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Abstract. The dynamical evolution of a multiple fuel package fire leaves thermal sig-
natures. For practical and theoretical reasons, it is important to determine conditions
in which one can identify the path the system took by conducting a set of experi-
ments that cover the space of all possible paths. An experimental fire compartment
capable of producing repeatable and highly customizable fire-evolution scenarios is
presented. Instrumented propane burners are configured in the compartment each
with a simple critical heat flux ignition model. Heat flux sensors are located around
the burner configuration to provide temporal incident heat flux measurements. Data
from several hypotheses representing possible scenarios are compared to data gener-
ated using some frue configuration using a Bayesian methodology. The Bayesian
methodology is able to illicit the correct fire-evolution scenario from the set of
hypotheses with a high degree of confidence. The information content provided by
each sensor is analyzed to highlight the importance of sensor location in determining
the fire-evolution. Posteriors for the hypotheses using two different error structures
are also compared over the sensors to highlight the importance of choosing the cor-
rect error structure.

Keywords: Fire forensics, Bayesian statistics, Inverse problems, Compartment experiments, Fire experi-
ments

1. Introduction

NFPA 921, Guide for Fire and Explosion Investigations provides guidance for a fire
investigator to create and test hypotheses in a disciplined manner in an attempt to
reduce biases and standardize the investigation process [1]. Inevitably, because of
the destructive nature of the fire dynamical processes within a compartment, there
will be uncertainty associated with the details of the fire scene. Evidence at the fire
scene allows a fire investigator to form hypotheses corresponding to the pre-fire
layout, fuel load, ventilation conditions, etc. Further evidence from the scene in
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the form of fire patterns, damage to objects, witness statements, etc., are then
used by the investigator in an attempt to narrow down the hypothesis space. This
process may also sometimes bring to light hypotheses not previously taken into
consideration at the start of an investigation. Often times testing of particular
hypotheses are conducted in an attempt to recreate the evidence found at the fire
scene. This investigation process is performed, sometimes multiple times, until a
single hypothesis that best matches the fire scene evidence remains, or the cause/
origin of the fire is declared undetermined. A fire is usually undetermined when
there is too much uncertainty in the evidence available and narrowing down the
hypothesis space is not possible, or more than a single hypothesis is consistent
with the collected evidence.

Despite the principled manner in which fire investigation should take place,
there was little guidance on how an investigator might statistically weight the evi-
dence gathered and little guidance to making quantitative inferences of the possi-
ble hypotheses. This is highlighted by the fact that the U.S. National Academies
has reported shortcomings in the application of forensic science used in prosecu-
tion in recent years [2]. Recent research, therefore, aims to address these short-
comings with origin determination being a critical factor. Without origin
determination NFPA 921 suggests cause cannot be determined. Gorbett and
Chapdelaine arrange the sub-processes of origin determination outlined in NFPA
921 in a manner that is more consistent with the scientific method to aid the fire
investigator in forming and testing of fire scene hypotheses [3]. Gorbett et al. also
discuss the origin matrix method, a tool developed by Cox [4] to help an investi-
gator narrow down an area of origin, but note that the methodology needs sys-
tematic evaluation [5]. The application of a methodology, specifically the process
of origin determination (POD), was shown to increase the accuracy of origin
determination of a sample of participants compared to those not informed of the
methodology [6]. The participants were tasked with narrowing down the area of
origin based on synthetic normalized integrated heat flux measurement contours
produced by fires of differing sizes, peak times, and locations simulated in Fire
Dynamics Simulator (FDS) and visualized in Smokeview. Gorbett et al. also
report that using fire patterns remains at the core of identifying fire origin within
a compartment with most investigators opting to not make damage measurements
in the compartment and instead relying on visible damage signatures [5]. Hopkins
et al. showed that initial fire patterns from a fire plume can persist post-flashover,
however the tests were dominated by single heat sources and reported large vari-
ability in the observed fire patterns [7]. Madrzykowski and Fleischmann aimed to
characterize pre-flashover fire patterns and the associated uncertainties noting that
uncertainties in fire patterns increased with increasing fuel complexity [8]. In a
direct response to the National Academy of Sciences statement, UL Fire Safety
Research Institute present and make publicly available data from a large suite of
tests on single family homes to assess the impact of ventilation conditions on fire
damage and patterns [9].

