

Article

Stochastic Drift Counteraction Optimal Control of Fuel Cell-Powered Small Unmanned Aerial Vehicle

Jiadi Zhang¹, Ilya Kolmanovsky¹ , and Mohammad Reza Amini^{2,*}

¹ Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI, USA

² Department of Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI, USA

* Correspondence: mamini@umich.edu

1 **Abstract:** This paper investigates optimal power management of a fuel cell hybrid **small unmanned aerial vehicle (sUAV)** from the perspective of endurance (time of flight) maximization in a stochastic environment. Stochastic drift counteraction optimal control is exploited to obtain an optimal policy for power management that coordinates the operation of fuel cell and battery to maximize the expected flight time while accounting for the limits on the rate of change of fuel cell power output and orientation dependence of fuel cell efficiency. The proposed power management strategy accounts for known statistics in transitions of propeller power and climb angle during the mission but does not require the exact preview of their time histories. The optimal control policy is generated offline using value iterations implemented in Cython, demonstrating an order of magnitude speed up as compared to MATLAB. It is also shown that the value iterations can be further sped up using a discount factor but at the cost of decreased performance. Simulation results for a 1.5 kg **sUAV** are reported that illustrate the optimal coordination between the fuel cell and the battery during aircraft maneuvers, including a turnpike in the battery state of charge (SOC) trajectory. As the fuel cell is not able to support fast changes in power output, the optimal policy is shown to charge the battery to the turnpike value if starting from a low initial SOC value. If starting from a high SOC value, the battery energy is used till a turnpike value of SOC is reached with further discharge delayed to later in the flight. For specific scenarios and simulated **sUAV** parameters considered, the results indicate the capability of up to 2.7 hours flight time.

19 **Keywords:** Air Mobility; Fuel Cell Hybrid Aircraft; Stochastic Optimal Control; Energy Management; Drift Counteraction Optimal Control

Citation: Zhang, J.; Kolmanovsky, I.; Amini, M.R. Stochastic Drift Counteraction Optimal Control of Fuel Cell-Powered **Small Unmanned Aerial Vehicle**. *Energies* **2021**, *1*, 0. <https://doi.org/>

Received:

Accepted:

Published:

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Submitted to *Energies* for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

21 **1. Introduction**

22 With the growing market for unmanned aerial vehicles (UAVs), a wide range of 23 industries and organizations, including military, government, industrial, and recreational 24 users, deploy this technology across the globe [1–3]. Among different types 25 of UAVs, **small unmanned aerial vehicles (sUAVs)** [4] are attractive for military, aerial 26 photography, and environmental monitoring applications due to their small size and 27 flexible operation [5]. Considering (i) hardware and weight constraints, (ii) limited 28 onboard energy storage, and (iii) performance requirements for **sUAVs**, improving their 29 endurance (maximizing their flight time) is of great importance for extending the duration 30 of their missions which could involve surveillance, search and rescue, disaster relief, traffic control, and precision agriculture; thereby, motivating the development of 31 novel propulsion systems and implementation of optimal control policies for power and 32 energy management. Among different propulsion systems for such a **sUAV**, a hybrid 33 propulsion system consisting of a polymer electrolyte membrane fuel cell (PEMFC) and 34 a battery has been proposed for long duration missions, e.g., in [6–9]. Other propulsion 35 systems may incorporate energy harvesters such as in [10]. In this paper we focus 36 on novel approaches to energy management of **sUAV** through optimal coordination 37

38 between PEMFC and battery for the previously proposed fuel cell hybrid propulsion
39 system.

40 Rule-based (e.g., thermostat-like on-off control [11]), dynamic programming-based
41 [12] and model predictive control (MPC) [13] have been considered for energy manage-
42 ment of hybrid aircraft. As in automotive energy management applications [14], the
43 use of simple rule-based strategies may not provide optimal performance while the
44 conventional formulations of MPC and dynamic programming do not directly address
45 the flight time maximization objective. Furthermore, deterministic variants of MPC and
46 dynamic programming may require an accurate preview of the propeller power and
47 climb angle over a long horizon and are computationally demanding if optimization
48 has to be performed online. Similarly, Pontryagin Maximum Principle (PMP)-based
49 guidance solutions [15] need accurate characterization of the flight environment.

50 In this paper we consider a different approach to the problem of endurance max-
51 imization for a hybrid **sUAV** with polymer electrolyte membrane fuel cell (PEMFC)
52 based on an application of stochastic drift counteraction optimal control (SDCOC) [16]
53 which directly addresses the problem of maximizing the time to constraint violation
54 in a stochastic environment. In our case, the objective is to maintain the vehicle flying
55 for a maximum amount of time by coordinating the fuel cell and the battery to provide
56 the requested propeller power subject to the limited amount of fuel and battery state of
57 charge (SOC) onboard of the vehicle. The transitions in aircraft climb angle and propeller
58 power are modeled stochastically by a Markov Chain with the transition probabilities
59 determined from historical data representing typical missions of a **sUAV**. Then a control
60 policy that minimizes a cost functional reflective of expected time-to-violate constraints
61 is determined off-line through value iterations; this control policy is then deployed
62 onboard for the online coordination of the fuel cell and the battery in **sUAV**.

63 In a preliminary conference paper [17] by the second author of this paper, the
64 application of SDCOC for power management of a hybrid **sUAV** with direct methanol
65 fuel cell (DMFC) has been considered. While DMFC is often considered as a suitable
66 power source for ground vehicles [18] and have certain advantages, PEMFCs are more
67 appealing for air mobility applications [6,7] due to their relatively lower operating
68 temperature, allowing for a quick start-up [19], higher efficiency (up to 60% [18,20]) and
69 power density, and higher safety due to the use of the solid electrolyte [18].

70 Differently from [17], in this paper we consider the application of SDCOC to power
71 management of a hybrid **sUAV** with PEMFC rather than DMFC. To accommodate a dif-
72 ferent fuel cell and a **sUAV**, the fuel cell model has been changed and improvements have
73 been made to models used to compute propeller power and thrust, and the evolution of
74 SOC.

75 More importantly, the lack of ability of PEMFC to rapidly change its power output
76 imposes a stringent operating constraint (rate limit on PEMFC power output) which has
77 not been treated in [17] but is treated in this paper. This rate limit increases complexity
78 of the problem as an extra state needs to be introduced in the model and handled in
79 SDCOC and it also changes the optimal policies and the optimal response of the system.
80 For instance, as the fuel cell is not able to support fast changes in power output, the
81 optimal policy is shown to charge the battery to a turnpike value if starting from a low
82 initial state of charge value. If starting from a high SOC the battery energy is used till
83 a turnpike value of state of charge is reached with further discharge delayed to a later
84 phase of the flight. In either case, high frequency chattering of fuel cell load demand
85 power in [17], which cannot be supported by PEMFC, is eliminated.

86 Additionally, in this paper the value iterations are implemented in Cython rather
87 than MATLAB, with an order of magnitude speed up as compared to MATLAB implemen-
88 tation observed. As value iterations are frequently used to solve dynamic programming
89 problems in different applications and Python is becoming increasingly popular, our re-
90 sults on ten-fold speed up with Cython without substantive increase of code complexity

91 are of reference value to other researchers considering computational implementation of
92 dynamic programming.

93 Furthermore, a discount factor is introduced into the cost function of SDCOC and
94 its impact on the convergence speed of the value iterations is illustrated. It is shown that
95 this discount factor results in faster convergence of value iterations but the performance
96 of the control policy (in terms of exit time) is decreased.

97 While SDCOC theory is developed in reference [16], that reference does not address
98 the fuel cell or **sUAV** application studied in this paper. Our approach to representing
99 motor power demand and climb angle by a Markov Chain with a finite number of states
100 follows reference [21], which is the first (to the authors knowledge) paper proposing the
101 use of stochastic dynamic programming for automotive powertrain control applications;
102 that paper does not address the fuel cell or **sUAV** application studied in the present
103 paper either, nor the drift counteraction problem formulation.

104 The remainder of this paper is organized as follows: Section 2 describes **sUAV**
105 sub-systems and their models. Section 3 presents an integrated model of the hybrid
106 system and defines the problem in a form suitable for SDCOC. Section 4 summarizes
107 SDCOC, and section 5 reports the results. Finally, section 6 presents concluding remarks.

108 2. Physical Description of the Systems and Model

109 A **sUAV** with a series hybrid propulsion system, shown in Fig. 1, is chosen in which
110 the power supplied by the battery and the power supplied by the PEMFC are combined
111 to meet the propeller motor power demand. The PEMFC uses hydrogen as fuel which is
112 stored in the tank and air from the atmosphere. A fraction of the energy generated by
113 PEMFC can be used to charge in the battery. The fuel cell pack and battery pack are sized
114 large enough so that they are able to meet the **sUAV**'s mean power demand individually,
115 should either one be not operating properly.

