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Abstract: This paper investigates optimal power management of a fuel cell hybrid small un-1

manned aerial vehicle (sUAV) from the perspective of endurance (time of flight) maximization in2

a stochastic environment. Stochastic drift counteraction optimal control is exploited to obtain an3

optimal policy for power management that coordinates the operation of fuel cell and battery to4

maximize the expected flight time while accounting for the limits on the rate of change of fuel cell5

power output and orientation dependence of fuel cell efficiency. The proposed power management6

strategy accounts for known statistics in transitions of propeller power and climb angle during7

the mission but does not require the exact preview of their time histories. The optimal control8

policy is generated offline using value iterations implemented in Cython, demonstrating an order9

of magnitude speed up as compared to MATLAB. It is also shown that the value iterations can be10

further sped up using a discount factor but at the cost of decreased performance. Simulation11

results for a 1.5 kg sUAV are reported that illustrate the optimal coordination between the fuel12

cell and the battery during aircraft maneuvers, including a turnpike in the battery state of charge13

(SOC) trajectory. As the fuel cell is not able to support fast changes in power output, the optimal14

policy is shown to charge the battery to the turnpike value if starting from a low initial SOC value.15

If starting from a high SOC value, the battery energy is used till a turnpike value of SOC is reached16

with further discharge delayed to later in the flight. For specific scenarios and simulated sUAV17

parameters considered, the results indicate the capability of up to 2.7 hours flight time.18

Keywords: Air Mobility; Fuel Cell Hybrid Aircraft; Stochastic Optimal Control; Energy Manage-19

ment; Drift Counteraction Optimal Control20

1. Introduction21

With the growing market for unmanned aerial vehicles (UAVs), a wide range of22

industries and organizations, including military, government, industrial, and recre-23

ational users, deploy this technology across the globe [1–3]. Among different types24

of UAVs, small unmanned aerial vehicles (sUAVs) [4] are attractive for military, aerial25

photography, and environmental monitoring applications due to their small size and26

flexible operation [5]. Considering (i) hardware and weight constraints, (ii) limited27

onboard energy storage, and (iii) performance requirements for sUAVs, improving their28

endurance (maximizing their flight time) is of great importance for extending the du-29

ration of their missions which could involve surveillance, search and rescue, disaster30

relief, traffic control, and precision agriculture; thereby, motivating the development of31

novel propulsion systems and implementation of optimal control policies for power and32

energy management. Among different propulsion systems for such a sUAV, a hybrid33

propulsion system consisting of a polymer electrolyte membrane fuel cell (PEMFC) and34

a battery has been proposed for long duration missions, e.g., in [6–9]. Other propulsion35

systems may incorporate energy harvesters such as in [10]. In this paper we focus36

on novel approaches to energy management of sUAV through optimal coordination37
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between PEMFC and battery for the previously proposed fuel cell hybrid propulsion38

system.39

Rule-based (e.g., thermostat-like on-off control [11]), dynamic programming-based40

[12] and model predictive control (MPC) [13] have been considered for energy manage-41

ment of hybrid aircraft. As in automotive energy management applications [14], the42

use of simple rule-based strategies may not provide optimal performance while the43

conventional formulations of MPC and dynamic programming do not directly address44

the flight time maximization objective. Furthermore, deterministic variants of MPC and45

dynamic programming may require an accurate preview of the propeller power and46

climb angle over a long horizon and are computationally demanding if optimization47

has to be performed online. Similiarly, Pontryagin Maximum Principle (PMP)-based48

guidance solutions [15] need accurate characterization of the flight environment.49

In this paper we consider a different approach to the problem of endurance max-50

imization for a hybrid sUAV with polymer electrolyte membrane fuel cell (PEMFC)51

based on an application of stochastic drift counteraction optimal control (SDCOC) [16]52

which directly addresses the problem of maximizing the time to constraint violation53

in a stochastic environment. In our case, the objective is to maintain the vehicle flying54

for a maximum amount of time by coordinating the fuel cell and the battery to provide55

the requested propeller power subject to the limited amount of fuel and battery state of56

charge (SOC) onboard of the vehicle. The transitions in aircraft climb angle and propeller57

power are modeled stochastically by a Markov Chain with the transition probabilities58

determined from historical data representing typical missions of a sUAV. Then a control59

policy that minimizes a cost functional reflective of expected time-to-violate constraints60

is determined off-line through value iterations; this control policy is then deployed61

onboard for the online coordination of the fuel cell and the battery in sUAV.62

In a preliminary conference paper [17] by the second author of this paper, the63

application of SDCOC for power management of a hybrid sUAV with direct methanol64

fuel cell (DMFC) has been considered. While DMFC is often considered as a suitable65

power source for ground vehicles [18] and have certain advantages, PEMFCs are more66

appealing for air mobility applications [6,7] due to their relatively lower operating67

temperature, allowing for a quick start-up [19], higher efficiency (up to 60% [18,20]) and68

power density, and higher safety due to the use of the solid electrolyte [18].69

Differently from [17], in this paper we consider the application of SDCOC to power70

management of a hybrid sUAV with PEMFC rather than DMFC. To accommodate a dif-71

ferent fuel cell and a sUAV, the fuel cell model has been changed and improvements have72

been made to models used to compute propeller power and thrust, and the evolution of73

