NOTES ON A SADDLE POINT REFORMULATION OF
MIXED VARIATIONAL PROBLEMS

CONSTANTIN BACUTA, DANIEL HAYES, AND JACOB JACAVAGE

ABSTRACT. We summarize some general ideas regarding approximation
of mixed variational problems using saddle point reformulation. We con-
sider the concepts of optimal and almost optimal (or «) test norm and
provide estimates for the continuity and stability constants. A precon-
ditioning strategy for solving the discrete mixed formulations is used in
combination with the special test norms. We further provide a choice
for a discrete trial space, that depends on the choice of a standard test
space and leads to discrete stability, when using the appropriate test
norm. Examples to illustrate how the stability of the saddle point dis-
cretization can be improved using special test norms are included.

1. INTRODUCTION

Saddle point reformulations for the Petrov-Galerkin method has become a
common methodology in dealing with discretization of PDEs, especially for
the Discontinuous Petrov-Galerkin (DPG) community and the Saddle Point
Least Squares (SPLS) group. The main idea is to use an auxiliary variable
that represents the residual of the original equation on the test space and
another simple equation that leads to a (square) saddle point system that is
more suitable for analysis and discretization. It turns out that in the saddle
point reformulation, the main variable of interest is also the least squares
solution of the representation of the original equation on the test space. It is
very possible that this idea was used in many other particular discretizations
of various variational problems a long time ago, see e.g., [10, 21, 23, 26]. We
try to summarize and generalize the main ideas of the SP approach in an
abstract general setting. Many of the results regarding this reformulation
are common to both the DPG approach [15, 19, 22, 24, 25, 28] and the SPLS
approach developed in [6, 7, 8, 11].

We also expand on the concept of optimal test norm [18, 20, 21, 22, 25, 26,
28] that seems to be often involved in the DPG methodology and combine
it with a general preconditioning technique, introduced in [6], in order to
improve the stability of the saddle point discrete formulations.
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The goal of the paper is to present some of the common concepts and
approaches of SPLS discretization that can be used not only by the DPG-
SPLS community, but also by any practitioner interested in finite element
approximation of variational formulations. We investigate the SP reformu-
lation and discretization of the following general Petrov-Galerkin problem:
Given F € V*, find p € Q such that

(1.1) b(v,p) = (F,v) forallvelV,

where V' and @ are Hilbert spaces and b(-,-) is a continuous bilinear form
on V x @ satisfying an inf — sup condition.

The paper is organized as follows. In Section 2, we introduce the notation
and present the SPLS formulation and special test norms at the continuous
level. Section 3 provides the approximation theory and proposes a solver for
the SPLS discretization. We present the SPLS preconditioning theory and
an iterative solver in Section 4. In Section 5 we consider a general choice
of a discrete trial space that depends on the choice of a discrete test space,
which is problem dependent, but is always compatible with the trial space.
In this section, we also analyze the stability of the proposed discrete spaces
using the special test norms. We consider one example of SPLS formulation
with an optimal test norm and one example with an almost optimal norm
in Section 6. The proofs of the two lemmas regarding special test norms are
included in the Appendix.

2. THE NOTATION AND THE GENERAL SPLS APPROACH

We now review the main ideas and concepts for the SPLS discretion of a
general mixed variational formulation.

2.1. The abstract variational formulation at the continuous level.
We consider the Petrov-Galerkin formulation (1.1). We assume that the

inner products ag(-,-) and (-,-)g induce the norms |- |y = | - | = ao(-,-)"/?
and || -[lo == (- )22/2 We denote the dual of V' by V* and the dual

pairing on V* x V' by (-,-). We assume that b(-,-) is a continuous bilinear
form on V x @ satisfying the sup — sup condition

b
(2.1) sup sup (v.p) =M < oo,
peQ vev [l [|pll
and the inf — sup condition
b
(2.2) inf sup (w.p) _ m > 0.

pe@ vev |v][lp]

With the form b, we associate the operators B:V — Q and B*: Q — V*
defined by

(Bv,q)g =b(v,q) = (B*q,v) forallveV,qgeQ.
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We define Vj to be the kernel of B, i.e.,
Vo := Ker(B) = {v e V| Buv=0}.

Under assumptions (2.1) and (2.2), the operator B is a bounded surjective
operator from V to @, and Vj is a closed subspace of V. With the inner
product on V', we associate the operator Ay : V — V* defined by

(Aou,v) = ap(u,v) for all u,v € V.
We will also assume that the data F' € V* satisfies the compatibility condition
(2.3) (F,v) =0 for all v e Vy = Ker(B).

The following result describes the well posedness of (1.1) and can be used
at the continuous and discrete levels, see e.g., [1, 3, 13, 14].

Proposition 2.1. If the form b(-,-) satisfies (2.1) and (2.2), and the data
F € V* satisfies the compatibility condition (2.3), then the problem (1.1)
has unique solution that depends continuously on the data F'.

It is also stated in a few papers, see [10, 11, 12, 21|, that, under the
compatibility condition (2.3), solving the mixed problem (1.1) reduces to
solving a standard saddle point formulation: Find (w,p) € V' x @ such that

ap(w,v) + b(v,p) = (F,v) for all v € V,

(2.4) b(w, q) =0 for all ¢ € Q.

In fact, p is the unique solution of (1.1) if and only if (w = 0, p) solves (2.4),
and the result remains valid if the form ag(-,-) in (2.4) is replaced by any
other symmetric bilinear form a(-,-) on V that leads to an equivalent norm
on V.

The Schur complement associated with the SP system (2.4) is S : Q —
@, defined by S := BAalB*. Furthermore, see e.g., [3], S is a bounded
symmetric operator on @, and the spectrum of S satisfies

m?, M? € o(S) C [m?, M?).

In general, for a symmetric positive definite operator S on a Hilbert space
(@, (,-)q) we define ||q||s := (Sq,q)g2, see Sections 3.1 and 4.2.

