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Abstract— Recurrent Neural Networks (RNNs) demonstrated
advantages on control precision, system robustness and com-
putational efficiency, and have been widely applied to redun-
dant manipulator control optimization. Existing RNN control
schemes locally optimize trajectories and are efficient and
reliable on obstacle avoidance. However, for motion planning,
they suffer from local minimum and do not have planning
completeness. This work explained the cause of the planning
incompleteness and addressed the problem with a novel RNN
control scheme. The paper presented the proposed method in
detail and analyzed the global stability and the planning com-
pleteness in theory. The proposed method was compared with
other three control schemes on the precision, the robustness
and the planning completeness in software simulation and the
results shows the proposed method has improved precision and
robustness, and planning completeness.

Index Terms— Motion Planning, Kinematic Control, Recur-
rent Neural Networks, Redundant Manipulator, Robot

I. INTRODUCTION

Manipulator motion planning is a process of finding a valid

sequence of control commands that moves the manipulator

end effector from the initial position to the desired goal with-

out breaking the constraints or collision. As fundamental as

motion planning is, it has been proved PSPACE-hard and re-

mains a challenging problem for redundant manipulators[1].

Motion planning is widely studied in robotics. For mobile

robots, heuristic search algorithms, such as A∗, demonstrated

high performance and accuracy, and are widely adopted[2].

However, those algorithms are typically inefficient for ma-

nipulators, because examination of heuristic results in the

configuration space is computationally prohibitive under the

constraints of manipulators[3]. For manipulators with redun-

dancy, the planning is even more complicated, thus sampling

based algorithms are often adopted to “approximate” the

solution without considering all constraints[4]. As a result,

planned results might be infeasible to robots[3], [4]. Aiming

to address this problem, another category of algorithms is

based on constrained optimization and uses powerful mathe-

matical tools such as covariant Hamiltonian optimization[3],

derivative-free stochastic optimization[5] etc., to achieve fast

convergence and high success rate. However, those methods

may converge to local minima, and lack planning complete-

ness [6].
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Recurrent Neural Networks (RNNs) based algorithms have

been broadly applied improving the computational efficiency

and the robustness of mobile robot localization[7], robot arm

collaborative control[8], natural language processing[9], and

addressing environmental dynamicity[10]. In the domain of

redundant manipulator motion planning, Xia et al. proposed

a RNN control scheme to optimize joint velocities for trajec-

tory tacking with serial redundant manipulators[11]. Zhang

et al. proposed a RNN control scheme for optimizing the

motion in order to minimize the energy consumption[12].

Li et al. optimized manipulators collaborative motions in

distributed systems with RNNs[13]. Zhang et al. extended

RNNs to obstacle avoidance by converting the collision

avoidance condition into a constraint for RNN neural

activities[14]. Guo et al. proposed to optimize manipula-

tor joint accelerations for obstacle avoidance and velocity

smoothness improvement[15]. More discussions on RNNs

based control schemes can be found in[16].

Despite of the advantages of existing RNN control

schemes, these algorithms are by nature a constrained op-

timization algorithm thus suffer from the local minimum

problem. This is because these RNN control schemes are

globally attracted by the target but only optimize locally.

This paper proposes a novel RNN control scheme that has

probabilistic planning completeness through globally explor-

ing the workspace. The proposed method inherits the control

precision, the robustness and the efficiency from RNNs

and most importantly, the planning results are guaranteed

executable. In summary, the main contributions of this work

are:

• We propose a novel RNN control scheme that has

planning completeness and does not suffer from the

local minimum problem. It also has global stability, no

error accumulation and improved control precision.

• We prove the global stability and the planning complete-

ness in theory.

• We demonstrate the application of the proposed method

and compared it with three other control schemes in

terms of control precision, robustness against noise and

planning completeness.

II. REDUNDANT MANIPULATOR MOTION PLANNING

WITH RANDOM RNN

A. Kinematic Control for Redundant Manipulator

Manipulator kinematic model defines the nonlinear map-

ping from the end effector pose (in the task space) to the

joint states (in the configuration space) as r(t) = f
(
q(t)

)
,
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where q(t) ∈ R
m is the joint state vector and r(t) ∈ R

n is

the end effector pose vector, f (·) is the kinematic model.

The kinematic control problem is to find the corresponding

q(t) for a given r(t), as q(t) = f−1
(
r(t)

)
.

