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Abstract. We summarize some general ideas regarding approximation
of mixed variational problems using saddle point reformulation. We con-
sider the concepts of optimal and almost optimal (or α) test norm and
provide estimates for the continuity and stability constants. A precon-
ditioning strategy for solving the discrete mixed formulations is used in
combination with the special test norms. We further provide a choice
for a discrete trial space, that depends on the choice of a standard test
space and leads to discrete stability, when using the appropriate test
norm. Examples to illustrate how the stability of the saddle point dis-
cretization can be improved using special test norms are included.

1. Introduction

Saddle point reformulations for the Petrov-Galerkin method has become a
common methodology in dealing with discretization of PDEs, especially for
the Discontinuous Petrov-Galerkin (DPG) community and the Saddle Point
Least Squares (SPLS) group. The main idea is to use an auxiliary variable
that represents the residual of the original equation on the test space and
another simple equation that leads to a (square) saddle point system that is
more suitable for analysis and discretization. It turns out that in the saddle
point reformulation, the main variable of interest is also the least squares
solution of the representation of the original equation on the test space. It is
very possible that this idea was used in many other particular discretizations
of various variational problems a long time ago, see e.g., [10, 21, 23, 26]. We
try to summarize and generalize the main ideas of the SP approach in an
abstract general setting. Many of the results regarding this reformulation
are common to both the DPG approach [15, 19, 22, 24, 25, 28] and the SPLS
approach developed in [6, 7, 8, 11].

We also expand on the concept of optimal test norm [18, 20, 21, 22, 25, 26,
28] that seems to be often involved in the DPG methodology and combine
it with a general preconditioning technique, introduced in [6], in order to
improve the stability of the saddle point discrete formulations.
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The goal of the paper is to present some of the common concepts and
approaches of SPLS discretization that can be used not only by the DPG-
SPLS community, but also by any practitioner interested in finite element
approximation of variational formulations. We investigate the SP reformu-
lation and discretization of the following general Petrov-Galerkin problem:
Given F ∈ V ∗, find p ∈ Q such that

(1.1) b(v, p) = 〈F, v〉 for all v ∈ V,

where V and Q are Hilbert spaces and b(·, ·) is a continuous bilinear form
on V ×Q satisfying an inf − sup condition.

The paper is organized as follows. In Section 2, we introduce the notation
and present the SPLS formulation and special test norms at the continuous
level. Section 3 provides the approximation theory and proposes a solver for
the SPLS discretization. We present the SPLS preconditioning theory and
an iterative solver in Section 4. In Section 5 we consider a general choice
of a discrete trial space that depends on the choice of a discrete test space,
which is problem dependent, but is always compatible with the trial space.
In this section, we also analyze the stability of the proposed discrete spaces
using the special test norms. We consider one example of SPLS formulation
with an optimal test norm and one example with an almost optimal norm
in Section 6. The proofs of the two lemmas regarding special test norms are
included in the Appendix.

2. The notation and the general SPLS approach

We now review the main ideas and concepts for the SPLS discretion of a
general mixed variational formulation.

2.1. The abstract variational formulation at the continuous level.
We consider the Petrov-Galerkin formulation (1.1). We assume that the

inner products a0(·, ·) and (·, ·)Q induce the norms | · |V = | · | = a0(·, ·)1/2

and ‖ · ‖Q = ‖ · ‖ = (·, ·)1/2
Q . We denote the dual of V by V ∗ and the dual

pairing on V ∗ × V by 〈·, ·〉. We assume that b(·, ·) is a continuous bilinear
form on V ×Q satisfying the sup− sup condition

(2.1) sup
p∈Q

sup
v∈V

b(v, p)

|v| ‖p‖
= M <∞,

and the inf − sup condition

(2.2) inf
p∈Q

sup
v∈V

b(v, p)

|v| ‖p‖
= m > 0.

With the form b, we associate the operators B : V → Q and B∗ : Q→ V ∗

defined by

(Bv, q)Q = b(v, q) = 〈B∗q, v〉 for all v ∈ V, q ∈ Q.
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We define V0 to be the kernel of B, i.e.,

V0 := Ker(B) = {v ∈ V | Bv = 0}.

Under assumptions (2.1) and (2.2), the operator B is a bounded surjective
operator from V to Q, and V0 is a closed subspace of V . With the inner
product on V , we associate the operator A0 : V → V ∗ defined by

〈A0u, v〉 = a0(u, v) for all u, v ∈ V.

We will also assume that the data F ∈ V ∗ satisfies the compatibility condition

(2.3) 〈F, v〉 = 0 for all v ∈ V0 = Ker(B).

The following result describes the well posedness of (1.1) and can be used
at the continuous and discrete levels, see e.g., [1, 3, 13, 14].

Proposition 2.1. If the form b(·, ·) satisfies (2.1) and (2.2), and the data
F ∈ V ∗ satisfies the compatibility condition (2.3), then the problem (1.1)
has unique solution that depends continuously on the data F .

It is also stated in a few papers, see [10, 11, 12, 21], that, under the
compatibility condition (2.3), solving the mixed problem (1.1) reduces to
solving a standard saddle point formulation: Find (w, p) ∈ V ×Q such that

(2.4)
a0(w, v) + b(v, p) = 〈F, v〉 for all v ∈ V,
b(w, q) = 0 for all q ∈ Q.

In fact, p is the unique solution of (1.1) if and only if (w = 0, p) solves (2.4),
and the result remains valid if the form a0(·, ·) in (2.4) is replaced by any
other symmetric bilinear form a(·, ·) on V that leads to an equivalent norm
on V .

The Schur complement associated with the SP system (2.4) is S : Q →
Q, defined by S := BA−1

0 B∗. Furthermore, see e.g., [3], S is a bounded
symmetric operator on Q, and the spectrum of S satisfies

m2,M2 ∈ σ(S) ⊂ [m2,M2].

In general, for a symmetric positive definite operator S on a Hilbert space

(Q, (·, ·)Q) we define ‖q‖S := (Sq, q)
1/2
Q , see Sections 3.1 and 4.2.

2.2. The concept of optimal test norm. If we assume that the operator
B : V → Q is injective (V0 = Ker(B) = {0}) then, as in [18, 20, 21, 22, 26],
we can define the following operator dependent norm on V ,

|v|opt := sup
p∈Q

b(v, p)

‖p‖
= sup

p∈Q

(Bv, p)Q
‖p‖

= ‖Bv‖ .

