
Efficient Uncertainty Tracking for ComplexQueries with
Attribute-level Bounds

Su Feng, Boris Glavic
Illinois Institute of Technology

Chicago, United States
sfeng14@hawk.iit.edu.bglavic@iit.edu

Aaron Huber, Oliver A. Kennedy
University at Buffalo
Buffalo, United States

ahuber@buffalo.edu,okennedy@buffalo.edu

ABSTRACT

Incomplete and probabilistic database techniques are principled

methods for coping with uncertainty in data. Unfortunately, the

class of queries that can be answered efficiently over such databases

is severely limited, even when advanced approximation techniques

are employed. We introduce attribute-annotated uncertain databases

(AU-DBs), an uncertain data model that annotates tuples and at-

tribute values with bounds to compactly approximate an incomplete

database. AU-DBs are closed under relational algebra with aggre-

gation using an efficient evaluation semantics. Using optimizations

that trade accuracy for performance, our approach scales to complex

queries and large datasets, and produces accurate results.

KEYWORDS

uncertainty, incomplete databases, annotations, aggregation

ACM Reference Format:

Su Feng, Boris Glavic and Aaron Huber, Oliver A. Kennedy. 2021. Efficient

Uncertainty Tracking for Complex Queries with Attribute-level Bounds. In

Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Uncertainty arises naturally in many application domains due to

data entry errors, sensor errors and noise [39], uncertainty in infor-

mation extraction and parsing [54], ambiguity from data integra-

tion [8, 35, 50], and heuristic data wrangling [15, 24, 62]. Analyzing

uncertain data without accounting for its uncertainty can create

hard to trace errors, with severe real world implications. Incomplete

database techniques [22] have emerged as a principledway tomodel

and manage uncertainty in data1. An incomplete database models

uncertainty by encoding a set of possible worlds, each of which

is one possible state of the real world. Under the commonly used

certain answer semantics [5, 36], a query returns the set of answer

tuples guaranteed to be in the result, regardless of which possi-

ble world is correct. Many computational problems are intractable

1Probabilistic databases [57] generalize incomplete databases with a probability distri-
bution over possible worlds. We focus on contrasting with the former for simplicity, but
many of the same cost and expressivity limitations also affect probabilistic databases.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

over incomplete databases. Even approximations (e.g., [28, 31, 42])

are often still not efficient enough, are insufficiently expressive,

or exclude useful answers [22, 25]. Thus, typical database users

resort to resolving uncertainty using heuristics and then treating

the result as a deterministic database [62]. In other words, this ap-

proach selects one possible world for analysis, ignoring all other

possible worlds. We refer to this approach as selected-guess query

processing (SGQP). SGQP is efficient, since the resulting dataset is

deterministic, but discards all information about uncertainty, with

the associated potential for severe negative consequences.

Example 1. Alice is tracking the spread of COVID-19 and wants

to use data extracted from the web to compare infection rates in popu-

lation centers of varying size. Fig. 1a (top) shows example (unreliable)

input data. Parts of this data are trustworthy, while other parts are

ambiguous; [𝑣1, . . . , 𝑣𝑛] denotes an uncertain value (e.g., conflicting

data sources) and null indicates that the value is completely unknown

(i.e., any value from the attribute’s domain could be correct). D en-

codes a set of possible worlds, each a deterministic database that

represents one possible state of the real world. Alice’s ETL heuristics

select (e.g., based on the relative trustworthiness of each source) one

possible world 𝐷𝑆𝐺 (Fig. 1b) by selecting a deterministic value for

each ambiguous input (e.g., an infection rate of 3% for Los Angeles).

Alice next computes the average rate by locale size.

SELECT size , avg(rate) AS rate

FROM locales GROUP BY size

Querying 𝐷𝑆𝐺 may produce misleading results, (e.g., an 18% aver-

age infection rate for cities). Conversely, querying D using certain

answer semantics [36] produces no results at all. Although there

must exist a result tuple for metros, the uncertain infection rate of

Los Angeles makes it impossible to compute one certain result tuple.

Furthermore, the data lacks a size for Sacramento, which can con-

tribute to any result, rendering all rate values uncertain, even for

result tuples with otherwise perfect data. An alternative is the possible

answer semantics, which enumerates all possible results. However, the

number of possible results is inordinately large (e.g., Fig. 1a, bottom).

With only integer percentages there are nearly 600 possible result

tuples for towns alone. Worse, enumerating either the (empty) certain

or the (large) possible results is expensive (coNP-hard/NP-hard).

