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1. Introduction

We study Betti numbers—that is, the ranks of the free modules in minimal free 
resolutions—of graded finitely generated modules over a quadratic complete intersection 
R := k[x1, . . . , xn]/(f1, . . . , fc) using the theory of higher matrix factorizations in [9].

In Section 5 we obtain a simplification and sharpening, in the case of quadratic com-
plete intersections, of the formulas for Betti numbers given, in the more general case, 
in [9]. It follows from [9] that the graded Betti numbers are eventually given by the 
formula in Theorem 5.6 which involves the ranks of certain free k[x1, . . . , xn]-modules 
B0(p) and B1(p), with 1 ≤ p ≤ c, associated to a higher matrix factorization of the 
quadratic regular sequence f1, . . . , fc. In Theorem 5.8 we sharpen this result by giving 
an explicit formula for the ranks of the modules B1(p) in terms of the ranks of the 
modules B0(p).

We begin in Section 2 by sharpening the known results in codimension 1. In the case 
of modules over a hypersurface ring, it is well known that free resolutions correspond to 
matrix factorizations, and in the case of a quadratic hypersurface f = 0 defined over a 
field K these correspond to Z/2-graded modules over the Clifford algebra CliffK(f) of 
f . In Theorem 2.1 we prove that for a natural class of quadratic forms f , the Clifford 
algebra is a division ring. This implies such quadrics have only very large non-trivial 
matrix factorizations. In terms of Betti numbers, this yields a result for generic quadratic 
hypersurfaces:

Theorem 1.1. Suppose that S is a regular local ring with maximal ideal m whose residue 
field characteristic is not 2, and that f1, . . . , fm ∈ m2 ⊂ S are elements such that the 
quadratic forms fi mod (m3) generate an ideal of codimension c. Let S′ = S[z1, . . . , zm], 
where the zi are indeterminates, and consider the local ring S′′ = S′

mS′ . If M is any 

finitely generated module over the hypersurface ring S′′
/ ∑m

i=1 zifi, then the Betti num-

bers of M are eventually given by a constant divisible by 2c−1.

To treat complete intersections of codimension > 1 we use the ideas of higher matrix 
factorizations in [9], which we briefly review in Section 3.

Section 4 is focused on the number rank B1(1) = rank B0(1). This number is equal 
to the Betti degree (if the complexity is maximal). In Theorem 4.3 we show for any 
finitely generated module over a (not-necessarily quadratic) complete intersection that 
its Betti degree is equal to the size of a minimal matrix factorization of a generic com-
bination 

∑
zifi, where zi are new variables. This relates the Betti degree to the MCM 

Conjecture 4.1 of Buchweitz-Greuel-Schreyer [6], and leads to Conjecture 4.2. Matrix 
factorizations of a generic combination were considered in a different way by Burke, 
Orlov, Polishchuk, Vaintrob, Walker and others (Remark 4.5).
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2. The Clifford algebra and the matrix factorizations of a generic combination of 
quadrics

A matrix factorization of an element f in a commutative ring S, in the sense of [8], 
is an ordered pair of square matrices (A, B) with entries in S such that AB and BA are 
both equal to f times an identity matrix, which we denote f Id. Matrix factorizations 
are useful in many fields, from the study of maximal Cohen-Macaulay modules and 
singularity theory to knot theory and mathematical physics.

Recall that if f : V −→ K is a quadratic function on a vector space V over a field K, 
then the Clifford algebra of f is

CliffK(f) =
( ⊗

V

)/(
{v ⊗ v − f(v) | v ∈ V }

)
.

Matrix factorizations of a quadratic form f on a vector space V over a field K are related 
to modules over the Clifford algebra; one can use the structure of CliffK(f) to study their 
properties, and conversely. See [12, Section 4.8] for background on Clifford algebras.

If f is nonsingular then CliffK(f) is a semi-simple finite-dimensional algebra, but it 
is a difficult problem to determine when it is a division algebra; see [13] for a recent 
(negative) result. However, an obvious necessary condition is that f is anisotropic–that 
is, f(v) = 0 implies v = 0. (Proof: V =

⊗1
V is a subset of Cliff(f) because the relations 

defining CliffK(f) are Z/2-homogeneous of even degree. Thus, if f(v) = 0 then v is a 
nilpotent element of CliffK(f).) We will show that for a natural class of quadratic forms, 
the converse is true as well:

Theorem 2.1. Let k be a field of characteristic not 2, and let K = k(z1, . . . , zm) be the 
field of rational functions in m variables over k. Suppose that f1, . . . , fm ∈ k[x1, . . . , xc]
are quadratic forms, and consider the quadratic form f =

∑
i zifi over K.

