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Condensation of collective polar vortex modes
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The dynamics of extended objects such as domain walls, domain bubbles, vortex structures, etc., can be
described by their equations of motion associated with their effective mass and spring constant. Here we
analytically derive the equations of motion for the polarization dynamics and elastodynamics for the structural
responses of ferroelectric polar vortices, and theoretically extract their effective mass, spring constant, and mode
frequencies. We demonstrate two subterahertz phonon modes and predicted their frequencies, both consistent
with our recent experimental measurements and phase-field simulations. We show that elastic modulation of
the energy function and spring constants leads to a condensation of a collective mode upon a second-order
structural transition from symmetric to asymmetric vortices at a critical strain, analogous to the ferroelectric soft
phonon mode at a ferroelectric transition. The present work offers a theoretical framework for predicting and
manipulating the ultrafast collective dynamics of polar nanostructures.
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Ferroelectric polar nanostructures including domains and
domain walls show structural oscillation modes extending
to subterahertz frequencies and beyond [1–7], significantly
higher than that of magnetic domain structures, which is
typically around gigahertz [8,9], making them promising
candidates for high-frequency electronic applications. Unlike
magnetic domain structures that are made up of spins, fer-
roelectric domain structures develop through arrangements
of electric dipoles, thus giving rise to substantially different
dynamical behaviors [10]. Understanding the high-frequency
dynamics of polar nanostructures is essential to both their
fundamental physics and practical applications.

Recently, novel topological nanostructures including polar
vortices [11] and polar skyrmions [12] have been discov-
ered in layered oxide superlattices. For example, as shown in
Fig. 1(a), in a (PbTiO3)16/(SrTiO3)16 superlattice thin film,
periodic arrays of polar vortex tube pairs of opposite rota-
tion directions are formed within the ferroelectric PbTiO3

layers. These polar topological structures have a spatial scale
of <10 nm at room temperature, smaller than their nominal
magnetic counterparts [13,14]. Such extended objects (i.e.,
domain walls, skyrmions, vortices, etc.) can host collective
dynamics of coherent motions over multiple unit cells. In-
deed, we have very recently observed subterahertz phonon
modes unique to polar vortices, in which a specific mode
attributed to the motion of vortices exhibits a softening of the
frequency around a mesoscale structural transition at a critical
strain, based on a combination of terahertz-field pump, x-ray
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diffraction probe experiment, and atomistic and phase-field
simulations [15].

For studying the dynamics of nanostructures, the ability to
analytically describe their equations of motion [16–26] is ex-
tremely useful for analyzing the underlying mechanisms and
notable factors that dominate the dynamics. In this Letter, we
present a theoretical study of two sub-terahertz modes of polar
vortices in ferroelectric superlattices, where we analytically
derive the equation of motion for the vortex modes based
on coupled polarization dynamics and elastodynamics, and
extract the effective mass and spring constant. By establishing
the energetics of the system, we discover a strain modulation
of the spring constant of a structural mode, which causes
the transition between symmetric and asymmetric vortices as
well as condensation of the mode frequency. The analytically
predicted mode frequencies are in good agreement with the
experiment and simulations reported in [15].

Figure 1(b) presents a schematic of the proposed model
for the polar vortices. The polarization profile of each vor-
tex within the ferroelectric material can be approximated by
an ensemble of four domain-like regions with each possess-
ing nearly homogeneous polarization along in-plane (±x1)
or out-of-plane (±x3) directions, forming a closed polariza-
tion vortex. Adjacent in-plane and out-of-plane domain-like
regions are connected through domain-wall-like regions pos-
sessing a 90° polarization rotation, which are in a 45° angle
with the film plane for a charge-neutral condition. For vor-
tices with a vertical dimension d larger (or smaller) than
its horizontal dimension a, two neighboring out-of-plane (or
in-plane) domain-like regions with antiparallel polarizations
will also border each other forming a 180° domain-wall-like
region, where the vortex core is located at the center of the
region. According to atomistic simulations [15], the vortex
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FIG. 1. (a) Schematic of the polar vortex array in a ferroelectric
superlattice thin film. The circular arrows indicate the polariza-
tion direction of the vortex tubes. (b) Schematic of the analytical
model showing the x1-x3 cross section of the ferroelectric layer,
containing a pair of polar vortices with opposite rotation directions.
Several domain-like regions each containing nearly homogeneous
polarization are shaded with different colors. (c),(d) Top panels
show schematics of symmetric and staggered vortices, and bottom
panels show free energy of the polar vortices as a function of uV
under different substrate strains, with (c) εsub � εC and (d) εsub > εC ,
respectively.

