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Abstract— Recurrent Neural Networks (RNNs) demonstrated
advantages on control precision, system robustness and com-
putational efficiency, and have been widely applied to redun-
dant manipulator control optimization. Existing RNN control
schemes locally optimize trajectories and are efficient and
reliable on obstacle avoidance. However, for motion planning,
they suffer from local minimum and do not have planning
completeness. This work explained the cause of the planning
incompleteness and addressed the problem with a novel RNN
control scheme. The paper presented the proposed method in
detail and analyzed the global stability and the planning com-
pleteness in theory. The proposed method was compared with
other three control schemes on the precision, the robustness
and the planning completeness in software simulation and the
results shows the proposed method has improved precision and
robustness, and planning completeness.

Index Terms— Motion Planning, Kinematic Control, Recur-
rent Neural Networks, Redundant Manipulator, Robot

I. INTRODUCTION

Manipulator motion planning is a process of finding a valid
sequence of control commands that moves the manipulator
end effector from the initial position to the desired goal with-
out breaking the constraints or collision. As fundamental as
motion planning is, it has been proved PSPACE-hard and re-
mains a challenging problem for redundant manipulators[1].

Motion planning is widely studied in robotics. For mobile
robots, heuristic search algorithms, such as A*, demonstrated
high performance and accuracy, and are widely adopted[2].
However, those algorithms are typically inefficient for ma-
nipulators, because examination of heuristic results in the
configuration space is computationally prohibitive under the
constraints of manipulators[3]. For manipulators with redun-
dancy, the planning is even more complicated, thus sampling
based algorithms are often adopted to “approximate” the
solution without considering all constraints[4]. As a result,
planned results might be infeasible to robots[3], [4]. Aiming
to address this problem, another category of algorithms is
based on constrained optimization and uses powerful mathe-
matical tools such as covariant Hamiltonian optimization[3],
derivative-free stochastic optimization[5] etc., to achieve fast
convergence and high success rate. However, those methods
may converge to local minima, and lack planning complete-
ness [6].
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Recurrent Neural Networks (RNNs) based algorithms have
been broadly applied improving the computational efficiency
and the robustness of mobile robot localization[7], robot arm
collaborative control[8], natural language processing[9], and
addressing environmental dynamicity[10]. In the domain of
redundant manipulator motion planning, Xia et al. proposed
a RNN control scheme to optimize joint velocities for trajec-
tory tacking with serial redundant manipulators[11]. Zhang
et al. proposed a RNN control scheme for optimizing the
motion in order to minimize the energy consumption[12].
Li et al. optimized manipulators collaborative motions in
distributed systems with RNNs[13]. Zhang et al. extended
RNNs to obstacle avoidance by converting the collision
avoidance condition into a constraint for RNN neural
activities[14]. Guo et al. proposed to optimize manipula-
tor joint accelerations for obstacle avoidance and velocity
smoothness improvement[15]. More discussions on RNNs
based control schemes can be found in[16].

Despite of the advantages of existing RNN control
schemes, these algorithms are by nature a constrained op-
timization algorithm thus suffer from the local minimum
problem. This is because these RNN control schemes are
globally attracted by the target but only optimize locally.
This paper proposes a novel RNN control scheme that has
probabilistic planning completeness through globally explor-
ing the workspace. The proposed method inherits the control
precision, the robustness and the efficiency from RNNs
and most importantly, the planning results are guaranteed
executable. In summary, the main contributions of this work
are:

« We propose a novel RNN control scheme that has
planning completeness and does not suffer from the
local minimum problem. It also has global stability, no
error accumulation and improved control precision.

« We prove the global stability and the planning complete-
ness in theory.

o We demonstrate the application of the proposed method
and compared it with three other control schemes in
terms of control precision, robustness against noise and
planning completeness.

II. REDUNDANT MANIPULATOR MOTION PLANNING
WITH RANDOM RNN
A. Kinematic Control for Redundant Manipulator

Manipulator kinematic model defines the nonlinear map-
ping from the end effector pose (in the task space) to the
joint states (in the configuration space) as r(r) = f(q(t)),
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where g(¢) € R™ is the joint state vector and 7(r) € R" is
the end effector pose vector, f(-) is the kinematic model.
The kinematic control problem is to find the corresponding
q(r) for a given 7(t), as q(t) = f~'(r(1)).