SOC.74

More importantly, the lack of ability of PEMFC to rapidly change its power output75

imposes a stringent operating constraint (rate limit on PEMFC power output) which has76

not been treated in [17] but is treated in this paper. This rate limit increases complexity77

of the problem as an extra state needs to be introduced in the model and handled in78

SDCOC and it also changes the optimal policies and the optimal response of the system.79

For instance, as the fuel cell is not able to support fast changes in power output, the80

optimal policy is shown to charge the battery to a turnpike value if starting from a low81

initial state of charge value. If starting from a high SOC the battery energy is used till82

a turnpike value of state of charge is reached with further discharge delayed to a later83

phase of the flight. In either case, high frequency chattering of fuel cell load demand84

power in [17], which cannot be supported by PEMFC, is eliminated.85

Additionally, in this paper the value iterations are implemented in Cython rather86

than MATLAB, with an order of magnitude speed up as compared to MATLAB implementa-87

tion observed. As value iterations are frequently used to solve dynamic programming88

problems in different applications and Python is becoming increasingly popular, our re-89

sults on ten-fold speed up with Cython without substantive increase of code complexity90
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are of reference value to other researchers considering computational implementation of91

dynamic programming.92

Furthermore, a discount factor is introduced into the cost function of SDCOC and93

its impact on the convergence speed of the value iterations is illustrated. It is shown that94

this discount factor results in faster convergence of value iterations but the performance95

of the control policy (in terms of exit time) is decreased.96

While SDCOC theory is developed in reference [16], that reference does not address97

the fuel cell or sUAV application studied in this paper. Our approach to representing98

motor power demand and climb angle by a Markov Chain with a finite number of states99

follows reference [21], which is the first (to the authors knowledge) paper proposing the100

use of stochastic dynamic programming for automotive powertrain control applications;101

that paper does not address the fuel cell or sUAV application studied in the present102

paper either, nor the drift counteraction problem formulation.103

The remainder of this paper is organized as follows: Section 2 describes sUAV104

sub-systems and their models. Section 3 presents an integrated model of the hybrid105

system and defines the problem in a form suitable for SDCOC. Section 4 summarizes106

SDCOC, and section 5 reports the results. Finally, section 6 presents concluding remarks.107

2. Physical Description of the Systems and Model108

A sUAV with a series hybrid propulsion system, shown in Fig. 1, is chosen in which109

the power supplied by the battery and the power supplied by the PEMFC are combined110

to meet the propeller motor power demand. The PEMFC uses hydrogen as fuel which is111

stored in the tank and air from the atmosphere. A fraction of the energy generated by112

PEMFC can be used to charge in the battery. The fuel cell pack and battery pack are sized113

large enough so that they are able to meet the sUAV’s mean power demand individually,114

should either one be not operating properly.115

Figure 1. A diagram of a fuel cell-powered series hybrid sUAV.

The model used in this paper for generating SDCOC policies captures the battery’s116

SOC dynamics, the fuel cell’s hydrogen rate dynamics, and fuel cell load power dynam-117

ics. Thus, the states of this model are the SOC, the mass of hydrogen remaining in the118

gas tank, and the fuel cell load demand power. The motor power of the sUAV and climb119

angle are treated as operating variables, and the SDCOC controller determines changes120

in the fuel cell load demand power. This system level model has been implemented by121

combining component submodels and characterizations available from the literature;122

our methodology is generic and can accommodate changes in these component models.123

2.1. sUAV Dynamics124

A control-oriented dynamic model of the sUAV is used for SDCOC law develop-125

ment. The sUAV is constrained to a longitudinal flight path in a vertical plane [22]. Table126

1 defines the notations for the variables used in the model. Table 3 in the Appendix127

lists model parameter values, partly based on [23], [24] and [25]. The development of128

lightweight electric components (batteries, fuel cells, motors) for sUAV is an active area129

of research, see, e.g., [26] and [27]. In our model, we have assumed that such lightweight130

components are available to be consistent with the assumed sUAV weight.131

Using a flat earth coordinate system, the longitudinal equations of motion of the
sUAV are given by

v̇ =
Tcos(α)− D

m
− gsin(γ), (1)
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Table 1: List of variables used in sUAV model.

