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Abstract: This paper investigates optimal power management of a fuel cell hybrid

from the perspective of endurance (time of flight) maximization in
a stochastic environment. Stochastic drift counteraction optimal control is exploited to obtain an
optimal policy for power management that coordinates the operation of fuel cell and battery to
maximize the expected flight time while accounting for the limits on the rate of change of fuel cell
power output and orientation dependence of fuel cell efficiency. The proposed power management
strategy accounts for known statistics in transitions of propeller power and climb angle during
the mission but does not require the exact preview of their time histories. The optimal control
policy is generated offline using value iterations implemented in Cython, demonstrating an order
of magnitude speed up as compared to MATLAB. It is also shown that the value iterations can be
further sped up using a discount factor but at the cost of decreased performance. Simulation
results for a 1.5 kg are reported that illustrate the optimal coordination between the fuel
cell and the battery during aircraft maneuvers, including a turnpike in the battery state of charge
(SOC) trajectory. As the fuel cell is not able to support fast changes in power output, the optimal
policy is shown to charge the battery to the turnpike value if starting from a low initial SOC value.
If starting from a high SOC value, the battery energy is used till a turnpike value of SOC is reached
with further discharge delayed to later in the flight. For specific scenarios and simulated
parameters considered, the results indicate the capability of up to 2.7 hours flight time.

Keywords: Air Mobility; Fuel Cell Hybrid Aircraft; Stochastic Optimal Control; Energy Manage-
ment; Drift Counteraction Optimal Control

1. Introduction

With the growing market for unmanned aerial vehicles (UAVs), a wide range of
industries and organizations, including military, government, industrial, and recre-
ational users, deploy this technology across the globe [1-3]. Among different types
of UAVs, [4] are attractive for military, aerial
photography, and environmental monitoring applications due to their small size and
flexible operation [5]. Considering (i) hardware and weight constraints, (ii) limited
onboard energy storage, and (iii) performance requirements for , improving their
endurance (maximizing their flight time) is of great importance for extending the du-
ration of their missions which could involve surveillance, search and rescue, disaster
relief, traffic control, and precision agriculture; thereby, motivating the development of
novel propulsion systems and implementation of optimal control policies for power and
energy management. Among different propulsion systems for such a ,a hybrid
propulsion system consisting of a polymer electrolyte membrane fuel cell (PEMFC) and
a battery has been proposed for long duration missions, e.g., in [6-9]. Other propulsion
systems may incorporate energy harvesters such as in [10]. In this paper we focus
on novel approaches to energy management of through optimal coordination
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between PEMFC and battery for the previously proposed fuel cell hybrid propulsion
system.

Rule-based (e.g., thermostat-like on-off control [11]), dynamic programming-based
[12] and model predictive control (MPC) [13] have been considered for energy manage-
ment of hybrid aircraft. As in automotive energy management applications [14], the
use of simple rule-based strategies may not provide optimal performance while the
conventional formulations of MPC and dynamic programming do not directly address
the flight time maximization objective. Furthermore, deterministic variants of MPC and
dynamic programming may require an accurate preview of the propeller power and
climb angle over a long horizon and are computationally demanding if optimization
has to be performed online. Similiarly, Pontryagin Maximum Principle (PMP)-based
guidance solutions [15] need accurate characterization of the flight environment.

In this paper we consider a different approach to the problem of endurance max-
imization for a hybrid with polymer electrolyte membrane fuel cell (PEMFC)
based on an application of stochastic drift counteraction optimal control (SDCOC) [16]
which directly addresses the problem of maximizing the time to constraint violation
in a stochastic environment. In our case, the objective is to maintain the vehicle flying
for a maximum amount of time by coordinating the fuel cell and the battery to provide
the requested propeller power subject to the limited amount of fuel and battery state of
charge (SOC) onboard of the vehicle. The transitions in aircraft climb angle and propeller
power are modeled stochastically by a Markov Chain with the transition probabilities
determined from historical data representing typical missions of a . Then a control
policy that minimizes a cost functional reflective of expected time-to-violate constraints
is determined off-line through value iterations; this control policy is then deployed
onboard for the online coordination of the fuel cell and the battery in

In a preliminary conference paper [17] by the second author of this paper, the
application of SDCOC for power management of a hybrid with direct methanol
fuel cell (DMFC) has been considered. While DMFC is often considered as a suitable
power source for ground vehicles [18] and have certain advantages, PEMFCs are more
appealing for air mobility applications [6,7] due to their relatively lower operating
temperature, allowing for a quick start-up [19], higher efficiency (up to 60% [18,20]) and
power density, and higher safety due to the use of the solid electrolyte [18].

Differently from [17], in this paper we consider the application of SDCOC to power
management of a hybrid with PEMFC rather than DMFC. To accommodate a dif-
ferent fuel cell and a , the fuel cell model has been changed and improvements have
been made to models used to compute propeller power and thrust, and the evolution of
S0C.

More importantly, the lack of ability of PEMFC to rapidly change its power output
imposes a stringent operating constraint (rate limit on PEMFC power output) which has
not been treated in [17] but is treated in this paper. This rate limit increases complexity
of the problem as an extra state needs to be introduced in the model and handled in
SDCOC and it also changes the optimal policies and the optimal response of the system.
For instance, as the fuel cell is not able to support fast changes in power output, the
optimal policy is shown to charge the battery to a turnpike value if starting from a low
initial state of charge value. If starting from a high SOC the battery energy is used till
a turnpike value of state of charge is reached with further discharge delayed to a later
phase of the flight. In either case, high frequency chattering of fuel cell load demand
power in [17], which cannot be supported by PEMFC, is eliminated.