Since B is a bounded bijective operator between Hilbert spaces, we have
that | · |opt is indeed an equivalent norm on V . We will refer to this norm
on V as the optimal test norm.
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Lemma 2.2. Assume that the form b(·, ·) satisfies (2.1) and (2.2) and B
is injective. By considering the optimal norm |v|opt = ‖Bv‖ on V , we have
that both the continuity constant Mopt and the inf − sup constant mopt are
equal to 1. Consequently, by replacing the form a0(·, ·) in (2.4) with the
inner product induced by the optimal test norm aopt(u, v) := (Bu,Bv)Q,
we obtain that the Schur complement of the new saddle point system is the
identity operator. Hence, the stability of the new saddle point formulation
is optimal.

For the proof, please see the appendix.

2.3. The concept of almost optimal test norm. In the case Ker(B) 6=
{0}, we introduce the notion of an almost optimal test norm, or α norm | · |α.
It is defined as the norm induced by the inner product

(2.5) aα(u, v) := α2a0(u, v) + (Bu,Bv)Q,

where α is a positive parameter. The following estimates for the continuity
constant Mα and the inf − sup constant mα can be deduced in a similar way
that was done in [2] in the context of the Augmented Lagrangian method
for Stokes type systems.

Lemma 2.3. Assume that the form b(·, ·) satisfies (2.1) and (2.2) and con-

sider the almost optimal norm |v|α =
(
α2a0(v, v) + (Bv,Bv)Q

)1/2
on V .

Then the corresponding continuity and inf − sup constants satisfy

(2.6) m2
α =

m2

m2 + α2
and M2

α =
M2

M2 + α2
.

Consequently, by replacing the form a0(·, ·) in (2.4) with the inner product
induced by the almost optimal test norm aα(u, v) := α2a0(u, v)+(Bu,Bv)Q,
we obtain that the condition number of the Schur complement Sα of the new
saddle point system is given by

κ(Sα) =
M2

m2

m2 + α2

M2 + α2
.

Furthermore, for α ∈ (0,m] we have κ(Sα) ∈ (1, 2).

For the proof, please see the appendix.

Remark 2.4. The connection with the Augmented Lagrangian method: When
solving a Stokes type system, with the variational formulation given by (2.4),
by the Augmented Lagrangian method, see e.g., [2], we replace the form
a0(·, ·) in (2.4) with the inner product induced by

(2.7) aρ(u, v) := a0(u, v) + ρ2(Bu,Bv)Q, where ρ > 0 is a parameter.

Since the inner product (2.7) is a rescaling of the inner product (2.5), invert-
ing or preconditioning the operators associated with these inner products has
the same difficulty. Also, when solving a Stokes type system the compatibility
condition (2.3) does not necessarily hold, and the variable w is an essential
(non zero in general) variable. On the other hand, when solving (2.4) as an
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SPLS reformulation of (1.1), we have that w is an auxiliary variable that
is zero at the continuous level due to (2.3). This allows for standard saddle
point discretization and enables the use of known solving techniques, such
as Uzawa type algorithms.

3. Saddle point least squares discretization

We assume that the inner product on V is given by the continuous bilinear
form a0(·, ·) that leads to the norm a0(·, ·)1/2 on V . Let Vh ⊂ V andMh ⊂ Q
be finite dimensional approximation spaces and Ah be the discrete version
of the operator A0, i.e., Ah satisfies

〈Ahwh, vh〉 = a0(wh, vh) for all wh, vh ∈ Vh.

We define the discrete operators Bh : Vh →Mh and B∗h :Mh → V ∗h by

(Bhvh, qh)Q = b(vh, qh) = 〈B∗hqh, vh〉 for all vh ∈ Vh, qh ∈Mh.

Note that the operator Bh is defined using the inner product on Mh and
not with the duality on M∗h ×Mh. Thus, we can define the discrete Schur

complement Sh : Mh → Mh as Sh = BhA
−1
h B∗h. We further assume the

following discrete inf − sup condition holds for the pair of spaces (Vh,Mh):

(3.1) inf
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh| ‖ph‖
= mh > 0.

As in the continuous case, it is known that the spectrum of Sh satisfies

m2
h,M

2
h ∈ σ(Sh) ⊂ [m2

h,M
2
h ],

where

(3.2) Mh := sup
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh| ‖ph‖
≤M <∞.

We define

Vh,0 := {vh ∈ Vh | b(vh, qh) = 0, for all qh ∈Mh} = Ker(Bh),

to be the kernel of the discrete operator Bh and Fh ∈ V ∗h to be the restriction
of F to Vh, i.e., 〈Fh, vh〉 := 〈F, vh〉 for all vh ∈ Vh.

In the case Vh,0 ⊂ V0, the compatibility condition (2.3) implies the discrete
compatibility condition

〈F, vh〉 = 0 for all vh ∈ Vh,0.

Hence, under assumption (3.1), the problem of finding ph ∈Mh such that

(3.3) b(vh, ph) = 〈F, vh〉, vh ∈ Vh, or B∗h ph = Fh, or A−1
h B∗h ph = A−1

h Fh,

has a unique solution. In general, we might not have Vh,0 ⊂ V0. Conse-
quently, even though the continuous problem (1.1) is well posed, the discrete
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problem (3.3) might not be well-posed. However, if the form b(·, ·) satisfies
(3.1), then the problem of finding (wh, ph) ∈ Vh ×Mh satisfying

(3.4)
a0(wh, vh) + b(vh, ph) = 〈f, vh〉 for all vh ∈ Vh,
b(wh, qh) = 0 for all qh ∈Mh,

does have a unique solution. Solving for ph from (3.4), we obtain

(3.5) Sh ph = Bh(A−1
h B∗h) ph = BhA

−1
h Fh.

Since the Hilbert transpose of Bh is BT
h = A−1

h B∗h, we note that (3.5) is the
least squares formulation of (the last version) of (3.3). Thus, we call the
component ph of the solution (wh, ph) of (3.4) the saddle point least squares
approximation of the solution p of the original mixed problem (1.1). The
following error estimate for ‖p− ph‖ was proved in [11].

Theorem 3.1. Let b : V ×Q→ R satisfy (2.1) and (2.2) and assume that
F ∈ V ∗ is given and satisfies (2.3). Assume that p is the solution of (1.1)
and Vh ⊂ V , Mh ⊂ Q are chosen such that the discrete inf − sup condition
(3.1) holds. If (wh, ph) is the solution of (3.4), then the following error
estimate holds:

(3.6)
1

M
|wh| ≤ ‖p− ph‖ ≤

M

mh
inf

qh∈Mh

‖p− qh‖.

