related
to modules over the Clifford algebra; one can use the structure of Cliff x (f) to study their
properties, and conversely. See [12, Section 4.8] for background on Clifford algebras.

If f is nonsingular then Cliff x (f) is a semi-simple finite-dimensional algebra, but it
is a difficult problem to determine when it is a division algebra; see [13] for a recent
(negative) result. However, an obvious necessary condition is that f is anisotropic-that
is, f(v) = 0 implies v = 0. (Proof: V = @' V is a subset of Cliff(f) because the relations
defining Cliff 5 (f) are Z/2-homogeneous of even degree. Thus, if f(v) = 0 then v is a
nilpotent element of Cliff x(f).) We will show that for a natural class of quadratic forms,
the converse is true as well:

Theorem 2.1. Let k be a field of characteristic not 2, and let K = k(z1,...,2m) be the
field of rational functions in m variables over k. Suppose that fi,..., fm € klz1,..., 2]
are quadratic forms, and consider the quadratic form f =",z f; over K.

(1) If the ideal (f1,...,fm) contains a power of (x1,...,2.), then the Clifford algebra
Cliff x (f) of f over K is a division algebra.

(2) If k is algebraically closed, then (f1,..., fm) contains a power of (x1,...,x.) if and
only if f = 2z fi is anisotropic over K.

(3) If k is algebraically closed, then the converse of (1) is also true; that is, the Clifford
algebra of f over K is a division algebra if and only if f is anisotropic over K.

In the special case f = ), zz, part (1) was proven by P.M. Cohn [7, Section 12.2]
using different methods. A generalization is proven in [5].

Proof of Theorem 2.1. Let C' = Cliff(f), the Clifford algebra of f over K, and set m =
(x1,...,2) CS.

As already noted, if f is isotropic then C has non-zero nilpotent elements, so C is not a
division ring. If k is algebraically closed, then the Nullstellensatz shows that (fi,..., fm)
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contains a power of (x1,...,z.) if and only if the f; have no nontrivial common zero in
k; and this is equivalent to the condition that f = Y z; f; is anisotropic over K. Thus
it suffices to prove (1), for which we assume that (f1,..., f,,) contains a power of the
maximal ideal.

The algebra C'is finite dimensional over K. We will show that any finitely generated
left C-module M has a finite free resolution. This implies that dimg M is a multiple of
dim g C. Consequently, C' can have no proper ideals, whence C is a division ring.

We may harmlessly extend the ground field k, and assume that it is algebraically
closed. We first consider the case m = ¢, so that fi,..., f. is a regular sequence. We
may replace the f; by general k-linear combinations of the f;. Since the finite map of
projective spaces P61 — P! has degree 2™, prime to the characteristic, the map is
separable, and thus generically smooth. Each ideal of the form

1= (11 #3))

defines the preimage of a general point of the image, and thus defines a set of reduced
points in P°~!. Because f1,..., f. is a regular sequence, each I; is saturated, so the
scheme it defines is not contained in a hyperplane. It follows that we may find linearly
independent points P; € k¢ such that

1 ifi=j
fi(P;) =65 = {

0 otherwise.

Diagonalizing, we change variables so that x;(P;) = J; ; and
fi=a?+ Z a;’qacpxq.
p<q

The Clifford algebra C of f is by definition the free algebra K({(eq,...,e.) modulo the
ideal J generated by the quadratic relations

Zuiei ®Zuiei — flug, ..., ue)

for all (uy,...,u.) € K¢, or, more explicitly,

epeq + €qep = Z a;’qzi for p < ¢

7,
2=z, forp=1
e,=z2ptorp=1,...,c

2
p

write C' as an algebra generated by the e; over the commutative polynomial ring U :=

Since z, = e; is central in C' we can eliminate the z; from the description of C, and

k[e?,...,e?%]. Further, C is obtained from the connected, positively graded U-algebra

» e
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, kler,...,ec)

({epeq +eqep =32, ajia,qez2 |p<4q})

by inverting all non-zero elements of U.

