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Abstract

The work is concerned with two problems: a) analysis of a DPG method set up in fractional en-
ergy spaces, b) use of the results to analyze a non-conforming version of the DPG method for general,
polyhedral meshes. We use the ultraweak variational formulation for the model Laplace equation. The
theoretical estimates are supported with 3D numerical experiments.

1 Introduction

Model problem. The presented work is concerned with the analysis of a non-conforming version of the
Discontinuous Petrov-Galerkin (DPG) Method with Optimal Test Functions based on the Ultraweak (UW)
variational formulation. We shall focus on the model Poisson problem,{

−∆u = f in Ω

u = 0 on Γ

where Ω ⊂ IRN is a Lipschitz domain with boundary Γ. The UW formulation derives from the equivalent
system of first order equations, 

σ −∇u = 0 in Ω

−div σ = f in Ω

u = 0 on Γ

which can be represented concisely in the operator form,

Au = f .

Here u := (σ, u) is a group variable, f = (0, f), and

Au = A(σ, u) = (σ −∇u,−div σ) .

More precisely,
A : L2(Ω) ⊃ D(A)→ L2(Ω)

is a closed operator with

D(A) := {(σ, u) ∈ L2(Ω) ; A(σ, u) ∈ L2(Ω), u = 0 on Γ} = H(div,Ω)×H1
0 (Ω) ,
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where L2(Ω) := L2(Ω)N × L2(Ω). The UW variational formulation is obtained by multiplying both equa-
tions with test functions τ, v and integrating by parts both equations. We obtain,{

u ∈ L2(Ω)

(u, A∗v) = (f, v) v ∈ D(A∗) .
(1.1)

Here A∗ is the L2-adjoint of operator A,

A∗ : L2(Ω) ⊃ D(A∗)→ L2(Ω)

A∗v = A(τ, v) = (τ +∇v, div τ) ∈ L2(Ω)

D(A∗) = D(A) .

The broken UW formulation is obtained by testing with test functions from a larger space of broken test func-
tions V (Th) := H(div, Th) × H1(Th). This necessitates introducing additional unknowns - the Lagrange
multipliers, called traces,{

u ∈ L2(Ω), û := (σ̂ · n, û) ∈ H−1/2(Γh)× H̃1/2(Γh)

(u, A∗hv)− 〈û, v〉Γh = (f, v) v ∈ V (Th) .
(1.2)

Here Th denotes a partition of the domain into finite elements, whose set of interfaces (or skeleton) is Γh

and
〈û, v〉Γh =

∑
K∈Th

[〈σ̂ · n, v〉∂K + 〈û, τ · n〉∂K ] .

Trace σ̂ · n is defined by taking a function fromH(div,Ω), restricting it to each elementK ∈ Th, and taking
its normal trace on element boundary ∂K. Similarly, trace û is obtained by taking a function from H1

0 (Ω),
restricting it to each element K, and taking its trace on ∂K. The “tilde” symbol hides boundary condition
on trace û,

H̃1/2(Γh) := {û ∈ H1/2(Γh) : û = 0 on Γ} .

It has been shown in [12] that problem (1.2) is well-posed.

The broken UW formulation is perhaps the least demanding formulation in terms of global conformity.
The L2 space is discretized with discontinuous functions, and so are the broken test spaces. The trace space
H−1/2(Γh) is discretized with traces of Raviart-Thomas elements, i.e. with discontinuous functions over
faces e in the mesh skeleton Γh. Only the discretization of û, done with traces of H1-conforming elements,
requires a global continuity over the element faces.

The numerical approximation to the solution of (1.2) implies a non-symmetric functional setting and
solving the question if the discrete version of the problem is well-posed. To this end, the DPG finite ele-
ment methodology, explained next, offers a framework that may solve this model problem, and any other
variational problem that fits into the abstract setting that we now present.
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DPG: Discontinuous Petrov-Galerkin with optimal test functions Suppose that we have the following
abstract variational problem: find u ∈ U such that

b(u, v) = `(v) ∀v ∈ V , (1.3)

where both trial space U and test space V are real Hilbert spaces, ` ∈ V ′, and b(·, ·) : U × V → R is a
bilinear continuous functional, with continuity constant M , that satisfies the inf-sup condition

inf
u∈U

sup
v∈V

|b(u, v)|
‖u‖U ‖v‖V

= γ > 0. (1.4)

The energy norm ‖ · ‖E on U is defined as follows:

‖u‖E = sup
v∈V

|b(u, v)|
‖v‖V

. (1.5)

Let B : U → V ′ be a linear operator defined by Bu := b(u, ·); then (1.5) is equivalent to

‖u‖E = sup
v∈V

|〈Bu, v〉|
‖v‖V

= ‖Bu‖V ′ . (1.6)

The ideal DPG method: The ideal DPG method is a minimum residual FE method that delivers the best
approximation error in the energy norm (1.5). This is equivalent to minimizing the residual in the dual test
space norm (by virtue of (1.6)). More precisely, given a discrete trial subspace U h ⊂ U with dimension
Nh, the ideal DPG solution uh ∈ U h satisfies

‖u− uh‖E = inf
wh∈U h

‖u−wh‖E = inf
wh∈U h

‖B(u−wh)‖V ′ = inf
wh∈U h

‖`−Bwh‖V ′ . (1.7)

where u ∈ U is the exact solution to (1.3). Now, let RV : V → V ′ be the Riesz map of V associated with
norm ‖ · ‖V . Then,

‖u− uh‖E = inf
wh∈U h

‖R−1
V (`−Bwh)‖V . (1.8)

By working out the minimization problem in (1.8), the ideal DPG corresponds to the following Petrov-
Galerkin formulation [27]: find uh ∈ U h such that

b(uh, vh) = `(vh) ∀vh ∈ V h := TU h ⊂ V , (1.9)

where T : U → V is the trial-to-test map, defined by T := R−1
V B. The functions in V h are known as op-

timal test functions because they automatically grant discrete stability to this Petrov-Galerkin discretization.
The following stability estimate holds for the solution of (1.9) [27]:

‖u− uh‖U ≤
M

γh
inf

wh∈U h
‖u−wh‖U ≤

M

γ
inf

wh∈U h
‖u−wh‖U , (1.10)

where γh ≥ γ is the discrete inf-sup constant of the bilinear functional b.
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Remark 1 For our model problem, we can identify the ingredients of the ideal abstract DPG method as
follows: u is the trial group variable (u, û) = (σ, u, σ̂ · n, û); v is the test group variable v = (τ, v); the trial
space is U = L2(Ω)×H−1/2(Γh)×H̃1/2(Γh), while the (broken) test space is V = H(div, Th)×H1(Th);
the bilinear functional b(u, v) and the linear operator `(v) are the left-hand side and right-hand side of the
equation in (1.2), respectively. Constants M and γ are found in [26, 35].

DPG in practice: Unless we are dealing with a very special test space, for which inverting its Riesz map
RV is feasible, in general this problem is infinite-dimensional, so it is impossible to perform without some
approximation. Hence we need to work with a finite-dimensional enriched test space V r ( V rather
than with the whole space. The dimension of this space is Nr ≥ Nh. To attain the so-called practical
DPG method, the only required modification to (1.9) is to replace T by its discrete counterpart Tr :=

(RV r)−1ιTB, that maps trial functions into the enriched test space; here, RV r is the Riesz map of V r and
ιT is the transpose of the inclusion ι : V r → V .

We may now translate the formulation into an algebraic problem. Let’s take a basis of V r, {vrk}Nrk=1;
hence the near-optimal test functions {vi,n-opt}Nhi=1 can be computed through

vi,n-opt =

Nr∑
j,k=1

(BT)ij(G
−1)jkvk i = 1, ..., Nh, (1.11)

where B is called the enriched stiffness matrix, and G is the Gram matrix of V r, defined by

Bji := b(ui, v
r
j), Gkj := (vrj , v

r
k)V

where {ui}Nhi=1 is a basis for U h. Additionally, define the vector l by lk := `(vrk). If the numerical solution
is written like uh =

∑
uidi, the coefficient vector d solves the discrete linear system

BTG−1Bd = BTG−1l. (1.12)

In (1.12), let the left-hand side matrix be denoted Bn-opt = BTG−1B, which is symmetric and positive
definite, and the right-hand side vector by ln-opt = BTG−1l, where the n-opt superscript alludes to the
near-optimal test functions being utilized. In short, the practical DPG solves the problem Bn-optd = ln-opt.

The stability of the ideal DPG method is carried over to the practical DPG method if there exists a linear
operator ΠF : V → V r, hereinafter referred to as the Fortin operator, satisfying these conditions [35]:{

b(uh, v−ΠF v) = 0 ∀v ∈ V , uh ∈ U h (orthogonality)

‖ΠF v‖V ≤ CF ‖v‖V ∀v ∈ V (continuity)
(1.13)

Using CF , the continuity constant of ΠF in (1.13), the estimate (1.10) becomes

‖u− uh‖U ≤
CFM

γ
inf
wh
‖u−wh‖U . (1.14)
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Remark 2 The abstract presentation above only yields a Petrov-Galerkin method with optimal test func-
tions. The use of broken test functions is what gives DPG its discontinuous character. This type of test
functions allows to compute Bn-opt locally and then assemble it into a global matrix, instead of assembling
G globally and inverting it, which would be a much more expensive process than the actual discrete problem.

Polygonal and Polyhedral Finite Element methods. Numerical solutions of boundary value problems
(BVPs) with meshes of general polytopes have raised great attention over the last two decades, although the
first methods were proposed much earlier by Wachspress [52]. The latter introduced rational barycentric
coordinates, which formed a finite element basis over convex polygons, leading to a conforming finite
element (FE) method with a new type of element. We can regard this as the first conforming polygonal FE
method (PFEM), in which a stiffness matrix is computed as in the classical Galerkin formulation, and the
theory of approximation is based on the fact that their discrete spaces fulfill some type of global continuity
which makes them a subspace of the corresponding infinite-dimensional trial or test space. Precisely here
lies a major challenge when working with polytopal elements, as coming up with a conforming finite basis
for arbitrary polygonal or polyhedral meshes requires working with non-polynomial functions.