Variable Description Unit

v Velocity of the sUAV m/s
γ Climb angle deg
T Thrust force N
α Angle of attack deg
L Lift force N
D Drag force N
CL sUAV coefficient of lift \
CD sUAV coefficient of drag \
ρair Air density kg/m3

PsUAV Power required by the sUAV W
N Angular speed of the electric motor RPM
PP Power generated by the propeller W
PP,ideal Ideal propeller power W
ηP Propulsive efficiency \
UM Electric motor driver’s input voltage V
IM Electric motor driver’s input current A
PM Elector motor driver’s input power W
ηM Motor efficiency \
PFC,total Total power of fuel cell W
PFC,load Load demand power of fuel cell W
Paux Power required by the auxiliaries W
UFC Single cell voltage V
IFC Single cell current A
iFC Single cell current density A/cm2

Uact Activation polarization V
Uohm Ohmic losses V
Uconc Concentration polarization V
UOC Equivalent open circuit voltage of single fuel cell V
R′FC Modified single fuel cell resistance Ω
R̃′FC Variable defined in (18) Ω · cm2

UB,OC Open circuit voltage of the battery V
SOC Battery’s state-of-charge \
PB Power of the battery W
SOC0 Initial SOC \
S f Split fraction \
u Control input \
∆PFC Defined in (25) W
mFR Mass of fuel remaining kg

γ̇ =
Tsin(α) + L

mv
− gcos(γ)

v
, (2)

where v is the velocity of the sUAV and γ is the climb angle. The lift L and drag force D
are characterized as

L =
1
2

ρairv2Sre f CL, D =
1
2

ρairv2Sre f CD, (3)

where CL = CL0 + CL,αα, CD = CD0 + KCL
2. Neglecting vertical acceleration (i.e., with

L = mg), solving (1) and (2) yields the thrust required by the sUAV,

T =

[(
mv̇ + mgsin(γ) +

1
2

ρairv2Sre f CD0 +
2Km2g2

ρairv2Sre f

)2

+ (mvγ̇ + mgcos(γ)−mg)2

] 1
2

.

(4)

Here, ρair is a function of altitude. The power required by the sUAV is then given by

PsUAV = Tv. (5)

2.2. Propeller Model132

The propeller model is used to relate the torque and angular velocity generated
by the electric motor to the power required by the sUAV and the velocity of the sUAV,
respectively [22]. With the propulsive efficiency given by ηP, the power required to drive
the propeller is

PP =
PsUAV

ηP
. (6)



Version July 12, 2021 submitted to Energies 5 of 20

According to disk actuator theory, the ideal propeller power is

PP,ideal =
1
2

Tv

(
1 +

√
1 +

8T
πρairv2dP

2

)
.

In general, the actual power required would be about 15% greater than this [28], which
means PP = 1.15PP,ideal . Thus, ηP can be calculated as

ηP =
PsUAV

1.15PP,ideal
=

2

1.15 + 1.15
√

1 + 8T
πρairv2dP

2

. (7)

Combing (7) with (5) and (6) yields

PP =
1.15PsUAV

2
+

1.15PsUAV
2

√
1 +

8PsUAV

πρairv3dP
2 .

2.3. Electric Motor Model133

Electric motors used in sUAV applications exhibit high speed and high torque as
well as high power-to-weight ratios [29]. Assuming the power factor is equal to unity
and the magnetic losses can be neglected, the output power of the motor is given by

PP = (UM − IMRM)(IM − IM,0). (8)

The angular velocity of the motor in revolutions per minute (RPM) can be expressed as

N = (UM − RM IM)KV , (9)

which should be equal to the RPM of propeller N = v
JdP

. From (8) and (9), the motor
current, IM, is

IM =
PPKV

N
+ IM,0.

The motor power and motor efficiency are given by, respectively,

PM = UM IM, ηM =
PP
PM

.

2.4. Fuel Cell Model134

A PEMFC system is the primary power source for the sUAV. The total power
generated by the fuel cell stack is calculated as

PFC,total = nFCUFC IFC. (10)

This power must cover the load demand PFC,load and the power required for auxil-
iaries [18], Paux,

PFC,total = PFC,load + Paux, (11)

where Paux is the total power required for the compressor motor, the hydrogen circulation
pump, the humidifier water circulation pump, the coolant pump, the cooling fan motor,
and the bias power, P0. After simplifications, Paux could be written as a function of the
fuel cell current [30],

Paux = P0 + nFCκFC IFC. (12)

The fuel cell current is a function of the current density and the fuel cell area,

IFC = iFC AFC,
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where iFC could be obtained by solving the equation,

UFC = Urev −Uact −Uohm −Uconc. (13)

The reversible cell potential Urev is related with the molar specific Gibbs free energy ∆g f
and number of ions passed in the reaction ne [24],

Urev =
∆g f

neF
.