Additionally, in this paper the value iterations are implemented in Cython rather
than MATLAB, with an order of magnitude speed up as compared to MATLAB implementa-
tion observed. As value iterations are frequently used to solve dynamic programming
problems in different applications and Python is becoming increasingly popular, our re-
sults on ten-fold speed up with Cython without substantive increase of code complexity
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are of reference value to other researchers considering computational implementation of
dynamic programming.

Furthermore, a discount factor is introduced into the cost function of SDCOC and
its impact on the convergence speed of the value iterations is illustrated. It is shown that
this discount factor results in faster convergence of value iterations but the performance
of the control policy (in terms of exit time) is decreased.

While SDCOC theory is developed in reference [16], that reference does not address
the fuel cell or application studied in this paper. Our approach to representing
motor power demand and climb angle by a Markov Chain with a finite number of states
follows reference [21], which is the first (to the authors knowledge) paper proposing the
use of stochastic dynamic programming for automotive powertrain control applications;
that paper does not address the fuel cell or application studied in the present
paper either, nor the drift counteraction problem formulation.

The remainder of this paper is organized as follows: Section 2 describes
sub-systems and their models. Section 3 presents an integrated model of the hybrid
system and defines the problem in a form suitable for SDCOC. Section 4 summarizes
SDCOC, and section 5 reports the results. Finally, section 6 presents concluding remarks.

2. Physical Description of the Systems and Model

A with a series hybrid propulsion system, shown in Fig. 1, is chosen in which
the power supplied by the battery and the power supplied by the PEMFC are combined
to meet the propeller motor power demand. The PEMFC uses hydrogen as fuel which is
stored in the tank and air from the atmosphere. A fraction of the energy generated by
PEMFC can be used to charge in the battery. The fuel cell pack and battery pack are sized
large enough so that they are able to meet the ’s mean power demand individually,
should either one be not operating properly.

[Gas tank ]—P[ PEMFC ] [ Propeller motor ]—
J '
[ Battery ]4—»[ Power management]

Figure 1. A diagram of a fuel cell-powered series hybrid

The model used in this paper for generating SDCOC policies captures the battery’s
SOC dynamics, the fuel cell’s hydrogen rate dynamics, and fuel cell load power dynam-
ics. Thus, the states of this model are the SOC, the mass of hydrogen remaining in the
gas tank, and the fuel cell load demand power. The motor power of the and climb
angle are treated as operating variables, and the SDCOC controller determines changes
in the fuel cell load demand power. This system level model has been implemented by
combining component submodels and characterizations available from the literature;
our methodology is generic and can accommodate changes in these component models.

2.1. Dynamics
A control-oriented dynamic model of the is used for SDCOC law develop-
ment. The is constrained to a longitudinal flight path in a vertical plane [22]. Table

1 defines the notations for the variables used in the model. Table 3 in the Appendix
lists model parameter values, partly based on [23], [24] and [25]. The development of

lightweight electric components (batteries, fuel cells, motors) for is an active area
of research, see, e.g., [26] and [27]. In our model, we have assumed that such lightweight
components are available to be consistent with the assumed weight.

Using a flat earth coordinate system, the longitudinal equations of motion of the
are given by
5 Tcos(a) — D
m

—gsin(7), @
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Table 1: List of variables used in model.
Variable = Description Unit
v Velocity of the m/s
Y Climb angle deg
T Thrust force N
« Angle of attack deg
L Lift force N
D Drag force N
Cr coefficient of lift \
Cp coefficient of drag \
Qair Air density kg/m?
Power required by the w
N Angular speed of the electric motor RPM
Pp Power generated by the propeller w
Pp ideal Ideal propeller power W
1P Propulsive efficiency \
Um Electric motor driver’s input voltage v
Im Electric motor driver’s input current A
Py Elector motor driver’s input power w
m Motor efficiency \
Prc total Total power of fuel cell W
Prc joad Load demand power of fuel cell W
Paux Power required by the auxiliaries W
Urc Single cell voltage v
Irc Single cell current A
irc Single cell current density A/cm?
Uyt Activation polarization A\
Uohm Ohmic losses \%
Ucone Concentration polarization \%
Uoc Equivalent open circuit voltage of single fuel cell ~ V
R Modified single fuel cell resistance Q
Ric Variable defined in (18) Q- cm?
Upoc Open circuit voltage of the battery \4
socC Battery’s state-of-charge \
Py Power of the battery W
S0Cy Initial SOC \
S¢ Split fraction \
u Control input \
APrc Defined in (25) w
MER Mass of fuel remaining kg
. Tsin(a)+L  gcos(7y) @
i mo v
where v is the velocity of the and 7 is the climb angle. The lift L and drag force D
are characterized as
1 2 1 2
L= 5pair0"S1efCL, D = 50airv”SrefCp, 3)

where C; = Crg+ Crqaa, Cp = Cpg + KC;2. Neglecting vertical acceleration (i.e., with
L = mg), solving (1) and (2) yields the thrust required by the ,

1 2Km?g? ) :
T = ( m6+ mgsin(7) + ~0airtS,0Co + ——n 8| 4 (mvrj + mgeos(y) — mg)*
2 Pair? Sref
@)
Here, p,;, is a function of altitude. The power required by the is then given by
= To. 5)

2.2. Propeller Model

The propeller model is used to relate the torque and angular velocity generated
by the electric motor to the power required by the and the velocity of the ,
respectively [22]. With the propulsive efficiency given by #p, the power required to drive
the propeller is

Pp=— ©)
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133

According to disk actuator theory, the ideal propeller power is

1 8T
Ppigeas = =To| 14 14+ ———|.
P,ideal 2 < ﬂpairUZdP2>

In general, the actual power required would be about 15% greater than this [28], which
means Pp = 1.15Pp ;;,,;. Thus, #7p can be calculated as