Other generalized barycentric coordinates on polygons, have been used in this FE approach, enabling the
use of non-convex elements as well. Within the family of PFEM with generalized barycentric coordinates,
we can find methods working with harmonic coordinates [6], entropy coordinates, mean-value coordinates
and others [41]. Applications of such methods are known in elasticity, optimization, crack propagation,
pervasive fracture, etc. [48, 15, 50, 47, 7]. Research on numerical integration on polytopes, adaptive refine-
mentes with such methods, and higher order spaces has also received attention [49, 42, 16, 46, 34].

However, besides PFEM a growing collection of numerical methods that use general polytopes to dis-
cretize is now available, and many are built upon principles other than conforming FE methods.

A related class of finite difference (FD) methods, called the mimetic finite difference (MFD) methods,
but based on mimicking differential operators in a discrete setting, has also been extended to polytopal
grids successfully [38, 9, 9]. From the ideas of MFD, a new method with a growing acceptance nowadays
has been developed: the virtual element method (VEM). The method avoids explicit construction of shape
functions that are conforming to polytopal meshes, but instead tailors spaces that virtually comply with
conformity. The virtual shape functions are not accessed directly, but only through their projection onto
polynomial spaces. VEM has been applied to a large number of applications and has generated high order
approximations of equations of a very diverse nature. Additionally, VEM works with elements with very
relaxes regularity assumptions, which makes it really versatile. It does require, however, a stabilization
term that is problem-dependent. It cannot either deliver its real solution (it is virtual) but only a polynomial
projection of it. For representative developments of the subject, see [3, 21, 4, 10, 20, 13, 14, 33, 5, 19]. Other
methods include versions of Finite Volume (FV) methods, Discontinuous Galerkin FE methods, or similar
approaches that, because of their low-regularity requirements or non-conforming character, can be extended

5



to elements of arbitrary shape [45, 11, 43, 17, 30]. We fail to mention a number of additional techniques
that altogether illustrate that polytopal meshes has become a “hot subject” in numerical analysis.

PolyDPG. DPG has been recently introduced into the family of polygonal methods by Vaziri, Fuentes,
Mora and Demkowicz [51], who have labeled their proposed methodology as PolyDPG. In 2D, the extension
of DPG to polygonal elements has been enabled by the ultraweak variational formulation and broken test
spaces. These two features have allowed for use of discontinuous trial and test functions inside the elements,
leaving the connectivity throughout the domain handled only by trace variables defined on the mesh skeleton,
which in 2D is simply the union of line segments. The issue of finding a basis of globally continuous
basis functions for polygons has thus been avoided. A convergence analysis of the method delivered an
optimal error estimate. The theoretical findings have been verified numerically. The highlights of the two-
dimensional version of PolyDPG, in contrast to other methods, are that it is a high-order and stable polygonal
finite element method, whose ultraweak-conforming discrete spaces are constructed with polynomials only.

Also in 3D, a conforming discretization of trace û ought to consist of basis functions that are globally
continuous throughout the entire mesh skeleton, which is the union of all the faces. Since traditional el-
ements (tetrahedra, hexahedra, prisms and pyramids) possess triangular and quadrilateral faces only, it is
indeed possible to build such discrete spaces (using for instance traces of conforming spaces derived for
such element types, such as those in [32]). Even if the element is a more general polyhedron, but with all
its faces being triangular or quadrilateral, it is possible to have a piecewise polynomial conforming discrete
space for approximating û. If this is the case, we could show the convergence of the practical DPG for
(1.2) following a procedure similar to the 2D case [51], whenever we have analogous assumptions regarding
element shape and Fortin operators.

For general polygonal faces, obtaining such a conforming discrete subspace is not possible with facewise
polynomials only (it is a problem as difficult as getting a globally continuous basis for 2D polygonal meshes).
A discontinuous polynomial basis is therefore a practical but non-conforming way to discretize the subspace
for this unknown.

For this reason, we must study the effect on the stability and approximability of the PolyDPG method
when choosing a discontinuous basis for the trace û. In the literature there are results about this situation
in DPG when dealing with standard elements, but when the element is an arbitrary polyhedron (which has
any number of polygonal faces) the analysis turns more complicated, starting with the fact that there is no
unique reference element or unique reference face, so that we need to argue that the error estimates can be
independent of the element shape.

Next, we review the main ideas and conclusions from previous work on non-conforming DPG and
remark which points are of most interest to us in our analysis.

Existing analysis of non-conforming DPG method. In an early preprint paper on analysis of the DPG
method, Demkowicz and Gopalakrishnan presented 2D computations using discontinuous polynomials for
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the discretization of all traces, making one of the variables non-conforming. Even though this could be
perceived as a “variational crime”, because the analysis was relying on conformity, the numerical results
were satisfactory [26]. Noticing this finding, Heuer, Karkulik and Sayas first studied the convergence of a
DPG method with discontinuous traces on simplicial meshes [36]. Such analysis delivered the following
conclusions:

1. It is possible to furnish the trial space with a weaker norm, and the test space with a stronger norm,
such that the continuous problem remains well-posed and the discretization with discontinuous traces
gives rise to a conforming DPG method (with respect to the new functional setting).

2. If we wish to keep our original trial norm to measure the error, the analysis shows quasi-optimal
convergence for the main unknown only (cf. [36, Theorem 1 and Corollary 2]), while if the trial norm
is the energy norm, all variables are quasi-optimally controlled by the best approximation error (cf.
[36, Remark 9]).

3. The computational implementation is invariant to the choice of the norms mentioned above, since
we can keep computing DPG’s optimal test functions with the Riesz operator corresponding to the
original test norm. In other words, the new functional setting is a theoretical artifice necessary for
proving convergence, but the practical DPG implementation of (1.12) remains as if we had the original
test norm.

Below, we use their argument to transfer our results in fractional-Sobolev test norms to the integral-
Sobolev (original) test norm.

Another relevant development in non-conforming DPG is that by Ernesti and Wieners on space-time
DPG for linear wave problems [31]. There, in what the authors call a “simplified DPG method”, the dis-
cretization of the traces is made independently over each facet of the tensor-product space-time cells, without
enforcing continuity. For the sake of the analysis, it is assumed that there exists a “reconstruction” space,
which is a subspace of the local field space such that its traces deliver the same linear system as the non-
conforming space. Following this assumption, a new discrete norm is proposed and this allows to transfer
the convergence result for a conforming DPG method (cf. [31, Theorem 5.2]) to the non-conforming sce-
nario (cf. [31, Theorem 6.1]). As in the other cited work, here this new subspace is merely virtual, and never
used in computations.

Goal, scope and organization of this paper. The present paper is concerned with the stability analysis
and a-priori error estimate for a non-conforming version of both the ideal and practical DPG methods for
the Poisson problem, in which the discretization of trace û is done with discontinuous polynomials. The
rationale behind this endeavor is that, unlike H1/2, the fractional spaces that we are considering below
contain discontinuous piecewise polynomials, thus this discretization is conforming with respect to the frac-
tional spaces, and the Babuška-Necas theorem provides the stability for this case. Given the complexity of
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a computational implementation of fractional norms, all numerical results reported below correspond to the
original functional setting, which can be interpreted as the limit case of the fractional setting considered in
our theoretical framework.

In Section 2, we start by analyzing the infinite-dimensional scenario of the Poisson model problem
formulated in fractional spaces. After introducing the fractional Sobolev spaces and norms, we show that
the classical variational formulation is well-posed, which in turn helps proving that the ultraweak variational
formulation is well-posed too, as derived in Section 3. Once there, in Section 4 we begin the analysis with
broken test spaces and localization of fractional norms, to get to the first major results: the inf-sup condition
of the broken ultraweak formulation, and the stability for the ideal DPG with fractional norms (cf. Theorems
2 and 3).

Section 5 deals with the implications of the present analysis on the practical non-conforming DPG. By
stating and checking four assumptions (one of them deeplier elaborated in Appendix A), we get the discrete
stability for a DPG method that is computationally implemented with the original integral Sobolev norms,
but controlling the error in the weaker fractional norms. This is followed by the analysis on approximability
of the discrete trace spaces (Section 6). The ultimate a-priori error estimates herein developed are found in
Section 7,

A collection of numerical results of PolyDPG with discontinuous discretization of û is presented in
section 8, showing a diverse group of polyhedral meshes on which the method works, delivering convergence
rates similar to the theoretical ones for some or all the unknowns. The conclusions of the paper are included
in Section 9.

2 Classical Variational Formulation

Fractional Sobolev spaces. In this section we review the equivalence of different definitions of fractional
Sobolev spaces Hs(Ω). Most of these equivalences can be found in [23]. We assume that Ω is at least a
Lipschitz domain.

Minimum energy extension norm versus the Slobodeckij norm. Let Ω ⊂ IRN be an arbitrary domain
and assume s ∈ (0, 1).We assume that the definition of Hs(IRN ) is the standard one, see [23]. Then, the
norm on Hs(Ω) is the minimum energy extension norm

‖u‖2Hs(Ω) = min

{
‖U‖2

Hs(IRN
)

: U |Ω = u

}
. (2.15)

The Slobodeckij seminorm is defined by

|u|2s,Ω :=

∫
Ω

∫
Ω

|u(x)− u(y)|2
|x− y|N+2s

dxdy.
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For s ∈ (0, 1/2) the Slobodeckij (rescaled) norm can be defined by

‖u‖2s,Ω := ‖u‖2L2(Ω) + c(s) |u|2s,Ω, (2.16)

where c(s) > 0 and c(s) = O(s) when s→ 0.

It is known, see e.g. [23, Section 3.2], that if a continuous linear extension from (Hs(Ω), ‖ · ‖2s,Ω) to
Hs(IRN ) exists, then the two norms (2.15) and (2.16) are equivalent and define the same space Hs(Ω).

Interpolation and Spectral norm characterization We assume again that Ω ⊂ IRN is an arbitrary
(smooth) domain and let s ∈ (0, 1). One can define Hs(Ω) using the real method of interpolation, see
e.g. [40, Section 9.1], by;

Hs(Ω) :=
[
H1(Ω), L2(Ω)

]
1−s . (2.17)

According to [40, Theorem 9.2], the interpolation norm and the minimum energy extension norm are
equivalent.