Set R := k[z1,...,2,)/(f1,---, fc). We next show that, as a quadratic algebra, C’
is the algebra dual of R; that is, the vector space of non-commutative quadratic forms
generated by the forms

i 2
€peq + €qtp — E :ap’qei’
i

which defines C| is the annihilator of the vector space of non-commutative quadratic
forms generated by

TpTqg — Tqxp = 0 for p < ¢

2 i _ o
x; + E ay, TpTg =0fori=1,... ¢,
p<gq

which defines R, under the pairing induced by taking {e;} to be the dual basis to {z;}
(see [15] for background on duality for quadratic algebras and on Koszul algebras). One
sees by inspection that each element of the first space annihilates each element of the
second. Since the dimensions of these two vector spaces add up to ¢2, this suffices.

As the quadratic algebra R is a commutative complete intersection of quadrics, the
minimal R-free resolution of k is the Tate resolution, described in [17]. In particular, it
is linear; that is, R is a Koszul algebra. The dual of the Tate resolution is the bi-graded
algebra C’ ®;, R, and after interchanging the gradings, this is also the dual of the free
resolution of k over C’. Since R is finite-dimensional, this shows that k has a finite
C’'-free resolution. The algebra C’ is Noetherian since it is generated as a U-module by
the square-free monomials in the e;. It can be positively graded by taking deg(e,) = 1
for all p, and, with this grading the degree 0 component C{ is equal to k. This shows
that k has finite projective dimension as a C’-module, and it follows that C’ has finite
global dimension: every finitely generated C’ module has a finite C’-free resolution.

If M is a finitely generated left C-module then, clearing denominators from a presen-
tation matrix for M, we see that M is obtained from a finitely generated left C’'-module
M’ by tensoring over k with K. Tensoring a finite free resolution of M’ over C’ with K,
we see that M has a finite free resolution as required. The completes the proof in the
case m = c.

To reduce to the case m = ¢, let A = (a; ;) be an (m x ¢)-matrix over k, and consider
the map

G k[z1, . 2my T, — R[22, ]

e

sending x; to z; and z; to Zj z;-am'. Consider
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Fr=of)=> D za,| =>4 (Z ai,jfZ) :
7 1

i J

Setting f; = ), a; ;fi, we may write this as f' = ¢(f) = Z;Zl i f-

If Cliff(f) were not a division algebra, then it would contain non-zero elements u, v
such that wv = 0. Write u = u//g(2), v = v'/g(z) for some 0 # g(z) € k[z1,...2m],
and some u', v’ in the image of the tensor algebra Tj.;(k[z] ®x V) (the free algebra on
generators V over k[z]). The set of matrices A as above such that g(z’) # 0 is Zariski
open and dense, and for any such A we have (¢(u')/g(2'))(d(v)/g(z')) = 0 in CLfE(f'),
where we have written ¢ for the obvious extension of ¢ to the free algebra T2 (k2] @1 V).
For A in a smaller open dense set, both ¢(u’) and ¢(v') are non-zero.

On the other hand, the set of matrices A such that the ideal (fy,..., f) contains a
power of m is also Zariski open and dense. By what we have proven for the case m = ¢,
ClLiff(f’) is a division ring for A in this set. This contradiction shows that CLff(f) was a
division ring to begin with. O

Remarks on the Proof. We are grateful to Michel van den Bergh and Michaela Vancliff
for pointing out the connection with the work of Bggvad [4] and Musson [14, Chapter
17], and the connection with finite global dimension. Avramov pointed out an alternative

proof for Corollary 2.2, starting from the description of Extg(k, k) given by Sjodin [16].
2

The special case where m = c and f; = z7 was proven by Buchweitz-Eisenbud-Herzog

in [5], using a result of P.M. Cohn.

To apply Theorem 2.1 to matrix factorizations and other free resolutions, we first
observe that if S is a local ring with maximal ideal m, then any matrix factorization of
an element f € S is equivalent, in a natural sense, to the direct sum of copies of the
trivial matrix factorizations ( fId, Id) and (Id, fId) and a minimal matriz factorization
(A, B)—that is, one where the entries of the matrices A and B are in m. We say that the
factorization is nontrivial if the minimal component is present. We extend this definition
in an obvious way to the case of homogeneous matrix factorizations over positively graded
rings whose degree zero part is local. If S is a regular local ring then f admits nontrivial
matrix factorizations if and only if f € m? since, by [8], a high truncation of any infinite
minimal free resolution over S/(f) is given by a nontrivial matrix factorization. Similar
considerations hold in the graded case. It is interesting to ask about possible the sizes
of matrices in minimal matrix factorizations of f. Theorem 1.1 follows from the next
result, which is a consequence of Theorem 2.1.