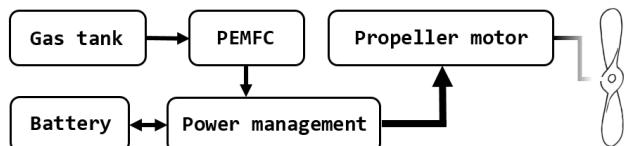


Figure 1. A diagram of a fuel cell-powered series hybrid **sUAV**.

116 The model used in this paper for generating SDCOC policies captures the battery's
117 SOC dynamics, the fuel cell's hydrogen rate dynamics, and fuel cell load power dynam-
118 ics. Thus, the states of this model are the SOC, the mass of hydrogen remaining in the
119 gas tank, and the fuel cell load demand power. The motor power of the **sUAV** and climb
120 angle are treated as operating variables, and the SDCOC controller determines changes
121 in the fuel cell load demand power. This system level model has been implemented by
122 combining component submodels and characterizations available from the literature;
123 our methodology is generic and can accommodate changes in these component models.

124 2.1. **sUAV** Dynamics

125 A control-oriented dynamic model of the **sUAV** is used for SDCOC law develop-
126 ment. The **sUAV** is constrained to a longitudinal flight path in a vertical plane [22]. Table
127 1 defines the notations for the variables used in the model. Table 3 in the Appendix
128 lists model parameter values, partly based on [23], [24] and [25]. The development of
129 lightweight electric components (batteries, fuel cells, motors) for **sUAV** is an active area
130 of research, see, e.g., [26] and [27]. In our model, we have assumed that such lightweight
131 components are available to be consistent with the assumed **sUAV** weight.

132 Using a flat earth coordinate system, the longitudinal equations of motion of the
133 **sUAV** are given by

$$\dot{v} = \frac{T\cos(\alpha) - D}{m} - g\sin(\gamma), \quad (1)$$

Table 1: List of variables used in **sUAV** model.

Variable	Description	Unit
v	Velocity of the sUAV	m/s
γ	Climb angle	deg
T	Thrust force	N
α	Angle of attack	deg
L	Lift force	N
D	Drag force	N
C_L	sUAV coefficient of lift	\
C_D	sUAV coefficient of drag	\
ρ_{air}	Air density	kg/m ³
P_{sUAV}	Power required by the sUAV	W
N	Angular speed of the electric motor	RPM
P_P	Power generated by the propeller	W
$P_{P,ideal}$	Ideal propeller power	W
η_P	Propulsive efficiency	\
U_M	Electric motor driver's input voltage	V
I_M	Electric motor driver's input current	A
P_M	Electro motor driver's input power	W
η_M	Motor efficiency	\
$P_{FC,total}$	Total power of fuel cell	W
$P_{FC,load}$	Load demand power of fuel cell	W
P_{aux}	Power required by the auxiliaries	W
U_{FC}	Single cell voltage	V
I_{FC}	Single cell current	A
i_{FC}	Single cell current density	A/cm ²
U_{act}	Activation polarization	V
U_{ohm}	Ohmic losses	V
U_{conc}	Concentration polarization	V
U_{OC}	Equivalent open circuit voltage of single fuel cell	V
R'_{FC}	Modified single fuel cell resistance	Ω
\tilde{R}'_{FC}	Variable defined in (18)	$\Omega \cdot cm^2$
$U_{B,OC}$	Open circuit voltage of the battery	V
SOC	Battery's state-of-charge	\
P_B	Power of the battery	W
SOC_0	Initial SOC	\
S_f	Split fraction	\
u	Control input	\
ΔP_{FC}	Defined in (25)	W
m_{FR}	Mass of fuel remaining	kg

$$\dot{\gamma} = \frac{T \sin(\alpha) + L}{mv} - \frac{g \cos(\gamma)}{v}, \quad (2)$$

where v is the velocity of the **sUAV** and γ is the climb angle. The lift L and drag force D are characterized as

$$L = \frac{1}{2} \rho_{air} v^2 S_{ref} C_L, \quad D = \frac{1}{2} \rho_{air} v^2 S_{ref} C_D, \quad (3)$$

where $C_L = C_{L0} + C_{L,\alpha} \alpha$, $C_D = C_{D0} + K C_L^2$. Neglecting vertical acceleration (i.e., with $L = mg$), solving (1) and (2) yields the thrust required by the **sUAV**,

$$T = \left[\left(m \dot{v} + m g \sin(\gamma) + \frac{1}{2} \rho_{air} v^2 S_{ref} C_{D0} + \frac{2 K m^2 g^2}{\rho_{air} v^2 S_{ref}} \right)^2 + (mv \dot{\gamma} + mg \cos(\gamma) - mg)^2 \right]^{\frac{1}{2}}. \quad (4)$$

Here, ρ_{air} is a function of altitude. The power required by the **sUAV** is then given by

$$P_{sUAV} = T v. \quad (5)$$

2.2. Propeller Model

The propeller model is used to relate the torque and angular velocity generated by the electric motor to the power required by the **sUAV** and the velocity of the **sUAV**, respectively [22]. With the propulsive efficiency given by η_P , the power required to drive the propeller is

$$P_P = \frac{P_{sUAV}}{\eta_P}. \quad (6)$$

According to disk actuator theory, the ideal propeller power is

$$P_{P,ideal} = \frac{1}{2}Tv \left(1 + \sqrt{1 + \frac{8T}{\pi\rho_{air}v^2d_p^2}} \right).$$

In general, the actual power required would be about 15% greater than this [28], which means $P_P = 1.15P_{P,ideal}$. Thus, η_P can be calculated as

$$\eta_P = \frac{P_{sUAV}}{1.15P_{P,ideal}} = \frac{2}{1.15 + 1.15\sqrt{1 + \frac{8T}{\pi\rho_{air}v^2d_p^2}}}.$$
 (7)

Combining (7) with (5) and (6) yields

$$P_P = \frac{1.15P_{sUAV}}{2} + \frac{1.15P_{sUAV}}{2}\sqrt{1 + \frac{8P_{sUAV}}{\pi\rho_{air}v^3d_p^2}}.$$

133 2.3. Electric Motor Model

Electric motors used in **sUAV** applications exhibit high speed and high torque as well as high power-to-weight ratios [29]. Assuming the power factor is equal to unity and the magnetic losses can be neglected, the output power of the motor is given by

$$P_P = (U_M - I_M R_M)(I_M - I_{M,0}).$$
 (8)

The angular velocity of the motor in revolutions per minute (RPM) can be expressed as

$$N = (U_M - R_M I_M)K_V,$$
 (9)

which should be equal to the RPM of propeller $N = \frac{v}{Jd_p}$. From (8) and (9), the motor current, I_M , is

$$I_M = \frac{P_P K_V}{N} + I_{M,0}.$$

The motor power and motor efficiency are given by, respectively,

$$P_M = U_M I_M, \quad \eta_M = \frac{P_P}{P_M}.$$

134 2.4. Fuel Cell Model

A PEMFC system is the primary power source for the **sUAV**. The total power generated by the fuel cell stack is calculated as

$$P_{FC,total} = n_{FC} U_{FC} I_{FC}.$$
 (10)

This power must cover the load demand $P_{FC,load}$ and the power required for auxiliaries [18], P_{aux} ,

$$P_{FC,total} = P_{FC,load} + P_{aux},$$
 (11)

where P_{aux} is the total power required for the compressor motor, the hydrogen circulation pump, the humidifier water circulation pump, the coolant pump, the cooling fan motor, and the bias power, P_0 . After simplifications, P_{aux} could be written as a function of the fuel cell current [30],

$$P_{aux} = P_0 + n_{FC} \kappa_{FC} I_{FC}.$$
 (12)

The fuel cell current is a function of the current density and the fuel cell area,

$$I_{FC} = i_{FC} A_{FC},$$

where i_{FC} could be obtained by solving the equation,

$$U_{FC} = U_{rev} - U_{act} - U_{ohm} - U_{conc}. \quad (13)$$

The reversible cell potential U_{rev} is related with the molar specific Gibbs free energy Δg_f and number of ions passed in the reaction n_e [24],

$$U_{rev} = \frac{\Delta g_f}{n_e F}.$$

The activation polarization U_{act} is a result of the energy required to initiate the reaction, which can be described by the semi-empirical Tafel equation [31–33],

$$U_{act} = c_0 + c_1 \ln(i_{FC}),$$

where c_0 and c_1 depend on temperature. When the current density is small, this equation can be modified [34] as

$$U_{act} = c_0(1 - e^{-c_1 i_{FC}}), \quad (14)$$

135 where $c_0 = -5.8 \times 10^{-4} \bar{T} + 0.5736$ and $c_1 = \frac{RT}{n_e F}$.

The ohmic losses U_{ohm} are due to the resistance to the flow of (i) ions in the membrane and in the catalyst layers, and (ii) electrons through the electrodes [18],

$$U_{ohm} = i_{FC} \tilde{R}_{FC}, \quad (15)$$

136 where $\tilde{R}_{FC} = R_{FC} A_{FC}$.