While there continues to be excellent work being conducted by the fire commu-
nity in researching new predictive models and analyzing novel ignition scenarios
(e.g. lithium-ion batteries, see Stauffer for a comprehensive review over the past
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few years [10]), most compartment scale experiments are being conducted with
either single fires, or single scenarios, usually with fuel packages that produce vari-
able heat release rate (HRR) curves. An area of research that is in need of further
development is the quantification of the plausibility of various scenarios given the
uncertainty in measured quantitiecs of interest. Bayesian inference provides the
framework to accomplish just this; it seeks to quantify degrees of beliefs for
hypotheses given observed evidence and its associated uncertainty. Recently,
Nordgaard and Rasmusson highlight the importance of the Bayesian approach
when deriving likelihood ratios in the context of the forensic sciences [11].

Bayesian methods have been making a resurgence in many fields and have been
applied successfully to a number of fire problems [12—-14]. Overholt and Ezekoye,
for example, applied these techniques to infer the HRR for temporal temperature
measurements in simulated room-scale experiments, and to determine the size or
location of a fire of constant HRR within a compartment [15-17]. Kurzawski
et al. also exercised an inversion framework aimed at simultaneous localization
and HRR characterization of a fire within a compartment given time-integrated
heat flux data throughout the compartment with two separate forward models
[18]. This paper focuses on the quantification of hypotheses that represent differ-
ent fire evolution scenarios. An instrumented experimental compartment capable
of combining user-defined HRRs and secondary ignition criteria for producing
repeatable and customizable multi-burner/multi-hypothesis fire evolution scenarios
is described in Sect. 4. The location of combustible items in the compartment is
known and what is not known is which of the combustible items originated the
fire evolution in the compartment. The setup is utilized to generate true temporal
incident heat flux measurements, measured using directional flame thermometers
(DFTs), at various locations in the compartment. In place of witness information,
fire patterns, etc., the setup is also utilized to collect temporal heat flux measure-
ments from plausible fire-evolution hypotheses presented in Sect. 4. A Bayesian
framework, introduced in Sect. 3, is then applied on the observed quantities for
quantifying the probability of the different scenarios, taking into account the
uncertainties in measurement data presented in Sect. 4. The effect of different
error models of the data on the probability of the different scenarios is also inves-
tigated.

2. Experimental Facility

An experimental compartment previously utilized for various room scale fire
experiments including positive pressure ventilation [19], wildfire fuel bed character-
ization [20], and HRR inversion [21] at the J.J. Pickle Research Campus at the
University of Texas at Austin was used to conduct compartment scale multiple
hypothesis tests. Two sand burners 0.3 m by 0.3 m square by 0.3 m tall con-
structed in accordance with the NFPA 286 and one 0.3 m by 0.3 m square by
0.15 m tall gas burner were each electronically controlled using PID mass flow
controllers to follow specified HRRs upon reaching some ignition criteria [22].
Each burner was instrumented with four modified DFTs with centers 0.2 m above
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the ground to measure the incident heat flux. Eight modified DFTs were also
placed around the three burner setup all 0.7 m above the ground to measure inci-
dent heat flux. The modified DFTs are constructed similarly to standard DFTs
(see ASTM E3057 [23]) but with a smaller form factor. Construction and calibra-
tion of the modified DFTs are discussed in [24].

Compartment geometry, burner and sensor locations, and burner/sensor coordi-
nates are shown in Fig. 1 and a typical fire evolution experiment is shown in
Fig. 2. Setpoint signals sent to the mass flow controllers and data acquisition rates
for the DFTs were set to 1 Hz for all experiments. A simple critical heat flux sec-
ondary ignition model was chosen for its simplicity to reduce the computational
burden of the control and data acquisition system. A typical test consisted of ini-
tializing a single burner in the compartment and allowing it to follow a specified
HRR. Throughout the test the adjacent burners would sense incident heat fluxes
until the ignition criteria was met. When a burner reached the ignition criteria, it
would follow its own HRR ramp. Scoping tests were completed to test the limits
of the three burner setup and the commercially sourced propane supply. The
scoping tests showed that the fuel supply could only sustain a maximum total
HRR of roughly 250 kW due to the tank size utilized and ambient temperature
conditions. A 100 kW peak triangle fire was determined to be the maximum size
fire any one burner could sustain to satisfy this constraint. Scoping tests also
showed that the critical heat flux for ignition needed to be below 8 kW/m? for
adjacent burners to ignite given a 100 kW peak triangle fire for the initial burner.
During the scoping tests, the development of a hot gas layer (HGL) was observed,
but did not contribute to the heat flux response of the DFTs.