Corollary 2.2. Suppose that S is a regular local ring with mazimal ideal m whose residue
field characteristic is not 2, and let f1,..., fm Cm? C S. Let 8" = S[z1,...,2m|, where
the z; are indeterminates, and consider the local ring S"” = Sl o. Set f =>"" 2z fi.
Suppose the quadratic forms f; mod (m3) generate an ideal of codimension c.
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(1) The size of the matrices in any minimal matriz factorization of f with entries in S”
is divisible by 2°71.

(2) If Q is a minimal matriz with entries in S” such that Q* = f -1d then the size of Q
is divisible by 2¢.

Proof. First, we will prove (2). Factoring out a system of dim S — ¢ regular parameters,
we may assume from the outset that dim S = dim S” = c. Let K be the field of rational
functions K := k(z1,...,2.). Since the leading forms in(f;) of the f; form a maximal
regular sequence of quadrics in the associated graded ring k[x1, ..., z.] of S, the same is
true in the associated graded ring Klzy,...,z.] of S”. The initial form in(f) = > z; f;
of f is thus a generic linear combination of a maximal regular sequence of quadrics; in
particular, it does not vanish non-trivially over the algebraic closure of k.

Since the entries of @ are in m” := mS” we may define a matrix P of linear forms

over S” by taking the entries of P to be the classes of the entries of Q) modulo m” 2, and
it follows that
P?=in(f)Id
in K[zy,...,x.] since in(f) is a quadric.
Let r be the size of the matrix P. Set F = K", and let X be the k-vector space
spanned by z1,...,x.. The matrix P defines a map of K-vector spaces

F— (K, X))@k F=X®; F.
Giving such a map is equivalent to giving a map
X" @, F — F.

Since P? = in(f) Id, the latter map makes F' into a module over the Clifford algebra of
in(f) over K. By Theorem 2.1, the Clifford algebra is a division algebra over K. Since
its dimension is 2¢, the dimension of any module over it is an integral multiple of 2¢.

To deduce the statement about matrix factorizations in (1) we observe that if (A, B)
is a matrix factorization of f, so that AB = BA = f -1d, then

0 A
2= (5 9)
satisfies Q? = f-1d. O

3. Review of higher matrix factorizations

We are going to use the concept of a higher matrix factorization (d, h) for a regular
sequence f1,..., fe, introduced in [9, Definition 1.2.2]:
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Definition 3.1. A higher matriz factorization (d,h) with respect to a regular sequence
fi,-.., fe in a commutative ring S consists of the data in (1) and (2) subject to conditions

(a) and (b):
(1) A pair of free finitely generated S-modules Ag, A; with filtrations
0C As(1) C--- C Ag(c) = Ay, for s =0,1,

such that each As(p — 1) is a free summand of A,(p);
(2) A pair of maps d, h preserving filtrations,

P Aola) 2 A1 - A,
q=1

where we regard &,A40(q) as filtered by the submodules ®4<,A0(q);

such that, writing Ag(p) N Aq(p) N Ap(p) for the induced maps, we have

(a) dphp = .fp IdAo(p) HlOd(fl7 ey fp—l)AO(p);
(b) mphypdy = fpmp mod(f1, ..., fr—1)(A1(p)/A1(p—1)), where 7, denotes the projection
Ai(p) — Ai(p)/Ai(p—1).

For our constructions we choose splittings

As(p) = As(p— 1) © Bs(p)

so As(p) = B1<q<p Bs(q)-

Set R:=S/(f1,-..,f.). We define the module of the higher matriz factorization (d,h)
to be M := Coker(R®d). We refer to modules of this form as higher matriz factorization
modules or HMF modules.

We call the higher matrix factorization minimal if d and h are minimal (that is, the
image of each map is contained in the maximal ideal times the target).

The next theorem follows immediately from [9, Theorem 1.3.1].