The concentration polarization U_{conc} is given by

$$U_{conc} = d_0 e^{d_1 i_{FC}}. \quad (16)$$

With the parameters given in Appendix A, the polarization curve of a single cell is plotted in Fig. 2. In reality, the current density could be controlled within a certain range. After excluding the very low current densities ($i_{FC} < 0.1 A/cm^2$), (13) could be linearized [34,35] as

$$U_{FC} = U_{OC} - \tilde{R}_{FC} i_{FC}, \quad (17)$$

137 where U_{OC} is the voltage at which the linearized curve crosses the y-axis, which should
138 not be confused with U_{rev} .

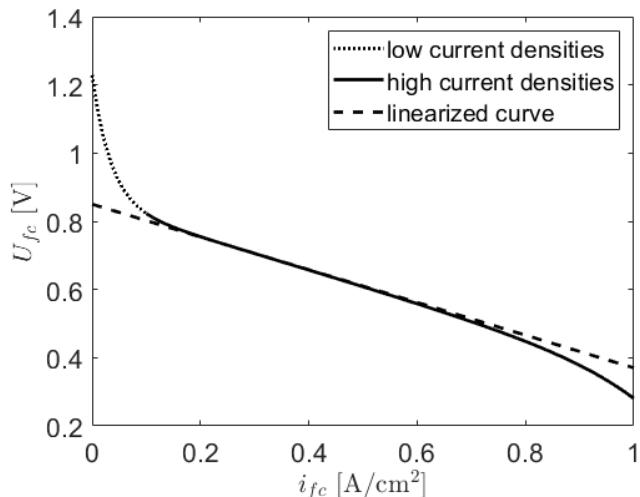


Figure 2. Polarization curve for a given PEMFC.

Unlike ground vehicles, **sUAV** changes orientation during the flight, which would change the inner resistance of fuel cell by about 5 times [36] from horizontal to vertical. To this end, (17) is modified to account for this effect as

$$U_{FC} = U_{OC} - \tilde{R}'_{FC} i_{FC}, \quad (18)$$

where $\tilde{R}'_{FC} = \tilde{R}_{FC}(1 + k_0 \sin(k_1 |\gamma|))$. Combining (18) with (10), (11) and (12) yields

$$n_{FC} R'_{FC} I_{FC}^2 - (n_{FC} U_{OC} - n_{FC} \kappa_{aux}) I_{FC} + P_{FC,load} + P_0 = 0, \quad (19)$$

where $R'_{FC} = \tilde{R}'_{FC} / A_{FC}$. Overall, I_{FC} can be expressed as

$$I_{FC} = \frac{n_{FC}(U_{OC} - \kappa_{aux}) - [n_{FC}^2(U_{OC} - \kappa_{aux})^2 - 4n_{FC} R'_{FC}(P_{FC,load} + P_0)]^{\frac{1}{2}}}{2n_{FC} R'_{FC}}. \quad (20)$$

139 2.5. Battery Model

The battery model represents a pack of model 21700 lithium polymer battery cells. The battery pack is assembled in such a way that the cells are connected in series. According to [37], the open-circuit voltage of the battery can be estimated as

$$U_{B,OC} = SOC(U_{B,max} - U_{B,min}) + U_{B,min}. \quad (21)$$

The battery power and the fuel cell load demand power sum up to provide the electrical power to the motor such that

$$P_M = P_B + P_{FC,load}. \quad (22)$$

Further, the current drawn from the battery set is obtained by solving

$$P_B = n_B(U_{B,OC} I_B - I_B^2 R_{B,int}), \quad (23)$$

140 which should not exceed its maximum discharge current $I_{B,max}$.

The battery coulombic efficiency in the battery model is assumed to be 100%. Thus, the SOC satisfies as

$$SOC(t) = SOC_0 - \int_{t_0}^t \frac{I_B(t)}{C_B} dt. \quad (24)$$

141 where t , t_0 , and SOC_0 are the current time, initial time, and initial SOC , respectively.

142 3. Hybrid System Model and Problem Formulation

143 3.1. Hybrid System

The fuel cell load demand power, which will be indicated as P_{FC} in the following section, is the only variable under control. Due to the output characteristic of PEMFC, the change of P_{FC} is chosen to be 5% of its maximum power, which is depend on γ according to (18). The fuel cell load demand power dynamics are then

$$P_{FC}(t_{n+1}) - P_{FC}(t_n) = u \cdot \Delta P_{FC}, \quad (25)$$

where $u \in \{-1, 0, 1\}$ and $\Delta P_{FC} = 5\% P_{FC,max}$, and $P_{FC}(t_n)$ is the fuel cell load demand power at $t = t_n$. Here, three different values of u correspond to decreasing, sustaining, or increasing P_{FC} . According to (19), the maximum load cell power can be calculated as

$$P_{FC,max} = \frac{4n_{FC} R'_{FC} P_0 - (n_{FC} U_{OC} - n_{FC} \kappa_{aux})^2}{-4n_{FC} R'_{FC}}. \quad (26)$$

Using (25) and (26), the final expression representing fuel cell load demand power dynamics is given by

$$\frac{dP_{FC}}{dt} = u \cdot 5\% \frac{4n_{FC}R'_{FC}P_0 - (n_{FC}U_{OC} - n_{FC}\kappa_{aux})^2}{-4n_{FC}R'_{FC}}. \quad (27)$$

The SOC dynamics are obtained by differentiating both sides of (24) with respect to time,

$$\frac{dSOC}{dt} = -\frac{I_B}{C_B}. \quad (28)$$

Combining (28) with (21) and (23) yields,

$$\frac{dSOC}{dt} = \frac{-n_B U_{B,OC} + \sqrt{(n_B U_{B,OC})^2 - 4n_B R_{B,int} P_B}}{2n_B R_{B,int} C_B}, \quad (29)$$

144 where $U_{B,OC} = SOC(U_{B,max} - U_{B,min}) + U_{B,min}$.

The motor power and battery power are related by

$$P_B = S_f P_M, \quad (30)$$

where S_f is referred to as the split fraction, which could be calculated from (22) as

$$S_f = \frac{P_M - P_{FC}}{P_M}.$$

Using (29) and (30), the final expression representing SOC dynamics is given by

$$\frac{dSOC}{dt} = \frac{-U_{B,OC} + \sqrt{(U_{B,OC})^2 - \frac{4R_{B,int}S_f P_M}{n_B}}}{2R_{B,int} C_B}, \quad (31)$$

145 where the internal resistance $R_{B,int}$ and the battery capacity C_B are assumed to be
146 constant [38].

The mass of remaining fuel dynamics are obtained from Faraday's Law as

$$\frac{dm_{FR}}{dt} = -\frac{n_{FC}I_{FC}}{n_e F} M_h, \quad (32)$$

147 where I_{FC} is calculated from P_{FC} as shown in (20).

148 Equations (25), (29) and (32) are the final form of the state equations used in this
149 study, where the states of the system are $x = [SOC, M_{FR}, P_{FC}]$, the control $u \in \{-1, 0, 1\}$,
150 the outputs of the system are $y = [S_f, P_B]$, and the operating variables are $w = [P_M, \gamma]$.
151 These operating variables are treated as measured disturbances in the model.

152 Based on the above modeling assumptions and parameters in Table 3, the maximum
153 fuel cell output power is 795 W at $\gamma = 0$ deg, 496.14 W at $\gamma = \pm 10$ deg, and 335.71 W at
154 $\gamma = \pm 20$ deg. The theoretical maximum power for the battery series (of 8 batteries) is
155 2940 W, due to the limitation of the discharge current (35 A), the maximum power of the
156 battery is 1176 W at any climb angle.

157 3.2. Problem Formulation

158 Forward Euler method is used in this paper to approximate the time derivatives.
159 During each time segment Δt , the motor power of sUAV is w_1 and the climb angle is w_2 .

The following updated equations approximately model the **sUAV** hybrid propulsion system:

$$\begin{aligned} SOC(t_{n+1}) &= SOC(t_n) + \frac{dSOC}{dt}(t_n)\Delta t, \\ M_{FR}(t_{n+1}) &= M_{FR}(t_n) + \frac{dM_{FR}}{dt}(t_n)\Delta t, \end{aligned}$$

160 where $SOC(t_n)$ and $M_{FR}(t_n)$ are the state-of-charge and the mass of hydrogen remaining
161 at $t = t_n$.

The system is controlled by the change of the fuel cell load demand power ΔP_{FC} at each discrete time instant. Thus, the fuel cell power is modeled as

$$P_{FC}(t_{n+1}) = P_{FC}(t_n) + u\Delta P_{FC}(t_n).$$

162 The motor power and climb angle are typically unknown a priori. In this paper, a
163 Markov Chain model is used to describe the evolution of w_1 and w_2 with the transition
164 probabilities identified from the historical data. Once particular w_1 and w_2 values are
165 encountered, a prediction of their probability distribution over the next time segment
166 will be made using the Markov Chain model.