Neither certain answers nor possible answer semantics are mean-

ingful for aggregation over uncertain data (e.g., see [22] for a deeper

discussion), further encouraging the (mis-)use of SGQP. One possi-

ble solution is to develop a special query semantics for aggregation,

either returning hard bounds on aggregate results (e.g., [6, 13, 49]),

or computing expectations (e.g., [40, 49]) when probabilities are

available. Unfortunately, for such approaches, aggregate queries

and non-aggregate queries return incompatible results, and thus



D
locale rate size

Los Angeles [3%,4%] metro
Austin 18% [city,metro]
Houston 14% metro
Berlin [1%,3%] [town,city]

Sacramento 1% null

Springfield null town

𝑄 (D)
size rate

village 0%
village 1%
town 0%
. . . . . .

metro 12%

(a) X-DB

𝐷𝑆𝐺
locale rate size

Los Angeles 3% metro
Austin 18% city
Houston 14% metro
Berlin 3% town

Sacramento 1% town
Springfield 5% town

𝑄 (𝐷𝑆𝐺 )
size rate

metro 8.5%
city 18%
town 3%

(b) A possible world

𝐷𝐴𝑈

locale rate size N
3

Los Angeles [3%/3%/4%] metro (1,1,1)
Austin 18% [𝑐𝑖𝑡𝑦/𝑐𝑖𝑡𝑦/𝑚𝑒𝑡𝑟𝑜 ] (1,1,1)
Houston 14% metro (1,1,1)
Berlin [1%/3%/3%] [𝑡𝑜𝑤𝑛/𝑡𝑜𝑤𝑛/𝑐𝑖𝑡𝑦 ] (1,1,1)

Sacramento 1% [𝑣𝑖𝑙𝑙𝑎𝑔𝑒/𝑡𝑜𝑤𝑛/𝑚𝑒𝑡𝑟𝑜 ] (1,1,1)
Springfield [0%/5%/100%] town (1,1,1)

𝑄 (𝐷𝐴𝑈 )
size spop N

3

metro [6%/8.5%/12%] (1,1,1)
city [7.33%/18%/18%] (0,1,1)
town [0.33%/4%/100%] (1,1,1)

[𝑣𝑖𝑙𝑙𝑎𝑔𝑒/𝑣𝑖𝑙𝑙𝑎𝑔𝑒/𝑚𝑒𝑡𝑟𝑜 ] 1% (0,0,1)

(c) Possible AU-DB Encoding (based on 𝐷𝑆𝐺 )

Figure 1: Example incomplete database and query results.

Everything

Over-Approximation of Possible

Possible

Over-approximation of Certain

(Selected Guess World)

Certain

Under-approximation 

of Certain

UA-DBs

AU-DBs

Figure 2: AU-DBs sandwich cer-

tain answers between an under-

approximation and the SGW and

over-approximate possible answers.

AU-DB
Uncertain

Data
Translate Query AU-DB

Figure 3: AU-DBs are created from uncertain data, possibly

represented using incomplete or probabilistic data models.

the class of queries supported by these approaches is typically quite

limited. For example, most support only a single aggregation as the

last operation of a query. Worse, these approaches are often still

computationally intractable. Another class of solutions represents

aggregation results symbolically (e.g., [9, 27]). Evaluating queries

over symbolic representations is often tractable (PTIME), but the

result may be hard to interpret for a human, and extracting tangible

information (e.g., expectations) from symbolic instances is again

hard. In summary, prior work on processing complex queries in-

volving aggregation over incomplete (and probabilistic) databases

(i) only supports limited query types; (ii) is often expensive; and/or

(iii) returns results that are hard to interpret.

We argue that for uncertain data management to be accepted

by practitioners it has to be competitive with the selected-guess

approach in terms of (i) performance and (ii) the class of supported

queries (e.g., aggregation). In this work, we present AU-DBs, an

annotated data model that approximates an incomplete database

by annotating one of its possible worlds. As an extension of the

recently proposed UA-DBs [25], AU-DBs generalize and subsume

current standard practices (i.e., SGQP). An AU-DB is built on a

selected world, supplemented with two sets of annotations: lower

and upper bounds both on attributes, and on tuple multiplicities.

Thus, each tuple in an AU-DB may encode a set of tuples from

each possible world, each with attribute values falling within the

provided bounds. In addition to being a strict generalization of

SGQP, an AU-DB relation also includes enough information to

bound both the certain and possible answers as illustrated in Fig. 2.