Theorem 3.2. Let k be an infinite field, S = k[x1,...,x,] be standard graded with
deg(z;) = 1 for each i, and I be an ideal generated by a regular sequence of ¢ forms
of degree r. Let N be a finitely generated graded S/I-module, and f1,..., f. be a generic
for N regular sequence of r-forms minimally generating I. If M is a sufficiently high
graded syzygy of N over R := S/I, then M is the module of a minimal graded higher
matriz factorization.
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4. Betti degrees and matrix factorizations

Let fi1,...,fc be a regular sequence in a local ring S. Consider the quotient R =
S/(f1,..., fe), and suppose that N is a finitely generated R-module of finite projective
dimension over S, and let R = k[x1,...,Xc] be the ring of Cl-operators. Here each y;
operates with degree 2 on Extj(V, k), which thus splits into even and odd parts

Ext&“"(N, k) := @o<; ExtH(N, k)
Ext%4 (N, k) := @o<i Ext2 T (N, k).

By a theorem of Gulliksen as interpreted by Avramov-Sun, each of these modules is
finitely generated over R; a short proof is given in [9, Theorem 4.5].

The complexity cxg(N) of N is defined to be dimg (Ext® “"(N,k)) and the Betti
degree of N to be the multiplicity, mult(Ext% " (N, k)) computed with respect to the
standard grading of k[x1,...,x.] with deg(x;) = 1 for each . It is shown in [2] that
these have the same values as the dimension and multiplicity of Ext%®(N, k). The Betti
degree and complexity are defined similarly in the graded situation.

As N has finite projective dimension over S, we have 0 < cxg(N) < ¢, which follows
immediately from the Eisenbud-Shamash (possibly non-minimal) standard resolution.
The complexity is 0 if and only if N has finite projective dimension over R.

Suppose that the module N has infinite projective dimension over R, so cxg(N) > 1.
Avramov and Buchweitz [3, Conjecture 7.5] had made the interesting conjecture that the
Betti degree of N should be at least 2°#(N)=1 hut recently Iyengar-Walker [11] gave a
counterexample. In this section, we demonstrate that the following related conjecture of
Buchweitz-Greuel-Schreyer provides a hint that 4.2 might be the right substitute.

MCM Conjecture 4.1. (Buchweitz-Greuel-Schreyer [6, Conjecture A]) Let T be an ir-
reducible hypersurface whose singular locus has codimension r. Any Mazimal Cohen-
Macaulay module L without free summands over T satisfies

rank L > 2[%_1J ,
and | q| stands for the largest integer < q.

By results of [8], the size of the minimal matrix factorization of L is the sum of the
ranks of L and of its first syzygy. Thus the Buchweitz-Greuel-Schreyer conjecture would
imply that the size of the minimal matrix factorization associated to L is at least 2Ll2J.

In Theorem 4.3 we will show that the Betti degree of a module N over a complete
intersection is equal to the size of a minimal matrix factorization for a hypersurface whose
singular locus has codimension at least the complexity of N. Combining Theorem 4.3
and Conjecture 4.1 leads to:
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Betti Degree Conjecture 4.2. Let f1,. .., f. be a reqular sequence in a reqular local ring S,
and set R=5/(f1,...,f.). Let N be a finitely generated R-module of infinite projective

CXE(N)J

dimension over R. The Betti degree of N is at least ol =%

Similarly, one can make the corresponding conjecture in the case where S'is a standard
graded polynomial ring over an infinite field, f1,..., f. is a regular sequence of forms of
the same degree, and N is a finitely generated graded S/(f1,..., fc)-module.

It remains to prove:

Theorem 4.3. Let I be an ideal generated by a regular sequence in a local ring S with
infinite residue field k and maximal ideal m, and set R = S/I. Suppose that N is
a finitely generated R-module of finite projective dimension over S. Let fi,..., f. be
a regular sequence minimally generating I that is generic for N in the sense of [9,
Theorem 1.3.1]. Set v :=c¢—cxg N + 1.

Consider S[zy, ..., zc]n, where the z; are indeterminates and n = m + (2., ..., 2%c).
Let V' be the local complete intersection

V.= S[Z’Y, . .,Zc]n/(fl, .. '7f’y—1)~

The Betti degree of N is equal to the size of a minimal matrix factorization over V. of
the element

f= Zzifi -
1=y

If N has maximal complexity cxgN = ¢, then v = 1 and the singular locus of f € V =
S[zys ..., 2Ze|n has codimension > cxgpN.