2

p = = .
T 115Pp i 115+ 115, /1 + —8
TTPqir v dp

Combing (7) with (5) and (6) yields

@)

Py 1.15 n 1.15 14 8
’ 2 2 npairUSdPT

2.3. Electric Motor Model

Electric motors used in applications exhibit high speed and high torque as
well as high power-to-weight ratios [29]. Assuming the power factor is equal to unity
and the magnetic losses can be neglected, the output power of the motor is given by

Pp = (Up — ImRum) (Im — Imp)- )

The angular velocity of the motor in revolutions per minute (RPM) can be expressed as

N = (Um — RmIm)Ky, )

which should be equal to the RPM of propeller N = %. From (8) and (9), the motor
current, Iy, is

PpK
Iy = PNV + IM,().

The motor power and motor efficiency are given by, respectively,

P
Py =Upmlpm, nm= %

2.4. Fuel Cell Model
A PEMEFC system is the primary power source for the . The total power
generated by the fuel cell stack is calculated as

Prc totar = nrcUrclIpc. (10)

This power must cover the load demand Prc j,,s and the power required for auxil-
iaries [18], Pyy,
PFC,total = PFC,loud + Paux, (11)

where P,y is the total power required for the compressor motor, the hydrogen circulation
pump, the humidifier water circulation pump, the coolant pump, the cooling fan motor,
and the bias power, Py. After simplifications, Py, could be written as a function of the
fuel cell current [30],

Paux = Po + npckeclrc. (12)

The fuel cell current is a function of the current density and the fuel cell area,

Irc = ircArc,
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136

137

where irc could be obtained by solving the equation,
Upc = Urep — Uact — Uppy — Uconc- (13)

The reversible cell potential Uy, is related with the molar specific Gibbs free energy Agy
and number of ions passed in the reaction #, [24],

Uy = —L.
reo neF

The activation polarization U, is a result of the energy required to initiate the reaction,
which can be described by the semi-empirical Tafel equation [31-33],

Uaet = co + c1ln(irc),

where cp and ¢; depend on temperature. When the current density is small, this equation
can be modified [34] as
Uget = co(1 — e_Clti)/ (14)
where ¢g = —5.8 x 1074T + 0.5736 and ¢ = %
The ohmic losses U, are due to the resistance to the flow of (i) ions in the mem-
brane and in the catalyst layers, and (ii) electrons through the electrodes [18],

Uonm = iFCRFC/ (15)

where Rpc = RrcArc.
The concentration polarization Uy, is given by

Ueone = doed] ikc, (16)

With the parameters given in Appendix A, the polarization curve of a single cell is
plotted in Fig. 2. In reality, the current density could be controlled within a certain range.
After excluding the very low current densities (ipc < 0.1A/cm?), (13) could be linearized
[34,35] as

Urc = Uoc — Recirc, (17)

where Upc is the voltage at which the linearized curve crosses the y-axis, which should
not be confused with U,,y.

1.4 . .
-------- low current densities
1.2¢ —high current densities |
= = =linearized curve
1
= L
& 0.8}
0.6}
04¢}
0.2 : - : :
0 0.2 0.4 0.6 0.8 1

. M
ife [A/cm?]

Figure 2. Polarization curve for a given PEMFC.
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Unlike ground vehicles, changes orientation during the flight, which would
change the inner resistance of fuel cell by about 5 times [36] from horizontal to vertical.
To this end, (17) is modified to account for this effect as

Upc = Uoc — Ricire, (18)
where R = Rpc(1+ kosin(ky|y|)). Combining (18) with (10), (11) and (12) yields
nrcREcIfe — (npcUoc — npckaux) Irc + Prcioad + Po = 0, 19)

where R = R}/ Apc. Overall, Ipc can be expressed as

NI=

nrc(Uoc — Kaux) — [n2-(Uoc — Kaux)? — 4npcRec (Pec joad + Do) ]
ancR%C

Irc = (20)

2.5. Battery Model

The battery model represents a pack of model 21700 lithium polymer battery
cells. The battery pack is assembled in such a way that the cells are connected in series.
According to [37], the open-circuit voltage of the battery can be estimated as

Upoc = SOC(Up,max — Up,min) + Up min- (21)

The battery power and the fuel cell load demand power sum up to provide the electrical
power to the motor such that
Py = P + Prcioad- (22)

Further, the current drawn from the battery set is obtained by solving
Py = n(Up,ocls — I§R,int), (23)

which should not exceed its maximum discharge current I ;4.
The battery coulombic efficiency in the battery model is assumed to be 100%. Thus,
the SOC satisfies as
FIp(t)

soc(t) = soc,— [ By (24)
to CB

where ¢, ty, and SOCj are the current time, initial time, and initial SOC, respectively.