Example 2. Fig. 1c shows an AU-DB constructed from one possible

world 𝐷𝑆𝐺 of D. We refer to this world as the selected-guess world

(SGW). Each uncertain attribute is replaced by a 3-tuple, consisting

of a lower bound, the value of the attribute in the SGW, and an

upper bound, respectively. Additionally, each tuple is annotated with

a 3-tuple consisting of a lower bound on its multiplicity across all

possible worlds, its multiplicity in the SGW, and an upper bound on its

multiplicity. For instance, Los Angeles is known to have an infection

rate between 3% and 4% with a guess (e.g., based on a typical ETL

approach like giving priority to a trusted source) of 3%. The query

result is shown in Fig. 1c. The first row of the result indicates that

there is exactly one record for metro areas (i.e., the upper and lower

multiplicity bounds are both 1), with an average rate between 6%

and 12% (with a selected guess of 8.5%). Similarly, the second row of

the result indicates that there might (i.e., lower-bound of 0) exist one

record for cities with a rate between 7.33% and 18%. This is a strict

generalization of how users presently interact with uncertain data, as

ignoring everything but the middle element of each 3-tuple gets us

the SGW. However, the AU-DB also captures the data’s uncertainty.

As we will demonstrate, AU-DBs have several beneficial proper-

ties that make them a good fit for dealing with uncertain data:

Efficiency. Query evaluation over AU-DBs is PTIME, and by us-

ing novel optimizations that compact intermediate results to trade

precision for performance, our approach scales to large datasets

and complex queries. While still slower than SGQP, AU-DBs are

practical, significantly outperforming alternative uncertain data

management systems, especially for queries involving aggregation.

Query Expressiveness. The under- and over-approximations en-

coded by anAU-DB are preserved by queries from the full-relational

algebra with multiple aggregations (RA𝑎𝑔𝑔). Thus, AU-DBs are

closed under RA𝑎𝑔𝑔 , and are (to our knowledge) the first incom-

plete database approach to support complex, multi-aggregate queries.

Compatibility. Like UA-DBs [25], an AU-DB can be constructed

from many existing incomplete and probabilistic data models, in-

cluding C-tables [36] or tuple-independent databases [57], making

it possible to re-use existing approaches for exposing uncertainty

in data (e.g., [12, 14, 15, 31, 42, 51, 62]). Moreover, although this

paper focuses on bag semantics, our model is defined for the same

class of semiring-annotated databases [32] as UA-DBs [25] which

include, e.g., set semantics, security-annotations, and provenance.

Compactness. As observed elsewhere [33, 34, 47], under-approxi-

mating certain answers for non-monotone queries (like aggregates)

requires over-approximating possible answers. A single AU-DB

tuple can encode a large number of tuples, and can compactly ap-

proximate possible results. This over-approximation is interesting

in its own right to deal with missing data in the spirit of [44, 46, 58].

Simplicity. AU-DBs use simple bounds to convey uncertainty, as

opposed to the more complex symbolic formulas of m-tables [58]

or tensors [9]. Representing uncertainty as ranges has been shown

to lead to better decision-making [43]. AU-DBs can be integrated

into uncertainty-aware user interfaces, e.g., Vizier [16, 43].



2 RELATED WORK

We build on prior research in uncertain databases, specifically, tech-

niques for approximating certain answers and aggregation.

Approximations of Certain Answers. Queries over incomplete

databases typically use certain answer semantics [5, 33, 34, 36, 47]

first defined in [48]. Computing certain answers is coNP-complete [5,

36] (data complexity) for relational algebra. Several techniques for

computing an under-approximation (subset) of certain answers

have been proposed. Reiter [52] proposed a PTIME algorithm for

positive existential queries. Guagliardo and Libkin [33, 34, 47] pro-

posed a scheme for full relational algebra for Codd- and V-tables,

and also studied bag semantics [21, 34]. Feng et. al. [25] general-

ized this approach to new query semantics through Green et. al.’s

K-relations [32]. m-tables [58] compactly encode large amounts

of possible tuples, allowing for efficient query evaluation. How-

ever, this requires complex symbolic expressions which necessitate

schemes for approximating certain answers. Consistent query an-

swering (CQA) [12, 14] computes the certain answers to queries

over all possible repairs of a database that violates a set of con-

straints. Variants of this problem have been studied extensively

(e.g., [19, 41, 42]) and several combinations of classes of constraints

and queries permit first-order rewritings [30, 31, 59, 60]. Geerts et.

al. [31] study first-order under-approximations of certain answers

in the context of CQA. Notably, AU-DBs build on the approach

of [25] (i.e., a selected guess and lower bounds), adding an upper

bound on possible answers (e.g., as in [34]) to support aggregations,

and bound attribute-level uncertainty with ranges instead of nulls.