The objective of the stochastic endurance maximization problem is to determine a control law that maximizes the time the **sUAV** can travel before the system states exit a prescribed set,

$$G = \left\{ (SOC, M_{FR}, P_{FC}) : SOC_{min} \leq SOC \leq SOC_{max}, \right. \\ \left. M_{FR,min} \leq M_{FR} \leq M_{FR,max}, \quad 0 \leq P_{FC} \leq P_{FC,max} \right\}. \quad (33)$$

167 The constraints on the SOC and M_{FR} in (33) reflect minimum and maximum values
168 of battery state-of-charge and mass of fuel, respectively. The constraints on P_{FC} are
169 reflective of the fact that the fuel cell load demand power cannot (i) exceed the maximum
170 power of the fuel cell, and (ii) be negative.

171 The optimal control policy developed in this paper through the application of DCOC
172 specifies the change in fuel cell load power over one step, $\Delta P_{FC}(t) = P_{FC}(t+1) - P_{FC}(t)$,
173 as a function of $SOC(t)$, mass of hydrogen fuel left, $M_{FR}(t)$, and current fuel cell load
174 power, $P_{FC}(t)$. The battery power complements fuel cell power in matching propeller
175 requested power.

176 3.3. Markov Chain Modeling

A Markov Chain model [39] is used to represent the evolution of w (in our case $w = [w_1, w_2]$). The transition probabilities of the Markov chain are defined as

$$p_{ij} = \text{prob}\{w(t_{n+1}) \in W_j \mid w(t_n) \in W_i\}, \quad (34)$$

177 where W_i and W_j ($i, j = 1, \dots, N$) are cells partitioning the feasible range of the operating
178 conditions. The state-dependence of the transition probabilities adds flexibility in
179 reflecting typical motor power and climb angle profiles of a **sUAV**.

The p_{ij} 's can be obtained from the statistical analysis of the historical flight data,

$$p_{ij} = \frac{M_{ij}}{M_i}, \quad (35)$$

180 where M_{ij} is the total number of transitions from the cell W_i to the cell W_j (i.e., $w(t_n) \in$
181 $W_i, w(t_{n+1}) \in W_j$), while M_i is the total number of transitions from W_i to any other cell,
182 including W_i [21].

183 **4. Control Law Construction**

Here, we adopt SDCOC framework from [16] which is applied to a discrete-time model with the following form,

$$x(t_{n+1}) = f(x(t_n), u(t_n), w(t_n)), \quad (36)$$

where $x(t_n)$ is the state vector, $u(t_n)$ is the control vector, and $w(t_n)$ is the vector of operating variables, which is not known until the time instant t_n . The system has both control constraints and state constraints imposed as $u(t_n) \in U$ and $\{x(t_n), w(t_n)\} \in G$, respectively, where U and G are specified sets. A Markov Chain with a finite number of states is used to represent transitions in $w(t_n) \in W = \{w^p : p \in P\}$. Here P is the size of the grid for w . The transition probability from $w(t_n) = w^i \in W$ to $w(t_{n+1}) = w^j \in W$ is denoted by p_{ij} expressed in (34). In a discounted variant of SDCOC, the objective is to determine a control function $u(x, w)$ such that, with $u(t_n) = u(x(t_n), w(t_n))$, a cost functional of the form,

$$J^{x_0, w_0, u} = \mathbb{E}_{x_0, w_0} \left[\sum_{t=0}^{\tau^{x_0, w_0, u}(G)-1} \delta^t \cdot 1 \right], \quad (37)$$

184 is maximized. Here $\tau^{x_0, w_0, u}(G) \in \mathbb{Z}^+$ represents the first time instant when the trajectory
 185 of $x(t_n)$ and $w(t_n)$, which are denoted by $\{x^u, w^u\}$ and resulted from the applying the
 186 control $u(t_n) = u(x(t_n), w(t_n))$ with values in the set U , exits the prescribed compact
 187 set G . δ is a discount factor [40]. For $\delta = 1$, (37) maximizes the exit time, i.e., time till
 188 prescribed constraints become violated. The use of the discount factor $0 < \delta < 1$ facilitates
 189 faster convergence of the value iterations. Note that $\{x^u, w^u\}$ is a random process,
 190 $\tau^{x_0, w_0, u}(G)$ is a random variable, and $\mathbb{E}_{x_0, w_0}[\cdot]$ denotes the conditional expectation given
 191 the initial values of x and w .

To solve (37), the value iterations approach is used which produces a sequence of value function approximations, V_n , at specified grid-points $x \in \{x^k : k \in K\}$,

$$V_0(x^k, w^i) \equiv 0,$$

$$V_n(x^k, w^i) = \max_{u^m, m \in M} \left\{ \sum_{j \in J} F_{n-1}(f(x^k, u^m, w^i), w^j) \cdot p_{ij} \cdot \delta^t + 1 \right\},$$

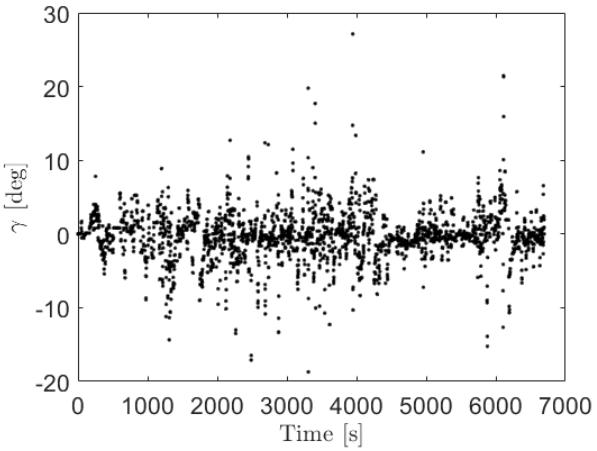
192 where $u \in \{u^m : m \in M\}$ is a specified grid for u . Here, K and M are the size
 193 of the grid for x and u , respectively. In each iteration, once the values of V_{n-1} at
 194 the grid-points have been determined, linear or cubic interpolation is employed to
 195 approximate $V_{n-1}(f(x^k, u^m, w^i), w^j)$ as $F_{n-1}(x, w^i) = \text{Interpolate}[V_{n-1}](x, w^i)$, if (x, w^i)
 196 $\in G$, and $F_{n-1}(x, w^i) = 0$, if $(x, w^i) \notin G$. A termination criterion of the form $|V_n(x, w^i) - V_{n-1}(x, w^i)| \leq \epsilon$ for all $x \in \{x^k : k \in K\}$ and $i \in P$, where $\epsilon > 0$ is sufficiently small, is
 197 used.
 198

Once an approximation of the value function, V_* , is available, an optimal control law is determined as

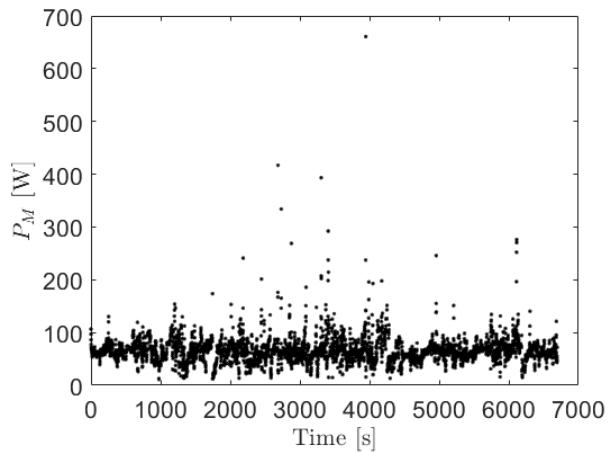
$$u_*(x, w^i) \in \left\{ u : V_*(x, w^i) - \sum_{j \in J} V_*(f(x, u, w^i), w^j) \cdot p_{ij} \cdot \delta - 1 \leq \epsilon \right\}.$$

199 **5. Control Law Computations and Results**

200 **5.1. sUAV Configuration and Model Parameters**


201 The model has been parameterized for a 1.5 kg sUAV [23] that can be used for aerial
 202 photography and environmental monitoring applications. The minimum and maximum
 203 SOC values were set to $SOC_{min} = 0.2$ and $SOC_{max} = 0.8$. The minimum and maximum
 204 values of M_{FR} were set as $M_{FR_{min}} = 2$ g and $M_{FR_{max}} = 9$ g. For the value iterations, the

²⁰⁵ SOC grid was chosen with a step size of 0.05 and the M_{FR} grid was chosen with a step
²⁰⁶ size of 0.5 g. The grid for the control variable u was set as $\{-1, 0, 1\}$.


²⁰⁷ The transition probabilities for the operating variables (motor power and climb
²⁰⁸ angle) were obtained from the time histories of the sUAV motor power and climb angle
²⁰⁹ using (35) and assuming a time step $\Delta t = 1$ sec. These time histories were based on a
²¹⁰ scenario that a sUAV follows a moving ground vehicle that sUAV operators are interested
²¹¹ in monitoring. In this scenario, the ground vehicle, and consequently the sUAV, are
²¹² assumed to be traveling with the velocity profile defined by concatenating the EPA
²¹³ Highway Cycle [41] nine times. For the sUAV, the speed profile is modified to remain
²¹⁴ above the stall speed while avoiding extreme acceleration values.