3. Hybrid System Model and Problem Formulation
3.1. Hybrid System

The fuel cell load demand power, which will be indicated as Prc in the following
section, is the only variable under control. Due to the output characteristic of PEMFC,
the change of Prc is chosen to be 5% of its maximum power, which is depend on
according to (18). The fuel cell load demand power dynamics are then

Prc(tys1) — Pre(tn) = u - APpc, (25)

where u € {—1,0,1} and APpc = 5%Prc yax, and Prc(ty) is the fuel cell load demand
power at t = t,,. Here, three different values of u correspond to decreasing, sustaining,
or increasing Prc. According to (19), the maximum load cell power can be calculated as

/ 2
dnpcRp-Po — (npcloc — nrcKaux)
- .
_4nFCRFC

Pp C,max — (26)
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Using (25) and (26), the final expression representing fuel cell load demand power
dynamics is given by

dPrc _ oo, 41rCREcPo — (npcloc — nFCKaux )
dt —47’11:(:R;;C ’

(27)

The SOC dynamics are obtained by differentiating both sides of (24) with respect to time,

dsoC Ip
T Cy (28)
Combing (28) with (21) and (23) yields,
dsoc  —nsUpoc + \/(VlBUB,oc)2 — 4ngRp int P 2
dt o anRB,intCB ! ( )
where uB,OC = SOC(UB,max - uB,min) + uB,min-
The motor power and battery power are related by
Pg = S¢Py, (30)
where Sy is referred to as the split fraction, which could be calculated from (22) as
Py — Prc
Sf= Py
Using (29) and (30), the final expression representing SOC dynamics is given by
4Rp ;iS/P
dsoc  —Upoc+ \/(UB,OC)2 — 1)
dt 2Rp intCB ’

where the internal resistance Rp;,; and the battery capacity Cp are assumed to be
constant [38].
The mass of remaining fuel dynamics are obtained from Faraday’s Law as

d I
Mrr _ NrclFrC M, (32)

dt neF

where Ir¢ is calculated from Prc as shown in (20).

Equations (25), (29) and (32) are the final form of the state equations used in this
study, where the states of the system are x = [SOC, Mg, Prc], the control u € {—1,0,1},
the outputs of the system are y = [S¢, Pg], and the operating variables are w = [Py, ]
These operating variables are treated as measured disturbances in the model.

Based on the above modeling assumptions and parameters in Table 3, the maximum
fuel cell output power is aty = 0deg, aty = £10 deg, and at
v = £20 deg. The theoretical maximum power for the battery series (of 8 batteries) is

, due to the limitation of the discharge current (35 A), the maximum power of the
battery is at any climb angle.

3.2. Problem Formulation

Forward Euler method is used in this paper to approximate the time derivatives.
During each time segment At, the motor power of is wy and the climb angle is wy.
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The following updated equations approximately model the hybrid propulsion
system:
dsoC
SOC(ty41) = SOC(t,) + T(tn)At,
dM
Mg (tns1) = Mrr(tn) + TFR(%)A@

where SOC(t,,) and Mpg(t,) are the state-of-charge and the mass of hydrogen remaining
att =1t,.

The system is controlled by the change of the fuel cell load demand power APpc at
each discrete time instant. Thus, the fuel cell power is modeled as

Prc(tut1) = Prc(tn) + uAPpc(tn)-

The motor power and climb angle are typically unknown a priori. In this paper, a
Markov Chain model is used to describe the evolution of w; and w, with the transition
probabilities identified from the historical data. Once particular w; and w, values are
encountered, a prediction of their probability distribution over the next time segment
will be made using the Markov Chain model.

The objective of the stochastic endurance maximization problem is to determine a
control law that maximizes the time the can travel before the system states exit a
prescribed set,

G :{(soc, Mgg, Prc) : SOCypin < SOC < SOCpax,

MrR min < MR < MFRmax, 0 < Ppc < PFC,max}- (33)

The constraints on the SOC and Mrr in (33) reflect minimum and maximum values
of battery state-of-charge and mass of fuel, respectively. The constraints on Prc are
reflective of the fact that the fuel cell load demand power cannot (i) exceed the maximum
power of the fuel cell, and (ii) be negative.

The optimal control policy developed in this paper through the application of DCOC
specifies the change in fuel cell load power over one step, APpc(t) = Pre(t+1) — Pre(t),
as a function of SOC(t), mass of hydrogen fuel left, Mpr(t), and current fuel cell load
power, Prc(t). The battery power complements fuel cell power in matching propeller
requested power.

3.3. Markov Chain Modeling

A Markov Chain model [39] is used to represent the evolution of w (in our case
w = [wy, wy]). The transition probabilities of the Markov chain are defined as

pij = prob{w(t, 1) € W;|w(ty) € Wi}, (34)

where W;and W; (i,j = 1,- - -, N) are cells partitioning the feasible range of the operat-
ing conditions. The state-dependence of the transition probabilities adds flexibility in
reflecting typical motor power and climb angle profiles of a

The p;;’s can be obtained from the statistical analysis of the historical flight data,

pij = (35)
1y Ml 7
where M;; is the total number of transitions from the cell W; to the cell W; (i.e., w(ty) €

Wi, w(t, 1) € W)), while M; is the total number of transitions from W; to any other cell,
including W; [21].
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4. Control Law Construction

Here, we adopt SDCOC framework from [16] which is applied to a discrete-time
model with the following form,

X(tni1) = f(x(tn), u(tn), w(tn)), (36)

where x(t,) is the state vector, u(t,) is the control vector, and w(t,) is the vector of
operating variables, which is not known until the time instant ¢,. The system has both
control constraints and state constraints imposed as u(t,) € U and {x(t,), w(t,)} € G,
respectively, where U and G are specified sets. A Markov Chain with a finite number of
states is used to represent transitions in w(t,) € W = {w?:p € P}. Here P is the size of
the grid for w. The transition probability from w(t,) = w' € W to w(t, 1) = w/ € W
is denoted by p;; expressed in (34). In a discounted variant of SDCOC, the objective is
to determine a control function u(x, w) such that, with u(t,) = u(x(t,), w(t,)), a cost
functional of the form,

]xorwo,u — ]Exo wo

xo wo ”(G) 1
Y oo 1], (37)

t=0

is maximized. Here T0™0*(G) € Z™ represents the first time instant when the trajectory
of x(t,) and w(t,), which are denoted by {x*, w"} and resulted from the applying the
control u(t,) = u(x(t,), w(t,)) with values in the set U, exits the prescribed compact
set G. ¢ is a discount factor [40]. For 6 = 1, (37) maximizes the exit time, i.e., time till
prescribed constraints become violated. The use of the discount factor 0 < § < 1 facili-
tates faster convergence of the value iterations. Note that {x", w"} is a random process,
T¥0Wo(G) is a random variable, and Ey 4, [-] denotes the conditional expectation given
the initial values of x and w.