A total of four fire-evolution tests were conducted each with duration 720 s.
For all four tests, the burners in the compartment followed a triangular HRR
ramp as shown in Fig. 3 once the ignition criteria for a particular burner was met.
The first test conducted began with the first burner (Bl) beginning its HRR ramp
at 0 s. Burners 2 and 3 were set to initiate their respective HRR ramps when any
one of the four DFTs on the burners measured an incident heat flux greater than
5 kW/m?. Spacing between burners varied to ensure burners activated sequen-
tially. This test was used to generate the “‘true” incident heat flux measurements
at the eight DFTs in the compartment. The heat flux measurements in subsequent
tests would be compared to the “true” values to test ignition sequence hypotheses.
Three more tests were conducted corresponding to the three possible hypotheses:
(1) the first burner began the fire evolution, (2) the second burner began the fire
evolution, and (3) the third burner began the fire evolution. The scenarios pre-
sented represent a simple set in which the HRR of the involved items, the com-
partment layout, and the ignition criteria are perfectly known; the only unknown
is which scenario produced the observed data. Sect. 3 outlines application of the
Bayesian framework to this fire evolution problem.
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Figure 1. (a) Experimental compartment layout for the four forward
cases. The burners were standard 0.3 m by 0.3 m square sand
burners each instrumented with a modified DFT on each side to
measvre incident heat flux. Burner centroids and sensor locations are
shown in (b). Arrows on sensors indicate sensing direction. All eight
sensors were installed 0.7 m above the ground.

Figure 2. Photo of three burner fire evolution test captured through
open door in the compartment during scoping tests. The HRR of
burners 1, 2, and 3 were at roughly 70 kW, 100 kW, and 50 kW
respectively. Flame heights remained well below the ceiling and
minimal flame leaning was observed.



Fire Technology 2020

=]
3

@
8

@
3

—— HRR Setpoint
Experimental HRR

Heat Release Rate (kW)

n
S

o

0 50 100 150 200 250 300 350 400

Time (s)

Figure 3. HRR setpoint and representative experimental HRR curve
used for each of the three burners for the four tests conducted. The
HRR ramps up from O kW to 100 kW in 300 s and then ramps back
down to O kW at 420 s. The HRR of the burner begins after the
ignition criteria for a burner is met. All times are shifted depending
on burner activation time.

3. Bayesian Framework

A hypothesis is tested by conducting an experiment that produces data and com-
paring those data to the archived true data. This process can be cast as an opti-
mization problem that can be solved multiple ways. For example one could use a
maximum likelihood method which requires the definition of a likelihood across
hypotheses and subsequently choosing the scenario that produces the largest likeli-
hood:

H = argg}gg{P(Dllﬂ)% (1)

where H is the set of possible scenarios that may have generated the data, D.
While the maximum likelihood method allows one to rank the hypotheses, a
downside for determining which hypothesis is true is that it is difficult to quantify
by how much one hypothesis is more true than another. Yet another difficulty is
that the maximum likelihood method does not take into account the uncertainty
associated with the observed measurements. For these reasons the Bayesian frame-
work is applied for assigning probabilities to each hypothesis. Section 3.1 outlines
the application of Bayes’ Rule to inference on fire evolution scenarios and
Sect. 3.2 illustrates how one might make estimates of the correlated errors in heat
flux measurements for quantifying the total uncertainty.

3.1. Bayesian Inference for Fire Evolution

Bayes’ Rule applied to the discrete hypothesis space of interest is,

P(H;)P(D|H;)

P(H;|D) = S P(Hy)P(D|Hy)’
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where P(H;|D), the posterior probability of a hypothesis, represents the probability
of a scenario after having observed the data, D. P(H;) is known as the prior prob-
ability for a particular hypothesis and represents a discrete distribution over possi-
ble scenarios. The prior represents one’s state of knowledge before observing the
data and is often times assigned a uniform distribution to represent a state of
ignorance (one should only favor a hypothesis over another if there is evidence to
support this). P(D|H;) is the likelihood function and it is not a proper probability
distribution. It quantifies the comparison between the data collected and the data
generated by a particular scenario. The term in the denominator,
S)_, P(H;)P(D|Hy), is known as the Bayesian evidence or the marginal likelihood
and is often ignored as it acts as a normalizing constant to ensure that the poste-
rior is a proper probability distribution (i.e. Zle P(H;|D) =1).