2.2. The concept of optimal test norm. If we assume that the operator
B :V — Q@ is injective (Vp = Ker(B) = {0}) then, as in [18, 20, 21, 22, 26],
we can define the following operator dependent norm on V|

b(v, p) (Bv,p)o _

|V opt := sup = su

T [1Bul| -
req Pl pe 7l

Since B is a bounded bijective operator between Hilbert spaces, we have
that | - |op¢ is indeed an equivalent norm on V. We will refer to this norm
on V as the optimal test norm.
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Lemma 2.2. Assume that the form b(-,-) satisfies (2.1) and (2.2) and B
is injective. By considering the optimal norm |v|epe = || Bv| on V', we have
that both the continuity constant M,y and the inf —sup constant mepy are
equal to 1. Consequently, by replacing the form ag(-,-) in (2.4) with the
inner product induced by the optimal test norm agp(u,v) := (Bu, Bv)g,
we obtain that the Schur complement of the new saddle point system is the
identity operator. Hence, the stability of the new saddle point formulation
is optimal.

For the proof, please see the appendix.

2.3. The concept of almost optimal test norm. In the case Ker(B) #
{0}, we introduce the notion of an almost optimal test norm, or a norm |-|4.
It is defined as the norm induced by the inner product

(2.5) a(u,v) := aag(u,v) + (Bu, Bv)qg,

where « is a positive parameter. The following estimates for the continuity
constant M, and the inf — sup constant m,, can be deduced in a similar way
that was done in [2] in the context of the Augmented Lagrangian method
for Stokes type systems.

Lemma 2.3. Assume that the form b(-,-) satisfies (2.1) and (2.2) and con-

sider the almost optimal norm |v|o = (cag(v,v) + (Bv,Bv)Q)1/2 on V.
Then the corresponding continuity and inf —sup constants satisfy

2 2
9 m o M
(26) m, = m and Ma = m
Consequently, by replacing the form ag(-,-) in (2.4) with the inner product

induced by the almost optimal test norm aq(u,v) := oag(u,v)+ (Bu, Bv)g,

we obtain that the condition number of the Schur complement S, of the new
saddle point system is given by

M? m? + o?

N Ve

Furthermore, for a € (0,m] we have k(Sy) € (1,2).

K(Sa) =

For the proof, please see the appendix.

Remark 2.4. The connection with the Augmented Lagrangian method: When
solving a Stokes type system, with the variational formulation given by (2.4),
by the Augmented Lagrangian method, see e.g., [2], we replace the form
ap(+,+) in (2.4) with the inner product induced by

(2.7)  ay(u,v) == ag(u,v) + p*(Bu, Bv)g, where p > 0 is a parameter.

Since the inner product (2.7) is a rescaling of the inner product (2.5), invert-
ing or preconditioning the operators associated with these inner products has
the same difficulty. Also, when solving a Stokes type system the compatibility
condition (2.3) does not necessarily hold, and the variable w is an essential
(non zero in general) variable. On the other hand, when solving (2.4) as an



NOTES ON A SADDLE POINT REFORMULATION 5

SPLS reformulation of (1.1), we have that w is an auxiliary variable that
is zero at the continuous level due to (2.3). This allows for standard saddle
point discretization and enables the use of known solving techniques, such
as Uzawa type algorithms.

3. SADDLE POINT LEAST SQUARES DISCRETIZATION

We assume that the inner product on V' is given by the continuous bilinear
form ag(-, -) that leads to the norm ag(-,-)"/2 on V. Let V}, C V and M}, C Q
be finite dimensional approximation spaces and Ay be the discrete version
of the operator Ay, i.e., Ay, satisfies

(Ahwh,vh> = ao(wh, 'Uh) for all wy, vy, € V.
We define the discrete operators By, : Vj, = My, and B} : My, — V" by
(Brvn, qn)q = b(vn, qn) = (Bhqn,vn)  for all vy € Vi, g € M.

Note that the operator By is defined using the inner product on Mj and
not with the duality on M} x My. Thus, we can define the discrete Schur

complement Sy : My — My as S, = By, A;lB,*L. We further assume the
following discrete inf — sup condition holds for the pair of spaces (V},, My):

b
(3.1) inf  sup blon, pn) =myp > 0.

pn€Mu v,ev, |Unl [|pnl
As in the continuous case, it is known that the spectrum of Sj, satisfies

mi, Mj; € o(Sp) C [mi, My,

where
b
(3.2) My, := sup sup blon pn) <M < 0.
PhEMp vREV) ’vh’ thH
We define

Vio == {vn € Vi | b(vn,qn) =0, for all ¢, € My} = Ker(Bp,),

to be the kernel of the discrete operator By, and F}, € V}* to be the restriction
of F to Vy, i.e., (Fy,vp) := (F,vp) for all v, € V.

In the case Vj, o C Vp, the compatibility condition (2.3) implies the discrete
compatibility condition

<F, Uh> =0 forall vy € Vh70.
Hence, under assumption (3.1), the problem of finding p;, € M, such that
(33) b(vh,ph) = <F, Uh>, Vp, € Vh, or B;:ph = Fh, or Ang;;ph = A;th,

has a unique solution. In general, we might not have V} o C Vp. Conse-
quently, even though the continuous problem (1.1) is well posed, the discrete



6 CONSTANTIN BACUTA, DANIEL HAYES, AND JACOB JACAVAGE

problem (3.3) might not be well-posed. However, if the form b(-,-) satisfies
(3.1), then the problem of finding (wp,pr) € Vi X My, satisfying

(f,vn) for all v, € V},,

(3 4) aO(whaUh) + b(vhaph)
’ 0 for all g, € My,

b(wh, qn)

does have a unique solution. Solving for py, from (3.4), we obtain
(3.5) Shpn = Bi(A, ' Bj) pn = BuA;, Fi.

Since the Hilbert transpose of By, is Bf = A, ' By, we note that (3.5) is the
least squares formulation of (the last version) of (3.3). Thus, we call the
component py, of the solution (wp, pp) of (3.4) the saddle point least squares
approximation of the solution p of the original mixed problem (1.1). The
following error estimate for ||p — py|| was proved in [11].