cores may undergo vertical displacements uV away from the
center plane of the ferroelectric layer, either spontaneously or
under external stimuli, while maintaining the charge-neutral
condition, with neighboring vortices of opposite rotation di-
rections adopting opposite displacements. The dimensional
parameters d , a, and uV provide a complete description of the
vortex structure. uV may respond to external stimuli or con-
dition variations, while d and a are fixed due to confinement
by the dimensions of the film. The dielectric SrTiO3 layers are
assumed to have a negligible polarization compared with that
of the ferroelectric layers.

We first establish the thermodynamics of the system by
formulating a potential energy as a function of uV and study
the equilibrium state of the vortices under given conditions.
A similar approach has been employed in studying static
properties of domain walls [27]. The potential energy includes
bulk, gradient, elastic, and electrostatic energy contributions.
The total bulk and gradient energies can be approximated as
Fbulk-gradient = FSD + FW , where FSD is the bulk energy of a sta-
ble single domain state and FW is the domain wall energy. FW
is determined by the lengths of domain-wall-like regions, with
a total of 2(d − a) and 4

√
2a for 180° and 90° domain-wall-

like regions, respectively, both independent of uV . Therefore,
Fbulk-gradient is a constant independent of uV .

The elastic energy is separated into two parts, corre-
sponding to a decomposition of the strain ε into spatially
homogeneous and inhomogeneous parts, i.e., ε(x) = ε +

δε(x). The homogeneous part is given by

F hom
elastic = 1

2
S

(
c11 − c12

2

c11

)(
εsub − ε0

1

)2
, (1)

under an in-plane strain εsub due to substrate clamping and a
relaxed out-of-plane stress. Here S = 2ad is the total area of
the vortex pair, c is the elastic stiffness tensor, and ε0 is the
average eigenstrain given by

ε0
1 = SIPQ11PS2 + (S − SIP)Q12PS2

S
. (2)

Q is the electrostrictive coefficient, and SIP = a2 + 4uV 2 is
the total area of the in-plane domain-like regions. The exact
inhomogeneous elastic energy cannot be analytical calculated,
but it can be approximated as a power series of uV with only
even orders due to a mirror symmetry about the central plane
of the ferroelectric layer. For simplicity, it is approximated
with the two leading orders,

F inhom
elastic = A0 + A2uV

2. (3)

The coefficients A0 and A2 are determined by material proper-
ties and vortex dimensions, and they can be obtained through
fitting the numerically calculated elastic energies with dif-
ferent uV to Eq. (3) (see Note S1 of the Supplemental
Material [28]).

Since the polarization field forms closed loops with zero
bound charges, the system possesses negligible electrostatic
energy. We find that the closed loop configuration is well
protected due to the minimization of electrostatic energy, with
details given in Note S2 of the Supplemental Material [28].
It is thus found that the energy for the vortex displacement is
dominated by the elastic contribution.

Summing up the energy contributions, the total potential
energy adopts a fourth-order polynomial of uV ,

F (uV ) = 1
2K2uV

2 + 1
4K4uV

4, (4)

with uV -independent terms omitted. The linear and third-order
spring constants K2 and K4 are given by

K2 = K2ε(εC − εsub), (5)

K2ε = 8PS
2

(
c11 − c12

2

c11

)
(Q11 − Q12), (6)

εC =
[ a

2d
(Q11 − Q12) + Q12

]
PS

2 + 2A2

K2ε

, (7)

K4 = 16PS4

ad

(
c11 − c12

2

c11

)
(Q11 − Q12)2. (8)

For PbTiO3/SrTiO3 superlattice thin films, d = 6.4 nm, a =
5.0 nm [11], c11 = 180 GPa, c12 = 80 GPa [29], Q11 =
0.089 C−2m4, Q12 = −0.026 C−2m4, PS = 0.75 C m−2

[30], and A2 = −4.6 × 108 J m−3. We obtain K2ε = 7.5 ×
1010 J m−3, εC = −0.17%, K4 = 3.0 × 1026 J m−5.