For almost all kinematic redundant manipulators, the map-

ping f (·) are nonlinear and non-convex. The mapping can be

projected into the velocity space through differentiating with

respect to time, as: ṙt = Jq̇t, where J is the n×m Jacobian

matrix. For non-redundant manipulators, the joint states are

fully defined by the task and m = n, if J is full rank, we have

q̇t = J−1ṙt, which means for a given q̇t, the corresponding ṙt

is uniquely determined. For redundant manipulators, because

m > n, there exists infinite amount of q̇t that correspond

to the desired ṙt. Those q̇0 that correspond to self-motions

forms the null-space of the Jacobian as Jq̇0 = 0. While the

existence of the null space leads to great versatility and broad

applicability, how to choose the optimal one is an interesting

and attractive question.

One family of the classical solutions that choose the

optimal one is named “Gradient Projection Method”, because

those algorithms utilize the gradient of a defined cost func-

tion h(q) to determine a joint velocity vector, q̇0[17], [18].

The components of q̇0 that locate in the null space of J can

be selected by (I−J†J). By adding the selected components

to the motion of moving end-effector(J†ṙ), the optimal joint

velocity will be achieved as: q̇ = J†ṙ+(I − J†J)q̇0, where

J† is the Moore-Penrose pseudo-inverse defined as J† =
JT(JJT)−1.

Another family of the classical solutions is named as task

space augmentation algorithms. In contrast to the Gradient

Projection family algorithms, these algorithms solve the

redundancy by “augmenting” the Jacobian as JA=[JT, JT
y ]T,

and the corresponding model changes to ˙rAt = JAq̇t, where

rA(t) = [ f (q(t))T, fy(q(t))T]T, fy(q(t)) ∈ R
p is a functional

constraint task, where p ≤ (m − n)[17], [19]. There are

many ways for defining the functional constraint task. If

we define the task by projecting the gradient of a defined

cost function, h(q), onto the null space of the Jacobian and

impose [I − JJ†]( ∂h(q)
∂q )T = 0, where p = m−n, the method

will produce the same results as the equivalent Gradient

Projection method does.

B. RNN Motion Planning and Precision and Robustness
Improvement

RNN control schemes avoid the inversion of the Jacobian

matrices and effectively improved the efficiency and the

robustness of redundant manipulator control. And how to

solve the redundant manipulator control problem with RNN

has been mathematically explained in [16]. In order to apply

RNN for motion planning, the following problems need to

be addressed: 1) the control precision, 2) the local minima

in exploration, 3) the exploration efficiency.

The control precision is especially important in motion

planning because collisions are fatal failures. In real world

applications, manipulators stay away from obstacles with

a safety distance, and this threshold is often derived from

the control precision. While it is trivial to prove that larger

threshold decreases the manipulator workspace, high control

precision is desired for improving applicability.

It has been proven that the error of the control scheme

[11]

εu̇=−u+PΩ(u− ∂L
∂u

) (1a)

ελ̇ = ṙd − Ju, (1b)

converges to zeros:

ṙ− ṙd = ṙ− Jq̇, (2)

and RNN control schemes are more precise than comparable

numerical methods[20]. However, we did find this control

scheme suffers from error accumulation, as explained below.

From Eqn.1b we have[21]:

λ =λ0 +
1

ε

∫
(ṙd − Ju)dt

=λ0 +
1

ε
(rd −rd0 −

∫
Judt),

(3)

where λ0 and rd0 denotes the value of λ and rd at t = 0,

respectively.

By replacing λ in Eqn.1 with Eqn.3 we have:

εu̇=−u+PΩ

(
JT

(
λ0 +

1

ε
(rd −rd0 −

∫
Judt

))

=−u+PΩ

(
JT

(
λ0 +

1

ε
(rd −rd0 − (r−r0)

))
.

(4)

From Eqn. 2 and 4 we know that given arbitrary time point

t = 0, as long as error e0 = rd0 −r0 �= 0, the error will be

accumulated with time.

Under the RNN architecture, this problem can be ad-

dressed by feeding the error, e= rd−r, back into the neural

network as[21]:

min
u

(uTu+ keTe), (5)

where k > 0 is a weighting factor.