(1) If the ideal (f1, . . . , fm) contains a power of (x1, . . . , xc), then the Clifford algebra 
CliffK(f) of f over K is a division algebra.

(2) If k is algebraically closed, then (f1, . . . , fm) contains a power of (x1, . . . , xc) if and 
only if f =

∑
zifi is anisotropic over K.

(3) If k is algebraically closed, then the converse of (1) is also true; that is, the Clifford 
algebra of f over K is a division algebra if and only if f is anisotropic over K.

In the special case f =
∑

i zix
i, part (1) was proven by P.M. Cohn [7, Section 12.2]

using different methods. A generalization is proven in [5].

Proof of Theorem 2.1. Let C = Cliff(f), the Clifford algebra of f over K, and set m =
(x1, . . . , xc) ⊂ S.

As already noted, if f is isotropic then C has non-zero nilpotent elements, so C is not a 
division ring. If k is algebraically closed, then the Nullstellensatz shows that (f1, . . . , fm)
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contains a power of (x1, . . . , xc) if and only if the fi have no nontrivial common zero in 
k; and this is equivalent to the condition that f =

∑
zifi is anisotropic over K. Thus 

it suffices to prove (1), for which we assume that (f1, . . . , fm) contains a power of the 
maximal ideal.

The algebra C is finite dimensional over K. We will show that any finitely generated 
left C-module M has a finite free resolution. This implies that dimKM is a multiple of 
dimKC. Consequently, C can have no proper ideals, whence C is a division ring.

We may harmlessly extend the ground field k, and assume that it is algebraically 
closed. We first consider the case m = c, so that f1, . . . , fc is a regular sequence. We 
may replace the fi by general k-linear combinations of the fi. Since the finite map of 
projective spaces P c−1 −→ Pm−1 has degree 2m, prime to the characteristic, the map is 
separable, and thus generically smooth. Each ideal of the form

Ij :=
(

{fi | i �= j}
)

defines the preimage of a general point of the image, and thus defines a set of reduced 
points in P c−1. Because f1, . . . , fc is a regular sequence, each Ij is saturated, so the 
scheme it defines is not contained in a hyperplane. It follows that we may find linearly 
independent points Pj ∈ kc such that

fi(Pj) = δi,j :=
{

1 if i = j

0 otherwise.

Diagonalizing, we change variables so that xi(Pj) = δi,j and

fi = x2
i +

∑
p<q

ai
p,qxpxq.

The Clifford algebra C of f is by definition the free algebra K〈e1, . . . , ec〉 modulo the 
ideal J generated by the quadratic relations∑

i

uiei ⊗
∑

i

uiei − f(u1, . . . , uc)

for all (u1, . . . , uc) ∈ Kc, or, more explicitly,

epeq + eqep =
∑

i

ai
p,qzi for p < q

e2
p = zp for p = 1, . . . , c.

Since zp = e2
p is central in C we can eliminate the zi from the description of C, and 

write C as an algebra generated by the ei over the commutative polynomial ring U :=
k[e2

1, . . . , e2
c ]. Further, C is obtained from the connected, positively graded U -algebra
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C ′ = k〈e1, . . . , ec〉
({epeq + eqep =

∑
i ai

p,qe2
i | p < q})

by inverting all non-zero elements of U .
Set R := k[x1, . . . , xn]/(f1, . . . , fc). We next show that, as a quadratic algebra, C ′

is the algebra dual of R; that is, the vector space of non-commutative quadratic forms 
generated by the forms

epeq + eqep −
∑

i

ai
p,qe2

i ,

which defines C, is the annihilator of the vector space of non-commutative quadratic 
forms generated by

xpxq − xqxp = 0 for p < q

x2
i +

∑
p<q

ai
p,qxpxq = 0 for i = 1, . . . , c,

which defines R, under the pairing induced by taking {ei} to be the dual basis to {xi}
(see [15] for background on duality for quadratic algebras and on Koszul algebras). One 
sees by inspection that each element of the first space annihilates each element of the 
second. Since the dimensions of these two vector spaces add up to c2, this suffices.