The considerations made so far in this section remain valid if the form
a0(·, ·), as an inner product on Vh, is replaced by another inner product a(·, ·)
which gives rise to an equivalent norm on Vh. Certainly, the definitions of
Ah, Sh, Mh, and mh will change accordingly with the new norm induced
by the inner product a(·, ·). In particular, the error estimate (3.6) remains
valid with the corresponding new definition for the constant mh.

3.1. An Uzawa CG iterative solver. In the previous sections, we dis-
cussed the possibility of having more than one norm or inner product on V .
We will assume next that the inner product on V is given by a generic con-
tinuous bilinear form a(·, ·) that leads to an equivalent norm on V , a(·, ·)1/2.
Note that a global linear system may be difficult to assemble or solve when
a0(·, ·) is replaced by a(·, ·) in (3.4). Nevertheless, we can solve (3.4) and
avoid building a basis for Mh by using an Uzawa type algorithm, e.g., the
Uzawa Conjugate Gradient (UCG) algorithm.

Algorithm 3.2. (UCG) Algorithm

Step 1: Choose any p0 ∈Mh. Compute u1 ∈ Vh, q1, d1 ∈Mh by

a(u1, vh) = 〈F, vh〉 − b(vh, p0) for all vh ∈ Vh,
(q1, qh)Q = b(u1, qh) for all qh ∈Mh, d1 := q1.
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Step 2: For j = 1, 2, . . . , compute hj , αj , pj , uj+1, qj+1, βj , dj+1 by

(UCG1) a(hj , vh) =− b(vh, dj) for all vh ∈ Vh

(UCGα) αj =−
(qj , qj)Q
b(hj , qj)

(UCG2) pj = pj−1 + αj dj

(UCG3) uj+1 = uj + αj hj

(UCG4) (qj+1, qh)Q = b(uj+1, qh) for all qh ∈Mh

(UCGβ) βj =
(qj+1, qj+1)Q

(qj , qj)Q

(UCG6) dj+1 = qj+1 + βjdj .

Note that the only inversions needed in the algorithm involve the form
a(·, ·) in Step 1 and (UCG1). In operator form, these steps become

(3.7) u1 = A−1
h (Fh −B∗hp0), and hj = −A−1

h (B∗hdj),

respectively. As mentioned in [6], Algorithm 3.2 recovers the steps of the
standard conjugate gradient algorithm for solving problem (3.5). Due to
assumption (3.1), the Schur complement Sh is a symmetric positive definite
operator. Consequently, the UCG-iterations pj converge to the solution ph
of (3.5), and the rate of convergence for the iteration error ‖pj − ph‖Sh

or

‖pj − ph‖ depends on the condition number of Sh, which is κ(Sh) =
M2

h

m2
h

.

The following sharp error estimation, proved in [4], entitles the computed
quantity ‖qj‖ as an efficient iteration error estimator.

Theorem 3.3. If (wh, ph) is the discrete solution of (3.4) and (uj , pj−1) is

the jth iteration for Algorithm 3.2, then (uj , pj−1)→ (wh, ph) and

(3.8)

1

M2
‖qj‖ ≤ ‖pj−1 − ph‖ ≤

1

m2
h

‖qj‖,

mh

M2
‖qj‖ ≤ |uj − wh| ≤

M

m2
h

‖qj‖.

We note that when wh = 0 (e.g., when Vh,0 ⊂ V0), we also obtain, from
(3.8), that |uj | an efficient error estimator for ‖pj−1−ph‖. In addition, since
uj satisfies

a(uj , vh) = 〈F, vh〉 − b(vh, pj−1) = b(vh, p− pj−1) for all vh ∈ Vh,

we have that |uj | is an estimator for the discrete error ‖p− ph‖.
In order to build an efficient solver for (1.1), we would like to modify

Algorithm 3.2 by replacing the action of A−1
h with the action of a suitable

preconditioner. The analysis for the resulting algorithm can be done using
standard SP theory and is presented in the next section.
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4. Preconditioning the SPLS discretization

In this section, we summarize a general preconditioning framework to
approximate the solution of (1.1) that is presented in [6]. We plan to combine
this framework with the new concepts of optimal and almost optimal test
norm. The approach is based on the SPLS formulation (3.4) and on elliptic
preconditioning of the operator associated with the inner product on Vh. We
will assume that the inner product on V is given by a generic continuous
bilinear form a(·, ·) that leads to an equivalent norm on Vh (equipped with

the original norm a0(·, ·)1/2). More precisely, we replace the original form
a(·, ·) in (3.4) with a uniformly equivalent form ã(·, ·) on Vh that leads to an

implementably fast operator Ã−1
h . We assume that Vh ⊂ V and Mh ⊂ Q

are finite dimensional approximation spaces satisfying (3.1) and (3.2).

4.1. The preconditioned saddle point problem. First, we introduce a
general preconditioner operator Ph : V ∗h → Vh that is equivalent to A−1

h in
the sense that

(4.1) 〈g, Phf〉 = 〈f, Phg〉 for all f, g ∈ V ∗h ,

and

(4.2) m2
1|vh|2 ≤ a(PhAhvh, vh) ≤ m2

2|vh|2,

where the positive constants m2
1,m

2
2 are the smallest and largest eigenvalues

of PhAh, respectively. Assumption (4.1) is equivalent with the fact that
PhAh is a symmetric operator with respect to the a(·, ·) inner product, and
condition (4.2) is equivalent with the fact that the condition number of PhAh
satisfies

(4.3) κ(PhAh) =
m2

2

m2
1

.

With the preconditioner Ph : V ∗h → Vh, we define the form ã : Vh×Vh → R
by

(4.4) ã(wh, vh) := a((PhAh)−1wh, vh) for all wh, vh ∈ Vh.

It is easy to check under assumptions (4.1) and (4.2) that ã(·, ·) is a symmet-
ric bilinear form that induces an equivalent norm on Vh (originally equipped

with the norm a(·, ·)1/2). The equivalence constants are independent of
h provided that the constants m1 and m2 are independent of h. We let
|vh|P := ã(vh, vh)1/2 be the norm induced by the inner product ã(·, ·) and

define the operator Ãh : Vh → V ∗h by

〈Ãhuh, vh〉 := ã(uh, vh) for all uh, vh ∈ Vh.