Defining the likelihood requires establishing a statistical model that makes
assumptions about the errors present. The statistical model chosen is,

q;=qij+ejiej~N(0,2); 2 =2+, (3)

where ¢; is a vector of measured incident heat fluxes (these can be smoothed or
the raw signal) of length N representing the true configuration at each j sensor in
the compartment, g;; is a vector of measured incident heat fluxes for each hypoth-
esis 7 and sensor j, and e; represents the error structure of a particular sensor.
Here it is assumed that the errors are temporally correlated and that the correla-
tion structure can be parameterized by a multivariate normal distribution with
zero mean and covariance, X;. It is further assumed that the correlated errors
arise from two sources: (1) temporally correlated errors due to the temporally cor-
related process that generates the incident heat fluxes, f i, and (2) independent and
identically distributed (iid) errors associated with uncertainty in the true value of
the measured incident heat fluxes (a standard deviation of roughly 1 kW/m? for
the DFTs). If the temporal correlations of the incident heat flux measurements are
not taken into consideration, the confidence in a particular hypothesis will be
overestimated. The likelihood for a single sensor is then,

1
P(qilay, 2, Hi) = —x7 77 Xp
| (2m)"2|z," (4)
<— 3 (4ij — ‘Ij)TZj_l (qij — C]j))-

To simplify the analysis, the sensors are assumed to have minimal spatial correla-
tion. The full likelihood is then,

P(D|H;) H (Gijlaj, Zj, Hy)- (5)
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Substituting Eq. 5 into Eq. 2 and letting P(H;) = h;, the posterior becomes,
P(H;|D)
I~ (4 Tyl
hi - exp {— 321Gy — 45) 25 (dy — 611)} (6)

I J /A Ty—l/n ’
> i—t hi - exp [_% i (G —a7) 27 ey — qj‘)}

While Eq. 6 is a closed form expression for the posterior, an estimate of the corre-
lated errors, f j, still needs to be defined. The following section, Sect. 3.2, illus-
trates the estimation of this parameter.

3.2. Uncertainty Quantification

In general, uncertainty is composed of two parts: aleatoric uncertainty and epis-
temic uncertainty. Aleatoric uncertainty pertains to uncertainty associated with
random, noise generating process (e.g. electronic noise) and epistemic uncertainty
relates to the knowledge available (e.g. predictions by a model or certainty in a
calibration parameter). The errors associated with the incident heat flux measure-
ments are a combination of both aleatoric and epistemic uncertainties pertaining
to the calibration process of the data reduction model for the DFTs on noisy tem-
perature measurements [24]. There is another source of aleatoric uncertainty asso-
ciated with the fire-evolution problem. The act of performing a test in the manner
presented in Sect. 2 requires that a possibly noisy electronic signal be sent to a
mass flow controller, which is in turn interpreted by the controller itself with some
internal model to match pressure measurements over a laminar flow element to
the temporally changing setpoint. These uncertainties are translated to uncertain-
ties in the HRR of a particular burner. Atmospheric conditions in the test setup
as well as other factors also add noise to the signals measured by the incident heat
flux measurements in the compartment, both on the burners and the sensors
placed throughout. The result is that there will be uncertainty in the ignition
events for nominally similar configurations which will ultimately lead to tempo-
rally correlated uncertainty in the incident heat flux measurements.