Proof. The estimate on the singular locus of f = Y"¢_, z; f; follows because the derivative
with respect to z; is f;.

We may harmlessly extend the ground field k, and assume that it is algebraically
closed. Let M be a high R-syzygy of N in the sense of [9, Theorem 1.3.1]. The Betti
degree and the complexity of the module M are the same as those of N. By [9, Theorems
7.6 and 9.2], M is the module of a minimal higher matrix factorization (d, h) involving
modules By(1),...,Bo(c), B1(1),..., Bi(c), where the notation follows that of Section 3.
By [9, Corollary 5.2.3], we have

v =min{p|Bo(p) #0},

and the Betti degree of M is the size of the square matrix b, : Bi(y) — Bo(y), which
is a minimal matrix factorization for f, over the ring W := S/(f1,..., fy=1). By [9,
Theorem 3.1.4], the module M has finite projective dimension over the ring W.



D. Eisenbud et al. / Journal of Algebra 571 (2021) 15-81 25

The V-module V ® M has the same projective dimension over V, Betti degree and
complexity as a module over V/(f,, ..., fc) as M has, and is the V-module of the minimal
higher matrix factorization (V ® d, V' ® h) with respect to f,,..., f.. Writing V ® h
as a tuple (h,...,h.) we set h' := (zyhy,...,2:he). Let K be the V-module of the
minimal higher matrix factorization (V ® d, V' ® h') with respect to 2z, f, ..., 2cfc. By
[9, Theorem 5.1.2], the V-module K has the same Betti degree and the same complexity
over the ring Q :=V/(zyfy, ..., zcfc) as does V. ® M over the ring V/(f,,..., fc).

By [9, Proposition 6.1.11 and Theorem 6.1.2] we can add scalar combinations of later

elements of the regular sequence z,f,,...,2.f. to earlier ones to make the sequence
generic for K. After making the corresponding change of the variables z;, the ideal
I' :== (2yfy,..., 2cfc) may be written in the form
(&3 c C
I' = (Zzifu > agiifin D ayg2ifi, >,
=" i=vy+1 i=vy+2

where the a;; are linear forms in the variables z,. Let L be a sufficiently high Q-syzygy
of K. By [9, Theorem 1.3.1], L is the module of a minimal higher matrix factorization
(d, h) with respect to the regular sequence

& c c
F=Y "zl D ayerifin Y aygaifi oo,
1=y

1=vy+1 i=y+3

involving modules By (%), ..., Bo(c), B1(7), ..., Bi(c). The complexity and the Betti de-
gree of L are equal to those of K, so equal to those of N.
By [9, Corollary 5.2.3], we have

v =min{p|Bo(p) #0},

and the Betti degree of L is the size of the square matrix b, : By(y) — Bo(7), which is
a minimal matrix factorization for f over the ring V. O

Remark 4.4. The same conclusion as in Theorem 4.3 holds, with essentially the same
proof, in case S is a standard graded polynomial ring over an infinite field, I is generated
by a regular sequence of forms of the same degree, and N is a finitely generated graded
module over S/I.

Remark 4.5. Matrix factorizations of a generic combination were considered in a different
way by Burke, Orlov, Polishchuk, Vaintrob, Walker and others. They regard a complete
intersection as a family of hypersurfaces parametrized by a projective space: if S =
klz1,...,zy] is the coordinate ring of the affine n-space A} over a field k, and R is
the complete intersection R = S/(f1,..., fc), then one may consider the element f =
> zifi € S|z1,- .., 2c) as defining a hypersurface in the product of A™ and the projective
space P°~!, and consider the category of matrix factorizations of f.
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5. Linear higher matrix factorizations and Betti numbers
Under the assumptions of Theorem 3.2, we have graded Betti numbers
b (M) = dim Tor}* (M, k); .

In this section we study these Betti numbers.

The (graded) Betti numbers of an HMF module over a quadratic complete intersec-
tion are given by the formulas in the following Proposition 5.1, which follows from [9,
Corollary 5.2.1].