For almost all kinematic redundant manipulators, the map-
ping f(+) are nonlinear and non-convex. The mapping can be
projected into the velocity space through differentiating with
respect to time, as: 7, = Jq;, where J is the n X m Jacobian
matrix. For non-redundant manipulators, the joint states are
fully defined by the task and m = n, if J is full rank, we have
G; = J~ 7, which means for a given ¢, the corresponding 7
is uniquely determined. For redundant manipulators, because
m > n, there exists infinite amount of ¢ that correspond
to the desired 7. Those gq that correspond to self-motions
forms the null-space of the Jacobian as Jgo = 0. While the
existence of the null space leads to great versatility and broad
applicability, how to choose the optimal one is an interesting
and attractive question.

One family of the classical solutions that choose the
optimal one is named “Gradient Projection Method”, because
those algorithms utilize the gradient of a defined cost func-
tion A(q) to determine a joint velocity vector, go[17], [18].
The components of qo that locate in the null space of J can
be selected by (I —J'J). By adding the selected components
to the motion of moving end-effector(J 1), the optimal joint
velocity will be achieved as: ¢ = J'7+ (I — JJ)qo, where
J7 is the Moore-Penrose pseudo-inverse defined as J' =
JT ( 7 JT) —1

Another family of the classical solutions is named as task
space augmentation algorithms. In contrast to the Gradient
Projection family algorithms, these algorithms solve the
redundancy by “augmenting” the Jacobian as Jo=[JT, JyT 17,
and the corresponding model changes to ra; = Jaq;, where
ra(t) = [F(a()T. £,(a(t)"T. fy(q(r)) € B is a functional
constraint task, where p < (m —n)[17], [19]. There are
many ways for defining the functional constraint task. If
we define the task by projecting the gradient of a defined
cost function, A( qa) onto the null space of the Jacobian and
impose [I —JJ']( hq )T =0, where p = m — n, the method
will produce the same results as the equivalent Gradient
Projection method does.

B. RNN Motion Planning and Precision and Robustness
Improvement

RNN control schemes avoid the inversion of the Jacobian
matrices and effectively improved the efficiency and the
robustness of redundant manipulator control. And how to
solve the redundant manipulator control problem with RNN
has been mathematically explained in [16]. In order to apply
RNN for motion planning, the following problems need to
be addressed: 1) the control precision, 2) the local minima
in exploration, 3) the exploration efficiency.

The control precision is especially important in motion
planning because collisions are fatal failures. In real world
applications, manipulators stay away from obstacles with
a safety distance, and this threshold is often derived from
the control precision. While it is trivial to prove that larger

threshold decreases the manipulator workspace, high control
precision is desired for improving applicability.

It has been proven that the error of the control scheme
[11]

JoL
eu=—-u+Po(u— = 1
’l.,l, u+Po(u au) (la)
A =7q—Ju, (1b)
converges to zeros:
T—7q=7-Jq, 2)

and RNN control schemes are more precise than comparable

numerical methods[20]. However, we did find this control

scheme suffers from error accumulation, as explained below.
From Eqn.1b we have[21]:

p :MJré/(f'd—Ju)dt

1 | )
=Ao+ g("“d — 740 —./ Judt),

where A and 749 denotes the value of A and r; at t =0,
respectively.
By replacing A in Eqn.1 with Eqn.3 we have:

eu=—u+Poy (JT(M-i- é("‘d_""d()_/-ludt))
4)
=—u+Py (JT(%+ %(rd —Tdo — (7‘*7’0)))

From Eqn. 2 and 4 we know that given arbitrary time point
t =0, as long as error eg = 49 — 1o # 0, the error will be
accumulated with time.

Under the RNN architecture, this problem can be ad-
dressed by feeding the error, e = r4 — r, back into the neural
network as[21]:

rrgn(uTu +kele), (5)

where k > 0 is a weighting factor.

In order to comply with the constraints such as the joint
limits, the proposed method adopted the projection function
Po to bound the neural activities, which is defined as:

d- for x<d—
Po(x)={ x for d <x<d" (6)
dt for dT <x,
with boundary conditions as:
d- :max(icl(qiq_)?w_) (7)
d+ :min(—C2(q—q+),W+)7

where g denotes the joint angle, ¢ and g~ are the upper and
the lower bounds of joint limits (from manipulator mechanics
and application requirements); w' and w~ are the upper
and the lower bounds of the joint speeds, and c¢; and c;
are two positive scaling factors. The boundary conditions
dynamically change with joint states and are also absolutely
bounded by fixed the thresholds. The advantages of this
design are it ensures the solutions meeting the joint (physical)
limits, and it also avoids the infinite increase or decrease of
joints’ speeds.
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Therefore, the RNN control scheme described by Eqn.5,
6 and 7 has improved control precision and stability. The
corresponding neural dynamics is:

w= Pol k(1 — 1))
vy = Ju.