The activation polarization Uact is a result of the energy required to initiate the reaction,
which can be described by the semi-empirical Tafel equation [31–33],

Uact = c0 + c1ln(iFC),

where c0 and c1 depend on temperature. When the current density is small, this equation
can be modified [34] as

Uact = c0(1− e−c1iFC ), (14)

where c0 = −5.8× 10−4T̄ + 0.5736 and c1 = RT̄
neαFC F .135

The ohmic losses Uohm are due to the resistance to the flow of (i) ions in the mem-
brane and in the catalyst layers, and (ii) electrons through the electrodes [18],

Uohm = iFCR̃FC, (15)

where R̃FC = RFC AFC.136

The concentration polarization Uconc, is given by

Uconc = d0ed1iFC . (16)

With the parameters given in Appendix A, the polarization curve of a single cell is
plotted in Fig. 2. In reality, the current density could be controlled within a certain range.
After excluding the very low current densities (iFC < 0.1A/cm2), (13) could be linearized
[34,35] as

UFC = UOC − R̃FCiFC, (17)

where UOC is the voltage at which the linearized curve crosses the y-axis, which should137

not be confused with Urev.138

Figure 2. Polarization curve for a given PEMFC.
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Unlike ground vehicles, sUAV changes orientation during the flight, which would
change the inner resistance of fuel cell by about 5 times [36] from horizontal to vertical.
To this end, (17) is modified to account for this effect as

UFC = UOC − R̃′FCiFC, (18)

where R̃′FC = R̃FC(1 + k0sin(k1|γ|)). Combining (18) with (10), (11) and (12) yields

nFCR′FC I2
FC − (nFCUOC − nFCκaux)IFC + PFC,load + P0 = 0, (19)

where R′FC = R̃′FC/AFC. Overall, IFC can be expressed as

IFC =
nFC(UOC − κaux)−

[
n2

FC(UOC − κaux)2 − 4nFCR′FC(PFC,load + P0)
] 1

2

2nFCR′FC
. (20)

2.5. Battery Model139

The battery model represents a pack of model 21700 lithium polymer battery
cells. The battery pack is assembled in such a way that the cells are connected in series.
According to [37], the open-circuit voltage of the battery can be estimated as

UB,OC = SOC(UB,max −UB,min) + UB,min. (21)

The battery power and the fuel cell load demand power sum up to provide the electrical
power to the motor such that

PM = PB + PFC,load. (22)

Further, the current drawn from the battery set is obtained by solving

PB = nB(UB,OC IB − I2
BRB,int), (23)

which should not exceed its maximum discharge current IB,max.140

The battery coulombic efficiency in the battery model is assumed to be 100%. Thus,
the SOC satisfies as

SOC(t) = SOC0 −
∫ t

t0

IB(t)
CB

dt. (24)

where t, t0, and SOC0 are the current time, initial time, and initial SOC, respectively.141

3. Hybrid System Model and Problem Formulation142

3.1. Hybrid System143

The fuel cell load demand power, which will be indicated as PFC in the following
section, is the only variable under control. Due to the output characteristic of PEMFC,
the change of PFC is chosen to be 5% of its maximum power, which is depend on γ
according to (18). The fuel cell load demand power dynamics are then

PFC(tn+1)− PFC(tn) = u · ∆PFC, (25)

where u ∈ {−1, 0, 1} and ∆PFC = 5%PFC,max, and PFC(tn) is the fuel cell load demand
power at t = tn. Here, three different values of u correspond to decreasing, sustaining,
or increasing PFC. According to (19), the maximum load cell power can be calculated as

PFC,max =
4nFCR′FCP0 − (nFCUOC − nFCκaux)2

−4nFCR′FC
. (26)



Version July 12, 2021 submitted to Energies 8 of 20

Using (25) and (26), the final expression representing fuel cell load demand power
dynamics is given by

dPFC
dt

= u · 5%
4nFCR′FCP0 − (nFCUOC − nFCκaux)2

−4nFCR′FC
. (27)

The SOC dynamics are obtained by differentiating both sides of (24) with respect to time,

dSOC
dt

= − IB
CB

. (28)

Combing (28) with (21) and (23) yields,

dSOC
dt

=
−nBUB,OC +

√
(nBUB,OC)2 − 4nBRB,intPB

2nBRB,intCB
, (29)

where UB,OC = SOC(UB,max −UB,min) + UB,min.144

The motor power and battery power are related by

PB = S f PM, (30)

where S f is referred to as the split fraction, which could be calculated from (22) as

S f =
PM − PFC

PM
.