²¹⁵ The climb angle time history, shown in Fig. 3, was obtained from Google Earth
²¹⁶ elevation profile for a path from Monroe, West Virginia to Princeton, West Virginia with
²¹⁷ the help of GPS visualizing software [42]. See [43] for the assessment of accuracy of such
²¹⁸ extracted profiles.

²¹⁹ Fig. 4 provides the time histories of the sUAV motor power calculated based on
²²⁰ equations in section 2.3. The trajectories in Fig. 3 and Fig. 4 were used to compute the
²²¹ transition probabilities.

Figure 3. Time histories of the sUAV climb angle.

Figure 4. Time histories of the sUAV motor power.

²²² 5.2. Control Law Computation

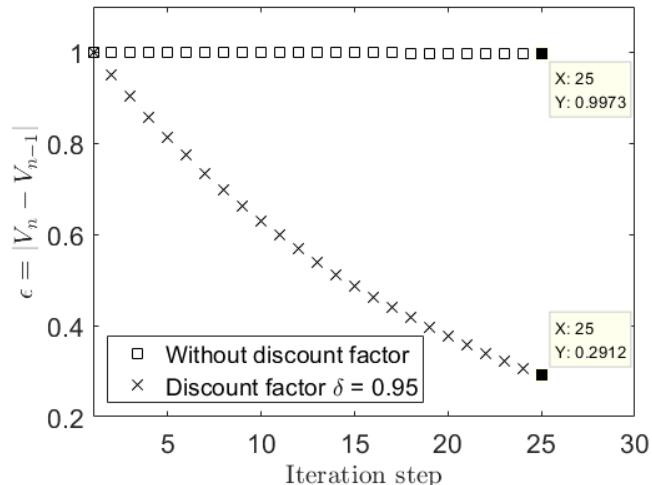
²²³ Cython was used for control law computations as it is more efficient than MATLAB in
²²⁴ handling nested for loops and 2-dimensional interpolation. In our numerical experi-
²²⁵ ments with dynamic programming, Cython was about 10 times faster than MATLAB.

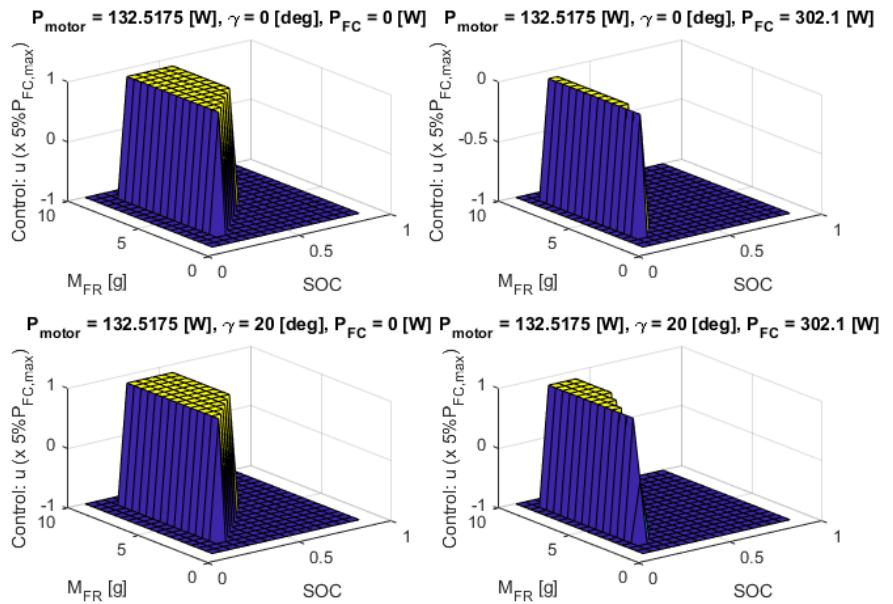
²²⁶ To further speed up value iterations, a discount factor was introduced. When
²²⁷ testing the effect of discount factor on the optimal policy, a zero climb angle ($\gamma = 0$)
²²⁸ was assumed, which means that the only operating variable was the motor power.

Table 2 shows the average exit time based on 100 random simulations for discount factors from 0.91 to 0.99. The stopping criterion was chosen with $\epsilon = 10^{-10}$ for all δ . Computations were performed on Hasee K780G-i7 laptop with CORE i7-4710MQ (2.5–3.5 GHz) processor and 24 GB of RAM. Note that the number of iterations and the computing time decrease as the discount factor decreases but so does the exit time. The discount factor $\delta = 0.95$ was ultimately chosen as a compromise between value iteration convergence speed and solution accuracy. Fig. 5 shows that the value iterations with a discount factor of $\delta = 0.95$ converge much faster than those with $\delta = 1$.

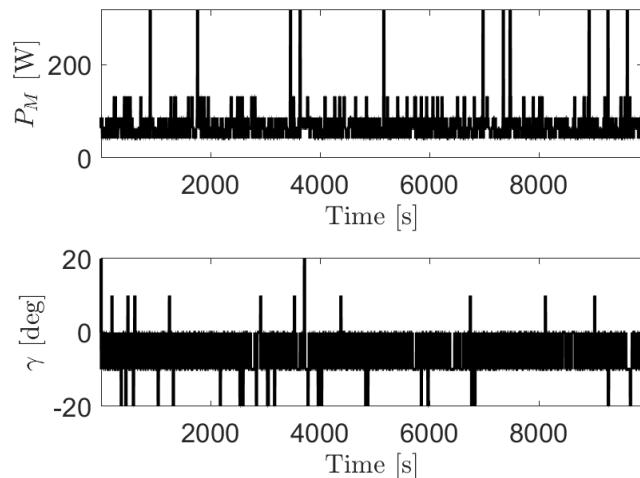
Table 2: Average exit time for different discount factor.

δ	Number of iteration	Computing time [min]	Exit time with 20% initial SOC [s]	Exit time with 80% initial SOC [s]
0.99	2258	830.02	6358.44	9742.99
0.97	753	100.69	6276.18	9716.86
0.95	448	58.27	6221.37	9640.24
0.93	317	39.22	6186.50	9610.22
0.91	244	30.55	6159.65	9602.55




Figure 5. The effect of discount factor in value iteration approach.

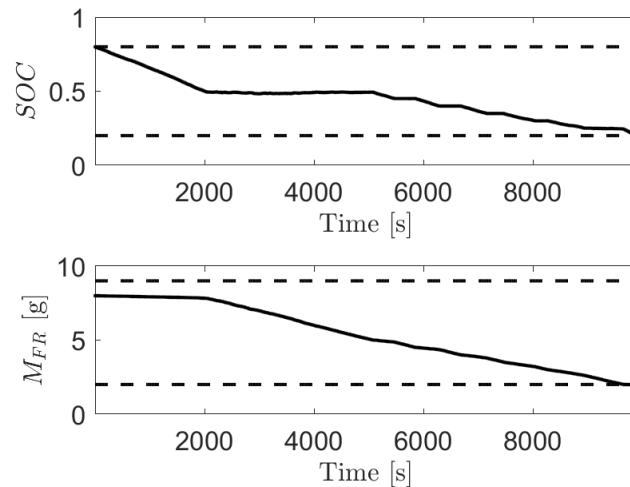
5.3. Endurance Maximization Results


We used $\epsilon = 10^{-10}$ in the stopping criterion for the value iterations. Fig. 6 illustrates the resulting control policy. Note that when SOC is low, the control policy calls for an increase in P_{FC} to charge the battery. This is reasonable given that the fuel cell cannot alone respond rapidly to fast changes in motor power request and hence the battery has to be charged to do so.

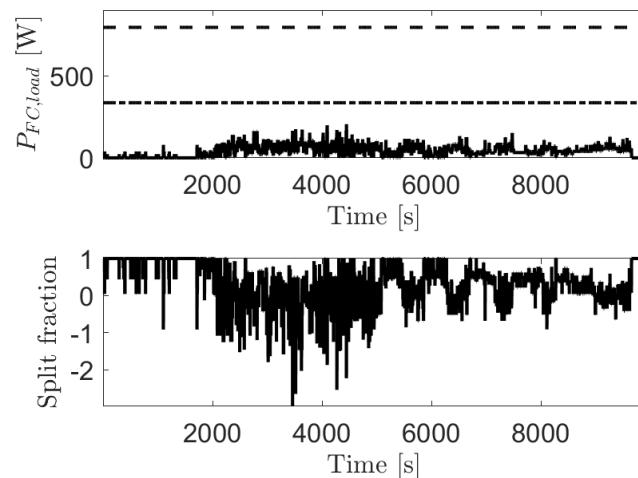
The simulation results are given for three cases in Figs. 7 to 18. The first case (scenario I) corresponds to a higher initial SOC and the second case (scenario II) considers a lower initial SOC. The third scenario is for a mid-range initial SOC and is used to confirm the SOC behavior observed in the first two scenarios. In all cases, the initial fuel mass and initial fuel cell power are the same: $M_{FR,0} = 6$ g and $P_{FC,0} = 0$ W. The dashed lines in Figs. 8, 12 and 16 indicate constraints mentioned in subsection 5.1. The spikes of power in Figs. 7, 11, 15 correspond to the time instants when the sUAV starts to accelerate while the positive and negative spikes of climb angle represent the time when the sUAV starts to climb or descend.