Aggregation in Incomplete/Probabilistic Databases. While ag-

gregation of uncertain data has been studied extensively (see [26]

for a comparison of approaches), general solutions remain an open

problem [22]. A key challenge lies in defining a meaningful se-

mantics, as aggregates over uncertain data frequently produce

empty certain answers [18]. An alternative semantics adopted for

CQA and ontologies [6, 13, 18, 29, 55] returns per-attribute bounds

over all possible results [13] instead of a single certain answer. In

contrast to prior work, we use bounds as a fundamental building

block of our data model. Because of the complexity of aggregat-

ing uncertain data, most approaches focus on identifying tractable

cases and producing statistical moments or other lossy represen-

tations [4, 17, 20, 38, 40, 49, 56, 61]. Even this simplified approach

is expensive (often NP-hard, depending on the query class), and

requires approximation. Statistical moments like expectation may

be meaningful as final query answers, but are less useful if the

result is to be subsequently queried (e.g., HAVING queries [53]).

Efforts to create a lossless symbolic encoding closed under aggre-

gation [27, 45] exist, supporting complex multi-aggregate queries

and a wide range of statistics (e.g, bounds, samples, or expecta-

tions). However, even factorizable encodings like aggregate semi-

modules [9] usually scale in the size of the aggregate input and not

the far smaller aggregate output, making these schemes impracti-

cal. AU-DBs are also closed under aggregation, but replace lossless

encodings of aggregate outputs with lossy, but compact bounds.

A third approach, exemplified by MCDB [37] queries sampled

possibleworlds. In principle, this approach supports arbitrary queries,

but is significantly slower than SGQP [25], only works when proba-

bilities are available, and only supports statistical measures that can

be derived from samples (i.e., moments and epsilon-delta bounds).

A similarly general approach [44, 58] determines which parts of

a query result over incomplete data are uncertain, and whether the

result is an upper or lower bound. However, this approach tracks

incompleteness coarsely (horizontal table partitions). AU-DBs are

more general, combining both fine-grained uncertainty information

(individual rows and attribute values) and coarse-grained informa-

tion (one row in a AU-DB may encode multiple tuples).

3 NOTATION AND BACKGROUND

We now reviewK-relations, a generalization of classical incomplete

databases called incompleteK-relations, and the UA-DBs model ex-

tended here. A database schema Sch(𝐷) = {Sch(𝑅1), . . . , Sch(𝑅𝑛)}
is a set of relation schemas Sch(𝑅𝑖 ) = ⟨ 𝐴1, . . . , 𝐴𝑛 ⟩. The arity
𝑎𝑟𝑖𝑡𝑦 (Sch(𝑅)) of Sch(𝑅) is the number of attributes in Sch(𝑅). As-
sume a universal domain of attribute valuesD. A tuple with schema

Sch(𝑅) is an element fromD𝑎𝑟𝑖𝑡𝑦 (Sch(𝑅)) . We assume the existence

of a total order over the elements of D.2

3.1 K-Relations

The generalization of incomplete databases we use here is based

on K-relations [32]. In this framework, relations are annotated

with elements from the domain 𝐾 of a (commutative) semiring

K = ⟨ 𝐾, +K , ·K , 1K , 0K ⟩, i.e., a mathematical structure with com-

mutative and associative addition (+K ) and product (·K ) operations

where +K distributes over ·K and 𝑘 ·K 0K = 0K for all 𝑘 ∈ 𝐾 . An
𝑛-nary K-relation is a function that maps tuples to elements from

𝐾 . Tuples that are not in the relation are annotated with 0K . Only

finitely many tuples may be mapped to an element other than 0K .

Since K-relations are functions from tuples to annotations, it is

customary to denote the annotation of a tuple 𝑡 in relation 𝑅 as

𝑅(𝑡). In this work we are interested in bag semantics, which can be

encoded using the semiring of natural numbers with standard addi-

tion and multiplication ⟨ N, +,×, 0, 1 ⟩ to annotate each tuple with

its multiplicity. We discuss the applicability of our framework to a

larger class of semirings in an accompanying technical report [26].

Operators of positive relational algebra (RA+) over N-relations

combine input annotations using + and ·.

Union: (𝑅1 ∪ 𝑅2) (𝑡) = 𝑅1 (𝑡) + 𝑅2 (𝑡)

Join: (𝑅1 ⋈︁ 𝑅2) (𝑡) = 𝑅1 (𝑡 [Sch(𝑅1)]) · 𝑅2 (𝑡 [Sch(𝑅2)])

Projection: (𝜋𝑈 (𝑅)) (𝑡) =
∑︂

𝑡=𝑡 ′ [𝑈 ]

𝑅(𝑡 ′)

Selection: (𝜎𝜃 (𝑅)) (𝑡) = 𝑅(𝑡) · 𝜃 (𝑡)

Wewill make use of the so called natural order ⪯K for a semiring

K which is the standard order ≤ of natural numbers for N.