Theorem 3.1. Let b: V x Q — R satisfy (2.1) and (2.2) and assume that
F € V* is given and satisfies (2.3). Assume that p is the solution of (1.1)
and Vi, CV, My C @Q are chosen such that the discrete inf — sup condition
(3.1) holds. If (wn,pn) is the solution of (3.4), then the following error
estimate holds:

(3 6) ?\1[| ‘ < H ” < inf H H
. w mn .
hl = [P — DPhll = mh aneM P —4an

The considerations made so far in this section remain valid if the form
ap(+, ), as an inner product on V4, is replaced by another inner product af(-, -)
which gives rise to an equivalent norm on V}. Certainly, the definitions of
Ap, Sp, My, and my will change accordingly with the new norm induced
by the inner product a(-,-). In particular, the error estimate (3.6) remains
valid with the corresponding new definition for the constant my,.

3.1. An Uzawa CG iterative solver. In the previous sections, we dis-
cussed the possibility of having more than one norm or inner product on V.
We will assume next that the inner product on V is given by a generic con-
tinuous bilinear form a(-,-) that leads to an equivalent norm on V, a(-,-)'/2.
Note that a global linear system may be difficult to assemble or solve when
ao(-,-) is replaced by a(-,-) in (3.4). Nevertheless, we can solve (3.4) and
avoid building a basis for M, by using an Uzawa type algorithm, e.g., the
Uzawa Conjugate Gradient (UCG) algorithm.

Algorithm 3.2. (UCG) Algorithm
Step 1: Choose any pg € M;,. Compute u; € Vj, q1,d; € My by

a(ui,vp) = (F,vp) — b(vp, po) for all v, € Vy,
(q1,qn)Q = b(u1,qn) for all gy € My,  di:=qi.



NOTES ON A SADDLE POINT REFORMULATION 7

Step 2: For j = 1,2,..., compute hj, o, pj, ujt1,q5+1, 55, dj+1 by

(UCG1) a(hj,vp) = — b(vp, d;) for all v, € Vj
(45, 9)q
(UCGa) o =— =
! b(hyj,q;)
(UCG2) pj = pj—1+; d;
(UCG?)) Ujp1 = Uj + O hj
(UCG4) (gj+1,an)Q = bluj1,qn)  for all gy € My,
(¢j+1,j+1)Q
(UCGH) Bj=—"F—=""
’ (45, %)e
(UCGSH) djt1 = gjv1 + B;d;.

Note that the only inversions needed in the algorithm involve the form
a(-,-) in Step 1 and (UCG1). In operator form, these steps become

(3.7) uy = A, '(F, — Bjipo),  and  hj = —A; 1(Bdy)),

respectively. As mentioned in [6], Algorithm 3.2 recovers the steps of the
standard conjugate gradient algorithm for solving problem (3.5). Due to
assumption (3.1), the Schur complement Sy, is a symmetric positive definite
operator. Consequently, the UCG-iterations p; converge to the solution py,
of (3.5), and the rate of convergence for the iteration error ||p; — pylls, or

2
lpj — pnl|| depends on the condition number of S}, which is k(Sp) = %

h
The following sharp error estimation, proved in [4], entitles the computed
quantity ||¢;| as an efficient iteration error estimator.

Theorem 3.3. If (wp,pp) is the discrete solution of (3.4) and (uj,pj—1) is
the j* iteration for Algorithm 3.2, then (uj,pj—1) = (wn,pp) and

1 1
a2 16l < llpi—1 = pull = 5 gl
(3.8) h

mp M

T gl < g = wnl < = gl

2
My

We note that when wy, = 0 (e.g., when V}, o C Vj), we also obtain, from
(3.8), that |u;| an efficient error estimator for ||pj—1 —ps||. In addition, since
u; satisfies

a(uj,vp) = (F,vp) — b(vp, pj—1) = b(vp,p —pj—1) for all vy € Vp,

we have that |u;| is an estimator for the discrete error ||p — pp||.

In order to build an efficient solver for (1.1), we would like to modify
Algorithm 3.2 by replacing the action of A;l with the action of a suitable
preconditioner. The analysis for the resulting algorithm can be done using
standard SP theory and is presented in the next section.
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4. PRECONDITIONING THE SPLS DISCRETIZATION

In this section, we summarize a general preconditioning framework to
approximate the solution of (1.1) that is presented in [6]. We plan to combine
this framework with the new concepts of optimal and almost optimal test
norm. The approach is based on the SPLS formulation (3.4) and on elliptic
preconditioning of the operator associated with the inner product on Vj. We
will assume that the inner product on V is given by a generic continuous
bilinear form a(-,-) that leads to an equivalent norm on V}, (equipped with
the original norm ag(-,-)'/2). More precisely, we replace the original form
a(-,-) in (3.4) with a uniformly equivalent form a(-,-) on V}, that leads to an
implementably fast operator /Nl,:l. We assume that V), C V and M, C Q
are finite dimensional approximation spaces satisfying (3.1) and (3.2).

4.1. The preconditioned saddle point problem. First, we introduce a
general preconditioner operator P, : V;* — V} that is equivalent to Agl in
the sense that

(4.1) (9, Pnf) = (f, Prg) forall f,g eV,
and
(4.2) mi|vp|?> < a(PyApvn, vy) < mi|op|?,

where the positive constants m?, m3 are the smallest and largest eigenvalues

of P, Ap, respectively. Assumption (4.1) is equivalent with the fact that
P, A, is a symmetric operator with respect to the a(-,-) inner product, and
condition (4.2) is equivalent with the fact that the condition number of P, Ay
satisfies
m2
)
1

(43) /i(PhAh) = m2

With the preconditioner P, : V;* — V},, we define the form a : Vj, xV), — R
by

(4.4) a(wp,vp) = a((PhAh)*lwh,vh) for all wy, vy, € V.