In order to comply with the constraints such as the joint

limits, the proposed method adopted the projection function

PΩ to bound the neural activities, which is defined as:

PΩ(x) =

⎧⎨
⎩

d− for x ≤ d−
x for d− < x < d+

d+ for d+ ≤ x,
(6)

with boundary conditions as:{
d− = max(−c1(q−q−),w−)
d+ = min(−c2(q−q+),w+) ,

(7)

where q denotes the joint angle, q+ and q− are the upper and

the lower bounds of joint limits (from manipulator mechanics

and application requirements); w+ and w− are the upper

and the lower bounds of the joint speeds, and c1 and c2

are two positive scaling factors. The boundary conditions

dynamically change with joint states and are also absolutely

bounded by fixed the thresholds. The advantages of this

design are it ensures the solutions meeting the joint (physical)

limits, and it also avoids the infinite increase or decrease of

joints’ speeds.
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Therefore, the RNN control scheme described by Eqn.5,

6 and 7 has improved control precision and stability. The

corresponding neural dynamics is:

u= PΩ(−kJT(r−rd)) (8a)

ṙd = Ju. (8b)

C. Obstacle Avoidance in RNN Motion Planning

Potential collisions can be detected by measuring distance

between a robot arm and obstacles. When potential collisions

exist, there are multiple ways to avoid collision with RNN

control schemes. One way is to convert the collision con-

dition into a constraint and to augment the task space, and

to optimize the motion with respect to the augmented task

space. The second way is to convert the collision condition

into the neural activity boundary conditions. Both of the two

ways are constrained local optimization. There is also the

third way to avoid collision, which is simply stopping the

manipulator. The third way is computationally efficient as it

avoids to locally optimizing motion, but it leads to decreased

workspace.

In the proposed method, we adopt the second way if the

manipulator moves toward the real target, and adopt the third

way if the manipulator moves toward a random target. This

is to ensure the planning completeness while maintaining

efficiency at the same time.

The third way is self-explained, and also is easy to

implement. We just need to ask the RNN control scheme to

output zeros if the potential collision has been detected and to

report failure for the planner. For the second way, intuitively,

the potential collision can be avoided if the manipulator does
not move any closer to obstacles. In the velocity space,

it can be implemented by exert an “escaping” velocity to

the potential collision point, ro, on the manipulator. If we

denote the potential collision point on the obstacle as: oo,

the direction of this escaping velocity can be determined as:

ṙo = [rox −oox,roy −ooy,roz −ooz]
T, (9)

where the subscript x, y and z denote the 3-dimensional

coordinates. Therefore, the collision can be avoided if the

velocity of the potential collision link is in the range of zero

and bṙo, where b is a non-negative scaling factor.

Notice this velocity range is in the task space, and it can

be converted into the configuration space as: Joq̇ = ṙo, and

the output of the neural network (d−
o ,d+

o ) corresponds to

the velocity limit in the configuration space. Therefore, the

boundary conditions described in Eqn.7 become:

(d′−,d′+) = (d−,d+)∪ (d−
o ,d+

o ). (10)

D. Motion Planning Completeness and Efficiency

We explained in the introduction section that classical

RNN control schemes suffer from planning incompleteness,

because they modeled the planning problem as constrained

optimization. In the proposed method, we use randomness to

address the planning incompleteness. Actually randomness

has been widely used in the robotic community to ad-

dress various high-dimensional and non-convex optimization

problems. For example, random sampling has been used

to address the data association problem, if the depth of

the hypothesis tree is big[22], [23]. From the Neuroscience

and the machine learning perspective, randomness is also

widely used for improving efficiency, because it is considered

as being correlated with superior learning ability[24]. For

example, through utilizing randomness, Bayesian Program

Learning demonstrated the ability of Human-level concept

learning[24].

In the proposed method, we address the planning incom-

pleteness problem through randomizing the network inspira-

tion, which can be mathematically explained as:

ṙd = g · (rrandom −r), (11)

where rrandom ∈ R
n is a random goal in the task space, and

g is a non-zero weight that regulates the tracking velocity.

Intuitively, the proposed scheme will be attracted by

random goals; therefore the full configuration space can be

explored, given sufficiently long time. However, this scheme

is not guaranteed to be better than brute force search and

might be impractical to use. This is because the classical

theory of probability ensures that the random goal will almost

surely be reached in infinite time with random sampling,

because it samples a point in a space. This time can be short-

ened if we are satisfied with reaching the neighborhood of the

goal. If the neighborhood is defined as a sphere with radius

r, the probability of sampling the goal is approximately 4πr3

3V ,

where V is the volume of the task space. Although increasing

r leads to fast convergence, the planning results may be not

realistic, due to the existence of robot arm joint limits and

obstacles.

A practical solution will be performing both the random

exploration and the directional search, as explained in Al-

gorithm 1. From Algorithm 1 we know that the random

exploration will explore the entire task space. In this process,

the generated movement trajectory is guaranteed executable,

because the proposed RNN control scheme considered both

the obstacle avoidance and the joint limits. The directional

search directly drives the end effector towards the goal

position, starting from the a point that has been previ-

ously reached in the random exploration. In this process,

the proposed scheme performs local optimization to search

“corners” in the configuration space.