The space Hs
0(Ω), interpolation and spectral norm characterization For s ∈ (0,∞) we can define the

space Hs
0(Ω) by

Hs
0(Ω) = C∞0 (Ω)

Hs(Ω)
.

It is known that for s ∈ (0, 1) the space can be also be characterized as

Hs
0(Ω) =

[
H1

0 (Ω), L2(Ω)
]
1−s , (2.18)

Hs
0(Ω) = Hs(Ω) for 0 < s < 1/2, and Hs

0(Ω) is a proper closed subspace of Hs(Ω) for 1/2 < s < 1

Using the interpolation characterization of Hs
0(Ω) we can also describe its norm using the spectrum of

the Laplace operator. More precisely, we consider the operator
−∆ : D(−∆) ⊂ H1

0 (Ω) ⊂ L2(Ω) → L2(Ω), where D(−∆) := {u ∈ H1
0 (Ω) : ∆u ∈ L2(Ω)}. It is

known that the spectrum of −∆ as an (unbounded) operator from L2(Ω) to L2(Ω) is discrete and depends
only on the domain Ω. The eigenvalues λk and corresponding eigenfunctions ek are defined by the problem:
Find ek ∈ H1

0 (Ω) s.t. {
−∆ek = λk ek in Ω

ek = 0 on Γ

It is also known that if the eigenvalues are ordered s.t. 0 < λ1 ≤ λ2 ≤ · · ·λk, · · · , then

lim
k→∞

λk = +∞,

and we can assume w.l.o.g., that {ek}k≥1 form an orthonormal basis for L2(Ω). Then, for any u ∈ L2(Ω),

u =

∞∑
k=1

(u, ek)ek,
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and, denoting uk := (u, ek),

‖u‖2L2(Ω) =
∞∑
k=1

u2
k. (2.19)

For u ∈ H1
0 (Ω) ∩D(−∆), the expansion u =

∑∞
k=1 ukek leads to

−∆u =

∞∑
k=1

λkukek,

consequently,

‖u‖2H1
0 (Ω) = (∇u,∇u) = (−∆u, u) =

∞∑
k=1

λk u
2
k. (2.20)

Using the interpolation definition (2.18) of the space Hs
0(Ω), and the norms on L2 and H1

0 given by
(2.19) and (2.20), respectively, it is easy to see that

‖u‖2Hs
0(Ω) = c−2

s

∞∑
k=1

λsk u
2
k, (2.21)

where cs =
√

2
π sinπs, see e.g., the Appendix of [8].

As a direct consequence, for ε ∈ (0, 1/2) we have

‖u‖2
H1−ε

0 (Ω)
= c−2

ε

∞∑
k=1

λ1−ε
k u2

k. (2.22)

This is because c1−ε =
√

2
π sinπ(1− ε) = cε.

If we assume that we have full regularity for the −∆ operator then the norm on H2(Ω) ∩ H1
0 (Ω) is

equivalent with ‖∆ · ‖ or

‖u‖2H2(Ω)∩H1
0 (Ω) := (∆u,∆u) =

∞∑
k=1

λ2
k u

2
k (2.23)

Thus, for s ∈ (0, 1) the space H1+s
0 (Ω) can be also be characterized as

H1+s
0 (Ω) =

[
H2(Ω) ∩H1

0 (Ω), H1
0 (Ω)

]
1−s ,

Using this (interpolation) definition for H1+s
0 (Ω), and the norms on H2(Ω) ∩H1

0 (Ω) and H1
0 (Ω) given by

(2.23) and (2.20), respectively, one can check, by estimating the K functional, that

‖u‖2
H1+ε

0 (Ω)
= c−2

ε

∞∑
k=1

λ1+ε
k u2

k. (2.24)
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Well-posedness of the classical variational formulation in fractional spaces. Given ε ∈ (0, 1/2) we
consider the following variational formulation: Find u such that{

u ∈ H1−ε(Ω),

(∇u,∇v) = (f, v), for all v ∈ H1+ε(Ω).

Consider that the norms on H1−ε
0 (Ω) and H1+ε

0 (Ω) are given by (2.22) and (2.24), respectively.

Then, we can establish the following result.

Lemma 1
The following estimate holds:

sup
v∈H1+ε

0 (Ω)

(∇u,∇v)

‖v‖H1+ε
0 (Ω)

= c2
ε ‖u‖H1−ε

0 (Ω). (2.25)

Proof: Let u =
∑∞

k=1 ukek ∈ H1−ε
0 and v =

∑∞
k=1 vkek ∈ H1+ε

0 . Then, using the Cauchy-Schwarz
inequality,

(∇v,∇u) = (−∆v, u) =
∞∑
k=1

λk uk vk =
∞∑
k=1

λ
1−ε

2
k uk λ

1+ε
2

k vk

≤
( ∞∑
k=1

λ1−ε
k u2

k

)1/2 ( ∞∑
k=1

λ1+ε
k v2

k

)1/2

= cε‖u‖H1−ε
0 (Ω) cε‖v‖H1+ε

0 (Ω).

(2.26)

To prove the reverse inequality we fix u =
∑∞

k=1 ukek ∈ H1−ε
0 and define vu by

vu =
∞∑
k=1

λ−εk ukek.

One can immediately check that vu ∈ H1+ε
0 (Ω) and ‖vu‖H1+ε

0 (Ω) = ‖u‖H1−ε
0 (Ω). Then

sup
v∈H1+ε

0 (Ω)

(∇u,∇v)

‖v‖H1+ε
0 (Ω)

≥ (∇u,∇vu)

‖vu‖H1+ε
0 (Ω)

=

∑∞
k=1 λ

1−ε
k u2

k

‖u‖H1−ε
0 (Ω)

= c2
ε ‖u‖H1−ε

0 (Ω).

NOTE: If we define the norm on the fractional spaces without cε the constant in the above Lemma is
1. Since for s > 1/2 the L2 component of the Hs norm is not essential we may decide to work with the
spectral norm

‖u‖2s,0 :=

∞∑
k=1

λsk u
2
k.
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3 Ultraweak Variational Formulation

The well-posedness analysis of various variational formulations presented in [22] extends easily to fractional
spaces. Let s ∈ [0, 1

2). Operator A corresponding to the strong formulation is defined as follows.

u = (σ, u)

H−s(Ω) = H−s(Ω)2 ×H−s(Ω)

D(A) := H−s(div Ω)×H1−s
0 (Ω) ⊂ H−s(Ω)

A : H−s(Ω) ⊃ D(A)→ H−s(Ω)

Au := (σ −∇u,−div σ)

Its topological transpose is defined on the dual space,

v = (τ, v)

Hs(Ω) = Hs(Ω)2 ×Hs(Ω)

D(A∗) := Hs(div Ω)×H1+s
0 (Ω) ⊂ Hs(Ω)

A∗ : Hs(Ω) ⊃ D(A∗)→ Hs(Ω)

A∗v := (τ +∇v, div σ)

Since we intend to pass with s→ 0, we assume a more regular than necessary load f = (0, f), f ∈ L2(Ω).
The UW formulation in the fractional spaces looks now as follows.{

u ∈ H−s(Ω)

〈u, A∗v〉 = (f, v) v ∈ D(A∗)
(3.27)

where 〈·, ·〉 denotes the duality pairing between H−s(Ω) and Hs(Ω) andD(A∗) is the subspace of the adjoint
graph energy space,

HA∗(Ω) := {v ∈ Hs(Ω) : A∗v ∈ Hs(Ω)} .

THEOREM 1
The ultraweak variational formulation (3.27) is well-posed.

Proof:

Step 1: Operator A is bounded below. Let l := (g, f) = Au = A(σ, u), i.e.,

σ −∇u = g

div σ = f .
(3.28)

Testing the second equation with v ∈ Hs
0(grad,Ω) = H1+s

0 (Ω), and integrating the left-hand side by parts,
we obtain,

〈σ,∇v〉 = 〈f, v〉 v ∈ H1+s
0 (Ω) .

12



Substituting σ = ∇u+ g, we get,

〈∇u,∇v〉 = 〈f, v〉 − 〈g,∇v〉 v ∈ H1+s
0 (Ω) .

In other words, u satisfies the classical variational formulation discussed in the previous section. By the
results obtained there, we have

‖u‖H1−s(Ω) ≤ C‖l‖H−s(Ω) .

But, simultaneously, from (3.28)1,

‖σ‖H−s(Ω) ≤ ‖∇u‖H−s(Ω) + ‖g‖H−s(Ω) ≤ C‖l‖H−s(Ω)

and, from (3.28)2,
‖div σ‖H−s(Ω) ≤ ‖f‖H−s(Ω)

which shows that A is bounded below.

Step 2: Operator A∗ is injective. Indeed, following a similar reasoning to the previous step, we first
show that ∇v = 0 in Hs(Ω) which implies that v is a constant. But the homogeneous BC on v implies that
v must be zero. Consequently, τ = −∇v = 0 as well.

Step 3: We invoke the Closed Range Theorem for Closed Operators that shows thatA∗ is bounded below
with the same constant as operator A. Surjectivity and boundedness below of A∗ implies now immediately
that the bilinear form in the UW fomulation satisfies the inf-sup condition. Indeed, take any u ∈ H−s(Ω).
Let w ∈ Hs(Ω) be the Riesz representation of functional 〈u, ·〉. Take now the unique v ∈ D(A∗) such that
Av = w. We have,

〈u, A∗v〉 = 〈u,w〉 = ‖u‖2H−s(Ω) .

At the same time,
‖v‖HA∗ (Ω) ≤ (1 + α−1)‖w‖Hs(Ω) = (1 + α−1)‖u‖H−s(Ω)

where α is the boundedness below constant for operators A and A∗. Consequently,

〈u, A∗v〉
‖v‖HA∗ (Ω)

≥ (1 + α−1)−1‖u‖H−s(Ω) .