Figs. 7 to 10 illustrate the closed-loop response for the first simulation scenario. The initial SOC is 0.8 and it decreases rapidly until it reaches a value of about 0.5. Then it stays near this value between 2000 and 5000 sec. Finally, when the mass of hydrogen reaches a relatively low value, SOC starts to decrease and continues to decrease until the constraints are violated. The fuel cell load demand power keeps a relatively low value

Figure 6. A cross-section of the control policy in the endurance maximization problem for $P_M = 132.52$ W, and with $P_{FC} = 0$ W (left) and $P_{FC} = 302.1$ W (right).


Figure 7. sUAV P_M and γ versus time, simulation scenario I.

257 during the whole flight and the mean value of the split fraction is negative during 2000
 258 to 5000 sec time interval, which is the period when SOC is kept at about 0.5.


259 Figs. 11 to 13 illustrate the closed-loop response for the second simulation scenario.
 260 The initial SOC is 0.2. The battery is charged until it reaches a value of about 0.5 to enable
 261 the battery to sustain rapid propeller power fluctuations. Then SOC stays near that value
 262 of 0.5 between 500 and 1500 sec. Finally, when the mass of hydrogen reaches a relatively
 263 low value, SOC starts to decrease and continues to decrease until the constraints are
 264 violated. The fuel cell load demand power increases rapidly at first to charge the battery,
 265 then it keeps a relatively low value during the rest of the flight. The mean value of the
 266 split fraction is negative from the beginning to about 1500 sec, which is the period when
 267 the battery is charged from $SOC = 0.2$ to about 0.5.

268 According to the results from scenarios I and II, a turnpike behavior of battery SOC
 269 is observed, with SOC converging to about 0.5 and staying at that value for a while
 270 before decaying. To confirm this turnpike behavior, we have additionally considered the
 271 responses with the developed policy to initial SOC of 0.6. These are shown in Figures

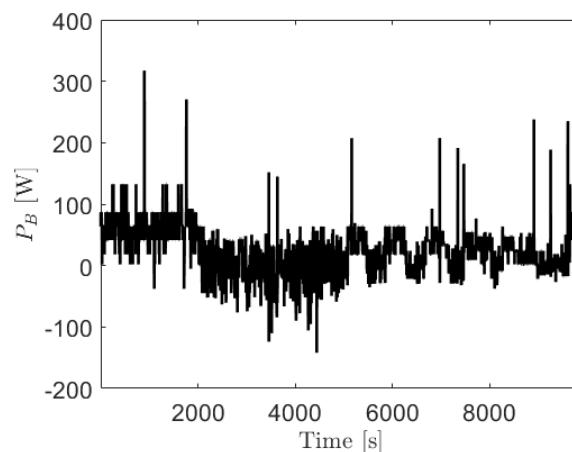
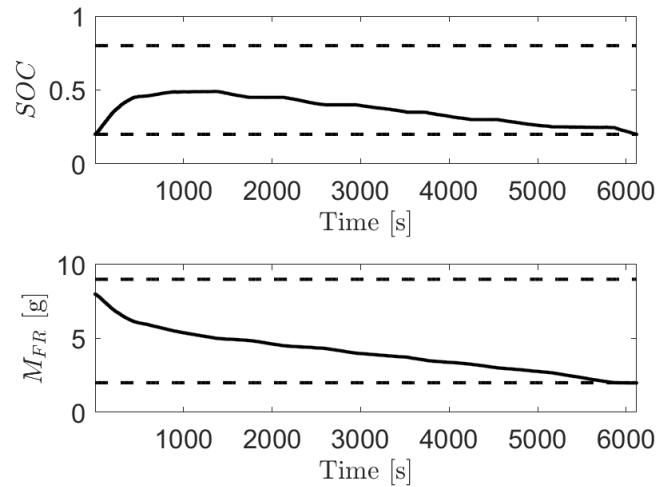
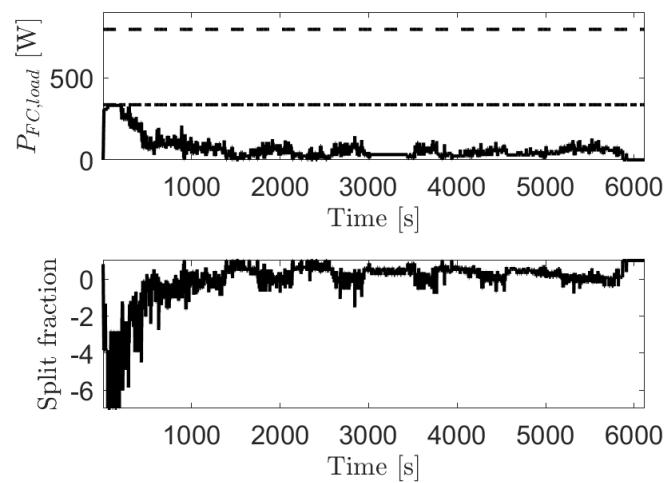
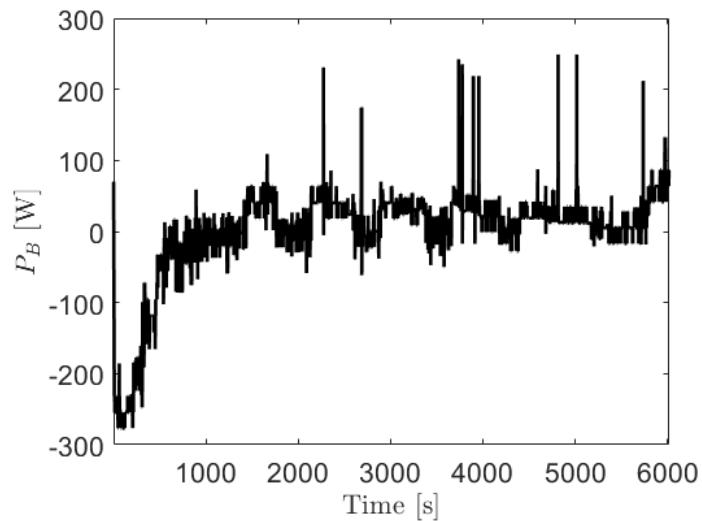
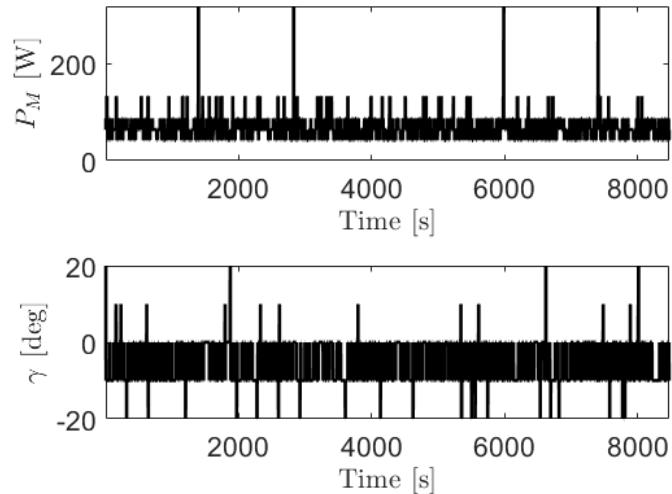

²⁷² 15-18. The exit times for scenarios I, II and III were, respectively, 9890 sec, 6019 sec, and 8478 sec.

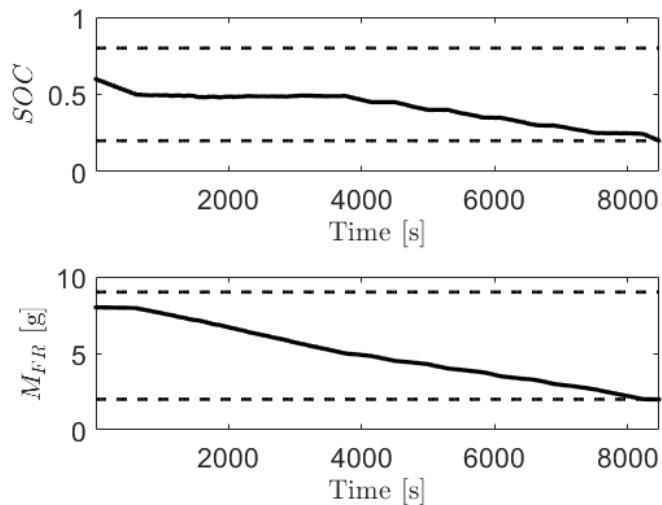
Figure 8. SOC and remaining M_{FR} versus time, simulation scenario I, dashed lines show constraints.