As the quadratic algebra R is a commutative complete intersection of quadrics, the 
minimal R-free resolution of k is the Tate resolution, described in [17]. In particular, it 
is linear; that is, R is a Koszul algebra. The dual of the Tate resolution is the bi-graded 
algebra C ′ ⊗k R, and after interchanging the gradings, this is also the dual of the free 
resolution of k over C ′. Since R is finite-dimensional, this shows that k has a finite 
C ′-free resolution. The algebra C ′ is Noetherian since it is generated as a U -module by 
the square-free monomials in the ei. It can be positively graded by taking deg(ep) = 1
for all p, and, with this grading the degree 0 component C ′

0 is equal to k. This shows 
that k has finite projective dimension as a C’-module, and it follows that C ′ has finite 
global dimension: every finitely generated C ′ module has a finite C ′-free resolution.

If M is a finitely generated left C-module then, clearing denominators from a presen-
tation matrix for M , we see that M is obtained from a finitely generated left C ′-module 
M ′ by tensoring over k with K. Tensoring a finite free resolution of M ′ over C ′ with K, 
we see that M has a finite free resolution as required. The completes the proof in the 
case m = c.

To reduce to the case m = c, let A = (ai,j) be an (m × c)-matrix over k, and consider 
the map

φ : k[z1, . . . , zm, x1, . . . , xc] −→ k[z′
1, . . . , z′

c, x1, . . . , xc]

sending xi to xi and zi to 
∑

j z′
jai,j . Consider
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f ′ = φ(f) =
∑

i

⎛⎝∑
j

z′
jai,j

⎞⎠ fi =
∑

j

z′
j

(∑
i

ai,jfi

)
.

Setting f ′
j =

∑
i ai,jfi, we may write this as f ′ = φ(f) =

∑c
j=1 z′

jf ′
j .

If Cliff(f) were not a division algebra, then it would contain non-zero elements u, v
such that uv = 0. Write u = u′/g(z), v = v′/g(z) for some 0 �= g(z) ∈ k[z1, . . . zm], 
and some u′, v′ in the image of the tensor algebra Tk[z](k[z] ⊗k V ) (the free algebra on 
generators V over k[z]). The set of matrices A as above such that g(z′) �= 0 is Zariski 
open and dense, and for any such A we have (φ̃(u′)/g(z′))(φ̃(v′)/g(z′)) = 0 in Cliff(f ′), 
where we have written φ̃ for the obvious extension of φ to the free algebra Tk[z](k[z] ⊗kV ). 
For A in a smaller open dense set, both φ̃(u′) and φ̃(v′) are non-zero.

On the other hand, the set of matrices A such that the ideal (f ′
1, . . . , f ′

j) contains a 
power of m is also Zariski open and dense. By what we have proven for the case m = c, 
Cliff(f ′) is a division ring for A in this set. This contradiction shows that Cliff(f) was a 
division ring to begin with. �
Remarks on the Proof. We are grateful to Michel van den Bergh and Michaela Vancliff 
for pointing out the connection with the work of Bøgvad [4] and Musson [14, Chapter 
17], and the connection with finite global dimension. Avramov pointed out an alternative 
proof for Corollary 2.2, starting from the description of ExtR(k, k) given by Sjödin [16]. 
The special case where m = c and fi = x2

i was proven by Buchweitz-Eisenbud-Herzog 
in [5], using a result of P.M. Cohn.

To apply Theorem 2.1 to matrix factorizations and other free resolutions, we first 
observe that if S is a local ring with maximal ideal m, then any matrix factorization of 
an element f ∈ S is equivalent, in a natural sense, to the direct sum of copies of the 
trivial matrix factorizations 

(
fId, Id

)
and 

(
Id, fId

)
and a minimal matrix factorization

(A, B)—that is, one where the entries of the matrices A and B are in m. We say that the 
factorization is nontrivial if the minimal component is present. We extend this definition 
in an obvious way to the case of homogeneous matrix factorizations over positively graded 
rings whose degree zero part is local. If S is a regular local ring then f admits nontrivial 
matrix factorizations if and only if f ∈ m2 since, by [8], a high truncation of any infinite 
minimal free resolution over S/(f) is given by a nontrivial matrix factorization. Similar 
considerations hold in the graded case. It is interesting to ask about possible the sizes 
of matrices in minimal matrix factorizations of f . Theorem 1.1 follows from the next 
result, which is a consequence of Theorem 2.1.

Corollary 2.2. Suppose that S is a regular local ring with maximal ideal m whose residue 
field characteristic is not 2, and let f1, . . . , fm ⊂ m2 ⊂ S. Let S′ = S[z1, . . . , zm], where 
the zi are indeterminates, and consider the local ring S′′ = S′

mS′ . Set f =
∑m

i=1 zifi. 
Suppose the quadratic forms fi mod (m3) generate an ideal of codimension c.
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(1) The size of the matrices in any minimal matrix factorization of f with entries in S′′

is divisible by 2c−1.
(2) If Q is a minimal matrix with entries in S′′ such that Q2 = f · Id then the size of Q

is divisible by 2c.