The injectivity of A∗ implies that space

V0 := {v ∈ D(A∗) : 〈u, A∗v〉 = 0 ∀u ∈ H−s(Ω)}

is trivial and, therefore, the Babuška-Nečas Theorem implies that the UW variational formulation is well-
posed.

Remark 3 One can follow the reasoning in [22] to show that the well-posedness of the UW formula-
tion implies the well-posedness of the classical formulation. All three discussed formulations: the strong
formulation, the classical one, and the UW formulation, are thus simultaneously well-posed.
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4 Broken UW Variational Formulation

Equivalence of standard and localized fractional norms. Given a quasi-uniform, shape-regular FE
mesh Th, we introduce the localized fractional norm,

‖v‖2Hε(Th) :=
∑
K∈Th

‖v‖2Hε(K) . (4.29)

The localized norm is obviously bounded by the standard, global norm. The converse is also true, with an
expected blow-up as h→ 0.

Lemma 2
There exists a constant C, independent of h such that

‖v‖Hε(Ω) ≤ Ch−ε‖v‖Hε(Th) v ∈ Hε(Ω) . (4.30)

Proof: Let G denote the family of pairs of neighboring elements (K1,K2),

G := {(K1,K2) ∈ Th × Th : K̄1 ∩ K̄2 6= ∅} G :=
⋃

(K1,K2)∈G

K1 ×K2 .

Consider the corresponding decomposition1,

Ω× Ω = G ∪G′ .

The assumption on shape regularity implies that the number of immediate neighbors for an element is
uniformly bounded, i.e. the number of times each element K in the mesh appears as K1 or K2 in family G,
is bounded uniformly in K (with constant growing exponentially with dimension N ). The assumption on
quasi-uniformity implies that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2h K ∈ Th .

This in turn implies that there exists a constant C > 0, such that

G′ ⊂ {(x, y) ∈ Ω× Ω : |x− y| ≥ Ch} .

Consider now a pair (K1,K2) ∈ G. We have,∫
K1

∫
K2

|u(x)− u(y)|2
|x− y|N+2ε

dx dy ≤ 2

∫
K1

∫
K2

|u(x)|2
|x− y|N+2ε

dx dy + 2

∫
K1

∫
K2

|u(y)|2
|x− y|N+2ε

dx dy .

1Up to subsets of measure zero.
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It is sufficient to focus on estimating one of the integrals only, say,∫
K1

|u(x)|2
∫
K2

1

|x− y|N+2ε
dy dx .

Switching to spherical coordinates, we can estimate the inner integral,∫
K2

1

|x− y|N+2ε
dy ≤ |S1|

∫
d(x,e)

1

rN+2ε
rN−1dr =

|S1|
2ε

d(x, e)−2ε

where |S1| is the measure of the unit sphere, and d(x, e) denotes the distance to a hypersurface e separating
the two elements, see Fig. 4.1. We extend now u to a function U ∈ C∞0 (IRn). By Lemma 3.5.5 from [23],

Figure 4.1: Estimation of double integral over two neighboring elements. Notation.

see also Remark 3.5.2 there, there exists a constant C(ε), C(ε)→ 1 as ε→ 0 such that∫
K1

|u(x)|2d(x, e)−2εdx ≤ C(ε)‖U‖2
Hε(IRn

)
.

Passing to the minimum energy extension on the right-hand side, we obtain,∫
K1

|u(x)|2d(x, e)−2εdx ≤ C(ε)‖u‖2Hε(K1) .

The integral over the complementary domain G′ is estimated as follows.∫∫
G′

|u(x)− u(y)|2
|x− y|N+2ε

dxdy ≤ 2

∫∫
G′

|u(x)|2
|x− y|N+2ε

dxdy + 2

∫∫
G′

|u(y)|2
|x− y|N+2ε

dxdy

= 4

∫∫
G′

|u(x)|2
|x− y|N+2ε

dxdy .
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The last integral is now estimated with the L2-norm,∫
Ω
|u(x)|2

∫
|x−y|>h

1

|x− y|N+2ε
dy dx ≤

∫
Ω
|u(x)|2

∫ ∞
h

|S1|
rN+2ε

rN−1 dr dx

≤ |S1|
2ε

h−2ε

∫
Ω
|u(x)|2 dx .

Remark 4 For polyhedral elements, the quasi-uniformity assumption on the mesh remains unaltered.
However, the shape regularity needs to be understood differently. For the sake of Lemma 2, what matters is
to have a uniform bound on the number of immediate neighbors an element can have. An effective way to
bound such a quantity is to establish a maximum number of faces per polyhedral element. The higher such
maximum is, the larger the equivalence constant may become.

Stability analysis for the broken UW variational formulation in fractional spaces. We reformulate
now the UW formulation (1.2) in fractional spaces,{

u ∈ H−ε(Ω), û := (σ̂ · n, û) ∈ H−1/2−ε(Γh)× H̃1/2−ε(Γh)

〈u, A∗hv〉 − 〈û, v〉Γh = (f, v) v ∈ V ε(Th) .
(4.31)

Here 〈·, ·〉 denotes the duality pairing between H−ε(Ω) and Hε(Ω), and

H±ε(Ω) = H±ε(Ω)N ×H±ε(Ω)

V ε(Th) = Hε(div, Th)×Hε(grad, Th)

H−1/2−ε(Γh) = {t̂ = {tK}K∈Th : ∃σ ∈ H−ε(div,Ω) : tK = γn,∂Kσ|K}
H1/2−ε(Γh) = {û = {uK}K∈Th : ∃u ∈ H−ε(grad,Ω) : uK = γ∂Ku|K}

with

〈û, v〉Γh =
∑
K∈Th

[
〈σ̂ · n, v〉H−1/2−ε(∂K)×H1/2+ε(∂K) + 〈û, τ · n〉H1/2+ε(∂K)×H−1/2−ε(∂K)

]
.

The trace spaces defined on the mesh skeleton are equipped with the minimum energy extension norms. The
broken test spaces are equipped with the localized test norms derived from (4.29),

‖τ‖2Hε(div,Th) :=
∑
K∈Th

[
‖τ‖2Hε(K) + ‖div τ‖2Hε(K)

]
‖v‖2Hε(grad,Th) :=

∑
K∈Th

[
‖v‖2Hε(K) + ‖grad τ‖2Hε(K)

]

Corollary 1 Let v ∈ V ε(Th) be a broken test function. Lemma 2 implies that the union of A∗hv is an
element of Hε(Ω) and,

|〈u, A∗hv〉| ≤ C‖u‖H−ε(Ω) ‖A∗hv‖Hε(Ω) ≤ Ch−ε‖u‖H−ε(Ω) ‖A∗hv‖Hε(Th)

≤ Ch−ε‖u‖H−ε(Ω) ‖v‖V ε(Th) .
(4.32)
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The stability analysis follows closely the arguments from [12]. Let

l(v) := 〈u, A∗hv〉 − 〈û, v〉Γh .

Stability of unbroken UW formulation implies the control of field variable u,

γ‖u‖H−ε(Ω) ≤ sup
v∈V ε

|〈u, A∗hv〉|
‖v‖V ε

≤ sup
v∈V ε

|〈u, A∗hv〉|
‖v‖V ε(Th)

= sup
v∈V ε

|〈u, A∗hv〉 − 〈û, v〉Γh |
‖v‖V ε(Th)

≤ sup
v∈V ε(Th)

|l(v)|
‖v‖V ε(Th)

=: ‖l‖(V ε(Th))′ .

It follows that,

sup
v∈V ε(Th)

|〈û, v〉Γh |
‖v‖V ε(Th)

≤ ‖l‖(V ε(Th))′ + Ch−ε‖u‖H−ε(Ω)

≤ (1 + Cγ−1h−ε)‖l‖(V ε(Th))′ .

As in [12], the big question is now whether the quantity on the left represents a norm and how to characterize
it. Upon unpacking the duality pairing on the skeleton, we have,(

sup
v∈V ε(Th)

|〈û, v〉Γh |
‖v‖V ε(Th)

)2

=
∑
K∈Th

(
‖σ̂ · n‖(H1/2+ε(∂K))′

)2

︸ ︷︷ ︸
=:‖σ̂·n‖2

H−1/2−ε(Γh)

+
∑
K∈Th

(
‖û‖(H−1/2+ε(∂K))′

)2

︸ ︷︷ ︸
=:‖û‖2

H1/2−ε(Γh)

=: ‖û‖2

where the dual norms on the right-hand side are computed with respect to minimum energy extension norms.

‖v̂‖2
H1/2+ε(∂K)

:= inf
tr∂Kv=v̂

[
‖v‖2Hε(K) + ‖gradv‖2Hε(K)

]
‖t̂‖2

H−1/2+ε(∂K)
:= inf

trn,∂Kτ=t̂

[
‖τ‖2Hε(K) + ‖divτ‖2Hε(K)

] (4.33)

It has been shown in [23], Section 4.2, that the dual norms are equivalent to the minimum energy
extension norms,

‖σ̂ · n‖H−1/2−ε(∂K) and ‖û‖H1/2−ε(∂K) .

This implies that the supremum represents indeed a norm. Control of equivalence constants is more delicate.
The dual norms are bounded with minimum energy extension norm (with a unit equivalence constant). This
will help with the estimation of the best approximation error. However, the estimation of the equivalence
constant in the other direction involves a partition of unity argument which makes, a priori, the constant
dependent upon the domain (in our case, an element K). Note that, for ε = 0, the dual and minimum energy
extension norms are equal [12, 23].