To solve (37), the value iterations approach is used which produces a sequence of
value function approximations, V;,, at specified grid-points x € {x*:k € K},

Vo(xk, wi) =0,

Vu(xk,w') = max {ZFn L(f(F, u™,w'), wl) - pij - (5t+1}

u meM iel

where u € {u™ : m € M} is a specified grid for u. Here, K and M are the size
of the grid for x and u, respectively. In each iteration, once the values of V,_; at
the grid-points have been determined, linear or cubic interpolation is employed to
approximate V,,_1 (f(xX,u",w'),w') as F,_1(x,w') = Interpolate[V,,_1](x, w?), if (x, w')
€ G,and F,_1(x, wi) =0,if (x, wi) ¢ G. A termination criterion of the form |V, (x, wi) -
Vi_1(x,w')| < eforallx € {x*:k € K} and i € P, where € > 0 is sufficiently small, is
used.

Once an approximation of the value function, V4, is available, an optimal control

law is determined as

u*(x,wi) { Vi(x, w EV* flx,u,w'),w j)-pij~5—1§e}.

jel

5. Control Law Computations and Results
5.1. Configuration and Model Parameters

The model has been parameterized for a 1.5 kg [23] that can be used for aerial
photography and environmental monitoring applications. The minimum and maximum
SOC values were set to SOC,,;;;, = 0.2 and SOCy,;;,, = 0.8. The minimum and maximum
values of Mg were set as Mrg,, = 2 gand Mg, = 9 g. For the value iterations, the
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SOC grid was chosen with a step size of 0.05 and the Mpr grid was chosen with a step
size of 0.5 g. The grid for the control variable u was set as {—1,0,1}.

The transition probabilities for the operating variables (motor power and climb
angle) were obtained from the time histories of the motor power and climb angle
using (35) and assuming a time step At = 1 sec. These time histories were based on a
scenario that a follows a moving ground vehicle that operators are interested
in monitoring. In this scenario, the ground vehicle, and consequently the , are
assumed to be traveling with the velocity profile defined by concatenating the EPA
Highway Cycle [41] nine times. For the , the speed profile is modified to remain
above the stall speed while avoiding extreme acceleration values.

The climb angle time history, shown in Fig. 3, was obtained from Google Earth
elevation profile for a path from Monroe, West Virginia to Princeton, West Virginia with
the help of GPS visualizing software [42]. See [43] for the assessment of accuracy of such
extracted profiles.

Fig. 4 provides the time histories of the motor power calculated based on
equations in section 2.3. The trajectories in Fig. 3 and Fig. 4 were used to compute the
transition probabilities.
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Figure 3. Time histories of the climb angle.
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Figure 4. Time histories of the motor power.

5.2. Control Law Computation

Cython was used for control law computations as it is more efficient than MATLAB in
handling nested for loops and 2-dimensional interpolation. In our numerical experi-
ments with dynamic programming, Cython was about 10 times faster than MATLAB.

To further speed up value iterations, a discount factor was introduced. When
testing the effect of discount factor on the optimal policy, a zero climb angle (y = 0)
was assumed, which means that the only operating variable was the motor power.
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Table 2 shows the average exit time based on 100 random simulations for discount
factors from 0.91 to 0.99. The stopping criterion was chosen with e = 1071 for all
0. Computations were performed on Hasee K780G-i7 laptop with CORE i7-4710MQ
(2.5-3.5 GHz) processor and 24 GB of RAM. Note that the number of iterations and the
computing time decrease as the discount factor decreases but so does the exit time. The
discount factor § = 0.95 was ultimately chosen as a compromise between value iteration
convergence speed and solution accuracy. Fig. 5 shows that the value iterations with a
discount factor of § = 0.95 converge much faster than those with § = 1.

Table 2: Average exit time for different discount factor.

J Number of itera- Computing time  Exit time with 20% ini- Exit time with 80% ini-
tion [min] tial SOC [s] tial SOC [s]

0.99 2258 830.02 6358.44 9742.99

0.97 753 100.69 6276.18 9716.86

0.95 448 58.27 6221.37 9640.24

0.93 317 39.22 6186.50 9610.22

091 244 30.55 6159.65 9602.55

1LDDDDDDDDDDDDDDDDDDDDDDDI
X X: 25
x Y:09973

047 X x % X: 25
0 Without discount factor X% X Y: 02912
X Discount factor § = 0.95 -

0.2 ' '
5 10 15 20 25 30

Tteration step
Figure 5. The effect of discount factor in value iteration approach.

5.3. Endurance Maximization Results

We used € = 10710 in the stopping criterion for the value iterations. Fig. 6 illustrates
the resulting control policy. Note that when SOC is low, the control policy calls for an
increase in Prc to charge the battery. This is reasonable given that the fuel cell cannot
alone respond rapidly to fast changes in motor power request and hence the battery has
to be charged to do so.

The simulation results are given for three cases in Figs. 7 to 18. The first case
(scenario I) corresponds to a higher initial SOC and the second case (scenario II) considers
a lower initial SOC. The third scenario is for a mid-range initial SOC and is used to
confirm the SOC behavior observed in the first two scenarios. In all cases, the initial
fuel mass and initial fuel cell power are the same: Mrro =6 g and Prco =0 W. The
dashed lines in Figs. 8, 12 and 16 indicate constraints mentioned in subsection 5.1. The
spikes of power in Figs. 7, 11, 15 correspond to the time instants when the starts
to accelerate while the positive and negative spikes of climb angle represent the time
when the starts to climb or descend.