Using (29) and (30), the final expression representing SOC dynamics is given by

dSOC
dt

=
−UB,OC +

√
(UB,OC)2 − 4RB,intS f PM

nB

2RB,intCB
, (31)

where the internal resistance RB,int and the battery capacity CB are assumed to be145

constant [38].146

The mass of remaining fuel dynamics are obtained from Faraday’s Law as

dmFR
dt

= −nFC IFC
neF

Mh, (32)

where IFC is calculated from PFC as shown in (20).147

Equations (25), (29) and (32) are the final form of the state equations used in this148

study, where the states of the system are x = [SOC, MFR, PFC], the control u ∈ {−1, 0, 1},149

the outputs of the system are y = [S f , PB], and the operating variables are w = [PM, γ].150

These operating variables are treated as measured disturbances in the model.151

Based on the above modeling assumptions and parameters in Table 3, the maximum152

fuel cell output power is 795 W at γ = 0 deg, 496.14 W at γ = ±10 deg, and 335.71 W at153

γ = ±20 deg. The theoretical maximum power for the battery series (of 8 batteries) is154

2940 W, due to the limitation of the discharge current (35 A), the maximum power of the155

battery is 1176 W at any climb angle.156

3.2. Problem Formulation157

Forward Euler method is used in this paper to approximate the time derivatives.158

During each time segment ∆t, the motor power of sUAV is w1 and the climb angle is w2.159
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The following updated equations approximately model the sUAV hybrid propulsion
system:

SOC(tn+1) = SOC(tn) +
dSOC

dt
(tn)∆t,

MFR(tn+1) = MFR(tn) +
dMFR

dt
(tn)∆t,

where SOC(tn) and MFR(tn) are the state-of-charge and the mass of hydrogen remaining160

at t = tn.161

The system is controlled by the change of the fuel cell load demand power ∆PFC at
each discrete time instant. Thus, the fuel cell power is modeled as

PFC(tn+1) = PFC(tn) + u∆PFC(tn).

The motor power and climb angle are typically unknown a priori. In this paper, a162

Markov Chain model is used to describe the evolution of w1 and w2 with the transition163

probabilities identified from the historical data. Once particular w1 and w2 values are164

encountered, a prediction of their probability distribution over the next time segment165

will be made using the Markov Chain model.166

The objective of the stochastic endurance maximization problem is to determine a
control law that maximizes the time the sUAV can travel before the system states exit a
prescribed set,

G =
{
(SOC, MFR, PFC) : SOCmin ≤ SOC ≤ SOCmax,

MFR,min ≤ MFR ≤ MFR,max, 0 ≤ PFC ≤ PFC,max

}
. (33)

The constraints on the SOC and MFR in (33) reflect minimum and maximum values167

of battery state-of-charge and mass of fuel, respectively. The constraints on PFC are168

reflective of the fact that the fuel cell load demand power cannot (i) exceed the maximum169

power of the fuel cell, and (ii) be negative.170

The optimal control policy developed in this paper through the application of DCOC171

specifies the change in fuel cell load power over one step, ∆PFC(t) = PFC(t+ 1)− PFC(t),172

as a function of SOC(t), mass of hydrogen fuel left, MFR(t), and current fuel cell load173

power, PFC(t). The battery power complements fuel cell power in matching propeller174

requested power.175

3.3. Markov Chain Modeling176

A Markov Chain model [39] is used to represent the evolution of w (in our case
w = [w1, w2]). The transition probabilities of the Markov chain are defined as

pij = prob{w(tn+1) ∈Wj |w(tn) ∈Wi}, (34)

where Wi and Wj (i, j = 1, · · · , N) are cells partitioning the feasible range of the operat-177

ing conditions. The state-dependence of the transition probabilities adds flexibility in178

reflecting typical motor power and climb angle profiles of a sUAV.179

The pij’s can be obtained from the statistical analysis of the historical flight data,

pij =
Mij

Mi
, (35)

where Mij is the total number of transitions from the cell Wi to the cell Wj (i.e., w(tn) ∈180

Wi, w(tn+1) ∈Wj), while Mi is the total number of transitions from Wi to any other cell,181

including Wi [21].182
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4. Control Law Construction183