Note that Ãh = Ah(PhAh)−1 = P−1
h . We will call ã(·, ·) a preconditioned

version of the form a(·, ·).
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The preconditioned discrete saddle point problem is: Find (uh, ph) ∈ Vh×
Mh such that

(4.5)
ã(uh, vh) + b(vh, ph) = 〈f, vh〉 for all vh ∈ Vh,
b(uh, qh) = 0 for all qh ∈Mh.

Using that Vh ⊂ V and Mh ⊂ Q satisfy (3.1) and (3.2), with Mh and mh

defined using the form a(·, ·)1/2, we obtain

(4.6) m̃h := inf
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|P ‖ph‖
≥ m1mh > 0,

and

(4.7) M̃h := sup
ph∈Mh

sup
vh∈Vh

b(vh, ph)

|vh|P ‖ph‖
≤ m2Mh ≤ m2M.

Hence, the preconditioned saddle point least squares formulation (4.5) has a
unique solution.

The Schur complement associated with problem (4.5) is

S̃h = BhÃ
−1
h B∗h = BhPhB

∗
h.

Solving for ph from (4.5), we obtain

(4.8) S̃h ph = Bh(PhB
∗
h) ph = BhPhFh.

We call the component ph of the solution (wh, ph) of (4.5) the (precondi-
tioned) saddle point least squares approximation of the solution p of the
original mixed prolem (1.1). To estimate ‖p − ph‖ in this case, we have a
similar result and estimate as presented in Theorem 3.1, namely

(4.9)
1

M

1

m2
2

|wh| ≤ ‖p− ph‖ ≤
M

mh

m2

m1
inf

qh∈Mh

‖p− qh‖.

The details can be found in [6].

4.2. An iterative solver for the preconditioned variational formula-
tion. We use a modified version of Algorithm 3.2 to solve (4.5) by replacing
the form a(·, ·) by ã(·, ·) in Step 1 and (UCG1). With this modification,
we obtain the following Uzawa Preconditioned Conjugate Gradient (UPCG)
algorithm for mixed methods.

Algorithm 4.1. (UPCG) Algorithm for Mixed Methods

Step 1: Choose any p0 ∈Mh. Compute u1 ∈ Vh, q1, d1 ∈Mh by

u1 =Ph(Fh −B∗hp0)

q1 =Bhu1, d1 := q1.
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Step 2: For j = 1, 2, . . . , compute hj , αj , pj , uj+1, qj+1, βj , dj+1 by

(PCG1) hj =− Ph(B∗hdj)

(PCGα) αj =−
(qj , qj)Q
b(hj , qj)

(PCG2) pj = pj−1 + αj dj

(PCG3) uj+1 = uj + αj hj

(PCG4) qj+1 =Bhuj+1,

(PCGβ) βj =
(qj+1, qj+1)Q

(qj , qj)Q

(PCG6) dj+1 = qj+1 + βjdj .

We note that at each step of UPCG only the actions of Ph, Bh, and B∗h
are needed. Similar to the convergence of UCG, we have that the Schur
complement S̃h of (4.5) is a symmetric positive definite operator. Conse-
quently, the UPCG iterations pj converge to the solution ph of (4.8). The
rate of convergence for ‖pj − ph‖S̃h

or ‖pj − ph‖ depends on the condition

number of S̃h, which is κ(S̃h) =
M̃2

h

m̃2
h

. Using estimates (4.6) and (4.7), we

obtain the following result.

Proposition 4.2. The condition number of the Schur complement
S̃h = BhPhB

∗
h satisfies

(4.10) κ(S̃h) ≤
M2
h

m2
h

m2
2

m2
1

= κ(Sh) · κ(PhAh).

The following result, proved in [6], is the analogous form of Theorem
3.3, and entitles the computed quantity ‖qj‖ as an efficient iteration error
estimator.

Theorem 4.3. If (wh, ph) is the discrete solution of (4.5) and (uj , pj−1) is

the jth iteration for Algorithm 4.1, then (uj , pj−1)→ (wh, ph) and

(4.11)

1

M2

1

m2
2

‖qj‖ ≤ ‖pj−1 − ph‖ ≤
1

m2
h

1

m2
1

‖qj‖,

mh

M2

m2
1

m2
2

‖qj‖ ≤ |uj − wh| ≤
M

m2
h

m2
2

m2
1

‖qj‖.

5. An operator dependent discrete trial space

Up to this point, we have presented a general theory for mixed variational
formulations using abstract spaces at the continuous and discrete levels. In
this section, we will still consider abstract spaces, but provide a possible
choice of a trial spaceMh that depends on the choice of a trial space Vh and
the operator B that defines the problem. We assume that the inner product
and the norm on V are given by a bilinear form a(·, ·) = a0(·, ·). We plan
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to show that the family of pairs (Vh,Mh) with our operator dependent trial
space is stable if the right (optimal or almost optimal) norm is chosen for
the discrete test space.

Let Vh be a finite element subspace of V . As presented in [7, 8], using the
current notation, we provide a general trial spaceMh that can be considered
for the SPLS discretization (2.4). We define Mh by

Mh := BVh ⊂ Q.
From the definition of Bh : Vh →Mh, we have that

Bhvh = Bvh, for all vh ∈ Vh,
i.e., Bh is the restriction of B to Vh. Consequently, from the choice of Mh,
we have that Bh is onto Mh. It is also easy to verify that Vh,0 ⊂ V0, where
Vh,0 := Ker(Bh).

5.1. The discrete inf − sup condition. As presented in [8], a discrete
inf − sup condition holds. For completeness we include the (short) proof.
Using a generic representation for ph = Bwh ∈ Mh, with wh ∈ V ⊥h,0, and

the fact that V ⊥h,0 is a finite dimensional space, we have

mh = inf
ph∈Mh

sup
vh∈V h

b(vh, ph)

‖ph‖ |vh|
= inf

wh∈V ⊥h,0
sup
vh∈V h

(Bvh, Bwh)Q
‖ph‖ |vh|

≥ inf
wh∈V ⊥h,0

‖Bwh‖2

‖Bwh‖ |wh|
= inf

wh∈V ⊥h,0

‖Bwh‖
|wh|

> 0.