Proof. First, we will prove (2). Factoring out a system of dim S − c regular parameters, 
we may assume from the outset that dim S = dim S′′ = c. Let K be the field of rational 
functions K := k(z1, . . . , zc). Since the leading forms in(fi) of the fi form a maximal 
regular sequence of quadrics in the associated graded ring k[x1, . . . , xc] of S, the same is 
true in the associated graded ring K[x1, . . . , xc] of S′′. The initial form in(f) =

∑
zifi

of f is thus a generic linear combination of a maximal regular sequence of quadrics; in 
particular, it does not vanish non-trivially over the algebraic closure of k.

Since the entries of Q are in m′′ := mS′′ we may define a matrix P of linear forms 
over S′′ by taking the entries of P to be the classes of the entries of Q modulo m′′ 2, and 
it follows that

P 2 = in(f) Id

in K[x1, . . . , xc] since in(f) is a quadric.
Let r be the size of the matrix P . Set F = Kr, and let X be the k-vector space 

spanned by x1, . . . , xc. The matrix P defines a map of K-vector spaces

F −→ (K ⊗k X) ⊗K F = X ⊗k F .

Giving such a map is equivalent to giving a map

X∗ ⊗k F −→ F .

Since P 2 = in(f) Id, the latter map makes F into a module over the Clifford algebra of 
in(f) over K. By Theorem 2.1, the Clifford algebra is a division algebra over K. Since 
its dimension is 2c, the dimension of any module over it is an integral multiple of 2c.

To deduce the statement about matrix factorizations in (1) we observe that if (A, B)
is a matrix factorization of f , so that AB = BA = f · Id, then

Q =
(

0 A
B 0

)
satisfies Q2 = f · Id. �
3. Review of higher matrix factorizations

We are going to use the concept of a higher matrix factorization (d, h) for a regular 
sequence f1, . . . , fc, introduced in [9, Definition 1.2.2]:
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Definition 3.1. A higher matrix factorization (d, h) with respect to a regular sequence 
f1, . . . , fc in a commutative ring S consists of the data in (1) and (2) subject to conditions 
(a) and (b):

(1) A pair of free finitely generated S-modules A0, A1 with filtrations

0 ⊆ As(1) ⊆ · · · ⊆ As(c) = As, for s = 0, 1,

such that each As(p − 1) is a free summand of As(p);
(2) A pair of maps d, h preserving filtrations,

c⊕
q=1

A0(q) h−−→ A1
d−−→ A0,

where we regard ⊕qA0(q) as filtered by the submodules ⊕q≤pA0(q);

such that, writing A0(p) hp−−−→ A1(p) dp−−−→ A0(p) for the induced maps, we have

(a) dphp ≡ fp IdA0(p) mod(f1, . . . , fp−1)A0(p);
(b) πphpdp ≡ fp πp mod(f1, . . . , fp−1)

(
A1(p)/A1(p −1)

)
, where πp denotes the projection 

A1(p) −→ A1(p)/A1(p − 1).

For our constructions we choose splittings

As(p) = As(p − 1) ⊕ Bs(p)

so As(p) = ⊕1≤q≤p Bs(q).
Set R := S/(f1, . . . , fc). We define the module of the higher matrix factorization (d, h)

to be M := Coker(R⊗d). We refer to modules of this form as higher matrix factorization 
modules or HMF modules.

We call the higher matrix factorization minimal if d and h are minimal (that is, the 
image of each map is contained in the maximal ideal times the target).

The next theorem follows immediately from [9, Theorem 1.3.1].

Theorem 3.2. Let k be an infinite field, S = k[x1, . . . , xn] be standard graded with 
deg(xi) = 1 for each i, and I be an ideal generated by a regular sequence of c forms 
of degree r. Let N be a finitely generated graded S/I-module, and f1, . . . , fc be a generic 
for N regular sequence of r-forms minimally generating I. If M is a sufficiently high 
graded syzygy of N over R := S/I, then M is the module of a minimal graded higher 
matrix factorization.
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4. Betti degrees and matrix factorizations

Let f1, . . . , fc be a regular sequence in a local ring S. Consider the quotient R =
S/(f1, . . . , fc), and suppose that N is a finitely generated R-module of finite projective 
dimension over S, and let R = k[χ1, . . . , χc] be the ring of CI-operators. Here each χi

operates with degree 2 on Ext∗
R(N, k), which thus splits into even and odd parts

Exteven
R (N, k) := ⊕0≤i Ext2i

R (N, k)

Extodd
R (N, k) := ⊕0≤i Ext2i+1

R (N, k) .