Here, we adopt SDCOC framework from [16] which is applied to a discrete-time
model with the following form,

x(tn+1) = f (x(tn), u(tn), w(tn)), (36)

where x(tn) is the state vector, u(tn) is the control vector, and w(tn) is the vector of
operating variables, which is not known until the time instant tn. The system has both
control constraints and state constraints imposed as u(tn) ∈ U and {x(tn), w(tn)} ∈ G,
respectively, where U and G are specified sets. A Markov Chain with a finite number of
states is used to represent transitions in w(tn) ∈W = {wp : p ∈ P}. Here P is the size of
the grid for w. The transition probability from w(tn) = wi ∈ W to w(tn+1) = wj ∈ W
is denoted by pij expressed in (34). In a discounted variant of SDCOC, the objective is
to determine a control function u(x, w) such that, with u(tn) = u(x(tn), w(tn)), a cost
functional of the form,

Jx0,w0,u = Ex0,w0

[
τx0,w0,u(G)−1

∑
t=0

δt · 1
]

, (37)

is maximized. Here τx0,w0,u(G) ∈ Z+ represents the first time instant when the trajectory184

of x(tn) and w(tn), which are denoted by {xu, wu} and resulted from the applying the185

control u(tn) = u(x(tn), w(tn)) with values in the set U, exits the prescribed compact186

set G. δ is a discount factor [40]. For δ = 1, (37) maximizes the exit time, i.e., time till187

prescribed constraints become violated. The use of the discount factor 0 < δ < 1 facili-188

tates faster convergence of the value iterations. Note that {xu, wu} is a random process,189

τx0,w0,u(G) is a random variable, and Ex0,w0 [·] denotes the conditional expectation given190

the initial values of x and w.191

To solve (37), the value iterations approach is used which produces a sequence of
value function approximations, Vn, at specified grid-points x ∈ {xk : k ∈ K},

V0(xk, wi) ≡ 0,

Vn(xk, wi) = max
um ,m∈M

{
∑
j∈J

Fn−1( f (xk, um, wi), wj) · pij · δt + 1

}
,

where u ∈ {um : m ∈ M} is a specified grid for u. Here, K and M are the size192

of the grid for x and u, respectively. In each iteration, once the values of Vn−1 at193

the grid-points have been determined, linear or cubic interpolation is employed to194

approximate Vn−1( f (xk, um, wi), wj) as Fn−1(x, wi) = Interpolate[Vn−1](x, wi), if (x, wi)195

∈ G, and Fn−1(x, wi) = 0, if (x, wi) /∈ G. A termination criterion of the form |Vn(x, wi)−196

Vn−1(x, wi)| ≤ ε for all x ∈ {xk : k ∈ K} and i ∈ P, where ε > 0 is sufficiently small, is197

used.198

Once an approximation of the value function, V∗, is available, an optimal control
law is determined as

u∗(x, wi) ∈
{

u : V∗(x, wi)−∑
j∈J

V∗( f (x, u, wi), wj) · pij · δ− 1 ≤ ε

}
.

5. Control Law Computations and Results199

5.1. sUAV Configuration and Model Parameters200

The model has been parameterized for a 1.5 kg sUAV [23] that can be used for aerial201

photography and environmental monitoring applications. The minimum and maximum202

SOC values were set to SOCmin = 0.2 and SOCmax = 0.8. The minimum and maximum203

values of MFR were set as MFRmin = 2 g and MFRmax = 9 g. For the value iterations, the204
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SOC grid was chosen with a step size of 0.05 and the MFR grid was chosen with a step205

size of 0.5 g. The grid for the control variable u was set as {−1, 0, 1}.206

The transition probabilities for the operating variables (motor power and climb207

angle) were obtained from the time histories of the sUAV motor power and climb angle208

using (35) and assuming a time step ∆t = 1 sec. These time histories were based on a209

scenario that a sUAV follows a moving ground vehicle that sUAV operators are interested210

in monitoring. In this scenario, the ground vehicle, and consequently the sUAV, are211

assumed to be traveling with the velocity profile defined by concatenating the EPA212

Highway Cycle [41] nine times. For the sUAV, the speed profile is modified to remain213

above the stall speed while avoiding extreme acceleration values.214

The climb angle time history, shown in Fig. 3, was obtained from Google Earth215

elevation profile for a path from Monroe, West Virginia to Princeton, West Virginia with216

the help of GPS visualizing software [42]. See [43] for the assessment of accuracy of such217

extracted profiles.218

Fig. 4 provides the time histories of the sUAV motor power calculated based on219

equations in section 2.3. The trajectories in Fig. 3 and Fig. 4 were used to compute the220

transition probabilities.221

Figure 3. Time histories of the sUAV climb angle.

Figure 4. Time histories of the sUAV motor power.