5.2. Approximability. Using that Vh,0 ⊂ V0 and Proposition 2.1 on the
discrete pair (Vh,Mh), the variational formulation (3.3) is well posed and has
a unique solution ph ∈ Mh. Furthermore, by using the brief remarks after
Proposition 2.1 for the discrete pair (Vh,Mh), we obtain that (wh = 0, ph)
is the solution of (2.4). Let p be the solution of (1.1), and let ph be the
solution of (3.3), which is the same with the second component of the SPLS
solution of (2.4). Then, using (1.1) and (3.3), we obtain

0 = b(vh, p− ph) = (Bvh, p− ph)Q, for all vh ∈ Vh.
Thus, we have that ph is the orthogonal projection of p onto Mh, and
consequently,

(5.1) ‖p− ph‖ = inf
qh∈Mh

‖p− qh‖.

We can start with a finite element test space Vh with good approximation
properties for functions in V . Since the space Mh = BVh might not be a
standard finite element space, we might not know how well functions in Q
can be approximated by elements of Mh. However, using that B : V → Q
is a surjective operator, we can represent p = Bw for some w ∈ V and write
a generic qh ∈Mh as qh = Bvh for some vh ∈ Vh. From (5.1), we obtain

(5.2) ‖p− ph‖ = inf
vh∈Vh

‖Bw −Bvh‖ ≤M inf
vh∈Vh

‖w − vh‖,
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which says that the best approximation of the solution p with functions
in the trial space Mh reduces, up to the factor constant M , to the best
approximation of (a smooth) representation w (such that p = Bw) with
more familiar test functions in Vh.

5.3. Stability by using optimal or almost optimal test norms. Since
the discretization (3.3) might be difficult to solve, we can consider the SPLS
discretization of (1.1) by solving (2.4) using the UCG algorithm. As pre-
sented in Section 3, the approximation of the discrete SPLS solution ph

depends on the condition number κ(Sh) =
M2

h

m2
h

. Even though we proved

that in general mh > 0, κ(Sh) can be large as h → 0. To overcome this,

we propose to replace the original norm a0(·, ·)1/2 on Vh by the optimal test
norm in the case Ker(B) = {0} and by the almost optimal, or α norm, in
the general case Ker(B) 6= {0}. Using that Bh : Vh → Mh is a surjective
operator and the restriction of B to Vh, we can simply apply Lemma 2.2
and Lemma 2.3 on Vh ×Mh to estimate the spectral properties of the new
discrete Schur complement.

If Ker(B) = {0} and the inner product a0(·, ·) in (2.4) is replaced by
the optimal test norm induced by aopt(u, v) = (Bu,Bv)Q, then by applying
Lemma 2.2 we conclude that Mh,opt = mh,opt = 1, and the Schur complement
for the SPLS discstretization with optimal test norm is the identity operator.
In this case, we have optimal discrete stability and optimal approximability.
On the other hand, if Ker(B) 6= {0} and the inner product a0(·, ·) in (2.4) is
replaced by the almost optimal test norm induced by aα(u, v) = α2a0(u, v)+
(Bu,Bv)Q, by applying Lemma 2.3 we conclude that

(5.3) m2
h,α =

m2
h

m2
h + α2

and M2
h,α =

M2
h

M2
h + α2

.

Consequently, the condition number of the Schur complement Sh,α of the
new saddle point system becomes

κ(Sh,α) =
M2
h

m2
h

m2
h + α2

M2
h + α2

,

and for α ∈ (0,mh], we have κ(Sh,α) ∈ (1, 2).

Remark 5.1. The estimates in this subsection for the discrete continuity
constants and the discrete inf − sup constants when using optimal or almost
optimal test norms hold true for any pair of spaces (Vh,Mh) that satisfy
(3.1) and (3.2), provided that we use the h dependent norm induced by

aopt,h(wh, vh) = (Bhu,Bhv)Q, for all wh, vh ∈ Vh,

in the Ker(Bh) = {0} case and

aα,h(wh, vh) = α2a0(wh, vh) + (Bhu,Bhv)Q, for all wh, vh ∈ Vh,
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for the Ker(Bh) 6= {0} case. For independence of h of these norms, we
would need ‖Bhvh‖Q = ‖Bvh‖Q for all vh ∈ Vh or ‖Bhvh‖Q ≈ ‖Bvh‖Q with
equivalence on Vh independent of h.

Applying the UCG algorithm with the form a(·, ·) replaced by aopt(·, ·) or
aα(·, ·) leads to an efficient iterative process (if α is properly chosen in the
second case) with the number of iterations independent of h. The difficulty
here is shifted to the inversion of the operators associated with aopt(·, ·) or
aα(·, ·) (see the examples in Section 6). However, in light of Section 4 we
only need to use preconditioners for these symmetric and positive definite
bilinear forms. Since the theory of preconditioning symmetric positive def-
inite operators (with or without parameters) is well developed in the finite
element community, we consider that paying with efficient preconditioning
in order to get stability is worth trying, especially when finding stable pairs
in the standard norms is more difficult.

6. Examples of optimal and almost optimal test norms

In this section, we consider one example of SPLS formulation with optimal
test norm and one example with almost optimal test norm. We do not try
to find a new or best discretization approach for the two examples. Rather,
the goal is to emphasize how stability for mixed formulation can be gained
and provide a way to choose the appropriate preconditioner towards finding
an efficient solver for the mixed formulation and discretization.

6.1. Optimal SPLS test norm for the reaction diffusion problem.
We consider the following reaction diffusion problem

(6.1)

{
−ε∆u+ cu = f in Ω,

u = 0 on ∂Ω,

for ε > 0 and c(x) ≥ c0 > 0 on Ω, a bounded domain in Rd. In what
follows, (·, ·) and ‖ · ‖ will denote the standard L2 inner product and norm,
respectively.

A standard variational formulation for (6.1) is: Find u ∈ H1
0 (Ω) such that

(6.2) ε(∇u,∇v) + (cu, v) = (f, v) for all v ∈ H1
0 (Ω).

To obtain a mixed formulation that is suitable to the SPLS framework, we
let V := H1

0 (Ω), and Q be the graph of the operator ε∇ : H1
0 (Ω)→ L2(Ω)d,

i.e.,

Q := G(ε∇) =
{

( v
ε∇v ) | v ∈ H1

0 (Ω)
}
.