(8a)
(8b)

C. Obstacle Avoidance in RNN Motion Planning

Potential collisions can be detected by measuring distance
between a robot arm and obstacles. When potential collisions
exist, there are multiple ways to avoid collision with RNN
control schemes. One way is to convert the collision con-
dition into a constraint and to augment the task space, and
to optimize the motion with respect to the augmented task
space. The second way is to convert the collision condition
into the neural activity boundary conditions. Both of the two
ways are constrained local optimization. There is also the
third way to avoid collision, which is simply stopping the
manipulator. The third way is computationally efficient as it
avoids to locally optimizing motion, but it leads to decreased
workspace.

In the proposed method, we adopt the second way if the
manipulator moves toward the real target, and adopt the third
way if the manipulator moves toward a random target. This
is to ensure the planning completeness while maintaining
efficiency at the same time.

The third way is self-explained, and also is easy to
implement. We just need to ask the RNN control scheme to
output zeros if the potential collision has been detected and to
report failure for the planner. For the second way, intuitively,
the potential collision can be avoided if the manipulator does
not move any closer to obstacles. In the velocity space,
it can be implemented by exert an ‘“escaping” velocity to
the potential collision point, r,, on the manipulator. If we
denote the potential collision point on the obstacle as: o,
the direction of this escaping velocity can be determined as:

. T
To = [rox_oomroy — 0oy, 1oz _001] , )

where the subscript x, y and z denote the 3-dimensional
coordinates. Therefore, the collision can be avoided if the
velocity of the potential collision link is in the range of zero
and br,, where b is a non-negative scaling factor.

Notice this velocity range is in the task space, and it can
be converted into the configuration space as: J,q = 7y, and
the output of the neural network (d, ,d)) corresponds to
the velocity limit in the configuration space. Therefore, the
boundary conditions described in Eqn.7 become:

(d™.d")=(d",d")u(d,.d;). (10)

D. Motion Planning Completeness and Efficiency

We explained in the introduction section that classical
RNN control schemes suffer from planning incompleteness,
because they modeled the planning problem as constrained
optimization. In the proposed method, we use randomness to
address the planning incompleteness. Actually randomness
has been widely used in the robotic community to ad-
dress various high-dimensional and non-convex optimization

problems. For example, random sampling has been used
to address the data association problem, if the depth of
the hypothesis tree is big[22], [23]. From the Neuroscience
and the machine learning perspective, randomness is also
widely used for improving efficiency, because it is considered
as being correlated with superior learning ability[24]. For
example, through utilizing randomness, Bayesian Program
Learning demonstrated the ability of Human-level concept
learning[24].

In the proposed method, we address the planning incom-
pleteness problem through randomizing the network inspira-
tion, which can be mathematically explained as:

(1)

where 7,4,00m € R" is a random goal in the task space, and
g i1s a non-zero weight that regulates the tracking velocity.

Intuitively, the proposed scheme will be attracted by
random goals; therefore the full configuration space can be
explored, given sufficiently long time. However, this scheme
is not guaranteed to be better than brute force search and
might be impractical to use. This is because the classical
theory of probability ensures that the random goal will almost
surely be reached in infinite time with random sampling,
because it samples a point in a space. This time can be short-
ened if we are satisfied with reaching the neighborhood of the
goal. If the neighborhood is defined as a sphere with radius

. . . . 43
r, the probability of sampling the goal is approximately *57-,
where V is the volume of the task space. Although increasing
r leads to fast convergence, the planning results may be not
realistic, due to the existence of robot arm joint limits and
obstacles.

A practical solution will be performing both the random
exploration and the directional search, as explained in Al-
gorithm 1. From Algorithm 1 we know that the random
exploration will explore the entire task space. In this process,
the generated movement trajectory is guaranteed executable,
because the proposed RNN control scheme considered both
the obstacle avoidance and the joint limits. The directional
search directly drives the end effector towards the goal
position, starting from the a point that has been previ-
ously reached in the random exploration. In this process,
the proposed scheme performs local optimization to search
“corners” in the configuration space.

In Algorithm 1, Npgeps denotes the maximum allowed
exploration; pg is a scalar between 0 and 1, which balances
the random exploration and the directional search. Because
both the random exploration and the directional search utilize
the same RNN control scheme, all constraints, such as the
joint limits and obstacle avoidance are ensured. Meanwhile,
the random exploration ensures the proposed RNN will not
be trapped by local minima.