Equation (4) exhibits either a single- or double-well poten-
tial depending on the sign of K2, which is further controlled by
the substrate strain εsub. Similarly to the description of phase
transitions in the Landau theory, Eq. (4) indicates the emer-
gence of a spontaneous uV at the critical strain εC . For εsub �
εC , K2 � 0, the energy function contains a single stable state
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at uV = 0, with a deeper energy well under more compres-
sive strains [Fig. 1(c)] due to the increased energy penalty in
forming in-plane domain-like regions. For εsub > εC , K2 < 0,
the system becomes intrinsically unstable at uV = 0, while a
spontaneous displacement of the vortex cores is induced with
two degenerate states following uV 0 = ±√−K2/K4, which
increases upon increasing the tensile strain [Fig. 1(d)]. This
leads to a second-order phase transition of the polar struc-
ture from symmetric vortices (uV = 0) to asymmetric ones
with a staggered arrangement (uV �= 0), as illustrated by the
top panels of Figs. 1(c) and 1(d). This phenomenon is con-
sistent with the strain-induced structural transition found by
atomistic simulations [15]. Here our analysis demonstrates
the emergence of staggered vortices as a structural adapta-
tion to release the elastic energy under suitable mechanical
conditions.

We next study the dynamics of the polar vortices and derive
their equation of motion. Two experimentally characterized
subterahertz phonon modes, i.e., the slow mode and the fast
mode, are investigated. Following atomistic simulations [15],
the slow mode represents the collective motion of the vortices
with vortex cores oscillating vertically around the equilibrium
positions, as shown in Fig. 2(a). From the thermodynamic
analysis above, it is now clear that the main restoring force
of the mode comes from the elastic energy contribution.

The slow mode can be described by the equation of motion
of uV . The kinetic energy of vortex motion includes contri-
butions from polarization dynamics and elastodynamics. The
polarization dynamics follows [31,32]

μP̈ + γ Ṗ + δF

δP
= 0, (9)

where μ and γ are the effective mass and damping coefficient
of polarization evolution, respectively. The corresponding ki-
netic energy is given by

Ek,P =
∫

1

2
μṖ2dx1dx3. (10)

Since the polarization inhomogeneity mostly lies around the
domain-wall-like regions, for vertical motion of the vortices,
90° domain-wall-like regions show the strongest polarization
response Ṗ [see the �P profile in Fig. 2(a)]. Ek,P can be calcu-
lated by estimating the contribution of these regions only, i.e.,
Ek,P ≈ 1

2μṖ2
WSW , where ṖW is the spatially averaged rate of

polarization change inside the 90° domain-wall-like regions,
and SW is the total area of these regions with SW = 4

√
2aw,

assuming a domain wall width of w. Within these regions
where polarization rotates between in-plane and out-of-plane
states, the average polarization gradient is

√
2PS/w. For these

regions moving vertically with a velocity u̇V at a 45° angle to
the polarization gradient, we write ṖW = (

√
2PS/w) × u̇V ×

cos 45◦ = PSu̇V /w. It shows that the kinetic energy of polar-
ization within the vortex pair resembles that of an object,

Ek,P = 1
2mPu̇

2
V , (11)

with an effective mass of mP = 4
√

2μPS2a/w. For PbTiO3,
w = 2.1 nm [33], μ = 7.53 × 10−17 J A−2m, γ = 2.0 ×
10−7 J A−2m s−1 [15]. We obtain mP = 5.7 × 10−16 kg m−1.

FIG. 2. (a) Polarization field P at times t = 0, T/4, T/2, 3T/4
within an oscillation period of the slow mode and oscillation am-
plitude �P = P(T/4) − P(0). The color arrows represent P or �P,
with the color indicating the direction shown by the color wheel.
The solid and dashed circles represent the current and equilibrium
positions of vortex cores, respectively. The black arrows indicate
the direction of the core displacement. (b) Mode frequencies as a
function of the substrate strain from the analytical model and those
from experiment and phase-field simulation [15]. Bottom insets show
the equilibrium states with symmetric and staggered vortices.