We define the bilinear form b : V ×Q→ R as

b(v, ( w
ε∇w )) := (cw, v) + ε(∇w,∇v) for all v ∈ V, ( w

ε∇w ) ∈ Q,

and the linear functional F ∈ V ∗ as

〈F, v〉 := (f, v) for all v ∈ H1
0 (Ω).
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With this setting, the standard variational formulation (6.2) can be refor-
mulated in the mixed form: Find p = ( u

ε∇u ) ∈ Q such that

(6.3) b(v,p) = (cu, v) + ε(∇u,∇v) = (f, v) for all v ∈ V.
On V , we consider first the standard inner product defined by

a0(u, v) = (∇u,∇v) for all u, v ∈ V,
and on Q, we consider the weighted inner product

(( u
ε∇u ) , ( v

ε∇v ))Q = (cu, v) + ε(∇u,∇v) for all ( u
ε∇u ) , ( v

ε∇v ) ∈ Q.
The corresponding norm is

‖ ( v
ε∇v ) ‖Q =

(
‖c1/2v‖2 + ‖ε1/2∇v‖2

)1/2
.

For the standard norm on V = H1
0 (Ω), the inf − sup condition on V × Q

holds with a constant m that depends on ε. The operator B : V → Q is
given by

Bv = ( v
ε∇v ) for all v ∈ V.

Thus, the optimal test norm on V is induced by the inner product

aopt(u, v) = (Bu,Bv)Q = ε(∇u,∇v) + (cu, v) for all u, v ∈ V,
which gives rise to the norm

|v|opt =
(
‖c1/2v‖2 + ‖ε1/2∇v‖2

)1/2
.

The compatibility condition (2.3) is automatically satisfied as

V0 = Ker(B) = {v ∈ H1
0 (Ω) |Bv = 0} = {0}.

In addition, according to Section 2.2, we obtain M = m = 1. This leads to
optimal continuity and inf − sup constants. However, inverting the operator
associated with | · |opt coincides with solving the original problem. Fortu-
nately, at the discrete level we can replace aopt(·, ·) by a preconditioned
form.

For discretization we can choose Vh ⊂ V = H1
0 (Ω) to be the space of

continuous piecewise polynomials of degree k with respect to a mesh Th on
Ω and let Mh the operator dependent choice

Mh := BVh =

(
I
ε∇

)
Vh,

where I : Vh → Vh is the identity operator and the inner product is chosen
to coincide with the inner product on Q. According to Section 5.3, for the
above choice of trial space, we also have Mh = mh = 1.

Using Remark 5.1 for a more general choice ofMh (compatible with Vh),
we still have Mh = mh = 1 provided that we are using the optimal test
norm induced by aopt,h(·, ·) on Vh. In order to come up with an efficient
UPCG solver, we will need to find robust (with respect to h and ε) precon-
ditioners for the discrete optimal norm on Vh. For quasi-uniform meshes,
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such preconditioners are available, see e.g., [16, 31]. For non-uniform mesh
discretization, such as the use of Shishkin meshes [34], such theory seems to
not be developed.

6.2. Numerical results. We solved (6.1) on the unit square with variable
coefficient c = 2(1 + x2 + y2) and f computed such that the exact solution
is given by

u(x, y) = x(1− x)
(

1− e−y/
√
ε
)(

1− e(y−1)/
√
ε
)

+ y(1− y)
(

1− e−x/
√
ε
)(

1− e(x−1)/
√
ε
)
,

as considered in [29]. For this problem, the solution has boundary layers
on all sides of the unit square. To this end, we use a Shishkin mesh for
discretization purposes. Following [33], we review the construction of the
Shishkin mesh.

Assume N is an integer multiple of 8. This parameter will refer to the
number of mesh intervals in the x and y directions. The mesh itself is the
tensor product of two one-dimensional Shishkin meshes Tx×Ty. The process
for obtaining Tx (and Ty) is as follows. The interval [0, 1] is first decomposed
into three subintervals [0, λ], [λ, 1− λ], and [1− λ, 1], where

(6.4) λ = min

{
1

4
, 2

√
ε

c∗
lnN

}
with 0 < c∗ < c.

The intervals [0, λ] and [1− λ, 1] are then partitioned into N/4 subintervals

of length
4λ

N
, while the interval [λ, 1−λ] is partitioned into N/2 subintervals

of length
2(1− 2λ)

N
. The triangular mesh is obtained by drawing diagonals

from the top left to bottom right of each quadrilateral. See [27] or Section
6 of [5] for figures showing examples of the Shishkin mesh generated using

ε = 10−4 and c∗ =
√

1/2 for N = 16 and N = 32. With this setup, we
choose the test space Vh = VN ⊂ H1

0 (Ω) to be the space of continuous
piecewise linear polynomials with respect to the Shishkin mesh Th and take
Mh := BVh.

We performed computations using the UCG algorithm with different
choices for the inner product a(·, ·) on V :

(a) a(u, v) = ε(∇u,∇v) + (u, v), see Table 1
(b) a(u, v) = (∇u,∇v), see Table 2
(c) a(u, v) =

√
ε(∇u,∇v) + (u, v), see Table 3

(d) a(u, v) =
√
ε(∇u,∇v) + (cu, v), see Table 3

The stopping criterion used for the UCG algorithm was

‖qj‖Q ≤ 10−12,

in all cases. Also, we measured the SPLS solution in a balanced norm instead
of the norm on Q. This is due to the fact that for small ε the L2 part of
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the norm on Q dominates, leading to an unbalanced norm not adequate to
accurately measure the error, see [30, 33]. More precisely, we approximate

errorh := errorN :=
(
‖u− uh‖2 + ε1/2‖∇u−∇uh‖2

)1/2
,

where uh is in fact uN . According to [30, 33], standard Galerkin methods
for (6.2) lead to a covergence rate of O(N−1 lnN) using piecewise linear
approximation [30, 33]. We expect the same order of convergence for SPLS
discretization.

Numerical tests using the UCG algorithm and the optimal norm induced
by aopt(u, v) = ε(∇u,∇v)+(cu, v) were performed in [27] and [5]. The results
are very close with the results of Table 1 with the main observation that
the number of iterations is always one when using the optimal norm. This
is always the case when using the UCG algorithm and the inner product
a(·, ·) = aopt(·, ·). However, in this case we have to invert (in Step 1 of
UCG) an operator that corresponds to the original problem.