3.2 Incomplete K-Relations

Instead of using the classical set-based definition of incomplete

databases and certain answers, we apply the generalization from [25]

called incomplete K-relations, specifically the N-relations that

2The order over D may be arbitrary, but range bounds are most useful when the order
makes sense for the domain values (e.g., the ordinal scale of an ordinal attribute).



model bag-incomplete databases. An incompleteN-database is a set

of N-databases D = {𝐷1, . . . , 𝐷𝑛} called possible worlds. Queries

over an incomplete N-database use possible world semantics: The

result of a query 𝑄 over an incomplete N-database D is the set of

possible worlds derived by evaluating 𝑄 over every world in D.

𝑄 (D) ≔ { 𝑄 (𝐷) | 𝐷 ∈ D } (possible world semantics)

Generalizing certain and possible answers, the certain (possible)

multiplicity of a tuple 𝑡 in an incomplete N-database D is the mini-

mum (maximum) multiplicity of the tuple across all possible worlds:

certN (D, 𝑡) ≔ min({𝐷 (𝑡) | 𝐷 ∈ D})

possN (D, 𝑡) ≔ max({𝐷 (𝑡) | 𝐷 ∈ D})

3.3 UA-Databases

Using K-relations, Feng et al. [25] introduced UA-DBs (uncertainty-

annotated databases) which, in the case of semiring N, encode a

tuple level under- and over-approximation of the certain multiplic-

ity of tuples from an incomplete N-database D. In a bag UA-DB

(semiring N), every tuple is annotated with a pair [𝑐, 𝑑] ∈ N2

where 𝑑 is the tuple’s multiplicity in a selected possible world

𝐷𝑠𝑔 ∈ D i.e., 𝑑 = 𝐷𝑠𝑔 (𝑡) and 𝑐 is an under-approximation of the

tuple’s certain multiplicity, i.e., 𝑐 ≤ certN (D, 𝑡) ≤ 𝑑 . The selected
world 𝐷𝑠𝑔 is called the selected-guess world (SGW). Formally, these

pairs [𝑐, 𝑑] are elements from a semiring N𝑈𝐴 which is the direct

product of semiring N with itself (N2). Operations in the product

semiring N2 =
⟨︁
N
2, +N2 , ·N2 , 0N2 , 1N2

⟩︁
are defined pointwise, e.g.,

[𝑘1, 𝑘1
′] ·N2 [𝑘2, 𝑘2

′] = [𝑘1 · 𝑘2, 𝑘1
′ · 𝑘2

′]. UA-DBs are created

from an incomplete or probabilistic data source by selecting a SGW

𝐷𝑠𝑔 and generating an under-approximation L of the certain multi-

plicty certN of tuples. In the UA-DB, the annotation of each tuple

𝑡 is set to: 𝐷𝑈𝐴 (𝑡) ≔ [L(𝑡), 𝐷𝑠𝑔 (𝑡)]. UA-DBs constructed in this

fashion are said to bound D through L and 𝐷𝑠𝑔 . Feng et al. [25]

discussed how to create UA-DBs that bound C-tables, V-tables, and

x-DBs. [25, Theorem 1] shows that standard N2-relational query

semantics preserves bounds under RA+ queries, i.e., if the input

bounds an incompleteN-databaseD, then the result bounds𝑄 (D).

4 OVERVIEW

Query evaluation over UA-DBs is efficient (PTIME data complex-

ity and experimentally shown to have performance comparable to

SGQP). However, UA-DBs may not be as precise and concise as

possible since uncertainty is only recorded at the tuple-level. For

example, the encoding of the town tuple in Fig. 1a needs just shy of

600 uncertain tuples, one for each combination of possible values of

the uncertain size and rate attributes. Additionally, UA-DB query

semantics does not support non-monotone operations like aggre-

gation and set difference, as this requires an over-approximation of

possible answers.

We address both shortcomings in AU-DBs through two changes

relative to UA-DBs: (i) Tuple annotations include an upper bound

on the tuple’s possible multiplicity; and (ii) Attribute values become

3-tuples, with lower- and upper-bounds and a selected-guess (SG)

value. These building blocks, range-annotated scalar expressions

and N𝐴𝑈 -relations, are formalized in Sec. 5 and 6, respectively.

Supporting both attribute-level and tuple-level uncertainty cre-

ates ambiguity in how tuples should be represented. As noted above,

the tuple for towns is certain (i.e., deterministically present) and has

uncertain (i.e., multiple-possible values) attributes, but could also

be expressed as 600 tuples with certain attribute values whose exis-

tence is uncertain. This ambiguity makes it challenging to define

what it means for an AU-DB to bound an incomplete database, a

problemwe resolve in Sec. 6.3 by defining tuplematchings that relate

tuples in an AU-DB to those of a possible world. An AU-DB bounds

an incomplete database if such a mapping exists for every possible

world. This ambiguity is also problematic for group-by aggrega-

tion, as aggregating a relation with uncertain group-by attribute

values may admit multiple, equally viable output AU-relations. We

propose a specific grouping strategy in Sec. 8.1 that mirrors SGW

query evaluation, and show that it behaves as expected.