By a theorem of Gulliksen as interpreted by Avramov-Sun, each of these modules is 
finitely generated over R; a short proof is given in [9, Theorem 4.5].

The complexity cxR(N) of N is defined to be dimR(Exteven
R (N, k)) and the Betti 

degree of N to be the multiplicity, mult(Exteven
R (N, k)) computed with respect to the 

standard grading of k[χ1, . . . , χc] with deg(χi) = 1 for each i. It is shown in [2] that 
these have the same values as the dimension and multiplicity of Extodd

R (N, k). The Betti 
degree and complexity are defined similarly in the graded situation.

As N has finite projective dimension over S, we have 0 ≤ cxR(N) ≤ c, which follows 
immediately from the Eisenbud-Shamash (possibly non-minimal) standard resolution. 
The complexity is 0 if and only if N has finite projective dimension over R.

Suppose that the module N has infinite projective dimension over R, so cxR(N) ≥ 1. 
Avramov and Buchweitz [3, Conjecture 7.5] had made the interesting conjecture that the 
Betti degree of N should be at least 2cxR(N)−1, but recently Iyengar-Walker [11] gave a 
counterexample. In this section, we demonstrate that the following related conjecture of 
Buchweitz-Greuel-Schreyer provides a hint that 4.2 might be the right substitute.

MCM Conjecture 4.1. (Buchweitz-Greuel-Schreyer [6, Conjecture A]) Let T be an ir-
reducible hypersurface whose singular locus has codimension r. Any Maximal Cohen-
Macaulay module L without free summands over T satisfies

rank L ≥ 2
⌊

r
2 −1

⌋
,

and �q� stands for the largest integer ≤ q.

By results of [8], the size of the minimal matrix factorization of L is the sum of the 
ranks of L and of its first syzygy. Thus the Buchweitz-Greuel-Schreyer conjecture would 
imply that the size of the minimal matrix factorization associated to L is at least 2� r

2 �.
In Theorem 4.3 we will show that the Betti degree of a module N over a complete 

intersection is equal to the size of a minimal matrix factorization for a hypersurface whose 
singular locus has codimension at least the complexity of N . Combining Theorem 4.3
and Conjecture 4.1 leads to:
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Betti Degree Conjecture 4.2. Let f1, . . . , fc be a regular sequence in a regular local ring S, 
and set R = S/(f1, . . . , fc). Let N be a finitely generated R-module of infinite projective 

dimension over R. The Betti degree of N is at least 2
⌊ cxR(N)

2
⌋
.

Similarly, one can make the corresponding conjecture in the case where S is a standard 
graded polynomial ring over an infinite field, f1, . . . , fc is a regular sequence of forms of 
the same degree, and N is a finitely generated graded S/(f1, . . . , fc)-module.

It remains to prove:

Theorem 4.3. Let I be an ideal generated by a regular sequence in a local ring S with 
infinite residue field k and maximal ideal m, and set R = S/I. Suppose that N is 
a finitely generated R-module of finite projective dimension over S. Let f1, . . . , fc be 
a regular sequence minimally generating I that is generic for N in the sense of [9, 
Theorem 1.3.1]. Set γ := c − cxR N + 1.

Consider S[zγ , . . . , zc]n, where the zi are indeterminates and n = m + (zγ , . . ., zc). 
Let V be the local complete intersection

V := S[zγ , . . . , zc]n/(f1, . . . , fγ−1).

The Betti degree of N is equal to the size of a minimal matrix factorization over V of 
the element

f :=
c∑

i=γ

zifi .

If N has maximal complexity cxRN = c, then γ = 1 and the singular locus of f ∈ V =
S[zγ , . . . , zc]n has codimension ≥ cxRN .

Proof. The estimate on the singular locus of f =
∑c

i=1 zifi follows because the derivative 
with respect to zi is fi.