Figs. 7 to 10 illustrate the closed-loop response for the first simulation scenario. The
initial SOC is 0.8 and it decreases rapidly until it reaches a value of about 0.5. Then it
stays near this value between 2000 and 5000 sec. Finally, when the mass of hydrogen
reaches a relatively low value, SOC starts to decrease and continues to decrease until the
constraints are violated. The fuel cell load demand power keeps a relatively low value
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Figure 6. A cross-section of the control policy in the endurance maximization problem for Py; =
132.52 W, and with Prc = 0 W (left) and Prc = 302.1 W (right).
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Figure 7. Pyt and -y versus time, simulation scenario I.

during the whole flight and the mean value of the split fraction is negative during 2000
to 5000 sec time interval, which is the period when SOC is kept at about 0.5.

Figs. 11 to 13 illustrate the closed-loop response for the second simulation scenario.
The initial SOC is 0.2. The battery is charged until it reaches a value of about 0.5 to enable
the battery to sustain rapid propeller power fluctuations. Then SOC stays near that value
of 0.5 between 500 and 1500 sec. Finally, when the mass of hydrogen reaches a relatively
low value, SOC starts to decrease and continues to decrease until the constraints are
violated. The fuel cell load demand power increases rapidly at first to charge the battery,
then it keeps a relatively low value during the rest of the flight. The mean value of the
split fraction is negative from the beginning to about 1500 sec, which is the period when
the battery is charged from SOC = 0.2 to about 0.5.

According to the results from scenarios I and II, a turnpike behavior of battery SOC
is observed, with SOC converging to about 0.5 and staying at that value for a while
before decaying. To confirm this turnpike behavior, we have additionally considered the
responses with the developed policy to initial SOC of 0.6. These are shown in Figures
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22 15-18. The exit times for scenarios I, II and III were, respectively, 9890 sec, 6019 sec, and
8478 sec.

2000 4000 6000 8000
Time [s]

2000 4000 6000 8000
Time [s]
Figure 8. SOC and remaining Mrg versus time, simulation scenario I, dashed lines show con-

strains.
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Figure 9. Fuel cell load demand power and split fraction versus time, simulation scenario I. The
dashed and dash-dot lines in top sub-figure indicate the maximum Prc with |y| =0deg and || =
s 20 deg, respectively.
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Figure 10. Battery power, simulation scenario I.
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Figure 11. Py and 1y versus time, simulation scenario II.
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Figure 12. SOC and remaining Mg versus time, simulation scenario II, dashed lines show
constrains.
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Figure 13. Fuel cell load demand power and split fraction versus time, simulation scenario II. The
dashed and dash-dot lines in top figure indicate the maximum Pr¢c with |y| = 0 deg and |y| =20
deg, respectively.
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Figure 14. Battery power, simulation scenario II.
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Figure 15. Py and 1y versus time, simulation scenario III.
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Figure 16. SOC and remaining Mg versus time, simulation scenario III, dashed lines show
constrains.
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Figure 17. Fuel cell load demand power and split fraction versus time, simulation scenario III. The
dashed and dash-dot lines in top figure indicate the maximum Ppc with |y| =0 deg and |y| =20
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Figure 18. Battery power, simulation scenario III.

6. Conclusions

This paper has considered an endurance maximization problem for a

with a hybrid propulsion system consisting of a polymer
electrolyte fuel cell and a battery, both driving an electric motor connected to a propeller.
A stochastic drift counteraction optimal control (SDCOC) approach was employed to
develop control policies for optimally coordinating the fuel cell and the battery while
enforcing the constraints on the fuel cell power output rate of change. Cython has been
used to implement value iterations and demonstrated an order of magnitude speed-up
versus MATLAB without increasing the code complexity, due to its efficiency in handling
nested for loops. Additionally, the use of a discount factor has been shown to signif-
icantly speed up value iterations at the price of decreased performance. The results
illustrated the effectiveness of the SDCOC strategy in regulating the charging behavior
of the battery by the fuel cell to provide the capability to respond to rapidly varying
motor power demand.

The proposed approach based on SDCOC is particularly suitable for handling
stochastic disturbances and can be applied to exposed to headwind with head-
wind modeled as a stochastic disturbance. Accounting for such wind disturbances,
extensions to include thermal dynamics, systematic and comprehensive comparison
with other energy management approaches and propulsion system choices, systematic
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study of robustness to model uncertainties as well as actual flight experiments represent
directions for continuing research. In particular, our study of the discount factor impact
on the computation time and exit time suggests flight time is sensitive to the choice of
energy management strategy; our approach based on SDCOC is optimal in the sense of
maximizing expected flight time within stochastically modelled environment.
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Abbreviations

The following abbreviations are used in this manuscript:

EPA Environmental Protection Agency
DMEC Direct methanol fuel cell

MPC Model predictive control
PEMFC  Polymer electrolyte membrane fuel cell
RPM Rotations per minute