In Algorithm 1, NLoops denotes the maximum allowed

exploration; ps is a scalar between 0 and 1, which balances

the random exploration and the directional search. Because

both the random exploration and the directional search utilize

the same RNN control scheme, all constraints, such as the

joint limits and obstacle avoidance are ensured. Meanwhile,

the random exploration ensures the proposed RNN will not

be trapped by local minima.

III. THEORETICAL ANALYSES

A. Stability

The projection function defined in Eqn.6 ensures: d′− ≤
x≤ d′+. Furthermore, from Eqn.7 it is clear that the neural
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Algorithm 1 Complete Motion Planning with RNN

Input: Target (rg), Manipulator Start Position (r0)

Output: Sequence of Joint States (C)

Init : rs=r0, rd=r0, Ts = {[rs,rd , /0]}, RNN, NLoops

1: if rand(0,1)> ps then
2: rd = A random point in the task space

3: else
4: rd = rg
5: end if
6: Select the reached goals from Ts, which is closest to rd,

use it as rs
7: Produce a sequence of commands cs,d with the control

scheme defined in Eqn 8 and 10, for given rs and rd

8: while NLoops>0 do
9: if (rd is reached) then

10: if (rd == rg) then
11: Back tracing control sequence C = ∪cs,d .

12: return C
13: end if
14: else
15: rd = the true end effector position.

16: end if
17: Insert [rs,rd ,cs,d ] into Ts
18: NLoops = NLoops-1

19: end while
20: return /0

activities are strictly bounded in the range of (w−,w+). In

order to prove the stability, let’s define Lyapunov function as

V = eTe/2, where e = rd −r is the penalty from tracking

error (defined in Eqn. 5). Therefore, it can be proved (Eqn.

20∼37 in [25]) that the largest invariant set for v̇ = 0 only

contains e= 0, which indicates the global stability[11], [12].

B. Probability Completeness

If we denote the task space of a manipulator as X ⊂ R
n

and the obstacle space as: Xobs ⊂ X , the reachable subspace

becomes Xreach ⊂ Xfree, where Xfree is the free space as:

Xfree = X\Xobs. And the probabilistic planning completeness

is defined as: for a given target xd ∈ Xreach, if the set of valid

paths, Σδ = {δ : [0, t] → xδ} equals to /0, it is reported in

finite time, otherwise P(Σδ ∩Ts = /0) = 0, where Ts denotes

the set that contains all valid paths.

For all points in the reachable space (∀xd ∈ Xreach), there

exists a space, Bd for xd, and for all points in the space

(∀xj ∈ Bd), a valid path can be found by the control scheme

described in Eqn. 8. Intuitively, Bd can be imagined as a

basin to xd. And because all points in the reachable space

are reachable, ∪Bd ≥ Xreach holds truth. Therefore, with the

proposed random RNN, the probability of reaching each of

Bd is non-zero, therefore, a valid path can be found, as long

as it exists.

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

It has been proven that RNN control schemes have

advantages on computational efficiency, precision and

robustness[20]. In this section, we compared the proposed

with other RNN control schemes, to reveal the domains that

the proposed method is best suited for.

Table. I compares RNN control schemes for redundant

manipulator motion planning. To our best knowledge, the

proposed method is the first RNN control scheme that

achieved planning completeness. Among algorithms listed in

the table, three were chosen based on the similarities to the

proposed method. The first algorithm is from [14]. This RNN

control scheme addressed the obstacle avoidance problem for

redundant manipulators in the velocity space, and we denoted

it as “Method1” in this paper. The second algorithm[15] is

also capable of obstacle avoidance, but optimizes in the ac-

celeration space, and we denoted it as “Method2”. The third

method[25] optimizes motion in obstacle-free environments,

but it addressed the error accumulation problem and achieved

high control precision and robustness, thus we also compared

with it and denoted it as “Method3”.

We compared the four algorithms with Mitsubishi PA10-

7C based simulation. The PA10 redundant manipulator has

7 DoF and its mechanic structure is similar to human arms

(Table. II). Moreover, its kinematic simulator has been well

studied[28]. In the simulation experiments, the parameters

of the proposed method were empirically chosen as: ps =
0.5, k = 100 and c1 = c2 = 0.5. For the other methods,

the parameters were chosen according to the corresponding

references[14], [15], [21].

A. Control Precision and Robustness against Noise

The proposed method is not only a motion planner, but

also a control scheme. We first studied the control precision

and the robustness against noise with simulation experiments.