To model the temporally correlated errors in the incident heat flux measure-
ments, a similar statistical model to that presented in Sect. 3.1 is proposed,

dix = q;+¢j; €~ N(0,2)). (7)

Here, g; represents the incident heat flux one would measure if no noise were pre-
sent in the mass flow controller, environment, etc. at sensor j, and g is the vector
of measured incident heat fluxes for replicate k£ of an experiment. The culmination
of errors present in the experimental setup is characterized by a mean zero multi-
variate normal distribution with covariance > ;. Explicitly for a single experiment
this is,
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A 1 1, . el _
P(q;lqk: 2;) = WGXP <—2(qjk - qj)TZj (G — qj)>' (8)
J

The likelihood for K experiment replicates assuming the replicates are iid is then,
K

P(D|g;,%; P(qlgj, 2 )
f=

One need only find g; and >  to characterize the errors associated with Eq. 7
because the multivariate normal distribution is uniquely characterized by its mean
and covariance. Here a maximum likelihood method is used to estimate g; and b
from K experiments resulting in,

K

1 R . S
5i==> (Gx—a)dn—3)"54 =% dn (10)
Kk:l Kk:l

In Sect. 4 analysis of the recorded data from the experiments discussed in Sect. 2
using the methodology outlined in this section is discussed.

4. Experimental Resulis

Ignition times of the burners for the four compartment scale experiments outlined
in Sect. 2 are presented in Table 1, and the temporally smoothed incident heat
flux responses for each of the eight sensors of the truth, hypothesis one, hypothesis
two, and hypothesis three are shown in Fig. 4 in blue, orange, green, and red bold
lines respectively. The raw responses recorded by the DFTs are shown in the same
color with low alpha values (i.e. increased transparency). The smoothed curves are
shown to highlight the differences (and similarities) in incident heat flux measure-
ments across the tests.

Smoothing of the raw DFT heat flux measurements was performed using Gaus-
sian Process Regression (GPR). GPR is a Bayesian method for characterizing a
non-parametric function in terms of a multivariate normal distribution. A maxi-
mum-marginal log-likelihood method was used to determine the hyper-parameters
of the GP for each vector of measured heat fluxes which is standard practice in
the GPR literature. For more details a full description of the GPR methodology
can be found in Rasmussen and Williams [25].

The similarities in incident heat flux response between the truth and hypothesis
one should be immediately apparent considering they represent the same experi-
mental configuration. Interestingly there are sensors in the compartment that
show similar heat flux measurements across all tests, notably sensors three and
four. All other sensors in the compartment show significant differences. The rami-
fications of this are analyzed later in this section.

Visually, one could at this point determine that hypothesis one corresponds to
the true configuration using data recorded from all eight sensors. However, if one
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Table 1
Burner Ignition Times Across the Different Fire Evolution Scenarios

- Burner 1 (s) Burner 2 (s) Burner 3 (s)
Truth 0 119 252
Hypothesis 1 0 113 220
Hypothesis 2 125 0 298
Hypothesis 3 159 273 0
. Sensor 1 Sensor 2 Sensor 3 Sensor 4
5
/N
3 Vo
~ 1 m
§ 0 X / et —— Truth
x ! —— Hypothesis 1
El Sensor 5 Sensor 6 Sensor 7 Sensor 8 —— Hypothesis 2
% —— Hypothesis 3
Q
I

0 200 400 600 4 200 400 600 O 200 400 600

0 200 00 600 0
Time (s)

Figure 4. Incident heat fluxes at each sensor for each of the four
tested scenarios: fruth (blue), hypothesis one (orange), hypothesis
two (green), and hypothesis three (red). The raw incident heat fluxes
are plotted with low alpha and the smoothed incident heat fluxes are
superimposed over the raw valuves to help illustrate the differences in
measvured fluxes between scenarios (Color figure online).

were to use measurements from only a single sensor, say sensor three, one would
be hard pressed to determine the true scenario visually. To make a quantitative
assessment, however, of the possible scenarios, q; and ¥ ; for each sensor are
found using Eq. 10 along with data from the true configuration and hypothesis
one. It is possible that the actual processes vary from the mean, g;, more or less
than what is characterized by Z; from only two tests. Given a larger number of
resources it would be beneficial to perform more tests of each configuration to
obtain better estimates of g; and z

Figure 5 shows the smoothed incident heat flux at each sensor for the fruth and
hypothesis one in blue and orange respectively. One-hundred samples from a mul-
tivariate normal distribution parameterized by g; and b ; are also shown for each

sensor in black with low alpha. The plots show that from the information avail-
able from the two tests, estimates of the correlated errors were able to be found.
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Figure 5. Smoothed incident heat fluxes at each sensor for replicate
tests: fruth (blue) and hypothesis one (orange). The black lines
represent 100 samples drawn from a multivariate normal with mean
and covariance described by E¢j. 10 for each sensor (Color

figure online).