We may harmlessly extend the ground field k, and assume that it is algebraically 
closed. Let M be a high R-syzygy of N in the sense of [9, Theorem 1.3.1]. The Betti 
degree and the complexity of the module M are the same as those of N . By [9, Theorems 
7.6 and 9.2], M is the module of a minimal higher matrix factorization (d, h) involving 
modules B0(1), . . . , B0(c), B1(1), . . . , B1(c), where the notation follows that of Section 3. 
By [9, Corollary 5.2.3], we have

γ = min{ p | B0(p) �= 0 } ,

and the Betti degree of M is the size of the square matrix bγ : B1(γ) −→ B0(γ), which 
is a minimal matrix factorization for fγ over the ring W := S/(f1, . . . , fγ−1). By [9, 
Theorem 3.1.4], the module M has finite projective dimension over the ring W .
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The V -module V ⊗ M has the same projective dimension over V , Betti degree and 
complexity as a module over V/(fγ , . . . , fc) as M has, and is the V -module of the minimal 
higher matrix factorization (V ⊗ d, V ⊗ h) with respect to fγ , . . . , fc. Writing V ⊗ h

as a tuple (hγ , . . . , hc) we set h′ := (zγhγ , . . . , zchc). Let K be the V -module of the 
minimal higher matrix factorization (V ⊗ d, V ⊗ h′) with respect to zγfγ , . . . , zcfc. By 
[9, Theorem 5.1.2], the V -module K has the same Betti degree and the same complexity 
over the ring Q := V/(zγfγ , . . . , zcfc) as does V ⊗ M over the ring V/(fγ , . . . , fc).

By [9, Proposition 6.1.11 and Theorem 6.1.2] we can add scalar combinations of later 
elements of the regular sequence zγfγ , . . . , zcfc to earlier ones to make the sequence 
generic for K. After making the corresponding change of the variables zi, the ideal 
I ′ := (zγfγ , . . . , zcfc) may be written in the form

I ′ =
(

c∑
i=γ

zifi,
c∑

i=γ+1
aγ+1,ifi,

c∑
i=γ+2

aγ+2,ifi, . . .

)
,

where the aj,i are linear forms in the variables zq. Let L be a sufficiently high Q-syzygy 
of K. By [9, Theorem 1.3.1], L is the module of a minimal higher matrix factorization 
(d̄, ̄h) with respect to the regular sequence

f =
c∑

i=γ

zifi,
c∑

i=γ+1
aγ+1,ifi,

c∑
i=γ+3

aγ+2,ifi, . . . ,

involving modules B0(γ), . . . , B0(c), B1(γ), . . . , B1(c). The complexity and the Betti de-
gree of L are equal to those of K, so equal to those of N .

By [9, Corollary 5.2.3], we have

γ = min{ p | B0(p) �= 0 } ,

and the Betti degree of L is the size of the square matrix bγ : B1(γ) −→ B0(γ), which is 
a minimal matrix factorization for f over the ring V . �
Remark 4.4. The same conclusion as in Theorem 4.3 holds, with essentially the same 
proof, in case S is a standard graded polynomial ring over an infinite field, I is generated 
by a regular sequence of forms of the same degree, and N is a finitely generated graded 
module over S/I.

Remark 4.5. Matrix factorizations of a generic combination were considered in a different 
way by Burke, Orlov, Polishchuk, Vaintrob, Walker and others. They regard a complete 
intersection as a family of hypersurfaces parametrized by a projective space: if S =
k[x1, . . . , xn] is the coordinate ring of the affine n-space An

k over a field k, and R is 
the complete intersection R = S/(f1, . . . , fc), then one may consider the element f =∑

zifi ∈ S[z1, . . . , zc] as defining a hypersurface in the product of An and the projective 
space Pc−1, and consider the category of matrix factorizations of f .
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5. Linear higher matrix factorizations and Betti numbers

Under the assumptions of Theorem 3.2, we have graded Betti numbers

bR
i,j(M) = dimkTorR

i (M, k)j .

In this section we study these Betti numbers.
The (graded) Betti numbers of an HMF module over a quadratic complete intersec-

tion are given by the formulas in the following Proposition 5.1, which follows from [9, 
Corollary 5.2.1].

Proposition 5.1. Let S = k[x1, . . . , xn] be a standard graded polynomial ring over a field, 
with deg(xi) = 1 for each i, and I be an ideal generated by a regular sequence of quadrics. 
Let M be the module of a higher graded matrix factorization (d, h) over R = S/I. The 
Poincaré series PR

M (x) =
∑

i≥0 bR
i (M)xi of M over R is

PR
M (x) =

∑
1≤p≤c

1
(1 − x2)c−p+1

(
x rank B1(p) + rank B0(p)

)
.

The graded Poincaré series PR
M (x, z) =

∑
i≥0 bR

i,j(M)xizj of M over R is

PR
M (x, z) =

∑
1≤p≤c

zj

(1 − x2z2)c−p+1

(
xz mp;1(z) + mp;0(z)

)
, (5.2)

where, for each s = 0, 1 and 1 ≤ p ≤ c,

mp;s(z) :=
∑
j≥0

bp;s,jzj

is the polynomial whose j-th coefficient bp;s,j is equal to the number of minimal generators 
of degree j + s of the S-free module Bs(p).