Because Method3 is not capable of obstacle avoidance

and avoiding obstacle does not impact the control precision

(but slows down the convergence), the four algorithms are

compared in obstacle-free environments for the precision and

the robustness comparison. From Fig.1 we can see that all

four algorithms are competent on the point target tracking

task.

Gaussian White Noise with different level of standard

deviation: σ = 0.01, σ = 0.05 and σ = 0.25, were injected

into the neural networks’ outputs as additive noise, in order

to test the robustness against process noise. The averaged

tracking errors from the four algorithms are compared in

Table III. From the table we can see that the proposed method

has strong robustness against noise due to the fact that it

closes the loop of with tracking errors.

B. Planning Completeness

Because “Method3” is not capable of obstacle avoidance,

in this subsection, only “Method1” and “Method2” were

compared with the proposed method.

Two scenarios that are popular in manipulator control

applications are used in simulation experiments. Scenario

1 (visually explained in Fig. 2) is environments with a

plane-like obstacle and Scenario 2 (Fig.3) is environments

with a window-shaped obstacle. In both scenarios, the PA10
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TABLE I: Comparisons among Recurrent Neural Network based Control Schemes for Redundant Manipulators†.

Global Theoretical Free of Error Free of Matrix Physical Limits Smothness Obstacle Planning
Convergence Error Accumulation Inversion Avoidance Optimization Avoidance Completeness

Model in [26] Yes Nonzero No No No No No No
Model in [27] Yes Zero No Yes Yes No No No
Model in [21] Yes Zero Yes Yes Yes Yes No No
Model in [20] Yes Zero Yes Yes Yes Yes No No
Model in [14] Yes Zero No Yes Yes No Yes No
Model in [15] Yes Zero No Yes Yes Yes Yes No

Proposed Yes Zero Yes Yes Yes Yes Yes Yes‡

†Algorithms that are most closely related to the proposed method are selected, and a thorough review can be found in [16] .
‡Probabilistic completeness.

TABLE II: Denavit-Hartenberg Parameters of Mitsubishi

PA10-7C 7 DoF Redundant Manipulator.

Link(i) αi−1 ai−1 di θi
1 −π/2 0 317mm θ1

2 π/2 0 0 θ2

3 −π/2 0 450mm θ3

4 π/2 0 0 θ4

5 −π/2 0 450mm θ5

6 π/2 0 0 θ6

7 0 0 70mm θ7

(a) Tracking Error-Method1 (b) Tracking Error-Method2

(c) Tracking Error-Method3 (d) Tracking Error-Proposed

Fig. 1: Precision Comparison in Point Target Tracking Task.

manipulator started from random initial positions and under

the control of Method1, Method2 and the proposed method,

respectively. In Fig. 2 and 3, semi-transparent blue planes

denote obstacles; thick colored lines indicate manipulator

initial configurations and the thin ones are the trajectory.

Goal is denoted by a red sphere, and the curved red line

segments denote the end effector trajectories.

The success rates are listed in Table IV. The success rate

is defined as: vs/ve, where vs denotes the total number of

experiments, in which the manipulator reached the target,

and ve = 50 denotes the total number of experiments. The

two scenarios with example planning results are visualized

in Fig.2 and 3. From the figures and the table we can see

that because of the local minimum problem, only the pro-

posed method succeed in motion planning in all simulation

experiments.

TABLE III: RMS Position Tracking Error With Respect to

Various Noise Level.

σ = 0.01 σ = 0.05 σ = 0.25
Proposed 0.007 0.010 0.010

Scheme1[14] 0.027 0.092 0.246
Scheme2[15] 0.025 0.069 0.199
Scheme3[25] 0.005 0.010 0.011

TABLE IV: Planning Success Rate Comparison in the Two

Scenarios.

Method1 Method2 Proposed
Scenario 1 92% 92% 100%
Scenario 2 42% 44% 100%

V. CONCLUSION

RNN control schemes avoid the inversion of the Jaco-

bian matrix and demonstrated improved control precision,

robustness and efficiency. Although these algorithms have

attracted broad attention and have been extensively applied

to redundant manipulators recently, they did not yet have

planning completeness.

This work presented a novel Recurrent Neural Network

(RNNs) based control scheme to address the planning in-

completeness problem. The proposed method not only has

the planning probabilistic completeness, but also ensures

the planning result is executable in practice. Meanwhile,

the proposed method inherits high control precision and

robustness from RNNs. The proposed method is designed

for addressing the single-query path planning problem in

unknown environments. The planning results can be further

optimized given partial or full knowledge of environmental

information, which is also the next step of this work.
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