The purpose of our numerical tests is to show that by using closely related
norms on V (that might be easier to precondition) we preserve the order of
approximation, and the price to pay is an increase in the number of iterations
as ε → 0. Choosing inner product (a), which is close to aopt(·, ·), preserves
the order of convergence and slightly increases the number of iterations as
ε decreases as shown in Table 1. By choosing inner product (b), which is
independent of ε, we note a huge increase of the number of iterations. This
is because the inf − sup condition constant, and hence the condition number
of the Schur complement, increases as ε → 0, see Table 2. The results for
choices (c) and (d), shown in Table 3, demonstrate that a larger penalty
on the term (∇·,∇·) could lead to an intermediate number of iterations if
compared to the previous two cases. Table 3 also demonstrates that the
number of iterations decreases the closer to aopt(·, ·) we are (by using the
exact component (c ·, ·)).
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N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.0189 6 0.0682 16 0.132 24
32 0.0095 1.472 6 0.0341 1.471 16 0.088 0.854 25
64 0.0047 1.356 6 0.0171 1.356 16 0.054 0.946 26
128 0.0023 1.286 6 0.0085 1.285 16 0.032 0.984 26
256 0.0012 1.239 6 0.0042 1.239 16 0.018 0.996 27

N
ε = 10−8 ε = 10−12 ε = 10−16

error rate it error rate it error rate it
16 0.133 24 0.133 23 0.133 22
32 0.089 0.859 26 0.089 0.859 25 0.089 0.860 24
64 0.055 0.951 28 0.055 0.951 27 0.055 0.951 25
128 0.032 0.988 28 0.032 0.988 27 0.032 0.988 26
256 0.018 0.999 29 0.018 0.999 27 0.018 0.999 26

Table 1: Results for the case a(u, v) = ε(∇u,∇v) + (u, v).

N
ε = 1 ε = 10−2 ε = 10−4

error rate it error rate it error rate it
16 0.0189 6 0.0682 18 0.1317 93
32 0.0094 1.472 7 0.0341 1.470 20 0.0882 0.854 110
64 0.0047 1.356 7 0.0170 1.356 19 0.0544 0.945 118
128 0.0023 1.285 7 0.0085 1.285 20 0.0320 0.983 124
256 0.0011 1.238 7 0.0042 1.238 20 0.0183 0.995 126

N
ε = 10−6 ε = 10−8

error rate it error rate it
16 0.1332 302 0.1335 426
32 0.0889 0.858 607 0.0891 0.859 1301
64 0.0547 0.950 825 0.0548 0.950 2796
128 0.0321 0.987 869 0.0322 0.987 4018
256 0.0183 0.998 868 0.0184 0.998 4819

Table 2: Results for the case a(u, v) = (∇u,∇v).

6.3. SPLS discretization of a div− curl system. We describe how one
can apply the general SPLS theory with almost optimal test norm for a
model div− curl problem on a polyhedral domain Ω ⊂ R3. For given data,
we are looking to find the vector function h ∈ L2(Ω) such that

(6.5)
∇× (µ−1h) = j in Ω

∇· h = g in Ω
h · n = σ on Γ := ∂Ω,
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N
ε = 1 ε = 10−2

error rate it (c) it (d) error rate it (c) it (d)
16 0.0189 6 1 0.0682 19 18
32 0.0094 1.472 6 1 0.0341 1.470 20 19
64 0.0047 1.356 6 1 0.0170 1.356 21 19
128 0.0023 1.285 6 1 0.0085 1.285 21 19
256 0.0011 1.238 6 1 0.0042 1.238 21 19

N
ε = 10−4 ε = 10−6

error rate it (c) it (d) error rate it (c) it (d)
16 0.1317 90 68 0.1332 197 125
32 0.0882 0.854 104 75 0.0889 0.858 358 202
64 0.0544 0.945 112 82 0.0547 0.950 476 266
128 0.0320 0.983 115 82 0.0321 0.987 502 279
256 0.0183 0.995 116 83 0.0183 0.998 507 282

N
ε = 10−8

error rate it (c) it (d)
16 0.1335 246 130
32 0.0891 0.859 516 261
64 0.0548 0.950 892 418
128 0.0322 0.987 1265 585
256 0.0184 0.998 1568 734

Table 3: Results for cases a(u, v) =
√
ε(∇u,∇v) + (u, v) and a(u, v) =√

ε(∇u,∇v) + (cu, v).

where µ = µ(x) is a given scalar L2 function satisfying 0 < µ0 ≤ µ(x) ≤ µ1,
for a.e. x ∈ Ω. We consider the variational formulation for (6.5) that is
presented in [17]. We multiply the first equation in (6.5) by w ∈ H1

0(Ω) and
the second equation by ϕ ∈ H1(Ω)/R. We assume enough regularity for the
data (hence, the solution) in order to be able to integrate by parts. After
we integrate by parts, we obtain

(6.6)
(µ−1h,∇× w) = (j,w) for all w ∈ H1

0(Ω)
(h,∇ϕ) = (−g, ϕ) + (σ, ϕ)Γ for all ϕ ∈ H1(Ω)/R,

where (·, ·) denotes the standard L2 type inner product. If we define the
spaces V := H1

0(Ω)×H1(Ω)/R and Q := L2(Ω), and the form “b(v, p)” on
(V,Q) by

b((w, ϕ),h) := (µ−1∇× w +∇ϕ,h), for all (w, ϕ) ∈ V, h ∈ Q,

the variational formulation for (6.5) becomes: Find h ∈ Q such that

(6.7) b((w, ϕ),h) = 〈F, (w, ϕ)〉 := (j,w) + (−g, ϕ) + (σ, ϕ)Γ, (w, ϕ) ∈ V.
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The inner product on Q is the weighted inner product (·, ·)µ−1 in order to
take advantage of the orthogonality between the (weighted) gradient fields
and the curl fields. On V := H1

0(Ω)×H1(Ω)/R, the inner product is chosen
such that the corresponding induced norm is

‖(w, ϕ)‖2V := aµ−1(w,w) + aµ(ϕ,ϕ) :=

∫
Ω
µ−1|∇w|2 +

∫
Ω
µ|∇ϕ|2.

With these choices of inner products and norms, the continuity constant M
for b(·, ·) is M = 1. A continuous inf − sup condition holds with a constant
m > c0

µ1
, where c0 depending only on the domain Ω, see Section 4 of [17].

The corresponding operator B : V → Q is

(6.8) B (w, ϕ) = curl w + µ∇ϕ.

By using the orthogonality between curl w and µ∇ϕ in the weighted inner
product (·, ·)µ−1 , we can verify that

V0 := Ker(B) = {(w, 0) ∈ V | curl w = 0}.