A uniform prior was used (i.e. #; = 1/3) and with the fjs characterized, poste-
rior values for each hypothesis could be calculated using Eq. 6. Using all eight
sensors, the posterior probability for each hypothesis for both smoothed and
unsmoothed incident heat flux measurements are presented in Table 2. Unsurpris-
ingly, the data available were informative enough that the true configuration, /y-
pothesis one, was determined correctly with a high degree of confidence.

Of interest is the information provided by each individual sensor alone. The
Kullback-Leibler divergence or relative entropy is able to provide a measure for
the distance between two probability distributions. Applied in a Bayesian setting
the KL divergence allows one to quantify the amount of learning one can achieve
from the data (i.e. the distance between the prior distribution and the posterior).
The KL divergence applied to the problem at hand for an individual sensor is
defined as,

D (POH) () = S Pt o (“1 1) (1)
i=1 !

where P(H;|x;) is the posterior for scenario H; calculated using only a single sen-
sor:

h; - exp [_%(inj - qj)Tzfl(C]ij - ‘1/)}

P(H;lxj) = —; . . :
> i1 hi - exp {—z(qz"j—q/‘) Z; (q,v,-—qj)]

(12)
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Table 2
Posteriors for Each Hypothesis for Smoothed and Unsmoothed Heat
Fluxes

- P(H,|D) P(H,|D) P(H;|D)
Smoothed Fluxes 1 0 0
Unsmoothed Fluxes 1 0 0

The units of the KL divergence are in nats if the natural logarithm is used or in
bits if the base of the logarithm is two. The KL divergence was calculated for
each sensor for both smoothed and unsmoothed incident heat fluxes with values
shown in bits (see Table 3).

As was shown in Fig. 4, sensors three and four showed very similar heat flux
responses across all experimental test runs. This is reflected in the KL divergence
measure of 0.572 bits and 1.120 bits for sensors three and four respectively for the
smoothed heat fluxes. Note that the maximum information gain available from a
uniform prior to full confidence in a prediction is 1.585 bits. Similarly the heat
flux response of sensors seven and eight are visually similar for hypotheses one
and two resulting in KL divergence measures less than 1.585 bits. However,
because the heat flux measurements for sensors seven and eight from hypothesis
three differed from the other two hypotheses, the KL divergences for these sensors
were still greater than the KL divergence measures of sensors three and four.
Using the unsmoothed heat fluxes, the KL divergence for all sensors is at this
maximum value. The discrepancy between the smoothed and unsmoothed KL
divergences are likely due to the fact that some temporal information is lost in the
smoothing process of the raw incident heat flux signal.

The effect of the similarities in sensor measurements for sensors three and four
can also be seen in the posterior distribution for these sensors. Figure 6 shows the
posterior distribution over the hypotheses calculated for each sensor using Eq. 12.
Sensors three, four, and even seven show lower confidence in the true configura-
tion with sensor three showing similar posterior values for hypothesis one and hy-
pothesis three. This is a scenario in which if only sensor three were used to
determine the fire-evolution, the origin of the fire might be considered undeter-
mined.

To illustrate the importance of including the correlated aspect of the temporal
heat flux measurements, posteriors for each hypothesis were calculated assuming
that all heat flux measurements were independent. The likelihood for a single sen-
sor is,

L | ,
P(x;|H;) = (W) exp <—ﬁ;(6]i/‘n — ) )7 (13)
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Table 3
KL Divergence Calculated for Each Sensor for the Smoothed and
Unsmoothed Incident Heat Fluxes

Dy (P(Hlx))||P(H))

Sensor No. Smoothed Unsmoothed
Sensor 1 1.585 1.585
Sensor 2 1.585 1.585
Sensor 3 0.572 1.585
Sensor 4 1.120 1.585
Sensor 5 1.585 1.585
Sensor 6 1.585 1.585
Sensor 7 1.422 1.585
Sensor 8 1.584 1.585

Sensors with higher Dg; provide more information for differentiating hypotheses than sensors with lower Dg;. The
units of Dg; are in bits

10

06 . P(Hi|x;)
m P(H,|x))
_ P(Hs|x)
. | |
s1 s2 s3 s4 s5 s6 s7 s8

Figure 6. Posterior distribution calculated using the smoothed
response of a single sensor. This was completed for each sensor. Blue,
orange, and green bars correspond to posteriors for hypothesis one,
hypothesis two, and hypothesis three respectively (Color

figure online).