We call a minimal R-free resolution piecewise linear if the entries in the differential 
matrices are linear forms. A free resolution is piecewise linear if and only if it is a direct 
sum of linear free resolutions:

Lemma 5.3. Let U be a piecewise linear R-free resolution. If

U0 = R(−a1)b0,a1 ⊕ · · · ⊕ R(−am)b0,am ,

then U = U(1) ⊕ · · · ⊕ U(m), where each U(i) is a linear R-free resolution of a module 
generated in degree ai.
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Proof. For every j ≥ 0 we have Uj = ⊕qR(−q)bj,q . For each i ≤ m, set U(i) to be the 
subcomplex of U such that U(i)j = R(−(ai + j))bj,ai+j . This is a subcomplex since the 
resolution U is piecewise linear. �

In the notation of Definition 3.1, we say that a higher matrix factorization (d, h) is 
linear (or more precisely, q-linear) if d and h have linear entries and A0 is generated in 
degree q. In this case, we say that Coker(d) ⊗ R is a linear (or more precisely, q-linear) 
higher matrix factorization module. We have:

Corollary 5.4. The module of a q-linear higher matrix factorization (d, h), with respect 
to a quadratic regular sequence, has a q-linear minimal R-free resolution.

Proof. Because the higher matrix factorization is linear, the homotopies used in the 
construction of the minimal R-free resolution as given in [9, Chapter 5] may be taken to 
be linear, and thus M has a q-linear free resolution.

The result also follows directly from formula (5.2) in Theorem 5.1. �
Theorem 5.5 shows that the linearization of a sufficiently high truncation of any 

minimal resolution is a finite sum of resolutions of linear higher matrix factorization 
modules. Herzog and Iyengar [10] proved that the linearization of a sufficiently high 
truncation splits as a sum of linear resolutions; thus our result gives a more precise 
description of the linear resolutions that occur (after a slight further truncation).

Theorem 5.5. Let S = k[x1, . . . , xn] be standard graded with deg(xi) = 1 for each i, and I
be an ideal generated by a regular sequence of quadrics. Let M be a higher graded matrix 
factorization module over R = S/I. The Betti table of M is a finite sum of Betti tables 
of linear higher matrix factorization modules.

Proof. Suppose that M is the module of a minimal higher matrix factorization (d, h) with 
respect to f1, . . . , fc. We adopt the notation of 3.1. Let d′

p and h′
p be the linearizations 

of d and h respectively, that is, d′
p and h′

p are obtained by erasing all the terms of degree 
greater than 1 in the matrices dp and hp respectively. Then d′

p and h′
p form a new matrix 

factorization (d′, h′) with the same underlying modules As(p). Moreover, (d′, h′) is a 
direct sum of linear higher matrix factorizations. By Proposition 5.1, the Betti table of 
M is the sum of the Betti tables of the higher matrix factorization modules corresponding 
to these linear summands. �

Combining Theorem 3.2, Proposition 5.1, and Theorem 5.5, we get:

Theorem 5.6. Let k be an infinite field, S = k[x1, . . . , xn] be standard graded with 
deg(xi) = 1 for each i, and I be an ideal generated by a regular sequence of c quadrics. 
Let N be a finitely generated graded S/I-module. If M is a sufficiently high graded syzygy 
of N over R := S/I, then the graded Poincaré series of M over R is
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PR
M (x, z) =

∑
q

∑
1≤p≤c

zq

(1 − x2z2)c−p+1

(
xz rank Bq

1(p) + rank Bq
0(p)

)
, (5.7)

where Bq
1(p), Bq

0(p) are the free modules in a q-linear higher matrix factorization and q
ranges over the degrees in a minimal set of generators of M .

The graded Betti numbers of a graded finitely generated module over a quadratic 
complete intersection are eventually given by the formula in Theorem 5.6. They are 
expressed in terms of the ranks of the free modules B0(p) and B1(p) (where 1 ≤ p ≤ c) 
appearing in a linear higher matrix factorization in the notation of 3.1. Next, we will 
show how to obtain the ranks of the modules B1(p) from the ranks of the modules B0(p).