We summarize our findings in the following theorem.
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THEOREM 2
The following inf-sup condition holds:

min(γ, (1 + Cγ−1hε)−1)
(
‖u‖2H−ε(Ω) + ‖û‖2

) 1
2 ≤ ‖l‖(V ε(Th))′ = sup

v∈V ε(Th)

|〈u, Ahv〉+ 〈û, v〉Γh |
‖v‖V ε(Th)

(4.34)

More precisely,
γ‖u‖ ≤ ‖l‖(V ε(Th))′

(Cγ−1h−ε)−1‖û‖ ≤ ‖l‖(V ε(Th))′

THEOREM 3
Let (uh, ûh) be the ideal DPG method solution where ûh = (σ̂ · nh, ûh).
The following a-priori error estimates hold:

γ‖u− uh‖H−ε(Ω) ≤ Ch−ε inf
wh
‖u− wh‖H−ε(Ω)

+(
∑
K∈Th

{inf
t̂h

‖σ · n− t̂h‖2H−1/2−ε(∂K)
+ inf

ŵh
‖u− ŵh‖2H1/2−ε(∂K)

}) 1
2

(4.35)

and

(1 + Cγ−1h−ε)−1 (
∑
K∈Th

{‖σ · n− σ̂ · nh‖2(H1/2+ε(∂K))′ + ‖u− ûh‖2(H−1/2+ε(∂K))′})
1
2

≤ Ch−ε inf
wh
‖u− wh‖H−ε(Ω)

+(
∑
K∈Th

{inf
t̂h

‖σ · n− t̂h‖2H−1/2−ε(∂K)
+ inf

ŵh
‖u− ŵh‖2H1/2−ε(∂K)

}) 1
2 .

(4.36)

Proof: We only need to recall continuity estimate (4.32) and use the bound:

|
∑
K∈Th

(〈σ̂ · n, v〉∂K + 〈û, τ · n〉∂K)| ≤ (
∑
K∈Th

(‖σ̂ · n‖2
H−1/2−ε(∂K)

+ ‖û‖2
H1/2−ε(∂K)

))
1
2 ‖v‖V ε(Th) .

5 Implications for the Non-conforming DPG Method

In the preceeding sections we have developed a theory for a DPG method formulated in fractional spaces.
By weakening the trial norm and strengthening the test norm, we have been able to employ the discontinuous
discretization of traces which, in the relaxed energy setting, has become conforming. The discussed results
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require computations with the stronger, fractional test norm which is not attractive at all from the practical
point of view.

In this section, we show how one can combine arguments developed in [36] to conclude semioptimal
convergence results in the weaker, fractional H−ε norms, computing with the standard test norm. In other
words, we change the analysis but not the computations.

We begin by recalling the results from [36] formulated in an abstract form. We assume that we can
introduce an alternate functional setting with a stronger test norm ‖v‖V , and a weaker trial norm ‖u‖U ,

‖v‖V ≤ ‖v‖V v ∈ V ⊂ V and ‖u‖U ≤ ‖u‖U u ∈ U ⊂ U .

We postulate now that the following conditions are satisfied.

Assumption 1: Inf-sup condition in the modified setting,

γ̃‖u‖U ≤ sup
v∈V

|b(u, v)|
‖v‖V

.

Assumption 2: Existence of Fortin operators for the stronger test norm, leading to the discrete stability in
the weaker norm,

γ̃

CF
‖uh‖U ≤ sup

vh∈Vr

|b(uh, vh)|
‖vh‖V

≤ sup
vh∈Vr

|b(uh, vh)|
‖vh‖V

uh ∈ Uh ⊂ U .

Assumption 3: Continuity of the bilinear form on the finite-dimensional enriched test space,

|b(u, vh)| ≤Mr‖u‖U ‖vh‖V vh ∈ Vr ⊂ V .

Assumption 4: Galerkin orthogonality,

b(uh − u, v) = 0 u ∈ U , uh ∈ Uh ⊂ U , v ∈ Tr(Uh)

where Tr : U → Vr is the approximate trial-to-test operator corresponding to the original test norm.

With the four assumptions satisfied, we can use now the standard Strang’s argument to establish the follow-
ing a-priori estimate in the weaker norm.

‖u− uh‖U ≤ ‖u− wh‖U + ‖wh − uh‖U (triangle inequality)

≤ ‖u− wh‖U +
CF
γ̃

sup
vh∈Vr

|b(wh − uh, vh)|
‖vh‖V

(discrete stability)

= ‖u− wh‖U +
CF
γ̃

sup
vh∈T r(Uh)

|b(wh − uh, vh)|
‖vh‖V

(definition of optimal test functions)

= ‖u− wh‖U +
CF
γ̃

sup
vh∈T r(Uh)

|b(wh − u, vh)|
‖vh‖V

(Galerkin orthogonality)

≤ (1 +
CF
γ̃
Mr)‖u− wh‖U .

We now verify the assumptions.
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• The inf-sup condition for the fractional setting has been proved in Theorem 2. Inf-sup constant γ̃ is
of order hε. For the fields alone, the inf-sup constant is of order one.

• Construction of the Fortin operators has been delegated to Appendix A. For tetrahedral meshes, we
are able to employ any of the existing H1 Fortin operators and, following [36], the standard Raviart-
Thomas interpolation operator for the H(div) Fortin operator. Moreover, the construction extends to
arbitrary polyhedral meshes, provided we use tetrahedral subelement meshes to define the enriched
spaces. Due the scaling properties of the fractional norm, the Fortin constant is of order h−ε.

• The continuity of the bilinear form for enriched space test functions is based on the finite-dimensionality
argument. For instance,

‖τ‖2Hε(T ) . h−1−2ε‖τ̂‖2
Hε(T̂ )

(scaling for Piola transform)

. C(r)h−1−2ε‖τ̂‖2
L2(T̂ )

(finite dimensionality argument)

. C(r)h−2ε‖τ‖2L2(T ) (scaling for Piola transform) .

The norm equivalence constant clearly depends upon the order r of the enriched space, but for limited
range of ε, it can be claimed to be independent of ε. In the end, the continuity constant is Mr ≈
C(r)h−2ε. One factor hε is lost due to the scaling properties discussed above, the other comes from
the global continuity estimate (4.32).

• The Galerkin orthogonality condition is clearly satisfied.

THEOREM 4
Let (uh, ûh) be the practical DPG method solution where ûh = (σ̂ · nh, ûh).
The following a-priori error estimates hold.

‖u− uh‖H−ε(Ω) ≤

C(ε)h−3ε

inf
wh
‖u− wh‖H−ε(Ω) + (

∑
K∈Th

[inf
t̂h

‖σ · n− t̂h‖2H−1/2−ε(∂K)
+ inf

ŵh
‖u− ŵh‖2H1/2−ε(∂K)

])
1
2


(5.37)

and

(
∑
K∈Th

{‖σ · n− σ̂ · nh‖2(H1/2+ε(∂K))′ + ‖u− ûh‖2(H−1/2+ε(∂K))′})
1
2

≤ C(ε)h−4ε

inf
wh
‖u− wh‖H−ε(Ω) + (

∑
K∈Th

[inf
t̂h

‖σ · n− t̂h‖2H−1/2−ε(∂K)
+ inf

ŵh
‖u− ŵh‖2H1/2−ε(∂K)

])
1
2

 .

(5.38)
Above, ε ∈ (0, 1

2) and stability constant C(ε)→∞ as ε→ 0.

20



6 Best Approximation Error Estimates for Polyhedral Elements

6.1 Best Approximation Error Estimate for the Minimum Energy Extension H1/2−ε Norm

The philosophy of developing the best approximation error estimates mirrors the classical approach for finite
elements. We move to a master element, apply the Bramble-Hilbert argument, and pullback to the physical
element with the proper power of element size resulting from scaling the Sobolev seminorms. There are
several delicate steps in the derivations presented next. First of all, all norms equivalence arguments are to
be executed only on the master element. In this way, we employ a number of constants that depend upon
the master element but not a particular physical element. Secondly, contrary to standard meshes with affine
elements, we are dealing not with a single master element but rather a family of “unit” finite elements of
different shape and number of faces. Hence we have to make perhaps a “hand-waving” assumption that the
constants are uniformly bounded for all our “master elements”.

Given an element K, we begin with the estimation of the norm dual to the minimum energy extension
norm ‖τ · n‖H−1/2+ε(∂K),

‖u‖(H−1/2+ε(∂K))′ = sup
τ∈Hε(div,K)

|〈u, τ · n〉∂K |
‖τ‖Hε(div,K)

.

Let u ∈ H1/2−ε(∂K) and let U ∈ Hε(grad,K) be an arbitrary lift of u. We have,

(∗) :=

(
sup

τ∈Hε(div,K)

|〈u, τ · n〉∂K |
‖τ‖Hε(div,K)

)2

=

(
sup

τ∈Hε(div,K)

|〈U, divτ〉+ 〈∇U, τ〉|
(‖τ‖2Hε(K) + ‖divτ‖2Hε(K))

1/2

)2

=

 sup
τ̂∈Hε(d̂iv,K̂)

|〈Û , d̂ivτ̂〉+ 〈∇̂Û , τ̂〉|
(h−1‖τ̂‖2

L2(K̂)
+ h−1+2ε|τ̂ |2

Hε(K̂)
+ h−3‖d̂ivτ̂‖2

L2(K̂)
+ h−3+2ε|d̂ivτ̂ |2

Hε(K̂)
)1/2

2

≤

 sup
τ̂∈Hε(d̂iv,K̂)

|〈Û , d̂ivτ̂〉+ 〈∇̂Û , τ̂〉|
(h−1+2ε‖τ̂‖2

Hε(K̂)
+ h−3+2ε‖d̂ivτ̂‖2

Hε(K̂)
)1/2

2

Above, element K̂ is a unit element (with hK̂ = 1) obtained by translation and simple scaling of element K
of size h. We employ the standard Piola transforms for the exact sequence elements,

U = Û , E = h−1Ê, τ = h−2τ̂ , f = h−3f̂ .

Note that (U, f)K = (Û , f̂)K̂ and (E, τ)K = (Ê, τ̂)K̂ for (regular) functions. The scaling extends to
duality pairing by a density argument or, equivalently, by using it as a definition of transform for elements
U ∈ H−ε(grad,K) and E ∈ H−ε(curl,K).

We follow with the estimation,

(∗) ≤ h3−2ε‖Û‖2
H−ε(K̂)

+ h1−2ε‖∇̂Û‖2
H−ε(K̂)

≤ h1−2ε‖Û‖2
H−ε(grad,K̂)
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Consequently, the original dual norm is estimated with the minimum energy extension norm of û,

(∗) ≤ h1−2ε‖û‖2
H1/2−ε(∂K̂)

.