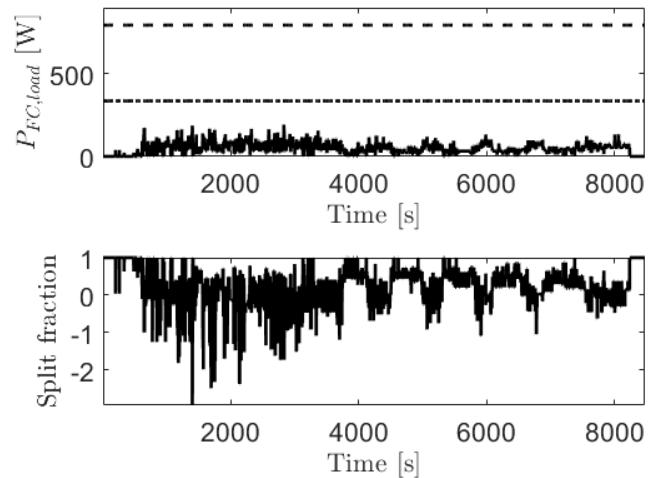

²⁷³ **Figure 9.** Fuel cell load demand power and split fraction versus time, simulation scenario I. The dashed and dash-dot lines in top sub-figure indicate the maximum P_{FC} with $|\gamma| = 0$ deg and $|\gamma| = 20$ deg, respectively.


Figure 10. Battery power, simulation scenario I.


Figure 11. sUAV P_M and γ versus time, simulation scenario II.


Figure 12. SOC and remaining M_{FR} versus time, simulation scenario II, dashed lines show constraints.


Figure 13. Fuel cell load demand power and split fraction versus time, simulation scenario II. The dashed and dash-dot lines in top figure indicate the maximum P_{FC} with $|\gamma| = 0$ deg and $|\gamma| = 20$ deg, respectively.


Figure 14. Battery power, simulation scenario II.

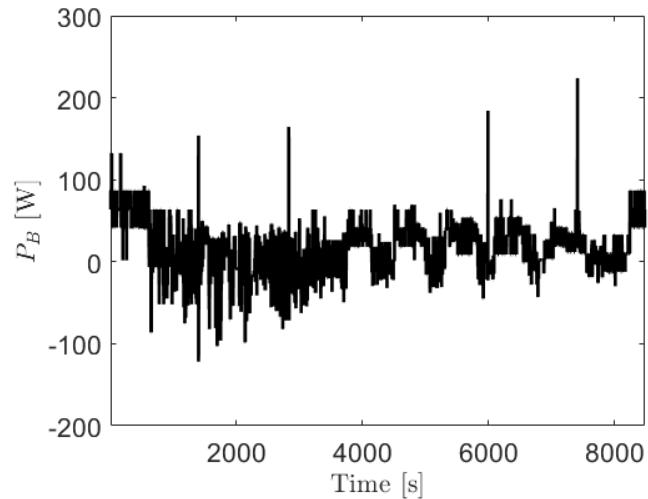

Figure 15. sUAV P_M and γ versus time, simulation scenario III.

Figure 16. SOC and remaining M_{FR} versus time, simulation scenario III, dashed lines show constrains.

Figure 17. Fuel cell load demand power and split fraction versus time, simulation scenario III. The dashed and dash-dot lines in top figure indicate the maximum P_{FC} with $|\gamma| = 0$ deg and $|\gamma| = 20$ deg, respectively.

Figure 18. Battery power, simulation scenario III.

274 6. Conclusions

275 This paper has considered an endurance maximization problem for a **small un-**
 276 **manned aerial vehicle (sUAV)** with a hybrid propulsion system consisting of a polymer
 277 electrolyte fuel cell and a battery, both driving an electric motor connected to a propeller.
 278 A stochastic drift counteraction optimal control (SDCOC) approach was employed to
 279 develop control policies for optimally coordinating the fuel cell and the battery while
 280 enforcing the constraints on the fuel cell power output rate of change. Cython has been
 281 used to implement value iterations and demonstrated an order of magnitude speed-up
 282 versus MATLAB without increasing the code complexity, due to its efficiency in handling
 283 nested for loops. Additionally, the use of a discount factor has been shown to signif-
 284 icantly speed up value iterations at the price of decreased performance. The results
 285 illustrated the effectiveness of the SDCOC strategy in regulating the charging behavior
 286 of the battery by the fuel cell to provide the capability to respond to rapidly varying
 287 motor power demand.

288 The proposed approach based on SDCOC is particularly suitable for handling
 289 stochastic disturbances and can be applied to **sUAV** exposed to headwind with head-
 290 wind modeled as a stochastic disturbance. Accounting for such wind disturbances,
 291 extensions to include thermal dynamics, systematic and comprehensive comparison
 292 with other energy management approaches and propulsion system choices, systematic

293 study of robustness to model uncertainties as well as actual flight experiments represent
 294 directions for continuing research. In particular, our study of the discount factor impact
 295 on the computation time and exit time suggests flight time is sensitive to the choice of
 296 energy management strategy; our approach based on SDCOC is optimal in the sense of
 297 maximizing expected flight time within stochastically modelled environment.

298 **Author Contributions:** Conceptualization, J.Z., I.K., and M.A.; methodology, J.Z. and I.K.; soft-
 299 ware, J.Z. and I.K.; validation, J.Z. and I.K.; formal analysis, J.Z., I.K., and M.A.; investigation, J.Z.,
 300 I.K., and M.A.; resources, J.Z., I.K., and M.A.; data curation, J.Z., I.K., and M.A.; writing—original
 301 draft preparation, J.Z., I.K., and M.A.; writing—review and editing, I.K. and M.A.; visualiza-
 302 tion, J.Z.; supervision, I.K.; project administration, I.K. All authors have read and agreed to the
 303 published version of the manuscript.

304 **Funding:** This research has been supported in part by the U.S. National Science Foundation (NSF)
 305 under award number ECCS-1931738.

306 **Conflicts of Interest:** The authors declare no conflict of interest.

307 Abbreviations

308 The following abbreviations are used in this manuscript:

309	EPA	Environmental Protection Agency
	DMFC	Direct methanol fuel cell
	sUAV	Small unmanned aerial vehicle
310	MPC	Model predictive control
	PEMFC	Polymer electrolyte membrane fuel cell
	RPM	Rotations per minute
	UAV	Unmanned aerial vehicle

311 Appendix A

312 The parameters of the sUAV model described in the paper are listed in [Table 3](#).

Table 3: Parameters used in sUAV model.

Variable	Description	Value	Unit
m	Mass of the sUAV	1.5	kg
g	Gravitational acceleration	9.81	m/s^2
S_{ref}	Wing area	0.09	m^2
C_{D0}	sUAV coefficient of drag at $\alpha = 0$	0.1038	\
K	Coefficient in (3)	0.0637	\
d_p	Diameter of the propeller	0.24	m
J	Advance ratio	0.37	\
R_M	Motor resistance	0.105	Ω
$I_{M,0}$	Motor current at zero load	1.3	A
K_V	Motor speed constant	1490	RPM/V
n_{FC}	Number of single cells in series	12	\
P_0	Bias power of the fuel cell	5	W
κ_{aux}	Coefficient in (12)	0.05	V
A_{FC}	Fuel cell area	200	cm^2
Δg_f	Molar specific Gibbs free energy	237.3	kJ/mol
n_p	Number of ions passed in reaction	2	\
F	Faraday constant	96485	C/mol
T	Temperature of the reaction	333.15	K
α_{FC}	Charge transfer coefficient	0.5	\
R	Universal gas constant	8.314	J/(mol \cdot K)
R_{FC}	Ohmic resistance defined in (15)	0.0024	Ω
d_0	Coefficient in (16)	3e-5	V
d_1	Coefficient in (16)	8	cm^2/A
k_0	Coefficient in (18)	4	\
k_1	Coefficient in (18)	1	\
M_h	Molecular weight of H_2	2	g/mol
n_B	Number of batteries in series	8	\
$U_{B,min}$	Open circuit voltage when $SOC = 0$	2.5	V
$U_{B,max}$	Open circuit voltage when $SOC = 1$	4.2	V
$R_{B,int}$	Battery internal resistance	0.012	Ω
C_B	Standard discharge capacity	14400	C
$I_{B,max}$	Maximum discharge current	35	A