Theorem 5.8. Let S = k[x1, . . . , xn] be standard graded with deg(xi) = 1 for each i, 
and f1, . . . , fc be a regular sequence of quadrics. Let M be the module of a linear higher 
matrix factorization (d, h) over R = S/(f1, . . . , fc). The ranks of the modules B1(p) are 
determined by the ranks of the modules B0(p); in fact,

rank B1(p) =
p−1∑
j=0

2−2j

(
2j

j

)
rank B0(p − j)

for every p.

For example, when c = 6, the formula above gives:⎛⎜⎜⎜⎜⎜⎜⎜⎝

rank B1(1)
...
...
...

rank B1(6)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
1/2 1 0 0 0 0
3/8 1/2 1 0 0 0
5/16 3/8 1/2 1 0 0

35/128 5/16 3/8 1/2 1 0
63/256 35/128 5/16 3/8 1/2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

rank B0(1)
...
...
...

rank B0(6)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Proof. By [9, Corollary 5.6] the Betti numbers of M over R are given by the following 
two polynomials in z:

bR
2z(M) =

∑
1≤p≤c

(
c − p + z

c − p

)
rank B0(p)

bR
2z+1(M) =

∑
1≤p≤c

(
c − p + z

c − p

)
rank B1(p) .

To simplify the notation we set r(p) = rank B0(p). Since a quadratic complete intersec-
tion is a Koszul algebra, it follows that the Betti numbers of M over R are given by one 
polynomial E(z) of degree ≤ c, see [1]. Since
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E(2z) = b2z =
∑

1≤p≤c

(
c − p + z

c − p

)
r(p)

we must have

E(2z + 1) =
∑

1≤p≤c

(
c − p + z + 1/2

c − p

)
r(p);

that is,

∑
1≤p≤c

(
c − p + z + 1/2

c − p

)
r(p) =

∑
1≤p≤c

(
c − p + z

c − p

)
rank B1(p) .

For 1 ≤ c′ ≤ c the restrictions of d and h to the Ai(c′) form a higher matrix factor-
ization of codimension c′, so in fact

∑
1≤p≤c′

(
c′ − p + z + 1/2

c′ − p

)
r(p) =

∑
1≤p≤c′

(
c′ − p + z

c′ − p

)
rank B1(p)

for all 1 ≤ c′ ≤ c.
For c′ = 1 this gives rank B1(1) = r(1) as required. Moreover, the coefficient 

of rank B1(c′) in the equation is 1, so the c equations above inductively determine 
rank B1(p) in terms of the numbers rank B1(q) for q < p and all the r(q′) for q′ ≤ p. By 
induction, it suffices to show that the values for rank B1(p) given in the Theorem satisfy 
the c-th equation above; that is,

∑
1≤p≤c

(
c − p + z + 1/2

c − p

)
r(p) =

∑
1≤p≤c

(
c − p + z

c − p

) p−1∑
j=0

2−2j

(
2j

j

)
r(p − j).

Since these equations are linear functions of the vector (r(1), . . . , r(p)), it suffices to 
check, for each 1 ≤ q ≤ c, that the equation holds when r(q) = 1 while r(p) = 0 for p �= q. 
In this case the summand on the left vanishes except when p = q, while the summand 
on the right vanishes except when j = p − q, so it suffices to show that(

c − q + z + 1/2
c − q

)
=

∑
q≤p≤c

2−2(p−q)
(

2(p − q)
p − q

)(
c − p + z

c − p

)
.

Equivalently, setting m = c − q and i = p − q we have to prove that(
m + z + 1/2

m

)
=

m∑
i=0

2−2i

(
2i

i

)(
m − i + z

m − i

)
.

The following proof of this identity was generously communicated to us by Joe Buhler: 
Define the “lower difference operator” Δ on a function F by
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ΔF (z) := F (z) − F (z − 1).

If F (z) is a polynomial of degree at most e, then

F (z) =
e∑

v=0
ΔvF (−1)

(
z + v

v

)
.

It thus suffices to show that, if F (z) =
(

z+1/2+m
m

)
then

ΔvF (−1) = 2−2(m−v)
(

2(m − v)
m − v

)
. (5.9)

We will prove (5.9). It is easy to see by induction that

ΔvF (z) =
(

z + 1/2 + m − v

m − v

)
,

and hence it suffices to consider (5.9) in the case v = 0, that is, to show that F (−1) =
2−2m

(2m
m

)
. It is immediate that

2mF (−1) = 1 · 3 · 5 · · · (2m − 1)
m! .

Furthermore,

2m 1 · 3 · 5 · · · (2m − 1)
m! = 2

(
2m − 1

m

)
=

(
2m − 1

m

)
+

(
2m − 1
m − 1

)
=

(
2m

m

)
,

yielding the desired formula. �
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