Ta=g" ("’random - "’)7

III. THEORETICAL ANALYSES
A. Stability

The projection function defined in Eqn.6 ensures: d'~ <
x < d'*. Furthermore, from Eqn.7 it is clear that the neural
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Algorithm 1 Complete Motion Planning with RNN

Input: Target (7,), Manipulator Start Position (7¢)
QOutput: Sequence of Joint States (C)
Init : ry=ro, r4=10, Ty = {[Tsardam}’ RNN, NLoops
if rand(0,1)> ps then
rq = A random point in the task space
else
Tqa=Tg
end if
Select the reached goals from 7, which is closest to rq,
use it as 7y
7: Produce a sequence of commands ¢,y with the control
scheme defined in Eqn 8 and 10, for given r; and 74
8: while Np0ps>0 do
9: if (rq is reached) then

AN A > o

10: if (rq ==r,) then

11: Back tracing control sequence C = Uc; 4.
12: return C

13: end if

14:  else

15: rq = the true end effector position.

16:  end if

17 Insert [rs,74,¢54] into Ty
18: NLoops = NLoops'1

19: end while

20: return 0

activities are strictly bounded in the range of (w—,w*). In
order to prove the stability, let’s define Lyapunov function as
V =eTe/2, where e = rq —r is the penalty from tracking
error (defined in Eqn. 5). Therefore, it can be proved (Eqn.
20~37 in [25]) that the largest invariant set for v =0 only
contains e = 0, which indicates the global stability[11], [12].

B. Probability Completeness

If we denote the task space of a manipulator as X C R"
and the obstacle space as: Xops C X, the reachable subspace
becomes Xieach C Xfrees Where Xpee is the free space as:
Xiree = X \Xobs.- And the probabilistic planning completeness
is defined as: for a given target xq € Xieach, if the set of valid
paths, X5 = {0 : [0,7] = x5} equals to 0, it is reported in
finite time, otherwise P(XsNTy = 0) = 0, where T, denotes
the set that contains all valid paths.

For all points in the reachable space (Vxq € Xieach), there
exists a space, By for x4, and for all points in the space
(Vxj € Bg), a valid path can be found by the control scheme
described in Eqn. 8. Intuitively, B4 can be imagined as a
basin to x4. And because all points in the reachable space
are reachable, UBgq > Xeach holds truth. Therefore, with the
proposed random RNN, the probability of reaching each of
By is non-zero, therefore, a valid path can be found, as long
as it exists.

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

It has been proven that RNN control schemes have
advantages on computational efficiency, precision and

robustness[20]. In this section, we compared the proposed
with other RNN control schemes, to reveal the domains that
the proposed method is best suited for.

Table. I compares RNN control schemes for redundant
manipulator motion planning. To our best knowledge, the
proposed method is the first RNN control scheme that
achieved planning completeness. Among algorithms listed in
the table, three were chosen based on the similarities to the
proposed method. The first algorithm is from [14]. This RNN
control scheme addressed the obstacle avoidance problem for
redundant manipulators in the velocity space, and we denoted
it as “Method1” in this paper. The second algorithm[15] is
also capable of obstacle avoidance, but optimizes in the ac-
celeration space, and we denoted it as “Method2”. The third
method[25] optimizes motion in obstacle-free environments,
but it addressed the error accumulation problem and achieved
high control precision and robustness, thus we also compared
with it and denoted it as “Method3”.

We compared the four algorithms with Mitsubishi PA10-
7C based simulation. The PA10 redundant manipulator has
7 DoF and its mechanic structure is similar to human arms
(Table. II). Moreover, its kinematic simulator has been well
studied[28]. In the simulation experiments, the parameters
of the proposed method were empirically chosen as: py =
0.5, k =100 and ¢; = ¢, = 0.5. For the other methods,
the parameters were chosen according to the corresponding
references[14], [15], [21].

A. Control Precision and Robustness against Noise

The proposed method is not only a motion planner, but
also a control scheme. We first studied the control precision
and the robustness against noise with simulation experiments.

Because Method3 is not capable of obstacle avoidance
and avoiding obstacle does not impact the control precision
(but slows down the convergence), the four algorithms are
compared in obstacle-free environments for the precision and
the robustness comparison. From Fig.1 we can see that all
four algorithms are competent on the point target tracking
task.