UAV Unmanned aerial vehicle
Appendix A
The parameters of the model described in the paper are listed in Table 3.
Table 3: Parameters used in model.
Variable  Description Value  Unit
m Mass of the 15 kg
g Gravitational acceleration 9.81 m/s?
Sref Wing area 0.09 m?
Cpo coefficient of drag at e = 0 0.1038 '\
K Coefficient in (3) 0.0637 '\
dp Diameter of the propeller 0.24 m
] Advance ratio 0.37 \
Ry Motor resistance 0.105 (@)
Ino Motor current at zero load 1.3 A
Ky Motor speed constant 1490 RPM/V
NEgC Number of single cells in series 12 \
Py Bias power of the fuel cell 5 w
Kaux Coefficient in (12) 0.05 \%
Arc Fuel cell area 200 cm?
Agy Molar specific Gibbs free energy 2373 kJ/mol
ne Number of ions passed in reaction 2
F Faraday constant 96485  C/mol
T Temperature of the reaction 33315 K
Xpc Charge transfer coefficient 0.5
R Universal gas constant 8.314 J/(mol - K)
Rec Ohmic resistance defined in (15) 0.0024 Q
do Coefficient in (16) 3e-5 \Y%
d Coefficient in (16) 8 cm?/A
ko Coefficient in (18) 4 \
ky Coefficient in (18) 1
My, Molecular weight of Hy 2 g/mol
np Number of batteries in series 8 \
Up yin Open circuit voltage when SOC =0 25 \%
UB max Open circuit voltage when SOC = 1 4.2 \'
RBint Battery internal resistance 0.012 (@)
Cp Standard discharge capacity 14400 C
IB max Maximum discharge current 35 A




Version July 12, 2021 submitted to Energies 19 of 20

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

27.

28.

29.

Unmanned Aerial Vehicle (UAV) Market by Component (Hardware, Software), Class (Mini UAVs, Micro UAVs), End User
(Military, Commercial, Agriculture), Type (Fixed Wing, Rotary-Wing UAVs), Capacity, and Mode of Operation - Global Forecast
to 2027. https://www.meticulousresearch.com/product/unmanned-aerial-vehicle-UAV-market-5086. Accessed: 2021-02-16.
Kasliwal, A.; Furbush, N.J.; Gawron, ].H.; McBride, ].R.; Wallington, T.J.; De Kleine, R.D.; Kim, H.C.; Keoleian, G.A. Role of flying
cars in sustainable mobility. Nature Communications 2019, 10, 1-9.

Goyal, R. Urban air mobility (uam) market study 2018. NASA /HQ-E-DAA-TN65181.

Samy, L; Postlethwaite, I.; Gu, D.W.; Green, J. Neural-network-based flush air data sensing system demonstrated on a mini air
vehicle. Journal of aircraft 2010, 47, 18-31.

Ma, S.; Lin, M,; Lin, TE; Lan, T.; Liao, X.; Maréchal, F.; Yang, Y.; Dong, C.; Wang, L. Fuel cell-battery hybrid systems for mobility
and off-grid applications: A review. Renewable and Sustainable Energy Reviews 2020, 135, 110119.

Lapefa-Rey, N.; Blanco, J.; Ferreyra, E.; Lemus, J.; Pereira, S.; Serrot, E. A fuel cell powered unmanned aerial vehicle for low
altitude surveillance missions. International Journal of Hydrogen Energy 2017, 42, 6926—6940.

Oh, TH. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long
endurance mission. Energy Conversion and Management 2018, 176, 349-356.

Bradley, T.; Moffitt, B.; Fuller, T.; Mavris, D.; Parekh, D. Design studies for hydrogen fuel cell powered unmanned aerial vehicles.
26th ATIAA Applied Aerodynamics Conference, 2008, p. 6413.

Bradley, T.H.; Moffitt, B.A.; Mavris, D.N.; Parekh, D.E. Development and experimental characterization of a fuel cell powered
aircraft. Journal of Power Sources 2007, 171, 793-801.

Citroni, R.; Di Paolo, F; Livreri, P. A novel energy harvester for powering small UAVs: Performance analysis, model validation
and flight results. Sensors 2019, 19, 1771.

Hochgraf, C.G.; Ryan, M.].; Wiegman, H.L. Engine control strategy for a series hybrid electric vehicle incorporating load-leveling
and computer controlled energy management 1996. SAE Technical Paper No. 1996-02-01.

Bradley, T.; Moffitt, B.; Parekh, D.; Fuller, T.; Mavris, D. Energy management for fuel cell powered hybrid-electric aircraft. 7th
International Energy Conversion Engineering Conference, 2009, p. 4590.

Doff-Sotta, M.; Cannon, M.; Bacic, M. Optimal energy management for hybrid electric aircraft. arXiv preprint arXiv:2004.02582
2020.

Anatone, M.; Cipollone, R.; Donati, A.; Sciarretta, A. Control-oriented modeling and fuel optimal control of a series hybrid bus
2005. SAE Technical Paper No. 2005-04-11.

Dobrokhodov, V.; Jones, K.D.; Walton, C.; Kaminer, L.I. Achievable Endurance of Hybrid UAV Operating in Time-Varying Energy
Fields. AIAA Scitech 2020 Forum, 2020, p. 2197.

Kolmanovsky, I.V.; Lezhnev, L.; Maizenberg, T.L. Discrete-time drift counteraction stochastic optimal control: Theory and
application-motivated examples. Automatica 2008, 44, 177-184.

Balasubramanian, K.; Kolmanovsky, I.; Saha, B. Range maximization of a direct methanol fuel cell powered Mini Air Vehicle
using Stochastic Drift Counteraction Optimal Control. 2012 American Control Conference (ACC), 2012, pp. 3272-3277.
Guzzella, L.; Sciarretta, A. Vehicle propulsion systems: Introduction to modeling and optimization; Springer, 2013. Chapter 6, pp.
207-208, doi:10.1007 /978-3-642-35913-2.

Guida, D.; Minutillo, M. Design methodology for a PEM fuel cell power system in a more electrical aircraft. Applied Energy 2017,
192, 446-456.