Proposition 5.1. Let S = k[z1,...,2,] be a standard graded polynomial ring over a field,
with deg(z;) = 1 for each i, and I be an ideal generated by a reqular sequence of quadrics.
Let M be the module of a higher graded matrixz factorization (d,h) over R = S/I. The
Poincaré series Pyt (z) = > ;5 bE(M)zt of M over R is

Pl (z) = Z W (x rank Bj(p) + rank Bo(p)> .

1<p<c

The graded Poincaré series Pl (x, z) = > >0 bf'j(M)xizj of M over R is

Pl(z,2) = Z ﬁ (mz Myp:1(2) + mp;o(z)) , (5.2)

1— 2222
1<p<c
where, for each s =0,1 and 1 <p <,

my;s(2) = Z bp;syjzj
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is the polynomial whose j-th coefficient by, ; is equal to the number of minimal generators
of degree j + s of the S-free module Bs(p).

We call a minimal R-free resolution piecewise linear if the entries in the differential
matrices are linear forms. A free resolution is piecewise linear if and only if it is a direct
sum of linear free resolutions:

Lemma 5.3. Let U be a piecewise linear R-free resolution. If

Up = R(—a1)"" & -+ & R(—ay,)"m

then U =U(1)®---® U(m), where each U(3) is a linear R-free resolution of a module
generated in degree a;.
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Proof. For every j > 0 we have U; = ®,R(—q)%. For each i < m, set U(i) to be the
subcomplex of U such that U(i); = R(—(a; + j))%-=:+i. This is a subcomplex since the
resolution U is piecewise linear. O

In the notation of Definition 3.1, we say that a higher matrix factorization (d, h) is
linear (or more precisely, g-linear) if d and h have linear entries and A is generated in
degree ¢. In this case, we say that Coker(d) ® R is a linear (or more precisely, g-linear)
higher matrix factorization module. We have:

Corollary 5.4. The module of a g-linear higher matrix factorization (d,h), with respect
to a quadratic reqular sequence, has a g-linear minimal R-free resolution.

Proof. Because the higher matrix factorization is linear, the homotopies used in the
construction of the minimal R-free resolution as given in [9, Chapter 5] may be taken to
be linear, and thus M has a g¢-linear free resolution.

The result also follows directly from formula (5.2) in Theorem 5.1. O

Theorem 5.5 shows that the linearization of a sufficiently high truncation of any
minimal resolution is a finite sum of resolutions of linear higher matrix factorization
modules. Herzog and Iyengar [10] proved that the linearization of a sufficiently high
truncation splits as a sum of linear resolutions; thus our result gives a more precise
description of the linear resolutions that occur (after a slight further truncation).

Theorem 5.5. Let S = k[x1, ..., x,] be standard graded with deg(x;) = 1 for each i, and I
be an ideal generated by a regular sequence of quadrics. Let M be a higher graded matriz
factorization module over R = S/I. The Betti table of M is a finite sum of Belti tables
of linear higher matriz factorization modules.

Proof. Suppose that M is the module of a minimal higher matrix factorization (d, h) with
respect to f1,..., fo. We adopt the notation of 3.1. Let d;) and h; be the linearizations
of d and h respectively, that is, d; and h; are obtained by erasing all the terms of degree
greater than 1 in the matrices d, and h), respectively. Then d; and h; form a new matrix
factorization (d’,h’) with the same underlying modules As(p). Moreover, (d',h’) is a
direct sum of linear higher matrix factorizations. By Proposition 5.1, the Betti table of
M is the sum of the Betti tables of the higher matrix factorization modules corresponding
to these linear summands. O

Combining Theorem 3.2, Proposition 5.1, and Theorem 5.5, we get:

Theorem 5.6. Let k be an infinite field, S = k[z1,...,x,] be standard graded with
deg(x;) =1 for each i, and I be an ideal generated by a reqular sequence of ¢ quadrics.
Let N be a finitely generated graded S/I-module. If M is a sufficiently high graded syzygy
of N over R:= S/I, then the graded Poincaré series of M over R is
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PE(z,2) Z Z W(mzr&nkB‘f(p) + rank Bg(p)> ) (5.7)

q 1<p<c

where Bi(p), B(p) are the free modules in a g-linear higher matriz factorization and q
ranges over the degrees in a minimal set of generators of M.