We employ now the localization argument,

h1−2ε‖û‖2
H1/2−ε(∂K̂)

≤ C(ε)
∑
f̂⊂∂K̂

‖û‖2
H1/2−ε(f̂)

where the summation extends over all faces f̂ of the unit element. Constant C(ε) blows up at rate ε−1 (see
[25]), and it does depend upon the topology and shape of the unit element.

We define now the approximation up ∈ Pp(f) in such a way that ûp ∈ Pp(f̂) is the orthogonal projec-
tion of û onto the polynomial space in the H1/2−ε-norm,

ûp := arg minŵp∈P(f̂)‖û− ŵp‖H1/2−ε(f̂) .

Employing the Bramble-Hilbert argument, we get,(
sup

τ∈Hε(div,K)

|〈u− up, τ · n〉∂K |
‖τ‖Hε(div,K)

)2

≤ C(ε)h1−2ε
∑
f̂

inf
ŵp
‖û− ŵp‖2H1/2−ε(f̂)

≤ C(ε)h1−2ε
∑
f̂

inf
ŵp
‖û− ŵp‖2Hr(f̂)

≤ C(r)C(ε)h1−2ε
∑
f̂

|û|2
Hr(f̂)

≤ C(r)C(ε)h2r−1−2ε
∑
f

|u|2Hr(f)

for any r ≤ p + 1. C(r) is the Bramble-Hilbert constant or, more precisely, the maximum constant for all
the involved faces. For the maximum r = p+ 1 this leads to the expected rate of convergence,

sup
τ∈Hε(div,K)

|〈u− up, τ · n〉∂K |
‖τ‖Hε(div,K)

≤ C(r)C(ε)hp+
1
2
−ε(
∑
f

|u|2Hp+1(f))
1/2 (6.39)

If we limit ourselves to less regular functions u ∈ Hp+ 1
2 (f), by using a (non-trivial) interpolation argument

we obtain the expected hp−ε rate of convergence.

For different elements K, we obtain the corresponding, different unit “master” elements K̂. In order to
make the derived estimate useful, we have to assume that the class of the unit elements we obtain, is either
finite or that the corresponding localization constant C(ε) and Bramble-Hilbert constant C(r) are uniformly
bounded in K̂.
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6.2 Best Approximation Error Estimate for the Minimum Energy Extension H−1/2 Norm

This time we use a different idea. We introduce a polyhedral H(div)-conforming FE element with an
“infinite number of bubbles” and develop an interpolation error estimate for such an element. Let L2

avg(K)

denote the subspace of L2(K) functions with zero average,

L2
avg(K) := {q ∈ L2(K) :

∫
K
q = 0} .

Lemma 3
Let K be an arbitrary polyhedron with flat faces f .

1. For every q ∈ L2
avg(K), there exists a bubble σ ∈ H0(div,K) such that divσ = q.

2. For every face f , and an arbitrary t ∈ P(f), there exists a function σ ∈ H(div,K) such that normal
trace σ · n = t on the face f , and it vanishes on the remaining faces.

Proof:

1. Consider the Neumann problem,
U ∈ H1(K)∫
K
∇U · ∇V =

∫
K
q V V ∈ H1(K)

and take σ = −∇U .

2. Consider the Neumann problem,
U ∈ H1(K)∫
K
∇U · ∇V + U V =

∫
f
t V V ∈ H1(K)

and take σ = −∇U . Note that divσ = −∆U = −U ∈ L2(K).

We introduce now a “finite element” with the FE space defined as

V p(K) := {σ ∈ H(div,K) : σ · n ∈ Pp(f), for every face f ⊂ ∂K} . (6.40)

23



and the corresponding Projection-Based (PB) Interpolant [29] σp ∈ V p(K), σp = Πσ defined as follows.
‖σp · n− σ · n‖L2(f) → min for every face f ⊂ ∂K

‖div(σp − σ)‖L2(K) → min

(σ − σp,∇× F )K = 0 F ∈ H0(curl,K)

(6.41)

for sufficiently regular functions σ. By Lemma 3, the FE space is well defined, and divσp = divσ. Indeed,
condition (6.41)2 implies that

(div(σp − σ), q) = 0 for every q ∈ L2
avg(K) .

At the same time, condition (6.41)1 implies that∫
K

div(σp − σ) =

∫
∂K

(σp − σ) · n = 0 .

The H(div)-norm of the interpolation error reduces thus just to the L2-norm. Let σ ∈ H(div,K) be now
a sufficiently regular function defined on a polyhedral element K. As usual, we pullback σ to the master
element K̂, determine the PB interpolant σ̂ there and push it forward to element K. We proceed with the
standard derivation of the interpolation error.

‖σ − σp‖L2(K) = h−1/2‖σ̂ − σ̂p‖L2(K̂)

= h−1/2‖(Î − Π̂)σ̂‖L2(K̂)

= h−1/2‖(Î − Π̂)(σ̂ − τ̂p)‖L2(K̂) (polynomial preservation property)

≤ h−1/2‖Î − Π̂‖L(Hr(K̂),L2(K̂)) ‖σ̂ − τ̂p‖Hr(K̂)

for any polynomial τ̂p ∈ (Pp−1(K̂)3, and r ≤ p. We finish by applying the Bramble-Hilbert and scaling
arguments,

‖σ − σp‖L2(K) ≤ Ch−1/2 inf
τ̂∈Pp−1(K̂)

‖σ̂ − τ̂p‖Hr(K̂) ≤ Ch−1/2|σ̂|Hr(K̂) ≤ Chr|σ|Hr(K) .

For r = p we obtain the expected p-rate of convergence in presence of no limitations coming from the
regularity of the solution.

The H(div)-interpolation result leads immediately to the best approximation error estimate in the mini-
mum energy extension norm H−1/2(∂K),

inf
tp∈Ppd (∂K)

‖σ · n− tp‖H−1/2(∂K) ≤ ‖σ −Πσ‖H(div,K) ≤ Chp|σ|Hp(K) . (6.42)

6.3 L2 Projection Error Estimate

The standard scaling and Bramble-Hilbert arguments lead to the estimate,

inf
vp∈Pp−1(K)

‖u− vp‖L2(K) ≤ Chp|u|Hp(K) . (6.43)
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7 A Priori Error Estimates

7.1 A Priori Error Estimates for the Ideal Fractional DPG Method

Polyhedra with triangular or quadrilateral faces. We recall first the standard way to approximate the
best approximation error for traces in the minimum energy extension norms under the assumption that trace
û is discretized with trace ŵh of standard, H1-conforming finite element function wh. We have for the
H1/2-traces,

inf
ŵh
‖u− ŵh‖H1/2(∂K) ≤ ‖u− wh‖H1(K) (definition of minimum energy extension norm)

≤ ‖u−Πgrad
h u‖H1(K)

≤ Chp‖u‖Hp+1(K) ,

with C independent of element K and function u.

A similar argument holds for the H−1/2 normal trace,

inf
t̂h

‖σ · n− t̂h‖H−1/2(∂K) ≤ ‖σ − vh‖H(div,K) (definition of minimum energy extension norm)

≤ ‖σ −Πdiv
h σ‖H(div,K)

≤ Chp‖σ‖Hp(div,K)

≤ Chp‖u‖Hp+1(K) .

The argument extends easily from a standard element to a polyhedron with triangular or quadrilateral faces
under the assumption that the polyhedron can be meshed with a submesh consisting of standard shape
regular subelements.

Stability estimates (4.35) and (4.36) lead directly to the a-priori error estimates for the ideal DPG
method:

{γ‖u− uh‖H−ε(Ω), (1 + Cγ−1h−ε)−1(
∑
K∈Th

{‖σ · n− σ̂ · nh‖2(H1/2−ε(∂K))′ + ‖u− ûh‖2(H−1/2−ε(∂K))′)
1
2 }

≤ Ch−ε inf
wh
‖u− wh‖H−ε(Ω) + (

∑
K∈Th

{inf
t̂h

‖σ · n− t̂h‖2H−1/2−ε(∂K)
+ inf

ŵh
‖u− ŵh‖2H1/2−ε(∂K)

}) 1
2

≤ Chp−ε‖u‖Hp+1(Ω)

(7.44)
with constants C independent of ε.

Polyhedra with general polygonal faces. As above, we estimate the H−ε error with the L2-error, and
the minimum energy extension H−1/2−ε error with the minimum energy extension H−1/2 error. The best
approximation error estimates (6.39), (6.42), and (6.43) lead to the final estimate:
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{γ‖u− uh‖H−ε(Ω), (1 + Cγ−1h−ε)−1(
∑
K∈Th

{‖σ · n− σ̂ · nh‖2(H1/2−ε(∂K))′ + ‖u− ûh‖2(H−1/2−ε(∂K))′)
1
2 }

≤ Ch−ε inf
wh
‖u− wh‖H−ε(Ω) + (

∑
K∈Th

{inf
t̂h

‖σ · n− t̂h‖2H−1/2−ε(∂K)
+ inf

ŵh
‖u− ŵh‖2H1/2−ε(∂K)

}) 1
2

≤ Chp−ε‖u‖Hp+1(Ω) + C(ε)hp+
1
2
−ε(
∑
f

‖u‖2Hp+1(f))
1
2

(7.45)
The best approximation error estimate includes a blow up constant C(ε) but, in presence of regular solution,
the extra compensating 1/2 convergence rate factor as well.

7.2 A Priori Error Estimates for the Practical Non-conforming DPG Method in Fractional
Norms

We restrict ourselves to the polyhedral meshes only. Theorem 4 and the best approximation error esti-
mates (6.39), (6.42), and (6.43) lead to the final estimates:

‖u− uh‖H−ε(Ω) ≤

C(ε)h−3ε

Chp−ε‖u‖Hp+1(Ω) + C(ε)hp+
1
2
−ε(
∑
f

‖u‖2Hp+1(f))
1
2


(
∑
K∈Th

{‖σ · n− σ̂ · nh‖2(H1/2+ε(∂K))′ + ‖u− ûh‖2(H−1/2+ε(∂K))′})
1
2

≤ C(ε)h−4ε

Chp−ε‖u‖Hp+1(Ω) + C(ε)hp+
1
2
−ε(
∑
f

‖u‖2Hp+1(f))
1
2

 .