5 SCALAR EXPRESSIONS

Consider a domain D that consists of R and the boolean values (⊥
and ⊤). Furthermore, letV denote a countable set of variables. For

any variable 𝑥 ∈ V, 𝑥 is an expression and for any constant 𝑐 ∈ D,
𝑐 is an expression. If 𝑒1, 𝑒2 and 𝑒3 are expressions, then . . .

𝑒1 ∧ 𝑒2 𝑒1 ∨ 𝑒2 ¬𝑒1 𝑒1 = 𝑒2 𝑒1 ≠ 𝑒2 𝑒1 ≤ 𝑒2

𝑒1 + 𝑒2 𝑒1 · 𝑒2 if 𝑒1 then 𝑒2 else 𝑒3

are also expressions. Given an expression 𝑒 , we denote the variables

of 𝑒 by vars(𝑒). We will also use ≠, ≥, <, −, and > since these

operators can be defined using the expression syntax above, e.g.,

𝑒1 > 𝑒2 = ¬ (𝑒1 ≤ 𝑒2). For an expression 𝑒 , given a valuation 𝜑

that maps variables from vars(𝑒) to constants from D, the expres-

sion evaluates to a constant J𝑒K𝜑 from D. The semantics of these

expressions are standard (see [26] for explicit definitions).

5.1 Incomplete Expression Evaluation

We now define evaluation of expressions over incomplete valua-

tions, which are sets of valuations. Each valuation in such a set,

called a possible world, represents one possible input for the expres-

sion. The semantics of expression evaluation are then defined using

possible worlds semantics: the result of evaluating an expression 𝑒

over an incomplete valuation Φ = {𝜑1, . . . , 𝜑𝑛} denoted as J𝑒KΦ is

the set of results obtained by evaluating 𝑒 over each 𝜑𝑖 using deter-

ministic expression evaluation semantics: J𝑒KΦ ≔ {J𝑒K𝜑 | 𝜑 ∈ Φ}.
Consider an expression 𝑒 ≔ 𝑥 + 𝑦 and an incomplete valuation

Φ = {(𝑥 = 1, 𝑦 = 4), (𝑥 = 2, 𝑦 = 4), (𝑥 = 1, 𝑦 = 5)}. We get

J𝑒KΦ = {1 + 4, 2 + 4, 1 + 5} = {5, 6}.

5.2 Range-Annotated Domains

We now define range-annotated values, which are domain values

that are annotated with an interval that bounds the value from

above and below. We define an expression semantics for valuations

that maps variables to range-annotated values and then prove that if

the input bounds an incomplete valuation, then the range-annotated

output produced by this semantics bounds the possible outcomes

of the incomplete expression.

Definition 1. Let D be a domain and let ≤ denote a total order

over its elements. Then the range-annotated domain D𝐼 is defined as:{︂
[𝑐↓/𝑐𝑠𝑔/𝑐↑] | 𝑐↓, 𝑐𝑠𝑔, 𝑐↑ ∈ D ∧ 𝑐↓ ≤ 𝑐𝑠𝑔 ≤ 𝑐↑

}︂



A value 𝑐 = [𝑐↓/𝑐𝑠𝑔/𝑐↑] from D𝐼 encodes a value 𝑐
𝑠𝑔 ∈ D and

two values (𝑐↓ and 𝑐↑) that bound 𝑐𝑠𝑔 from below and above. We

call a value 𝑐 ∈ D𝐼 certain if 𝑐↓ = 𝑐𝑠𝑔 = 𝑐↑. Observe, that the

definition requires that for any 𝑐 ∈ D𝐼 we have 𝑐
↓ ≤ 𝑐𝑠𝑔 ≤ 𝑐↑. We

use valuations that map the variables of an expression to elements

from D𝐼 to bound incomplete valuations.

Definition 2. A range-annotated valuation 𝜑̃ for an expression

𝑒 is a mapping vars(𝑒) → D𝐼 . Given an incomplete valuation Φ and

a range-annotated valuation 𝜑̃ for 𝑒 , we say that 𝜑̃ bounds Φ iff

∀𝑥 ∈ vars(𝑒) : ∀𝜑 ∈ Φ : 𝜑̃ (𝑥)↓ ≤ 𝜑 (𝑥) ≤ 𝜑̃ (𝑥)↑

∃𝜑 ∈ Φ : ∀𝑥 ∈ vars(𝑒) : 𝜑 (𝑥) = 𝜑̃ (𝑥)𝑠𝑔

Consider the incomplete valuation Φ = {(𝑥 = 1), (𝑥 = 2), (𝑥 =

3)}. The range-annotated valuation 𝑥 = [0/2/3] is a bound for Φ,

while 𝑥 = [0/2/2] is not a bound. We now define a semantics for

evaluating expressions over range-annotated valuations. We then

demonstrate that this semantics preserves bounds.