5.2. Control Law Computation222

Cython was used for control law computations as it is more efficient than MATLAB in223

handling nested for loops and 2-dimensional interpolation. In our numerical experi-224

ments with dynamic programming, Cython was about 10 times faster than MATLAB.225

To further speed up value iterations, a discount factor was introduced. When226

testing the effect of discount factor on the optimal policy, a zero climb angle (γ = 0)227

was assumed, which means that the only operating variable was the motor power.228
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Table 2 shows the average exit time based on 100 random simulations for discount229

factors from 0.91 to 0.99. The stopping criterion was chosen with ε = 10−10 for all230

δ. Computations were performed on Hasee K780G-i7 laptop with CORE i7-4710MQ231

(2.5-3.5 GHz) processor and 24 GB of RAM. Note that the number of iterations and the232

computing time decrease as the discount factor decreases but so does the exit time. The233

discount factor δ = 0.95 was ultimately chosen as a compromise between value iteration234

convergence speed and solution accuracy. Fig. 5 shows that the value iterations with a235

discount factor of δ = 0.95 converge much faster than those with δ = 1.236

Table 2: Average exit time for different discount factor.

δ Number of itera-
tion

Computing time
[min]

Exit time with 20% ini-
tial SOC [s]

Exit time with 80% ini-
tial SOC [s]

0.99 2258 830.02 6358.44 9742.99
0.97 753 100.69 6276.18 9716.86
0.95 448 58.27 6221.37 9640.24
0.93 317 39.22 6186.50 9610.22
0.91 244 30.55 6159.65 9602.55

Figure 5. The effect of discount factor in value iteration approach.

5.3. Endurance Maximization Results237

We used ε = 10−10 in the stopping criterion for the value iterations. Fig. 6 illustrates238

the resulting control policy. Note that when SOC is low, the control policy calls for an239

increase in PFC to charge the battery. This is reasonable given that the fuel cell cannot240

alone respond rapidly to fast changes in motor power request and hence the battery has241

to be charged to do so.242

The simulation results are given for three cases in Figs. 7 to 18. The first case243

(scenario I) corresponds to a higher initial SOC and the second case (scenario II) considers244

a lower initial SOC. The third scenario is for a mid-range initial SOC and is used to245

confirm the SOC behavior observed in the first two scenarios. In all cases, the initial246

fuel mass and initial fuel cell power are the same: MFR,0 = 6 g and PFC,0 = 0 W. The247

dashed lines in Figs. 8, 12 and 16 indicate constraints mentioned in subsection 5.1. The248

spikes of power in Figs. 7, 11, 15 correspond to the time instants when the sUAV starts249

to accelerate while the positive and negative spikes of climb angle represent the time250

when the sUAV starts to climb or descend.251

Figs. 7 to 10 illustrate the closed-loop response for the first simulation scenario. The252

initial SOC is 0.8 and it decreases rapidly until it reaches a value of about 0.5. Then it253

stays near this value between 2000 and 5000 sec. Finally, when the mass of hydrogen254

reaches a relatively low value, SOC starts to decrease and continues to decrease until the255

constraints are violated. The fuel cell load demand power keeps a relatively low value256
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Figure 6. A cross-section of the control policy in the endurance maximization problem for PM =

132.52 W, and with PFC = 0 W (left) and PFC = 302.1 W (right).

Figure 7. sUAV PM and γ versus time, simulation scenario I.

during the whole flight and the mean value of the split fraction is negative during 2000257

to 5000 sec time interval, which is the period when SOC is kept at about 0.5.258

Figs. 11 to 13 illustrate the closed-loop response for the second simulation scenario.259

The initial SOC is 0.2. The battery is charged until it reaches a value of about 0.5 to enable260

the battery to sustain rapid propeller power fluctuations. Then SOC stays near that value261

of 0.5 between 500 and 1500 sec. Finally, when the mass of hydrogen reaches a relatively262

low value, SOC starts to decrease and continues to decrease until the constraints are263

violated. The fuel cell load demand power increases rapidly at first to charge the battery,264

then it keeps a relatively low value during the rest of the flight. The mean value of the265

split fraction is negative from the beginning to about 1500 sec, which is the period when266

the battery is charged from SOC = 0.2 to about 0.5.267

According to the results from scenarios I and II, a turnpike behavior of battery SOC268

is observed, with SOC converging to about 0.5 and staying at that value for a while269

before decaying. To confirm this turnpike behavior, we have additionally considered the270

responses with the developed policy to initial SOC of 0.6. These are shown in Figures271
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15-18. The exit times for scenarios I, II and III were, respectively, 9890 sec, 6019 sec, and272

8478 sec.

Figure 8. SOC and remaining MFR versus time, simulation scenario I, dashed lines show con-
strains.