(7.46)

There are two blow up constants above, both denoted with the same symbol C(ε). The first one comes
form the construction of the Fortin operator which is invalid in the limit ε = 0, the second one from the
localization argument in the best approximation minimum energy extension H1/2−ε error estimate.

8 Numerical Experiments

8.1 About the implementation

A modified version of the hp-adaptive finite element code hp3D by Demkowicz et al. (see [28]) has been
implemented in order to support high-order approximation with (simple) polyhedral elements of arbitrary
number of vertices and (flat) faces. The new code is able to obtain the practical DPG solution of any well-
posed broken ultraweak variational formulation, but with discontinuous discrete traces. However, when all
faces in the mesh skeleton are triangular, the code can enforce continuity of the traces if wanted.
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This PolyDPG code uses the polynomial spaces for tetrahedra for the element variables, and those of
the triangle for the face variables. Integration of the local Gram and stiffness matrices is carried out using
the so called homogeneous numerical integration (HNI), which needs homogeneous integrands to transform
volume integrals into boundary integrals for any convex or non-convex polyhedron [39, 42, 16]. To take
advantage of this technique, the bases of our element polynomial spaces are made of monomials. However,
when integrating the load vector or the error, the numerical integration is performed by subtessellation,
where each polyhedron is broken into a number of tetrahedra and we use the quadrature rules developed for
that kind of element. Without monomials (i.e., without HNI), the computational complexity would grow
one order of magnitude (in terms of p + ∆p). In some cases that would make our method prohibitively
expensive, so that we would not be able to use high-order approximations or elements with a large number
of faces (which require higher ∆p).

We restrict the numerical study to the Poisson model problem analyzed above. Although this paper de-
rives theoretical findings for variational problems formulated in fractional Sobolev spaces, here we compute
with the limit case only (ε = 0).

8.2 Results

For all cases we use smooth non-polynomial manufactured solutions uexact and Dirichlet boundary condi-
tions on the whole boundary. To obtain the rest of the exact solution components we calculate σexact =

∇uexact and get the traces (ûexact, σ̂ · nexact) by simple restriction on every face of the mesh skeleton. Of
course the boundary condition will be given by ûexact|∂Ω. Finally, the right-hand side load is determined by
f = −∆uexact.

The norms used to evaluate the error are

Error in uh =
‖u− uh‖L2(Ω)

‖uexact‖L2(Ω)

Error in σh =
‖σexact − σh‖L2(Ω)

‖σexact‖L2(Ω)

Error in ûh =

 ∑
Face f⊂∂T

h−1
f ‖ûexact − ûh‖2L2(f)

1/2

Error in σ̂ · nh =

 ∑
Face f⊂∂T

hf‖σ̂ · nexact − σ̂ · nh‖2L2(f)

1/2

Observe that the first two deliver relative errors, while the other two give absolute errors as they are
mesh-dependent norms. The choice of such error metrics for the traces is mainly driven by the need of
having a cheap way to evaluate it. However, the one for û is picked since it scales in the same way as the
Slobodeckij seminorm in theH1/2 norm, but does not require a double integral like the latter. The error norm
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for σ̂ · n is intended to compensate the fact that we are making use of L2 norms to estimate convergence
that is naturally set in a weaker topology (H−1/2).

In the following error convergence graphs, instead of considering the mesh size parameter h, we use
the total number of degrees of freedom (DOF), because if we use a quasiuniform mesh we can assert that
h−3 ∼ Total DOF.

We present three sets of results, which let us explore the flexibility of the DPG methodology with non-
conforming traces and polyhedral elements. First, we use structured meshes with four different element
sizes and observe the numerical convergence for low and high order approximations. Second, we go for a
more general polyhedral mesh, namely a Voronoi tessellation, and even with such irregular elements we see
how the numerical solution improve with a finer mesh and a higher polynomial degree. The third result set is
motivated by a more practical point of view. There, we first use a popular tetrahedral mesh generator, which
delivers unstructured meshes for certain domain. In addition to using the simplicial partition per se, we
also use the idea of element agglomeration (or aggregation) [2, 18] in order to obtain polyhedral elements.
Moreover, we use the fact that all faces are triangular to construct globally continuous trace spaces. We can
therefore compare the behavior of such meshes with both continuous and discontinuous traces (whether with
or without agglomeration). The practicality lies in two facts: i) by agglomerating portions of a fine mesh,
we reduce the number of degrees of freedom while keeping the detailed representation of the geometry; ii)
the underlying submesh provides a shape-regular partition as the one we assume in our theoretical setting,
and can be used for integration, visualization, and adaptive refinement or coarsening. Although adaptivity
is beyond the scope of the present publication, it is a subject of interest for future research on DPG with
polyhedral elements.

8.2.1 Results with structured meshes

Our first domain is Ω = (0, 1)3 and the manufactured solution is

uexact(x) = exp (x1 + x2 + x3).

Notice that the gradient of uexact(x) consists of three copies of exp (x1 + x2 + x3) and that the load is
f(x) = −3 exp (x1 + x2 + x3).

Three families of meshes consisting of structured tetrahedra, cubes and truncated octahedra are utilized.
The coarsest meshes considered in this initial example are presented in Figure 8.1. Each of those is repro-
duced 8 times and scaled down to a half its size. This process is repeated 3 times, so that we have four
meshes in each family. The refined meshes made with truncated octahedra can be visualized in Figure 8.2.
Notice that these polyhedral elements have 7 and 14 faces, including pentagonal and hexagonal faces.

For each mesh, we use polynomial orders p = 1, 2, 3, 4. However, the enrichment parameter ∆p must
vary according to the type of element, intuitively requiring a higher enrichment as the number of faces
increase. Sample solution plots are shown in Figure 8.3, where the type of mesh, order of approximation
and enrichment are reported. Using the error metrics given above, we plot the numerical error convergence
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(a) (b) (c)

Figure 8.1: Coarse meshes for the first numerical study: (a) tetrahedra (6 elements), (b) cubes (1 element), (c) truncated
octahedra (9 elements).

(a) (b) (c)

Figure 8.2: Fine truncated-octahedral meshes for the first numerical study: (a) 72 elements, (b) 576 elements, (c) 4608
elements.
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for the three mesh families in Figures 8.4, 8.5 and 8.6. It is clear how the convergence is attained in all the
mesh families and with the expected rates, for all the unknowns of the broken ultraweak formulation.

8.2.2 Results with Voronoi cells

For the second scenario we change the domain for Ω = (−1/2, 1/2)3 and keep the same manufactured
solution. The meshes to be considered in this second study are generated through an algorithm called
VoroCrust, which generates boundary-conforming Voronoi tessellations without clipping, even for complex
3D geometries (sharp features, multiple boundary components, non-watertight or non-manifold surfaces,
etc.) [1].

In our current case we present meshes for the cube Ω, but as a result of VoroCrust, each element in the
mesh is a real Voronoi cell, and all faces lying on the domain boundary are triangles. Because of the random
sampling used in the meshing algorithm herein used, the cells in the partition may have a great number of
neighbors (i.e., of faces). In Figure 8.7 we can visualize the exterior of a VoroCrust mesh and show the
aspect of its interior elements. Some of those elements present over 40 faces, a feature that will demand a
very high test space enrichment. Here, we report results of computations of our method over three different
VoroCrust meshes, which consist of 204, 560 and 970 elements.

Polynomial orders p = 1, 2, 3 are used with the Voronoi meshes, and the enrichment parameter is
∆p = 6 in most cases, although for p = 3 the highest enrichment that we can compute with is ∆p = 5. It is
an interesting result that we can observe convergence rates similar to the expected ones in the field variables
only, while the trace variables are so poorly approximated that the error is orders of magnitude greater than
with other meshes. Figure 8.8 includes sample plots of the numerical solution and error of one field variable,
along with cut views of the resulting scalar field uh. On this plane, the solution should be constant, so we
see how the approximation improves when passing from the lowest order case to p = 2. Finally, we show
the error convergence graphs of uh and σh in Figure 8.9. Notice how the convergence rate deteriorates as p
increases, which may be caused by insufficient enrichment of the local test spaces.

8.3 Results with unstructured tetrahedral meshes

The third setup uses another manufactured solution,

uexact(x) = sin(πx1) sin(πx2) sin(πx3).

As for the domain herein used, we have again Ω = (−1/2, 1/2)3, but including an interface between
two subdomains: a sphere of radius 1/4 and centered at the origin, and its complement in Ω. This is
depicted in Figure 8.10(a). There is consequently a spherical surface that must be conformingly meshed.
Even though we are not assigning different material properties to the subdomains, studying this geometric
configuration will be of importance in many practical applications modelled with PDEs less simple than the
Poisson equation. This geometry is meshed with NETGEN, a well-established unstrucured tetrahedral mesh
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Figure 8.3: Sample plots of pointwise numerical solution (left) and signed error (right): (top) field variable (σh)3 in a
mesh of 384 tetrahedra, with p = 4 and ∆p = 2; (middle) trace variable ûh in a mesh of 64 cubes, with p = 4 and
∆p = 3; (bottom) trace variable σ̂ · nh in a mesh of 576 truncated octahedra, with p = 4 and ∆p = 3.
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Figure 8.4: Error convergence in all variables for the tetrahedral mesh family and four polynomial orders. The enrich-
ment parameter is ∆p = 2.
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Figure 8.5: Error convergence in all variables for the cubic mesh family and four polynomial orders. The enrichment
parameter is ∆p = 3.
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Figure 8.6: Error convergence in all variables for the truncated-octahedral mesh family and four polynomial orders.
The enrichment parameter is ∆p = 3.

(a) Exterior of a VoroCrust mesh. (b) Interior of a VoroCrust mesh.