References

1. Unmanned Aerial Vehicle (UAV) Market by Component (Hardware, Software), Class (Mini UAVs, Micro UAVs), End User (Military, Commercial, Agriculture), Type (Fixed Wing, Rotary-Wing UAVs), Capacity, and Mode of Operation - Global Forecast to 2027. <https://www.meticulousresearch.com/product/unmanned-aerial-vehicle-UAV-market-5086>. Accessed: 2021-02-16.
2. Kasliwal, A.; Furbush, N.J.; Gawron, J.H.; McBride, J.R.; Wallington, T.J.; De Kleine, R.D.; Kim, H.C.; Keoleian, G.A. Role of flying cars in sustainable mobility. *Nature Communications* **2019**, *10*, 1–9.
3. Goyal, R. Urban air mobility (uam) market study **2018**. NASA/HQ-E-DAA-TN65181.
4. Samy, I.; Postlethwaite, I.; Gu, D.W.; Green, J. Neural-network-based flush air data sensing system demonstrated on a mini air vehicle. *Journal of aircraft* **2010**, *47*, 18–31.
5. Ma, S.; Lin, M.; Lin, T.E.; Lan, T.; Liao, X.; Maréchal, F.; Yang, Y.; Dong, C.; Wang, L. Fuel cell-battery hybrid systems for mobility and off-grid applications: A review. *Renewable and Sustainable Energy Reviews* **2020**, *135*, 110119.
6. Lapeña-Rey, N.; Blanco, J.; Ferreyra, E.; Lemus, J.; Pereira, S.; Serrot, E. A fuel cell powered unmanned aerial vehicle for low altitude surveillance missions. *International Journal of Hydrogen Energy* **2017**, *42*, 6926–6940.
7. Oh, T.H. Conceptual design of small unmanned aerial vehicle with proton exchange membrane fuel cell system for long endurance mission. *Energy Conversion and Management* **2018**, *176*, 349–356.
8. Bradley, T.; Moffitt, B.; Fuller, T.; Mavris, D.; Parekh, D. Design studies for hydrogen fuel cell powered unmanned aerial vehicles. 26th AIAA Applied Aerodynamics Conference, 2008, p. 6413.
9. Bradley, T.H.; Moffitt, B.A.; Mavris, D.N.; Parekh, D.E. Development and experimental characterization of a fuel cell powered aircraft. *Journal of Power Sources* **2007**, *171*, 793–801.
10. Citroni, R.; Di Paolo, F.; Livreri, P. A novel energy harvester for powering small UAVs: Performance analysis, model validation and flight results. *Sensors* **2019**, *19*, 1771.
11. Hochgraf, C.G.; Ryan, M.J.; Wiegman, H.L. Engine control strategy for a series hybrid electric vehicle incorporating load-leveling and computer controlled energy management **1996**. SAE Technical Paper No. 1996-02-01.
12. Bradley, T.; Moffitt, B.; Parekh, D.; Fuller, T.; Mavris, D. Energy management for fuel cell powered hybrid-electric aircraft. 7th International Energy Conversion Engineering Conference, 2009, p. 4590.
13. Doff-Sotta, M.; Cannon, M.; Bacic, M. Optimal energy management for hybrid electric aircraft. *arXiv preprint arXiv:2004.02582* **2020**.
14. Anatone, M.; Cipollone, R.; Donati, A.; Sciarretta, A. Control-oriented modeling and fuel optimal control of a series hybrid bus **2005**. SAE Technical Paper No. 2005-04-11.
15. Dobrokhodov, V.; Jones, K.D.; Walton, C.; Kaminer, I.I. Achievable Endurance of Hybrid UAV Operating in Time-Varying Energy Fields. AIAA Scitech 2020 Forum, 2020, p. 2197.
16. Kolmanovsky, I.V.; Lezhnev, L.; Maizerberg, T.L. Discrete-time drift counteraction stochastic optimal control: Theory and application-motivated examples. *Automatica* **2008**, *44*, 177–184.
17. Balasubramanian, K.; Kolmanovsky, I.; Saha, B. Range maximization of a direct methanol fuel cell powered Mini Air Vehicle using Stochastic Drift Counteraction Optimal Control. 2012 American Control Conference (ACC), 2012, pp. 3272–3277.
18. Guzzella, L.; Sciarretta, A. *Vehicle propulsion systems: Introduction to modeling and optimization*; Springer, 2013. Chapter 6, pp. 207–208, doi:10.1007/978-3-642-35913-2.
19. Guida, D.; Minutillo, M. Design methodology for a PEM fuel cell power system in a more electrical aircraft. *Applied Energy* **2017**, *192*, 446–456.
20. Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G. All Composite Data Products: National FCEV Learning Demonstration With Updates Through January 18, 2012. Technical report, 2012. National Renewable Energy Lab. (NREL) Technical Report NREL/TP-5600-54021.
21. Kolmanovsky, I.; Sivergina, I.; Lygoe, B. Optimization of powertrain operating policy for feasibility assessment and calibration: Stochastic dynamic programming approach. 2002 American Control Conference (ACC), 2002, Vol. 2, pp. 1425–1430.
22. Roskam, J.; Lan, C. Airplane Aerodynamics and Performance. Lawrence, Kansas: Design. *Analysis, and Research Corporation* **1997**.
23. Hrad, P.M. Conceptual Design Tool for Fuel-Cell Powered Micro Air Vehicles. Technical report, Air Force Institute of Technology, 2010.
24. Rodatz, P.H. Dynamics of the polymer electrolyte fuel cell: Experiments and model-based analysis. PhD thesis, ETH Zurich, 2003.
25. Specification of Product INR21700-40T. <https://www.dnkpower.com/wp-content/uploads/2019/02/SAMSUNG-INR21700-40T-Datasheet.pdf>. Accessed: 2021-02-16.
26. Bronz, M.; Moschetta, J.M.; Brisset, P.; Gorraz, M. Towards a long endurance MAV. *International Journal of Micro Air Vehicles* **2009**, *1*, 241–254.
27. Murphy, O.J.; Cisar, A.; Clarke, E. Low-cost light weight high power density PEM fuel cell stack. *Electrochimica Acta* **1998**, *43*, 3829–3840.
28. D. Quattrochi. Performance of Propellers. <https://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node86.html>. Accessed: 2021-02-16.
29. Gur, O.; Rosen, A. Optimizing electric propulsion systems for UAVs. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, 2008, p. 5916.

30. Guzzella, L.; Amstutz, A. CAE tools for quasi-static modeling and optimization of hybrid powertrains. *IEEE Transactions on Vehicular Technology* **1999**, *48*, 1762–1769.
31. Mann, R.F.; Amphlett, J.C.; Hooper, M.A.; Jensen, H.M.; Peppley, B.A.; Roberge, P.R. Development and application of a generalised steady-state electrochemical model for a PEM fuel cell. *Journal of Power Sources* **2000**, *86*, 173–180.
32. Maxoulis, C.N.; Tsinoglou, D.N.; Koltsakis, G.C. Modeling of automotive fuel cell operation in driving cycles. *Energy Conversion and Management* **2004**, *45*, 559–573.
33. Amphlett, J.; Baumert, R.; Mann, R.; Peppley, B.; Roberge, P.; Rodrigues, A. Parametric modelling of the performance of a 5-kW proton-exchange membrane fuel cell stack. *Journal of Power Sources* **1994**, *49*, 349–356.
34. Pukrushpan, J.T.; Peng, H.; Stefanopoulou, A.G. Control-oriented modeling and analysis for automotive fuel cell systems. *Journal of Dynamic Systems, Measurement, and Control* **2004**, *126*, 14–25.
35. Bansal, D.; Rajagopalan, S.; Choi, T.; Guezennec, Y.; Yurkovich, S. Pressure and air fuel ratio control of pem fuel cell system for automotive traction. IEEE Vehicle Power and Propulsion Conference, 2004.
36. El-Emam, S.H.; Mousa, A.A.; Awad, M.M. Effects of stack orientation and vibration on the performance of PEM fuel cell. *International Journal of Energy Research* **2015**, *39*, 75–83.
37. Zhang, R.; Xia, B.; Li, B.; Cao, L.; Lai, Y.; Zheng, W.; Wang, H.; Wang, W.; Wang, M. A study on the open circuit voltage and state of charge characterization of high capacity lithium-ion battery under different temperature. *Energies* **2018**, *11*, 2408.
38. Vahidi, A.; Greenwell, W. A decentralized model predictive control approach to power management of a fuel cell-ultracapacitor hybrid. 2007 American Control Conference (ACC), 2007, pp. 5431–5437.
39. Dynkin, E.B.; Yushkevich, A.A. *Markov processes: Theorems and problems*; Plenum, 1969.
40. Ross, S.M. *Introduction to stochastic dynamic programming*; Academic Press, 2014.
41. US Department of Energy–Fuel Economy: Detailed Test Information. http://fueleconomy.gov/feg/fe_test_schedules.shtml. Accessed: 2021-02-16.
42. Schneider, A. GPS Visualizer. <http://www.gpsvisualizer.com/>. Accessed: 2021-02-16.
43. Wang, Y.; Zou, Y.; Henrickson, K.; Wang, Y.; Tang, J.; Park, B.J. Google Earth elevation data extraction and accuracy assessment for transportation applications. *PloS One* **2017**, *12*, e0175756.