Wipke, K,; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G. All Composite Data Products: National FCEV Learning
Demonstration With Updates Through January 18, 2012. Technical report, 2012. National Renewable Energy Lab. (NREL)
Technical Report NREL/TP-5600-54021.

Kolmanovsky, I.; Siverguina, I.; Lygoe, B. Optimization of powertrain operating policy for feasibility assessment and calibration:
Stochastic dynamic programming approach. 2002 American Control Conference (ACC), 2002, Vol. 2, pp. 1425-1430.

Roskam, J.; Lan, C. Airplane Aerodynamics and Performance. Lawrence, Kansas: Design. Analysis, and Research Corporation 1997.
Hrad, PM. Conceptual Design Tool for Fuel-Cell Powered Micro Air Vehicles. Technical report, Air Force Institute of Technology,
2010.

Rodatz, PH. Dynamics of the polymer electrolyte fuel cell: Experiments and model-based analysis. PhD thesis, ETH Zurich,
2003.

Specification of Product INR21700-40T. https://www.dnkpower.com/wp-content/uploads/2019/02/SAMSUNG-INR21700-4
0T-Datasheet.pdf. Accessed: 2021-02-16.

Bronz, M.; Moschetta, ].M.; Brisset, P.; Gorraz, M. Towards a long endurance MAV. International Journal of Micro Air Vehicles 2009,
1,241-254.

Murphy, O.].; Cisar, A.; Clarke, E. Low-cost light weight high power density PEM fuel cell stack. Electrochimica Acta 1998,
43, 3829-3840.

D. Quattrochi. Performance of Propellers. https://web.mit.edu/16.unified/www /FALL/thermodynamics/notes/node86.html.
Accessed: 2021-02-16.

Gur, O.; Rosen, A. Optimizing electric propulsion systems for UAVs. 12th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2008, p. 5916.


https://www.meticulousresearch.com/product/unmanned-aerial-vehicle-UAV-market-5086
https://doi.org/10.1007/978-3-642-35913-2
https://www.dnkpower.com/wp-content/uploads/2019/02/SAMSUNG-INR21700-40T-Datasheet.pdf
https://www.dnkpower.com/wp-content/uploads/2019/02/SAMSUNG-INR21700-40T-Datasheet.pdf
https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html

Version July 12, 2021 submitted to Energies 20 of 20

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

Guzzella, L.; Amstutz, A. CAE tools for quasi-static modeling and optimization of hybrid powertrains. IEEE Transactions on
Vehicular Technology 1999, 48, 1762-1769.

Mann, R.F; Amphlett, ].C.; Hooper, M. A ; Jensen, H.M.; Peppley, B.A.; Roberge, PR. Development and application of a generalised
steady-state electrochemical model for a PEM fuel cell. Journal of Power Sources 2000, 86, 173-180.

Maxoulis, C.N.; Tsinoglou, D.N.; Koltsakis, G.C. Modeling of automotive fuel cell operation in driving cycles. Energy Conversion
and Management 2004, 45, 559-573.

Amphlett, J.; Baumert, R.; Mann, R.; Peppley, B.; Roberge, P.; Rodrigues, A. Parametric modelling of the performance of a 5-kW
proton-exchange membrane fuel cell stack. Journal of Power Sources 1994, 49, 349-356.

Pukrushpan, J.T.; Peng, H.; Stefanopoulou, A.G. Control-oriented modeling and analysis for automotive fuel cell systems. Journal
of Dynamic Systems, Measurement, and Control 2004, 126, 14-25.

Bansal, D.; Rajagopalan, S.; Choi, T.; Guezennec, Y.; Yurkovich, S. Pressure and air fuel ratio control of pem fuel cell system for
automotive traction. IEEE Vehicle Power and Propulsion Conference, 2004.

El-Emam, S.H.; Mousa, A.A.; Awad, M.M. Effects of stack orientation and vibration on the performance of PEM fuel cell.
International Journal of Energy Research 2015, 39, 75-83.

Zhang, R; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W.; Wang, M. A study on the open circuit voltage and state
of charge characterization of high capacity lithium-ion battery under different temperature. Energies 2018, 11, 2408.

Vahidi, A.; Greenwell, W. A decentralized model predictive control approach to power management of a fuel cell-ultracapacitor
hybrid. 2007 American Control Conference (ACC), 2007, pp. 5431-5437.

Dynkin, E.B.; Yushkevich, A.A. Markov processes: Theorems and problems; Plenum, 1969.

Ross, S.M. Introduction to stochastic dynamic programming; Academic Press, 2014.

US Department of Energy— Fuel Economy: Detailed Test Information. http://fueleconomy.gov/feg/fe_test_schedules.shtml.
Accessed: 2021-02-16.

Schneider, A. GPS Visualizer. http://www.gpsvisualizer.com/. Accessed: 2021-02-16.

Wang, Y.; Zou, Y.; Henrickson, K.; Wang, Y.; Tang, |.; Park, B.]. Google Earth elevation data extraction and accuracy assessment
for transportation applications. PloS One 2017, 12, e0175756.


http://fueleconomy.gov/feg/fe_test_schedules.shtml
http://www.gpsvisualizer.com/

	Introduction
	Physical Description of the Systems and Model
	sUAV Dynamics
	Propeller Model
	Electric Motor Model
	Fuel Cell Model
	Battery Model

	Hybrid System Model and Problem Formulation
	Hybrid System
	Problem Formulation
	Markov Chain Modeling

	Control Law Construction
	Control Law Computations and Results
	sUAV Configuration and Model Parameters
	Control Law Computation
	Endurance Maximization Results

	Conclusions
	  
	References