The kinetic energy for elastodynamics is given by

Ek,elastic =
∫

1

2
ρu̇2dx1dx3, (12)

where ρ is the material density and u is the lattice dis-
placement. Similarly to Ek,P, Ek,elastic can be approximated
as Ek,elastic ≈ ρu̇2

WSW /2, with u̇2
W the average square velocity

of lattice motion inside the 90° domain-wall-like regions. We
estimate that u̇2

W = (Q11 − Q12)2PS4u̇2
V /24, with derivations

provided in Note S3 of the Supplemental Material [28]. It then
follows that

Ek,elastic = 1
2melasticu̇

2
V (13)

with melastic = √
2ρ(Q11 − Q12)2PS4aw/6 the effective mass.

ρ = 7.52 × 103 kg m−3 for PbTiO3, and melastic = 7.8 ×
10−17 kg m−1. Since mP � melastic, the slow mode is domi-
nated by polarization dynamics. The total kinetic energy of
the vortex pair is given by

Ek = Ek,P + Ek,elastic = 1
2mV u̇

2
V (14)
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with mV = mP + melastic = 6.5 × 10−16 kg m−1. Thus, the ef-
fective mass of each vortex tube is 3.2 × 10−16 kg m−1.

Based on the kinetic and potential energy functions
[Eqs. (4) and (14)], the equation of motion of the vortex core
is given by

mV üV + K2uV + K4uV
3 = 0 (15)

with energy dissipation neglected. It describes an anharmonic
oscillator, yet for small perturbations (i.e. |�uV | � √

K2/K4)
analytical solutions can be derived with harmonic approxi-
mations. For εsub � εC , the spring constant K2 � 0 and the
vortices oscillate around the equilibrium point at uV 0 = 0
(i.e., symmetric vortices). After neglecting the uV 3 term under
small perturbations, Eq. (15) gives rise to a harmonic oscil-
lator with a frequency f dependent on the substrate strain
εsub, i.e.,

uV (t ) = uVA sin (2π f t ), (16)

f = 1

2π

√
K2

mV
= 1

2π

√
K2ε(εC − εsub)

mV
. (17)

As shown in Fig. 2(b), the slow mode frequency decreases
with increasing εsub and approaches zero at εsub = εC (i.e.,
spring constant K2 = 0). Such mode condensation at εC sig-
nals a reduced structural stability of the symmetric vortices
upon approaching a transition to staggered vortices, which
is analogous to the condensation of the soft phonon mode
for a ferroelectric phase transition at the Curie temperature
[34,35]. Further increasing the substrate strain to εsub > εC
(spring constant K2 < 0) results in an imaginary nominal fre-
quency from Eq. (17), indicating the intrinsic instability of
the symmetric vortices, accompanied by the transition to the
staggered vortices with two new equilibrium core positions at
uV 0 = ±√−K2/K4. Through expansion around the new uV 0,
Eq. (15) is reformulated as

mV üV − 2K2(uV − uV 0) ± 3
√−K2K4(uV − uV 0)2

+K4(uV − uV 0)3 = 0, (18)

with a new linear spring constant of −2K2. Through neglect-
ing second- and third-order terms, the harmonic solution for
small perturbations is given by

uV (t ) = uVA sin (2π f t ) + uV 0, (19)

f = 1

2π

√
−2K2

mV
= 1

2π

√
2K2ε(εsub − εC )

mV
. (20)

The mode frequency rises with increasing substrate strain due
to the increased spring constant indicating a higher stability
of the staggered vortices. As a result, the mode frequency
shows a minimum of f = 0 at εsub = εC while it rises going
towards both tensile and compressive strain sides of εC , with
symmetric and staggered vortices, respectively [see Fig. 2(b)].

The oscillation amplitude uVA is determined by the energy
input upon mode excitation. With an increased amplitude
beyond the small perturbation regime, the mode frequency
will increase for symmetric vortices due to the additional
third-order restoring force terms [Eq. (15)] of the anharmonic
oscillator. For the staggered vortices, it is further noted that

FIG. 3. Polarization field P at times t = 0, T/4, T/2, 3T/4
within an oscillation period of the fast mode and amplitude �P =
P(T/4) − P(0). The arrows represent P or �P, with the color indi-
cating the direction shown by the color wheel.

with sufficient energy input, the oscillator will be able to
pass the energy barrier at uV = 0 between the two degenerate
states with uV 0 = ±√−K2/K4 and transition between them.
Numerical solutions of the anharmonic oscillator are provided
in Note S4 of the Supplemental Material [28].