P(Hilx))

resulting in the posterior for a given hypothesis:

By oxp| =55 S G — 4]

P(Hilx)) = —; T 57
Zﬂ:] hy - exp [_Q_JZZn:l(CIi’jn - an) }

(14)

Figure 7 shows the posterior distribution for the hypotheses calculated for each
sensor using Eq. 14. For the sensors whose incident heat fluxes were substantially
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Figure 7. Posterior distribution calculated using the smoothed
response of a single sensor assuming no temporal correlation in the
heat flux measurements. This was completed for each sensor. Blue,
orange, and green bars correspond to posteriors for hypothesis one,
hypothesis two, and hypothesis three respectively (Color

figure online).

P(Hilx;)

g

different across scenarios, the sensor is able to distinguish the correct hypothesis
with a high degree of accuracy. Sensors three, four, and seven, however, predict
the incorrect hypothesis with a high degree of confidence. This highlights the need
to incorporate the temporal correlations in the measured signal. Not including the
temporal correlations can result in over confident predictions.

A more traditional uncertainty analysis of the eight sensors was also conducted
to compare against the Bayesian methods presented. The total expanded uncer-
tainty of a heat flux measurement was defined as,

gy, tto (15)

where ¢* is 1.96 for a confidence level of 95% assuming the data are normally dis-
tributed for sensor j at time point n. Heat flux data recorded from the three
hypotheses are tested to check if they fall within the interval,

G — 10 < Gijn < g, +1t'0. (16)

The percentage of points that fall within the interval was calculated for each
hypothesis and presented in Table 4. Because of the relatively large uncertainties
associated with the heat flux measurements, it is difficult to illicit the truth using
this method with high confidence using most of the sensors. With this method
sensors one, two, five, six, and eight give more weight to hypothesis one. Sensors
three, four, and seven are unable to determine the true origin scenario. A draw-
back to this approach is that it is difficult to quantify clearly by how much a
hypothesis is more likely than the others.
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Table 4
Percentage of Heat Flux Measurements that Lie Within the Interval,
Gin =10 < Gijn < Gy, + 1704 for Hypotheses One, Two, and Three

Sensor No. Hypothesis 1 (%) Hypothesis 2 (%) Hypothesis 3 (%)
Sensor 1 100 93.9 76.0
Sensor 2 100 97.4 95.3
Sensor 3 100 100 100
Sensor 4 100 99.9 100
Sensor 5 99.7 97.8 89.2
Sensor 6 100 99.7 99.7
Sensor 7 100 100 98.8
Sensor 8 100 99.9 99.2

5. Conclusions

The purpose of the analysis was to highlight the importance of sensor characteris-
tics in the testing of fire evolution hypotheses using a well controlled experimental
system. The study demonstrates the importance of quantifying the relevant uncer-
tainties in measurements before going through an inference process. Critical to
generating high quality data was an experimental compartment with multiple,
electronically controlled burners and an array of well calibrated sensors. The
experiments and analysis shown here are quite far removed from what a fire inves-
tigator in the field would be attempting to accomplish. In a real scenario the
HRRs of the fires representing HRRs of possible objects in a compartment are
unlikely to be all the same. Similarly ignition criteria and ventilation conditions
will differ. The investigator, in a real scenario, will generally only have access to
the post-fire compartment. The time integrated nature of the observed damage in
the post-fire compartment will obfuscate temporal signatures of the fire-evolution.

With the simple experiments presented here, it was important to determine whe-
ther the true evolution scenario could be determined using a Bayesian framework
exercised on temporal measurements. Even for a case where temporal data are
available, some sensors might not be useful in distinguishing between hypotheses.
Also, providing an improved error/uncertainty model for the sensors was critical
to discriminating hypotheses when the sensor location was not properly chosen. In
the future, more realistic experimental configurations are planned to address the
issues of uncertainty in ventilation conditions, HRR, and damage signatures to
sensor surrogates. The use of forward models capable of simulating the complex
conditions in real fire compartments will also be explored as a tool for determin-
ing the true fire evolution from experimental measurements.
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