Figure 8.7: Polyhedral mesh generated with VoroCrust.
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(a) (b)

(c) (d)

Figure 8.8: Sample plots of pointwise numerical results with Voronoi meshes: (a) solution for variable (σh)1 in the
204-element Voronoi mesh with p = 2, ∆p = 6; (b) signed error for variable (σh)1 in the 204-element Voronoi mesh
with p = 2, ∆p = 6; (c) solution for variable uh in a cut view of the 560-element Voronoi mesh with p = 1, ∆p = 6;
(d) solution for variable uh in a cut view of the 560-element Voronoi mesh with p = 2, ∆p = 6.
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Figure 8.9: Error convergence in the field variables for the Voronoi mesh family and three polynomial orders.
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(a) (b) (c)

Figure 8.10: (a) The domain Ω showing an interior spherical surface that stands as the interface between two sub-
domains; (b) exterior of an unstructured 9462-element tetrahedral mesh of Ω; (c) cut view of the mesh, where the
conformity to the interior surface is visible.

generator (https://ngsolve.org/). Three meshes of 1545, 9462 and 27066 tetrahedra are obtained with this
tool. The second of them can be appreciated in Figure 8.10(b),(c).

We run our method on these meshes for polynomial orders p = 3, 4, 5. Sample plots of the numerical
solution of both skeleton variables are presented in Figure 8.11.

Continuous traces Due to all faces being triangular, we can construct a globally continuous trace space
for ûh. For its implementation, we just need to know the relative orientation of edges with respect to
faces to perform a modified assembly. However, all operations at the element level remain identical to the
former procedure, save for a more careful evaluation of the face shape functions, as the orientations must be
taken into account. For the meshes at hand, the enforcement of continuity of the trace makes this method
a conforming finite element discretization, in the context of the broken ultraweak formulation. It can be
regarded then as a conventional DPG discretization.

Plots in Figure 8.12 show the same variables as above, where small differences in the error can be
observed, but most importantly the continuity of the numerical approximation to û can be visualized. Figure
8.13 show convergence of all variables with these unstructured meshes, for both the continuous and the
discontinuous discretization of the trace. It can be seen how enforcing continuity only saves relatively few
DOF, while the error is almost identical to the solution with discontinuous traces. Notice how the case p = 5

for the variable uh initially experiences a great error decrease, but for the finest mesh, there is almost no
improvement. We attribute such loss (in just 1 out of 4 unknowns) to numerical conditioning.

Element agglomeration The implementation of the element agglomeration approach is realized with the
use of the graph-partitioning library METIS [37]. In order to have agglomerated elements that belong to
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(a) (b)

(c) (d)

Figure 8.11: Sample plots of pointwise numerical solution (left) and signed error (right) in the 1545-element unstruc-
tured tetrahedral mesh, with p = 3 and ∆p = 2: (top) variable ûh; (bottom) variable σ̂ · nh.
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(a) (b)

(c) (d)

Figure 8.12: Sample plots of pointwise numerical solution (left) and signed error (right) in the 1545-element unstruc-
tured tetrahedral mesh enforcing continuous discretization of trace û, with p = 3 and ∆p = 2: (top) variable ûh;
(bottom) variable σ̂ · nh.
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Figure 8.13: Error convergence in all variables for the unstructured tetrahedral mesh family and three polynomial
orders, considering both discontinuous and continuous discretization of û. The enrichment parameter is ∆p = 2.
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a single subdomain, the agglomeration process is performed on one subdomain at a time. It is possible
to set the approximate number of tetrahedra per agglomeration, and here we use 16 and 64. Using this
option delivers a very large number of faces per elements, since all triangles lying on the boundary of an
agglomerated portion of the mesh is considered as an independent face, even if there are coplanar adjacent
triangles. Using one of the unstructured tetrahedral meshes presented above, we apply the agglomeration
algorithm and obtain meshes as the ones visualized in Figure 8.14.

During the computations it was noticeable that even though we have a large number of faces in any
case, the enrichment parameter ∆p may be lower when having continuous traces. A consequence of this
is that we can raise p or agglomerate a greater quantity of tetrahedra when we enforce continuous traces.
Sample plots of the numerical solution with p = 3 are shown in Figure 8.15 with both discontinuous and
continuous traces. Error convergence graphs for three variables are given in 8.16, including both types of
trace discretization. There, only for the continous trace scenario, we add two more series of results: the case
p = 4 in the same meshes (16 tetrahedra per element), and the case p = 3 on a new set of meshes with 64
tetrahedra per element.

We can see in the error convergence plots for agglomerated elements that we have good rates, but because
of the reduced amount of DOF, the magnitude of the error is still far from that of the original tetrahedral
mesh, and the constant seems to be greater in the current setup. However, in the case p = 4 we observe
a significant advantage with respect to the other cases, and given that the rate is higher than 4, it rapidly
reaches error levels that may be good enough for a practical problem.

A caveat for this approach was observed during the solving stage. We attribute such a major slowdown to
the high number of faces that each element possesses, having to interact with many neighbors. This implies
that the final DPG stiffness matrix is way less sparse than for elements with few faces, and the performance
of the MUMPS solver gets therefore affected.

9 Conclusions
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A Construction of Fortin Operators

Construction of H(div) interpolation operator on master tetrahedron T̂ . Let V p+1(T̂ ) denote the
Raviart-Thomas space of polynomials of order p+1 defined on master tetrahedron T̂ . We begin by recalling
the construction of the Raviart-Thomas H(div) interpolation operator.

Π̂div : Hε(div, T̂ )→ V p+1(T̂ ), τ → τp 〈(τp − τ) · n, φ〉 = 0 ∀φ ∈ Pp(f) for each face f of T̂

(τp − τ, ψ) = 0 ∀ψ ∈ Pp−1(T̂ )

(A.47)

The operator commutes with the L2-projection onto Pp(T̂ ),

Hε(div, T̂ )
div−→ Hε(T̂ )

↓ Π̂div ↓ P̂

V p(T̂ )
div−→ Pp(T̂ ) .

The finite-dimensionality argument implies that operator Π̂div is continuous on the space Hε(div, T̂ ).

Construction of H(div) interpolation operator on an arbitrary tetrahedron. Let T be now an affine
map from master tetrahedron T̂ onto an arbitrary tetrahedron T , x = Tξ = Aξ + b, j = detA. We employ
the standard Piola transforms for integer norms,

Tdiv : H(div, K̂)→ H(div,K), τ̂ → τ, τ(x) = Aτ̂(ξ)/j

TL2 : L2(K̂)→ L2(K), f̂ → f f(x) = f̂(ξ)/j

The Raviart-Thomas interpolation operator defined on Hε(div,K) is defined as follows,

P divτ := TdivP̂
divτ̂ = TdivP̂

divT−1
divτ . (A.48)

Let P : L2(T )→ Pp(T ) be the orthogonal projection. The use of the Piola transforms implies that

divP divτ = Pdivτ = TL2 d̂ivτ̂ .
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Construction of H(div) Fortin operator for an arbitrary tetrahedron. We start by studying the scal-
ing properties of the broken fractional norm for general elements:

‖τ‖2Hε(Th) :=
∑
K∈Th

(
‖τ‖2 + |τ |2Hε(K) + ‖divτ‖2 + |divτ |2Hε(K)

)
.

For a simple scaling, x = hξ + x0, using the Piola transform for L2-functions, we have,

‖f‖2Hε(K) =

∫
K
|f(x)|2 dx+

∫
K

∫
K

|f(x)− f(y)|2
|x− y|3+2ε

dx dy

= h−3

∫
K̂
|f̂(ξ)|2 dξ + h−3−2ε

∫
K̂

∫
K̂

|f̂(ξ)− f̂(η)|2
|ξ − η|3+2ε

dξ dη

≤ h−3−2ε‖f̂‖2
Hε(K̂)

.

The result extends to general affine elements under standard shape regularity assumptions. Similarly, using
the Piola transform for H(div)-space, we obtain

‖τ‖2Hε(K) . h−1−2ε‖τ̂‖2
Hε(K̂)

.

Now, assuming every element K corresponds to some tetrahedron T , the scaling properties imply the con-
tinuity of the Raviart-Thomas-Fortin operator:

‖Πdivτ‖2Hε(T ) = ‖TdivP̂
divτ̂‖2Hε(T ) . h−1−2ε‖P̂ divτ̂‖2

Hε(T̂ )

. h−1−2ε‖P̂ div‖ ‖τ̂‖2
Hε(T̂ )

. h−2ε‖P̂ div‖ ‖τ‖2Hε(T )

‖divΠdivτ‖2Hε(T ) = ‖Pdivτ‖2Hε(T ) . h−3−2ε‖P̂ d̂ivτ̂‖2
Hε(T̂ )

. h−3−2ε‖P̂‖ ‖d̂ivτ̂‖2
Hε(T̂ )

. h−2ε‖P̂‖ ‖divτ‖2Hε(T ) .

where ‖P̂ div‖, ‖P̂‖ = 1 are the norms of the Raviart-Thomas interpolation operator and L2-projection on
the master element. Note that constant ‖P̂ div‖ blows up with ε → 0 as the definition of operator for ε = 0

is illegal. Combining the estimates, we obtain,

‖Πdivτ‖Hε(div,T ) . h−ε‖P̂ div‖‖τ‖Hε(div,T ) . (A.49)

Construction of H(div) and H1 Fortin operators for an arbitrary polyhedron covered with a shape
regular subelement tetrahedral mesh. Generalization of the construction discussed above to an arbitrary
polyhedron depends strongly upon the definition of the enriched space which in turns depends clearly upon
the number of faces. The choice of an appropriate polynomial enriched space and the construction of the
corresponding Fortin operator are certainly challenging tasks.

We can collect though a “low hanging fruit”. If the polyhedron can be covered with a shape-regular
subelement tetrahedral mesh, we can employ the piecewise-polynomial H(div)-conforming space of order
p + 1 defined on the tetrahedral submesh, and the corresponding discussed Raviart-Thomas interpolation
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operator for the Fortin operator. Under the shape regularity for the submesh elements, the continuity prop-
erties remain intact. The operator satisfies the desired orthogonality properties for each subelement which
implies that they are satisfied for the whole element as well.

The same idea applies to the H1 Fortin operator. One can utilize any of the Fortin operators constructed
in [35, 12, 44, 24] for the submesh elements.
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