Figure 9. Fuel cell load demand power and split fraction versus time, simulation scenario I. The
dashed and dash-dot lines in top sub-figure indicate the maximum PFC with |γ| = 0 deg and |γ| =
20 deg, respectively.273

Figure 10. Battery power, simulation scenario I.
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Figure 11. sUAV PM and γ versus time, simulation scenario II.

Figure 12. SOC and remaining MFR versus time, simulation scenario II, dashed lines show
constrains.

Figure 13. Fuel cell load demand power and split fraction versus time, simulation scenario II. The
dashed and dash-dot lines in top figure indicate the maximum PFC with |γ| = 0 deg and |γ| = 20
deg, respectively.
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Figure 14. Battery power, simulation scenario II.

Figure 15. sUAV PM and γ versus time, simulation scenario III.

Figure 16. SOC and remaining MFR versus time, simulation scenario III, dashed lines show
constrains.
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Figure 17. Fuel cell load demand power and split fraction versus time, simulation scenario III. The
dashed and dash-dot lines in top figure indicate the maximum PFC with |γ| = 0 deg and |γ| = 20
deg, respectively.

Figure 18. Battery power, simulation scenario III.

6. Conclusions274

This paper has considered an endurance maximization problem for a small un-275

manned aerial vehicle (sUAV) with a hybrid propulsion system consisting of a polymer276

electrolyte fuel cell and a battery, both driving an electric motor connected to a propeller.277

A stochastic drift counteraction optimal control (SDCOC) approach was employed to278

develop control policies for optimally coordinating the fuel cell and the battery while279

enforcing the constraints on the fuel cell power output rate of change. Cython has been280

used to implement value iterations and demonstrated an order of magnitude speed-up281

versus MATLAB without increasing the code complexity, due to its efficiency in handling282

nested for loops. Additionally, the use of a discount factor has been shown to signif-283

icantly speed up value iterations at the price of decreased performance. The results284

illustrated the effectiveness of the SDCOC strategy in regulating the charging behavior285

of the battery by the fuel cell to provide the capability to respond to rapidly varying286

motor power demand.287

The proposed approach based on SDCOC is particularly suitable for handling288

stochastic disturbances and can be applied to sUAV exposed to headwind with head-289

wind modeled as a stochastic disturbance. Accounting for such wind disturbances,290

extensions to include thermal dynamics, systematic and comprehensive comparison291

with other energy management approaches and propulsion system choices, systematic292
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study of robustness to model uncertainties as well as actual flight experiments represent293

directions for continuing research. In particular, our study of the discount factor impact294

on the computation time and exit time suggests flight time is sensitive to the choice of295

energy management strategy; our approach based on SDCOC is optimal in the sense of296

maximizing expected flight time within stochastically modelled environment.297
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Abbreviations307

The following abbreviations are used in this manuscript:308

309

EPA Environmental Protection Agency
DMFC Direct methanol fuel cell
sUAV Small unmanned aerial vehicle
MPC Model predictive control
PEMFC Polymer electrolyte membrane fuel cell
RPM Rotations per minute
UAV Unmanned aerial vehicle

310

Appendix A311

The parameters of the sUAV model described in the paper are listed in Table 3.312

Table 3: Parameters used in sUAV model.

Variable Description Value Unit

m Mass of the sUAV 1.5 kg
g Gravitational acceleration 9.81 m/s2

Sre f Wing area 0.09 m2

CD0 sUAV coefficient of drag at α = 0 0.1038 \
K Coefficient in (3) 0.0637 \
dP Diameter of the propeller 0.24 m
J Advance ratio 0.37 \
RM Motor resistance 0.105 Ω
IM,0 Motor current at zero load 1.3 A
KV Motor speed constant 1490 RPM/V
nFC Number of single cells in series 12 \
P0 Bias power of the fuel cell 5 W
κaux Coefficient in (12) 0.05 V
AFC Fuel cell area 200 cm2

∆g f Molar specific Gibbs free energy 237.3 kJ/mol
ne Number of ions passed in reaction 2 \
F Faraday constant 96485 C/mol
T̄ Temperature of the reaction 333.15 K
αFC Charge transfer coefficient 0.5 \
R Universal gas constant 8.314 J/(mol ·K)
RFC Ohmic resistance defined in (15) 0.0024 Ω
d0 Coefficient in (16) 3e-5 V
d1 Coefficient in (16) 8 cm2/A
k0 Coefficient in (18) 4 \
k1 Coefficient in (18) 1 \
Mh Molecular weight of H2 2 g/mol
nB Number of batteries in series 8 \
UB,min Open circuit voltage when SOC = 0 2.5 V
UB,max Open circuit voltage when SOC = 1 4.2 V
RB,int Battery internal resistance 0.012 Ω
CB Standard discharge capacity 14400 C
IB,max Maximum discharge current 35 A
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