It is easy to check under assumptions (4.1) and (4.2) that a(-, -) is a symmet-
ric bilinear form that induces an equivalent norm on V}, (originally equipped
with the norm a(-,-)"/2). The equivalence constants are independent of
h provided that the constants m; and mq are independent of h. We let
lup|p := @(vn,vy)Y? be the norm induced by the inner product a(-,-) and
define the operator A; : Vj, — Vi by

(Ahuh,vh> = d(uh,vh) for all uy, vy, € V4.

Note that Aj, = Ap(P ARt = P}:I. We will call a(-,-) a preconditioned
version of the form a(-,-).
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The preconditioned discrete saddle point problem is: Find (up,pp) € Vi, X
M,, such that

(4.5) a(un,vn) + b(vn,pn) = (f,vn) for all vy, € Vj,
’ b(un, qn) =0 for all g, € My,.

Using that Vj, € V and M, C @ satisfy (3.1) and (3.2), with M}, and my,

defined using the form a(-,-)'/2, we obtain
b
(4.6) my = inf sup M > myimy >0,
PREMu v, vy, [Vn| P || D]
and
~ b
(4.7) M, ;= sup sup M < mo M <mg M.

PREMp vREV) |Uh|P ||ph||

Hence, the preconditioned saddle point least squares formulation (4.5) has a
unique solution.
The Schur complement associated with problem (4.5) is

Sn = By A, ' Bi; = B,P,B.
Solving for py, from (4.5), we obtain
(4.8) Shpn = Bu(PhB}) pn = By Py Fy.

We call the component p;, of the solution (wp,pp) of (4.5) the (precondi-
tioned) saddle point least squares approximation of the solution p of the
original mixed prolem (1.1). To estimate ||p — pp|| in this case, we have a
similar result and estimate as presented in Theorem 3.1, namely

11

M mo
4.9 — —wy| < |lp — < —— inf — .
(4.9) Mg S W=l = 0 inf e anl

The details can be found in [6].

4.2. An iterative solver for the preconditioned variational formula-
tion. We use a modified version of Algorithm 3.2 to solve (4.5) by replacing
the form a(-,-) by a(-,-) in Step 1 and (UCG1). With this modification,
we obtain the following Uzawa Preconditioned Conjugate Gradient (UPCG)
algorithm for mixed methods.

Algorithm 4.1. (UPCG) Algorithm for Mized Methods
Step 1: Choose any py € M;,. Compute uj € V}, ¢q1,d1 € My, by
uy =Py (F, — Bjpo)
@1 =Bpui, di:=q.
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Step 2: For j = 1,2,..., compute hj, o, pj, ujt1,q5+1, 55, dj+1 by

(PCG1) hj = — Pu(Byd;)
(95.95)q
(PCGa) aj =— b(hysa;)
(PCG2) pj = pj-1+ o d;
(PCG3) Ujr1 = Uj + oy hy
(PCG4) ¢j+1 =Bpuj1,
(PCGA) 8, — (41, 4j+1)Q
(45, 95)q

(PCG6) dj1 = gj+1+ Bjd;.

We note that at each step of UPCG only the actions of Py, By, and B}
are needed. Similar to the convergence of UCG, we have that the Schur
complement S}, of (4.5) is a symmetric positive definite operator. Conse-
quently, the UPCG iterations p; converge to the solution p, of (4.8). The
rate of convergence for [|p; — pnllg, or |[pj — pall depends on the condition

number of Sy, which is Ii(gh) = %2’% Using estimates (4.6) and (4.7), we
h

obtain the following result.

Proposition 4.2. The condition number of the Schur complement
Sh = By P, B}, satisfies

(4.10) K(S’h) < %gmfé = Kk(Sh) + K(PRAp).

my my

The following result, proved in [6], is the analogous form of Theorem
3.3, and entitles the computed quantity ||g;|| as an efficient iteration error
estimator.

Theorem 4.3. If (wp,pp) is the discrete solution of (4.5) and (uj,pj—1) is
the jh iteration for Algorithm 4.1, then (uj,pj—1) — (wn,pn) and

1 1 1 1
M2l lg;ll < llpj—1 —pall < mf%mf% g,
4.11
(411) mp, m?2 M m3
M2 m2 gl < luj —wn| < mf%mf% llg;1l-

5. AN OPERATOR DEPENDENT DISCRETE TRIAL SPACE

Up to this point, we have presented a general theory for mixed variational
formulations using abstract spaces at the continuous and discrete levels. In
this section, we will still consider abstract spaces, but provide a possible
choice of a trial space M}, that depends on the choice of a trial space V}, and
the operator B that defines the problem. We assume that the inner product
and the norm on V are given by a bilinear form a(-,-) = ap(+,-). We plan
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to show that the family of pairs (V}, M}) with our operator dependent trial
space is stable if the right (optimal or almost optimal) norm is chosen for
the discrete test space.

Let V}, be a finite element subspace of V. As presented in [7, 8|, using the
current notation, we provide a general trial space M}, that can be considered

for the SPLS discretization (2.4). We define My, by
My, =BV, C Q.
From the definition of By, : V}, — M}, we have that
Bpvp, = By, for all v, € Vj,,

i.e., By is the restriction of B to Vj. Consequently, from the choice of My,
we have that By, is onto My,. It is also easy to verify that Vj, o C Vp, where
Vh,O = KeT‘(Bh).

5.1. The discrete inf —sup condition. As presented in [8], a discrete
inf — sup condition holds. For completeness we include the (short) proof.
Using a generic representation for p, = Bwp € My, with wy, € VhLO, and

the fact that VhJ-0 is a finite dimensional space, we have

. b(vn,pn) . (Bup, Bwp)q
mp = inf sup ————= = inf sup ——F7-—"F
preMi y,evh [Ipall |vnl whE€V,y v €VR [pall [on]
Buwy,||? B
S L — L)

" wneViy |Bwnll fwn]  wievity Jwal
5.2. Approximability. Using that V} o C Vp and Proposition 2.1 on the
discrete pair (V},, M},), the variational formulation (3.3) is well posed and has
a unique solution pp € My. Furthermore, by using the brief remarks after
Proposition 2.1 for the discrete pair (V},, M}), we obtain that (wy, = 0, py)
is the solution of (2.4). Let p be the solution of (1.1), and let p; be the
solution of (3.3), which is the same with the second component of the SPLS
solution of (2.4). Then, using (1.1) and (3.3), we obtain

0 = b(vp,p — pn) = (Bop,p —pr)g, forall v, € Vj.