Definition 3. Let 𝑒 be an expression. Given a range valuation 𝜑̃ :

vars(𝑒) → D𝐼 , we define 𝜑̃
𝑠𝑔 (𝑥) ≔ 𝜑̃ (𝑥)𝑠𝑔 . The result of expression

𝑒 over 𝜑̃ denoted as J𝑒K𝜑̃ is defined as:

J𝑥K𝜑̃ ≔ [𝜑̃ (𝑥)↓/𝜑̃ (𝑥)𝑠𝑔/𝜑̃ (𝑥)↑] J𝑐K𝜑̃ ≔ [𝑐/𝑐/𝑐]

For any of the following expressions we define J𝑒K𝜑̃
𝑠𝑔 ≔ J𝑒K𝜑̃𝑠𝑔 . Let

J𝑒1K𝜑̃ = 𝑎, J𝑒2K𝜑̃ = 𝑏, and J𝑒3K𝜑̃ = 𝑐 . All expressions omitted below

are defined point-wise (e.g., J𝑒1 + 𝑒2K𝜑̃
↓ ≔ 𝑎↓ + 𝑏↓).

J¬𝑒1K𝜑̃
↓ ≔ ¬𝑎↑ J¬𝑒1K𝜑̃

↑ ≔ ¬𝑎↓

J𝑒1 · 𝑒2K𝜑̃
↓ ≔ min( 𝑎↑ · 𝑏↑, 𝑎↑ · 𝑏↓, 𝑎↓ · 𝑏↑, 𝑎↓ · 𝑏↓ )

J𝑒1 · 𝑒2K𝜑̃
↑ ≔ max( 𝑎↑ · 𝑏↑, 𝑎↑ · 𝑏↓, 𝑎↓ · 𝑏↑, 𝑎↓ · 𝑏↓ )

J𝑒1 ≤ 𝑒2K𝜑̃
↓ ≔ 𝑎↑ ≤ 𝑏↓ J𝑒1 = 𝑒2K𝜑̃

↓ ≔ 𝑎↑ = 𝑏↓ ∧ 𝑏↑ = 𝑎↓

J𝑒1 ≤ 𝑒2K𝜑̃
↑ ≔ 𝑎↓ ≤ 𝑏↑ J𝑒1 = 𝑒2K𝜑̃

↑ ≔ 𝑎↓ ≤ 𝑏↑ ∧ 𝑏↓ ≤ 𝑎↑

Jif 𝑒1 then 𝑒2 else 𝑒3K𝜑̃
↓ ≔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
𝑏↓ if 𝑎↓ = 𝑎↑ = ⊤

𝑐↓ if 𝑎↓ = 𝑎↑ = ⊥

min(𝑏↓, 𝑐↓) else

Jif 𝑒1 then 𝑒2 else 𝑒3K𝜑̃
↑ ≔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
𝑏↑ if 𝑎↓ = 𝑎↑ = ⊤

𝑐↑ if 𝑎↓ = 𝑎↑ = ⊥

max(𝑏↑, 𝑐↑) else

Assuming that an input range-annotated valuation bounds an

incomplete valuation, we need to prove that the output of range-

annotated expression evaluation also bounds the possible outcomes.

Definition 4. A value 𝑐 ∈ D𝐼 bounds a set of values 𝑆 ⊆ D if:

∀𝑐𝑖 ∈ 𝑆 : 𝑐↓ ≤ 𝑐𝑖 ≤ 𝑐
↑ ∃𝑐𝑖 ∈ 𝑆 : 𝑐𝑖 = 𝑐

𝑠𝑔

Theorem 1. Let 𝜑̃ be a range-annotated valuation that bounds an

incomplete valuation 𝑒 for an expression 𝑒 , then J𝑒K𝜑̃ bounds J𝑒KΦ.

Proof Sketch. Proven by straightforward induction over the

structure of formulas. We present the full proof in [26]. □

Conditional range-annotated expressions are bound-preserving

for any totally-ordered domain. For categorical values where no

sensible order can be defined, we impose an arbitrary order.

6 AU-DBS

We define attribute-annotated uncertain databases (AU-DBs) as

a special type of K-relation over range-annotated domains and

demonstrate how to bound an incomplete K-relation using this

model. Afterwards, we define a metric for how precise the bounds

of an incompleteK-database encoded by an AU-DB are, and define

a query semantics for AU-DBs that preserves bounds. We limit the

discussion to semiring N (bag semantics). See [26] for the general-

ization to other semirings including B (set semantics).