If the data (j, g, σ) is such that the compatibility condition (2.3) is satis-
fied, then (6.6) is a well-posed problem and our SPLS discretization can be
considered. An almost optimal or α norm on V is defined by

‖(w, ϕ)‖2α := α2
(
(µ−1∇w,∇w) + (µ∇ϕ,∇ϕ)

)
+

(µ−1∇×w,∇×w) + (µ∇ϕ,∇ϕ).

We can also try to precondition the almost optimal norm at the continuous
level first. To demonstrate this, we take µ = 1 for simplicity. Then

‖(w, ϕ)‖2α = (1 + α2)‖ curl w‖2 + α2‖ div w‖2 + (1 + α2)‖∇ϕ‖2,

which, for α small, is equivalent (or can be preconditioned by)

‖(w, ϕ)‖2α,prec = ‖ curl w‖2 + α2‖ div w‖2 + ‖∇ϕ‖2.

Conforming SPLS discretization using the above norm on V reduces to in-
verting or preconditioning the operators associated with the forms ‖∇ϕ‖2
and ‖ curl w‖2 + α2‖ div w‖2. The first form is parameter free and can
benefit from classical preconditioning theory for the Laplace operator. In
the two dimensional case, the second form is uniformly equivalent with
‖∇w‖2 + α2‖ div w‖2 and one can benefit from the preconditioning theory
developed for the Augmented Lagrangian method for Stokes systems.

For SPLS discretization, we can also choose Vh ⊂ V to be any good
approximation finite element space, e.g., the space of continuous piecewise
functions of fixed degree with the appropriate boundary conditions for each
component of V , and forMh we can consider the general choiceMh := BVh
as in [9, 11]. If an estimate ch for the discrete constant mh is available, then
a practical choice for α for an almost optimal norm is α = min{ 1

µ1
, ch}. If

a family {(Vh,Mh)} of discrete spaces is available such that the discrete
inf − sup constant mh (using the original norm on V ) satisfies mh > c1 > 0
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for all h, then a practical choice for α when using the UCG algorithm with
almost optimal test norm is α = 1

µ1
.

Numerical results done in [11, 32] without preconditioning show that the
number of iterations increases due to mesh size h or the discontinuity jump
size of µ. Preconditioning the α test norm would lead to a more efficient
UPCG algorithm for the div− curl system. The construction of such pre-
conditioners for a specific test spaces Vh and norms is a challenging problem
and will not be discussed in this paper.

7. Conclusion

We presented some general results and ideas regarding a saddle point
(least squares) reformulation of mixed variational problems. The results can
be useful for further development of both DPG and SPLS methodologies. We
considered the concept of optimal test norm (when B : V → Q is injective),
as presented in [25, 28], and extended it to the case when B : V → Q might
not be injective by introducing the concept of almost optimal test norm.
A general preconditioning strategy and an iterative process for solving the
discrete mixed formulations are reviewed in light of the special test norms.
We also presented examples of improving stability and solver efficiency by
preconditioning as well as the use of special trial norms.

Acknowledgment. The first author is grateful for an Oden Institute fel-
lowship which allowed him to visit UT Austin in the Fall of 2019.

8. Appendix

Proof of Lemma 2.2

Proof. Using the definitions of |v|opt and b(v, p), we obtain

sup
v∈V

b(v, p)

|v|opt
= sup

v∈V

(Bv, p)Q
||Bv||Q

= ‖p‖.

Thus, the continuity and inf-sup constants satisfy

Mopt = sup
p∈Q

sup
v∈V

b(v, p)

|v|opt||p||
= sup

p∈Q

||p||
||p||

= 1,

and

mopt = inf
p∈Q

sup
v∈V

b(v, p)

|v|opt||p||
= inf

p∈Q

||p||
||p||

= 1,

as desired. From the remarks at the end of Section 2.1, we can conclude
that the corresponding Schur complement Sopt is the identity on V . Another
way to see that is by considering the new SP system where a0(·, ·) in (2.4)
is replaced by aopt(·, ·),

(8.1)
(Bw,Bv)Q + b(v, p) = 〈F, v〉 for all v ∈ V,
b(w, q) = 0 for all q ∈ Q.
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The corresponding operator system is

(8.2)
B∗Bw + B∗p = F
Bw = 0.

Therefore, using that B (hence B∗) is invertible, we quickly recover that the
Schur complement is the identity.

�

Proof of Lemma 2.3

Proof. Denote Aα : V → V ∗ to be the operator associated with aα(u, v),
i.e., Aα = α2A0 +B∗B. We will need the following two identities:

(8.3) α2(I + α2C−1)−1 = C − C(α2I + C)−1C,

for any linear bounded operator C on Q, and

(8.4) α2(α2A0 +B∗B)−1 = A−1
0 −A

−1
0 B∗(α2I +BA−1

0 B∗)−1BA−1
0 ,

where A0 and B are the operators defined in Section 2. Both identities can
be easily justified by checking that the proposed algebraic inverse satisfies
the definition of the corresponding inverse operator. The identity (8.4) is a
version of the Sherman-Morrison-Woodbury formula.

If we pre and post compose (8.4) with B∗ and B respectively, and combine
the result with (8.3) with C = BA−1

0 B∗, we obtain

BA−1
α B∗ = (I + α2(BA−1

0 B∗)−1)−1.

It is known that, see e.g. [2, Lemma 2.1],

sup
v∈V

b(v, p)2

aα(v, v)
= (BA−1

α B∗p, p).

Replacing BA−1
α B∗ from the above identity, we have

M2
α = sup

p∈Q

(BA−1
α B∗p, p)

(p, p)
= sup

p∈Q

((I + α2(BA−1
0 B∗)−1)−1p, p)

(p, p)

=

(
inf
q∈Q

((I + α2(BA−1
0 B∗)−1)q, q)

(q, q)

)−1

=

(
1 + α2 inf

q∈Q

(BA−1
0 B∗q, q)

(q, q)

)−1

=

(
1 + α2

(
sup
r∈Q

(BA−1
0 B∗r, r)

(r, r)

)−1)−1

=
1

1 + α2

M2

=
M2

M2 + α2
.

The proof for m2
α proceeds similarly. It then follows immediately that the

condition number of Sα is given by

κ(Sα) =
M2
α

m2
α

=
M2

m2

m2 + α2

M2 + α2
.

�
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