Thus, we have that pj is the orthogonal projection of p onto My, and
consequently,

5.1 - = inf — .
(1) Ip=pull = inf llp—al

We can start with a finite element test space V} with good approximation
properties for functions in V. Since the space M} = BV} might not be a
standard finite element space, we might not know how well functions in @
can be approximated by elements of Mpy. However, using that B : V' — @
is a surjective operator, we can represent p = Bw for some w € V and write
a generic g € My, as g, = Buy, for some vy € V. From (5.1), we obtain

5.2 —pull = inf ||[Bw — Bup|| < M inf |lw — vy,
(5.2) lp — onll v;thH w — Buy|| < v;thHw |
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which says that the best approximation of the solution p with functions
in the trial space My reduces, up to the factor constant M, to the best
approximation of (a smooth) representation w (such that p = Bw) with
more familiar test functions in V},.

5.3. Stability by using optimal or almost optimal test norms. Since
the discretization (3.3) might be difficult to solve, we can consider the SPLS
discretization of (1.1) by solving (2.4) using the UCG algorithm. As pre-
sented in Section 3, the approximation of the discrete SPLS solution py

2
depends on the condition number x(Sp) = % Even though we proved

that in general my, > 0, k(S}) can be large as h — 0. To overcome this,
we propose to replace the original norm ag(, -)1/ 2 on Vj, by the optimal test
norm in the case Ker(B) = {0} and by the almost optimal, or a norm, in
the general case Ker(B) # {0}. Using that By : V}, — My, is a surjective
operator and the restriction of B to V3, we can simply apply Lemma 2.2
and Lemma 2.3 on V}, x M}, to estimate the spectral properties of the new
discrete Schur complement.

If Ker(B) = {0} and the inner product ag(-,-) in (2.4) is replaced by
the optimal test norm induced by aop(u,v) = (Bu, Bv)q, then by applying
Lemma 2.2 we conclude that Mj, o,r = mp, op¢ = 1, and the Schur complement
for the SPLS discstretization with optimal test norm is the identity operator.
In this case, we have optimal discrete stability and optimal approximability.
On the other hand, if Ker(B) # {0} and the inner product ag(,-) in (2.4) is
replaced by the almost optimal test norm induced by a(u,v) = a?ag(u, v)+
(Bu, Bv)q, by applying Lemma 2.3 we conclude that

2 M2
2 _ My 2 _ h
(5.3) Mpy o = 2+ a? and M; , = T

Consequently, the condition number of the Schur complement Sj, . of the
new saddle point system becomes

(Sha) M}% m%—i—a2
K =20
h.o m% M}%+a2

and for a € (0, my], we have k(Sh ) € (1,2).

Remark 5.1. The estimates in this subsection for the discrete continuity
constants and the discrete inf —sup constants when using optimal or almost
optimal test norms hold true for any pair of spaces (V, Mp,) that satisfy
(3.1) and (3.2), provided that we use the h dependent norm induced by

Gopt,h (Wh, vn) = (Bru, Bpo)q, — for all wy,vp € Vi,
in the Ker(By) = {0} case and

Ao, n(Wh, V1) = a2a0(wh, vp) + (Bru, Bpv)g,  for all wy, v, € Vy,
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for the Ker(By) # {0} case. For independence of h of these norms, we
would need || Byup|lq = ||Bun||q for all vy, € Vi, or ||Brupllg = || Bun|lg with
equivalence on Vi independent of h.

Applying the UCG algorithm with the form a(-, -) replaced by aop(-,-) or
aq(+,-) leads to an efficient iterative process (if « is properly chosen in the
second case) with the number of iterations independent of h. The difficulty
here is shifted to the inversion of the operators associated with agp(:,-) or
a(-,-) (see the examples in Section 6). However, in light of Section 4 we
only need to use preconditioners for these symmetric and positive definite
bilinear forms. Since the theory of preconditioning symmetric positive def-
inite operators (with or without parameters) is well developed in the finite
element community, we consider that paying with efficient preconditioning
in order to get stability is worth trying, especially when finding stable pairs
in the standard norms is more difficult.

6. EXAMPLES OF OPTIMAL AND ALMOST OPTIMAL TEST NORMS

In this section, we consider one example of SPLS formulation with optimal
test norm and one example with almost optimal test norm. We do not try
to find a new or best discretization approach for the two examples. Rather,
the goal is to emphasize how stability for mixed formulation can be gained
and provide a way to choose the appropriate preconditioner towards finding
an efficient solver for the mixed formulation and discretization.

6.1. Optimal SPLS test norm for the reaction diffusion problem.
We consider the following reaction diffusion problem

{—aAu—i—cu: f in Q,

(6.1) u= 0 on 0,

for ¢ > 0 and c(x) > ¢ > 0 on Q, a bounded domain in RY. In what
follows, (-,-) and || - || will denote the standard L? inner product and norm,
respectively.

A standard variational formulation for (6.1) is: Find u € Hg () such that

(6.2) e(Vu, Vo) + (cu,v) = (f,v) for all v € H(Q).

To obtain a mixed formulation that is suitable to the SPLS framework, we
let V := H}(9), and Q be the graph of the operator eV : H}(Q) — L2(Q)4,

i.e.,
Q:=G(eV) = {(4,) |ve Hy(Q)}.
We define the bilinear form b: V x Q — R as
b(v, (o)) == (cw,v) +e(Vw,Vv) forallveV,(.v,)€Q,
and the linear functional F' € V* as

(F,v) := (f,v) forall v € H}(Q).
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With this setting, the standard variational formulation (6.2) can be refor-
mulated in the mixed form: Find p = (v, ) € @ such that
(6.3) b(v,p) = (cu,v) +(Vu, Vo) = (f,v) forallve V.
On V', we consider first the standard inner product defined by
ap(u,v) = (Vu, Vo) for all u,v € V,
and on @, we consider the weighted inner product

((E%u) ) (a%fu))@ = (Cu7v) + E(VU, VU) for all (E%u) ) (aev) €Q.