The strain-dependent frequencies of the slow vortex mode
predicted by the analytical model agree well with the ex-
periment and phase-field simulations in [15], as presented in
Fig. 2(b). We conclude that the soft mode is dominated by the
proposed structural dynamics rather than other processes, e.g.,
electron dynamics. The slightly smaller analytical frequency
on the compressive strain side compared with phase-field sim-
ulation is due to the small perturbation assumption. The slow
mode identified in the phase-field simulation also demon-
strates a vortex motion similar to that in the analytical model,
as shown in Note S5 of the Supplemental Material [28].

In addition to the slow mode, the polar vortices also host a
fast mode experimentally found at ∼0.38 THz [15]. This can
be attributed to the structural response with polarization in all
regions oscillating in phase without changing the geometry
and location of each region, which corresponds to a localized
ferroelectric soft phonon mode. The spatial polarization pro-
file of the fast mode with in-plane polarization responses is
shown in Fig. 3. The out-of-plane domain-like regions show
a larger amplitude than do the in-plane domain-like regions
due to the stronger dielectric constant κ11 perpendicular to the
polarization than that parallel to it. The restoring force of the
mode lies in the dielectric response. For small perturbations
within a range of linear dielectric constant, we consider the
polarization oscillation within the out-of-plane domain-like
regions subject to a linear restoring force of −δF/δP1 =
−P1/κ0κ11, κ0 being the vacuum permittivity. The polarization
dynamics Eq. (9) is rewritten as

μP̈1 + γ Ṗ1 + P1

κ0κ11
= 0. (21)

The mode does not couple with the elastic field since the
piezoelectric coefficient d11 = d13 = 0 with an out-of-plane
polar axis. Equation (21) describes a damped harmonic
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oscillator with a frequency of

f = 1

2π

√
1

κ0κ11μ
− γ 2

4μ2
. (22)

f = 0.42 THz for PbTiO3 (with κ11 = 210 [30]), independent
of the substrate strain. The predicted fast mode frequency
also matches our experiment and phase-field simulations, as
presented in Fig. 2(b).

Polar vortices may also host other collective dynamics
which possibly include in-plane oscillation of vortex cores
as well as rotation and deformation of vortices, etc. These
motions have higher energy costs due to the electrostatic en-
ergy penalty from breaking the closed polarization loop and
therefore should show weaker amplitudes or higher frequen-
cies, which is consistent with the experimental observation of
the slow mode being the only notable phonon mode in the
lower frequency range ( f < 0.3 THz) and the observation of
several additional frequency peaks with higher frequencies
( f > 0.5 THz) by atomistic and phase-field simulations [15].
These modes are neglected in the present works but can be
further described by allowing additional degrees of freedom
of the system.

In summary, we develop an analytical framework for
modeling new collective dynamics in polar vortices. By es-
tablishing the energy functions of the polar structure, we
theoretically examine the subterahertz phonon modes in
PbTiO3/SrTiO3 superlattices discovered by pump-probe ex-
periments [15]. The slow mode of the vortex motion is
analogous to the motion of a massive object connected to a
nonlinear spring, similar to magnetic vortices [18,36]. How-
ever, unlike the rotational modes found in magnetic vortices
[36,37], the ferroelectric vortex mode shows linear motions of
vortex cores, due to the different dynamics of electric dipoles

from that of spins. The mode frequency can be effectively
tuned by strain, as a result of the elastic modulation of the
potential energy function and the effective spring constants of
the vortex motion. This also leads to a condensation of the
mode frequency around a mesoscale structural transition from
symmetric to staggered vortices at a critical strain, similar
to the condensation of the soft phonon mode in ferroelectric
materials at the Curie temperature. The fast mode is an optical
phonon mode representing localized oscillation of polariza-
tion with fixed vortex positions, which is decoupled from
strain. The present approach for deriving the equations of
motion by establishing the energetics, based on fundamental
thermodynamics, polarization dynamics, and elastodynamics,
can also be generalized to model the collective dynamics of
other polar topological structures such as skyrmions. There-
fore, the present letter offers a general theoretical framework
for understanding and manipulating the structural modes of
extended objects in ferroelectric systems.
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