Gaussian White Noise with different level of standard
deviation: o = 0.01, 0 =0.05 and o = 0.25, were injected
into the neural networks’ outputs as additive noise, in order
to test the robustness against process noise. The averaged
tracking errors from the four algorithms are compared in
Table III. From the table we can see that the proposed method
has strong robustness against noise due to the fact that it
closes the loop of with tracking errors.

B. Planning Completeness

Because “Method3” is not capable of obstacle avoidance,
in this subsection, only “Methodl” and “Method2” were
compared with the proposed method.

Two scenarios that are popular in manipulator control
applications are used in simulation experiments. Scenario
1 (visually explained in Fig. 2) is environments with a
plane-like obstacle and Scenario 2 (Fig.3) is environments
with a window-shaped obstacle. In both scenarios, the PA10
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TABLE I: Comparisons among Recurrent Neural Network based Control Schemes for Redundant Manipulators'.

Global Theoretical ~ Free of Error  Free of Matrix ~ Physical Limits ~ Smothness Obstacle Planning
Convergence  Error Accumulation  Inversion Avoidance Optimization ~ Avoidance  Completeness

Model in [26]  Yes Nonzero No No No No No No

Model in [27]  Yes Zero No Yes Yes No No No

Model in [21]  Yes Zero Yes Yes Yes Yes No No

Model in [20]  Yes Zero Yes Yes Yes Yes No No

Model in [14]  Yes Zero No Yes Yes No Yes No

Model in [15]  Yes Zero No Yes Yes Yes Yes No

Proposed Yes Zero Yes Yes Yes Yes Yes Yes*

FAlgorithms that are most closely related to the proposed method are selected, and a thorough review can be found in [16]

FProbabilistic completeness.

TABLE 1II: Denavit-Hartenberg Parameters of Mitsubishi
PA10-7C 7 DoF Redundant Manipulator.

Link(i) O ai—1 d; 0;
1 —x/2 0 317mm 6
2 T2 0 0 6,
3 —7/2 0 450mm 63
4 /2 0 0 0,
5 —7/2 0 450mm 65
7 0 0  70mm &
Error-Mathod! Error-Mathod2
3 0o} E | e
5 S "3 i -
e e _[_ -

Time (st second) Time (st second)

(a) Tracking Error-Method1

Error-Method3

(b) Tracking Error-Method2

Ertor-Propesed

]
¥
2

Emor (Unt: meters)
Emor (Unt: meters)

Time (st second)

Time (st second)

(c) Tracking Error-Method3 (d) Tracking Error-Proposed

Fig. 1: Precision Comparison in Point Target Tracking Task.

manipulator started from random initial positions and under
the control of Methodl, Method2 and the proposed method,
respectively. In Fig. 2 and 3, semi-transparent blue planes
denote obstacles; thick colored lines indicate manipulator
initial configurations and the thin ones are the trajectory.
Goal is denoted by a red sphere, and the curved red line
segments denote the end effector trajectories.

The success rates are listed in Table IV. The success rate
is defined as: vs/ve, where vy denotes the total number of
experiments, in which the manipulator reached the target,
and ve = 50 denotes the total number of experiments. The
two scenarios with example planning results are visualized
in Fig.2 and 3. From the figures and the table we can see
that because of the local minimum problem, only the pro-
posed method succeed in motion planning in all simulation
experiments.

TABLE III: RMS Position Tracking Error With Respect to
Various Noise Level.

| 0=001 06=005 0=025
Proposed 0.007 0.010 0.010
Schemel[14] 0.027 0.092 0.246
Scheme?2[15] 0.025 0.069 0.199
Scheme3([25] 0.005 0.010 0.011

TABLE IV: Planning Success Rate Comparison in the Two
Scenarios.

| Methodl ~ Method2  Proposed
Scenario 1 92% 92% 100%
Scenario 2 42% 44% 100%

V. CONCLUSION

RNN control schemes avoid the inversion of the Jaco-
bian matrix and demonstrated improved control precision,
robustness and efficiency. Although these algorithms have
attracted broad attention and have been extensively applied
to redundant manipulators recently, they did not yet have
planning completeness.

This work presented a novel Recurrent Neural Network
(RNNs) based control scheme to address the planning in-
completeness problem. The proposed method not only has
the planning probabilistic completeness, but also ensures
the planning result is executable in practice. Meanwhile,
the proposed method inherits high control precision and
robustness from RNNs. The proposed method is designed
for addressing the single-query path planning problem in
unknown environments. The planning results can be further
optimized given partial or full knowledge of environmental
information, which is also the next step of this work.
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