The corresponding norm is

I (80) o = (llc /20 + [1e/290]2)

For the standard norm on V = H{(Q), the inf —sup condition on V x Q
holds with a constant m that depends on €. The operator B : V — @ is
given by

1/2

Bv=(,v,) forallvelV.

Thus, the optimal test norm on V is induced by the inner product
aopt(u,v) = (Bu, Bv)g = €(Vu, Vv) + (cu,v)  for all u,v € V,

which gives rise to the norm
1/2
[Olopt = (lle/2ul? + 1|e/2vw]2) .
The compatibility condition (2.3) is automatically satisfied as
Vo = Ker(B) = {v € H}(Q)| Bv =0} = {0}.

In addition, according to Section 2.2, we obtain M = m = 1. This leads to
optimal continuity and inf — sup constants. However, inverting the operator
associated with | - |y coincides with solving the original problem. Fortu-
nately, at the discrete level we can replace aop(-,) by a preconditioned
form.

For discretization we can choose Vi, C V = H}(£2) to be the space of
continuous piecewise polynomials of degree k with respect to a mesh 7, on
Q and let M, the operator dependent choice

I
My, := BV, = <gv> Vi,

where I : Vj, — V}, is the identity operator and the inner product is chosen
to coincide with the inner product on Q. According to Section 5.3, for the
above choice of trial space, we also have My, = my, = 1.

Using Remark 5.1 for a more general choice of M}, (compatible with V},),
we still have M = my; = 1 provided that we are using the optimal test
norm induced by aopsp (¢, ) on Vj,. In order to come up with an efficient
UPCG solver, we will need to find robust (with respect to h and ) precon-
ditioners for the discrete optimal norm on V. For quasi-uniform meshes,



NOTES ON A SADDLE POINT REFORMULATION 15

such preconditioners are available, see e.g., [16, 31]. For non-uniform mesh
discretization, such as the use of Shishkin meshes [34], such theory seems to
not be developed.

6.2. Numerical results. We solved (6.1) on the unit square with variable
coefficient ¢ = 2(1 + 22 4+ 4?) and f computed such that the exact solution
is given by

u(z,y) = z(1 — ) (1 - e—y/\/g) (1 _ 6(y—1)/\/g>
+y(l—y) (1 _ e—x/ﬁ) (1 _ e(x—l)/ﬁ) ,

as considered in [29]. For this problem, the solution has boundary layers
on all sides of the unit square. To this end, we use a Shishkin mesh for
discretization purposes. Following [33], we review the construction of the
Shishkin mesh.

Assume N is an integer multiple of 8. This parameter will refer to the
number of mesh intervals in the x and y directions. The mesh itself is the
tensor product of two one-dimensional Shishkin meshes 7 x 7,. The process
for obtaining 7, (and 7y) is as follows. The interval [0, 1] is first decomposed
into three subintervals [0, A], [\, 1 — A], and [1 — A, 1], where

1
(6.4) A:min{4,2,/ilnN} with 0 < ¢* < c.
C

The intervals [0, A] and [1 — A, 1] are then partitioned into N/4 subintervals

4\
of length N while the interval [\, 1— )] is partitioned into N/2 subintervals
of length M
from the top left to bottom right of each quadrilateral. See [27] or Section
6 of [5] for figures showing examples of the Shishkin mesh generated using
e =10"%and ¢* = \/1/2 for N = 16 and N = 32. With this setup, we
choose the test space Vj, = Vy C H(Q) to be the space of continuous
piecewise linear polynomials with respect to the Shishkin mesh 7, and take
M h ‘= BVh.
We performed computations using the UCG algorithm with different
choices for the inner product a(-,-) on V:
(a) a(u,v) = e(Vu, Vv) + (u,v), see Table 1
(b) a(u,v) = (Vu, Vv), see Table 2
(¢) a(u,v) =+/e(Vu, Vv) + (u,v), see Table 3
(d) a(u,v) = /e(Vu, Vo) + (cu,v), see Table 3
The stopping criterion used for the UCG algorithm was

lgjllq <107,

. The triangular mesh is obtained by drawing diagonals

in all cases. Also, we measured the SPLS solution in a balanced norm instead
of the norm on Q. This is due to the fact that for small £ the L? part of
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the norm on ) dominates, leading to an unbalanced norm not adequate to

accurately measure the error, see [30, 33]. More precisely, we approximate
errory := errory := <Hu —up||? 4 2| Vu — VuhH2> 2 ,

where uy, is in fact uy. According to [30, 33], standard Galerkin methods

for (6.2) lead to a covergence rate of O(N~!InN) using piecewise linear

approximation [30, 33]. We expect the same order of convergence for SPLS

discretization.

Numerical tests using the UCG algorithm and the optimal norm induced
by aopt(u, v) = £(Vu, Vv)+(cu, v) were performed in [27] and [5]. The results
are very close with the results of Table 1 with the main observation that
the number of iterations is always one when using the optimal norm. This
is always the case when using the UCG algorithm and the inner product
a(-,-) = agpt(-,-). However, in this case we have to invert (in Step 1 of
UCG) an operator that corresponds to the original problem.