The graded Betti numbers of a graded finitely generated module over a quadratic
complete intersection are eventually given by the formula in Theorem 5.6. They are
expressed in terms of the ranks of the free modules By(p) and By (p) (where 1 < p < ¢)
appearing in a linear higher matrix factorization in the notation of 3.1. Next, we will
show how to obtain the ranks of the modules By (p) from the ranks of the modules By(p).

Theorem 5.8. Let S = k[z1,...,2,] be standard graded with deg(x;) = 1 for each i,
and f1,..., fo be a reqular sequence of quadrics. Let M be the module of a linear higher
matriz factorization (d,h) over R = S/(f1,..., f). The ranks of the modules B1(p) are
determined by the ranks of the modules By(p); in fact,

rank By (p ZQ 2]< >rankBo(p i)

for every p.

For example, when ¢ = 6, the formula above gives:

rank By (1) 1 0 0 0 0 0 rank By(1)
~ 1/2 1 0O 0 0 0 :
38 12 1 0 0 0
~| 5/16 3/8 1/2 1 0 0
: 35/128 5/16 3/8 1/2 1 0 :
rank By (6) 63/256 35/128 5/16 3/8 1/2 1 rank By (6)

Proof. By [9, Corollary 5.6] the Betti numbers of M over R are given by the following
two polynomials in z:

0 = 3 (P rank Balo

o
1<p<e p

b (M) = Y (C e Z) rank By (p).

o
1<p<e p

To simplify the notation we set r(p) = rank By(p). Since a quadratic complete intersec-
tion is a Koszul algebra, it follows that the Betti numbers of M over R are given by one
polynomial E(z) of degree < ¢, see [1]. Since
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)=t = ¥ (00w

1<p<e N CTP
we must have
c—p+z+1/2
E@Qz+1)= > < B )i
1<p<e €c-P
that is,
c—p+z+1/2 c—p+z
Z ( P 3 / )r(p) = Z ( f )rankBl(p).
1<p<c c—p 1<p<c c=p

For 1 < ¢’ < ¢ the restrictions of d and h to the A4;(c¢’) form a higher matrix factor-
ization of codimension ¢, so in fact

> (Cl_pj_ZHm)r(p)— > <C/c_,f_;z>rank31(p)

1<p<er p 1<p<er

foralll1 < <e.

For ¢ = 1 this gives rank Bi(1) = r(1) as required. Moreover, the coefficient
of rank B;(¢’) in the equation is 1, so the ¢ equations above inductively determine
rank B (p) in terms of the numbers rank By (q) for ¢ < p and all the r(¢') for ¢ < p. By
induction, it suffices to show that the values for rank B;(p) given in the Theorem satisfy
the c-th equation above; that is,

I;Z)SC (c—pjzp+1/2)r(p):1§éc (c—p+z);)2 2j< ) o —1).

Since these equations are linear functions of the vector (r(1),...,7(p)), it suffices to
check, for each 1 < ¢ < ¢, that the equation holds when r(¢q) = 1 while r(p) = 0 for p # q.
In this case the summand on the left vanishes except when p = ¢, while the summand
on the right vanishes except when j = p — ¢, so it suffices to show that

(757 2 e IS

Equivalently, setting m = ¢ — ¢ and @ = p — ¢ we have to prove that

m+z+1/2 iz_m 2\ (m—i+z
m — i m—i )
The following proof of this identity was generously communicated to us by Joe Buhler:
Define the “lower difference operator” A on a function F' by
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AF(z):=F(z) — F(z—1).

If F(z) is a polynomial of degree at most e, then

F(z) = ;A”F(—l) (Z J; ”) .

It thus suffices to show that, if F'(z) = (z+1{3+m) then

m—v

AVF(—1) = 272(m=) <2(m - ”)) . (5.9)

We will prove (5.9). It is easy to see by induction that

z+1/2+m—v>

m—v

AVF(z) = (

and hence it suffices to consider (5.9) in the case v = 0, that is, to show that F(—1) =
2727 (>™) Tt is immediate that

1-3-5---(2m —1)

2mF(~1) = -

Furthermore,

2’m

1:3-5--(2m—1) _(2m—1
m! B m

<2m - 1> (Zm - 1) <2m>

= + = )
m m—1 m

yielding the desired formula. 0O
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