The purpose of our numerical tests is to show that by using closely related
norms on V' (that might be easier to precondition) we preserve the order of
approximation, and the price to pay is an increase in the number of iterations
as ¢ = 0. Choosing inner product (a), which is close to aop(-,-), preserves
the order of convergence and slightly increases the number of iterations as
¢ decreases as shown in Table 1. By choosing inner product (b), which is
independent of €, we note a huge increase of the number of iterations. This
is because the inf — sup condition constant, and hence the condition number
of the Schur complement, increases as € — 0, see Table 2. The results for
choices (c) and (d), shown in Table 3, demonstrate that a larger penalty
on the term (V-,V:) could lead to an intermediate number of iterations if
compared to the previous two cases. Table 3 also demonstrates that the
number of iterations decreases the closer to aop(-,-) we are (by using the
exact component (c-,-)).
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N €= e =102 e=10""1
error | rate | it | error | rate | it | error | rate | it
16 0.0189 6 | 0.0682 16 | 0.132 24
32 0.0095 | 1.472 | 6 | 0.0341 | 1.471 | 16 | 0.088 | 0.854 | 25
64 0.0047 | 1.356 | 6 | 0.0171 | 1.356 | 16 | 0.054 | 0.946 | 26
128 0.0023 | 1.286 | 6 | 0.0085 | 1.285 | 16 | 0.032 | 0.984 | 26
256 0.0012 | 1.239 | 6 | 0.0042 | 1.239 | 16 | 0.018 | 0.996 | 27
e=10"% e=10"1 e=10"1
N error rate | it | error rate | it | error | rate | it
16 0.133 241 0.133 231 0.133 22
32 0.089 | 0.859 |26 | 0.089 | 0.859 | 25 | 0.089 | 0.860 | 24
64 0.055 | 0.951 | 28 | 0.055 | 0.951 | 27 | 0.055 | 0.951 | 25
128 0.032 | 0.988 | 28 | 0.032 | 0.988 | 27 | 0.032 | 0.988 | 26
256 0.018 [ 0.999 | 29 | 0.018 | 0.999 | 27 | 0.018 | 0.999 | 26
Table 1: Results for the case a(u,v) = €(Vu, Vv) + (u,v).
e=1 e=10"? e=10"1%
N error | rate it error | rate it error | rate it
16 0.0189 6 | 0.0682 18 | 0.1317 93
32 0.0094 | 1.472 | 7 [0.0341 | 1.470| 20 | 0.0882 | 0.854 | 110
64 0.0047 | 1.356 | 7 |0.0170 | 1.356 | 19 | 0.0544 | 0.945 | 118
128 0.0023 | 1.285 | 7 |0.0085 | 1.285| 20 | 0.0320 | 0.983 | 124
256 0.0011 | 1.238 | 7 [0.0042 | 1.238 | 20 | 0.0183 | 0.995 | 126
e=10"0 e=10"°
N error | rate it error | rate it
16 0.1332 302 | 0.1335 426
32 0.0889 | 0.858 | 607 | 0.0891 | 0.859 | 1301
64 0.0547 | 0.950 | 825 | 0.0548 | 0.950 | 2796
128 0.0321 | 0.987 | 869 | 0.0322 | 0.987 | 4018
256 0.0183 | 0.998 | 868 | 0.0184 | 0.998 | 4819

Table 2: Results for the case a(u,v) = (Vu, Vv).

6.3. SPLS discretization of a div — curl system. We describe how one
can apply the general SPLS theory with almost optimal test norm for a
model div — curl problem on a polyhedral domain 2 C R3. For given data,
we are looking to find the vector function h € L2(f) such that

(6.5)

Vx (u'h) =]
V-h =g
h-n

in €
in €

=0 on [':=09Q,
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e=1 e=10"2
N error | rate |it (c) [it (d) | error | rate |it (c) | it (d)
16 0.0189 6 1 0.0682 19 18
32 0.0094 | 1.472 6 1 0.0341 | 1.470 | 20 19
64 0.0047 | 1.356 6 1 0.0170 | 1.356 | 21 19
128 0.0023 | 1.285 6 1 0.0085 | 1.285 | 21 19
256 0.0011 | 1.238 6 1 0.0042 | 1.238 | 21 19
e=10"1 e=10""°
N error | rate |it (c) [it (d) | error | rate |it (c) | it (d)
16 0.1317 90 68 |0.1332 197 125

32 0.0882 | 0.854 | 104 75 |1 0.0889 | 0.858 | 358 | 202
64 0.0544 | 0.945 | 112 82 10.0547 | 0.950 | 476 | 266
128 1 0.0320 | 0.983 | 115 82 10.0321 | 0.987 | 502 | 279
256 | 0.0183 | 0.995 | 116 83 10.0183 | 0.998 | 507 | 282

e=10"%
N error | rate |it (c) | it (d)
16 0.1335 246 130
32 0.0891 | 0.859 | 516 261
64 0.0548 | 0.950 | 892 418
128 0.0322 | 0.987 | 1265 | 585
256 0.0184 | 0.998 | 1568 | 734

Table 3: Results for cases a(u,v) = v/&(Vu,Vv) + (u,v) and a(u,v) =
Ve(Vu, Vv) + (cu,v).

where p = u(z) is a given scalar L? function satisfying 0 < po < p(x) < pa,
for a.e. = € Q. We consider the variational formulation for (6.5) that is
presented in [17]. We multiply the first equation in (6.5) by w € H}(2) and
the second equation by ¢ € H'(Q2)/R. We assume enough regularity for the
data (hence, the solution) in order to be able to integrate by parts. After
we integrate by parts, we obtain

(0 th,Vx w) = (j,w) for all w € H}(Q2)

(6.6) (0, Ve) =(-g.9)+ (0.0)r forall e H(Q)R,

where (-,-) denotes the standard L? type inner product. If we define the
spaces V := H} () x H(Q)/R and Q := L?(2), and the form “b(v,p)” on
(V,Q) by

b((w,¢),h) := (1'V x w+Vp,h), forall (w,p) €V, heQ,
the variational formulation for (6.5) becomes: Find h € @) such that

(67) b((W,(p),h) = <F’ (W7 90)> = (va) + (_9790) + (Uv @)Fv (W,CP) eV
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The inner product on @ is the weighted inner product (-,-),-1 in order to
take advantage of the orthogonality between the (weighted) gradient fields
and the curl fields. On V := H}(Q) x H'(2)/R, the inner product is chosen
such that the corresponding induced norm is

I(w, @I = aes (w, W) + a0y ) = /Q b Vwl? /Q IVl

With these choices of inner products and norms, the continuity constant M
for b(-,-) is M = 1. A continuous inf — sup condition holds with a constant
m > %, where ¢y depending only on the domain €2, see Section 4 of [17].
The corresponding operator B : V — @ is

(6.8) B (w,p) =curlw + u V.

By using the orthogonality between curl w and V¢ in the weighted inner
product (-,-),-1, we can verify that

Vo := Ker(B) = {(w,0) € V | curlw = 0}.

If the data (j,g,0) is such that the compatibility condition (2.3) is satis-
fied, then (6.6) is a well-posed problem and our SPLS discretization can be
considered. An almost optimal or o morm on V is defined by

l(w,)[I2 == o (™' VW, Vw) + (uVe, Vi) +
('V x W,V x w) + (uVip, Vo).

We can also try to precondition the almost optimal norm at the continuous
level first. To demonstrate this, we take y = 1 for simplicity. Then

(W, )12 = (1 + )| curl w|f* + o[ divw|? + (1 + o®)|| V||,
which, for o small, is equivalent (or can be preconditioned by)
(W, D)2 prec = I curlw|[? + || divw|[® + [[Veo|*.

Conforming SPLS discretization using the above norm on V reduces to in-
verting or preconditioning the operators associated with the forms ||V||?
and || curlw|? + o?| divw||?2. The first form is parameter free and can
benefit from classical preconditioning theory for the Laplace operator. In
the two dimensional case, the second form is uniformly equivalent with
|Vw|? + o?|| divw]||? and one can benefit from the preconditioning theory
developed for the Augmented Lagrangian method for Stokes systems.

For SPLS discretization, we can also choose V;, C V to be any good
approximation finite element space, e.g., the space of continuous piecewise
functions of fixed degree with the appropriate boundary conditions for each
component of V', and for M}, we can consider the general choice My, := BV},
as in [9, 11]. If an estimate ¢, for the discrete constant my, is available, then
a practical choice for « for an almost optimal norm is o = min{#—ll, cpt. If
a family {(Vj, My,)} of discrete spaces is available such that the discrete
inf — sup constant my, (using the original norm on V') satisfies my, > ¢; > 0
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for all h, then a practical choice for o when using the UCG algorithm with
almost optimal test norm is a = %

Numerical results done in [11, 32] without preconditioning show that the
number of iterations increases due to mesh size h or the discontinuity jump
size of p. Preconditioning the « test norm would lead to a more efficient
UPCG algorithm for the div — curl system. The construction of such pre-
conditioners for a specific test spaces V}, and norms is a challenging problem
and will not be discussed in this paper.

7. CONCLUSION

We presented some general results and ideas regarding a saddle point
(least squares) reformulation of mixed variational problems. The results can
be useful for further development of both DPG and SPLS methodologies. We
considered the concept of optimal test norm (when B : V — @ is injective),
as presented in [25, 28|, and extended it to the case when B : V — @ might
not be injective by introducing the concept of almost optimal test norm.
A general preconditioning strategy and an iterative process for solving the
discrete mixed formulations are reviewed in light of the special test norms.
We also presented examples of improving stability and solver efficiency by
preconditioning as well as the use of special trial norms.

Acknowledgment. The first author is grateful for an Oden Institute fel-
lowship which allowed him to visit UT Austin in the Fall of 2019.
8. APPENDIX
Proof of Lemma 2.2
Proof. Using the definitions of |v|, and b(v, p), we obtain

b(v,p) __ (Bu,p)g _
= sup = ||pll-
veEV |v|opt veV ||BU||Q

Thus, the continuity and inf-sup constants satisfy

b
Mp = sup sup M = sup M =1,

peQ vev [Wloptl [Pl pe Ipll

and

)

Mept = inf sup bv.p) = inf ] =
PeQ vev |Vlopt||PIl  pEQ |[p]]
as desired. From the remarks at the end of Section 2.1, we can conclude
that the corresponding Schur complement S, is the identity on V. Another
way to see that is by considering the new SP system where ag(,-) in (2.4)
is replaced by aopt(-, -),

(Bw,Bv)g + b(v,p) = (F,v) forallv eV,

(8.1) b(w, q) =0 for all ¢ € Q.
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The corresponding operator system is

B*Bw + B*p = F
0

(5.2) B _

Therefore, using that B (hence B*) is invertible, we quickly recover that the

Schur complement is the identity.
O

Proof of Lemma 2.3

Proof. Denote A, : V. — V™ to be the operator associated with aq(u,v),
ie., Ay = a?Ay + B*B. We will need the following two identities:

(8.3) A(I+a*CcHt=Cc-cCcl1+0)c,
for any linear bounded operator C' on @, and
(84) a2(a?Ap+B*B)™t = Ayl — Ay'B*(a®I+ BA;'B*)"'BAyY,

where Ag and B are the operators defined in Section 2. Both identities can
be easily justified by checking that the proposed algebraic inverse satisfies
the definition of the corresponding inverse operator. The identity (8.4) is a
version of the Sherman-Morrison-Woodbury formula.

If we pre and post compose (8.4) with B* and B respectively, and combine
the result with (8.3) with C' = BA; ' B*, we obtain

BA'B* = (I +o*(BAy'B*)™")".
It is known that, see e.g. [2, Lemma 2.1],

b 2
sup (v,p)

= (BA'B*p,p).
veV aa(v,v) (B4 )

Replacing BA,!'B* from the above identity, we have

BA-1B* I+ o2(BA-'B*)~1)-1
M? = sup (BAy B'p.p) _ o W+ a7 (BAg BY)7)" p.p)
peQ (p,p) peQ (p,p)
I+ a2(BA;1B*)~! -1 BA-1B* -1
_ <inf (L +o*(BA, B") )q,q)> _ (1—|—a21nf (BAg q,Q)>
4€Q (¢,9) 4eQ (¢,9)

1k —1\ -1
:<1+a2(sup<5’flo”5’w>> ) R S G
re@ (’f’,?") 1+ﬁ[722 M2—|—Oé2

The proof for m? proceeds similarly. It then follows immediately that the
condition number of S, is given by
(Sa) M2 M?m?+a?
K =—0=——.
“ mZ  m? M? + o?
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