6.1 N𝐴𝑈 -relations

In addition to allowing for range-annotated values, AU-DBs also

differ from UA-DBs in that they encode an upper bound of the

possible annotation of each tuple. We use N3 annotations to encode

for each tuple: a lower bound on the certain multiplicity of the tuple,

the multiplicity of the tuple in the SGW, and an over-approximation

of the tuple’s possible multiplicity.

Definition 5. The range-annotated multiplicity domain N𝐴𝑈 is

defined as:
{(𝑘↓, 𝑘, 𝑘↑) | 𝑘↓, 𝑘, 𝑘↑ ∈ N ∧ 𝑘↓ ≤ 𝑘 ≤ 𝑘↑}

We use N𝐴𝑈 to denote semiring N3 restricted to elements from N𝐴𝑈 .

Note that N𝐴𝑈 is a semiring since when combining two ele-

ments of N𝐴𝑈 with +N3 and ·N3 , the result (𝑘↓, 𝑘𝑠𝑔, 𝑘↑) fulfills the

requirement 𝑘↓ ≤ 𝑘𝑠𝑔 ≤ 𝑘↑. This is the case because addition and

multiplication in N preserve order [25], and these operations in N3

are pointwise application of + and ·.

Definition 6. A N𝐴𝑈 -relation of arity 𝑛 is a function R : D𝐼
𝑛 →

N𝐴𝑈 with finite support {t | R(t) ≠ (0, 0, 0)}.

6.2 Extracting Selected-Guess Worlds

N𝐴𝑈 -relations permit multiple tuples with identical values in the

selected-guess world (SGW). We extract the selected-guess world

encoded by a N𝐴𝑈 -relation by grouping tuples based on their SG

values and summing up their SG multiplicities.

Definition 7. We lift operator 𝑠𝑔 from values to tuples: 𝑠𝑔 :

D𝐼
𝑛 → D

𝑛 , i.e., given an AU-DB tuple t = ⟨ 𝑐1, . . . , 𝑐𝑛 ⟩, t𝑠𝑔 ≔
⟨ 𝑐1

𝑠𝑔, . . . , 𝑐𝑛
𝑠𝑔 ⟩. For a N𝐴𝑈 -relation R, R𝑠𝑔 , the SGW encoded by R,

is then defined as:
R
𝑠𝑔 (𝑡) ≔

∑︂
t𝑠𝑔=𝑡

(R(t))𝑠𝑔

Example 3. Fig. 4a shows an instance of a N𝐴𝑈 -relation 𝑅 where

each attribute is a triple showing the lower bound, selected-guess,

and upper bound of the value. Each tuple is annotated by a triple

showing the lower multiplicity bound, selected-guess multiplicity, and

the upper multiplicity bound of the tuple. For example, the first tuple

represents a tuple ⟨ 1, 1 ⟩ that appears at least twice in every possible

world (its lower multiplicity bound is 2), appears twice in the SGW,

and appears no more than thrice in any world. Fig. 4b shows the

SGW encoded by this AU-DB which is computed by summing up

the multiplicities of tuples with identical SG values. For instance, the

first two tuples both represent tuple ⟨ 1, 1 ⟩ in the SGW and their

annotations sum up to 5 (i.e., the tuple ⟨ 1, 1 ⟩ appears five times).

Conversely, the first two tuples of 𝐷2 match different AU-DB tuples.



A B N
3

[1/1/1] [1/1/1] (2,2,3)

[1/1/1] [1/1/3] (2,3,3)

[1/2/2] [3/3/3] (1,1,1)

(a) Example AU-DB instance

𝐷1

A B N

𝑡1 1 1 5

𝑡2 2 3 1

𝐷2

A B N

𝑡3 1 1 2

𝑡4 1 3 2

𝑡5 2 3 1

(b) Worlds 𝐷1 (SGW) and 𝐷2

Figure 4: Example AU-DB relation and two worlds it bounds

6.3 Encoding Bounds

We now define what it means for an AU-DB to bound an incomplete

N-relation. For that, we first define bounding of deterministic tuples

by range-annotated tuples.

Definition 8. Let t be a range-annotated tuple with schema

⟨ 𝑎1, . . . , 𝑎𝑛 ⟩ and 𝑡 be a tuple with the same schema as t. We say that

t bounds 𝑡 written as 𝑡 ⊑ t iff

∀𝑖 ∈ {1, . . . , 𝑛} : t.𝑎𝑖
↓ ≤ 𝑡 .𝑎𝑖 ≤ t.𝑎𝑖

↑

One AU-DB tuple may bound multiple conventional tuples and

vice versa. We define tuple matchings as a way to match the multi-

plicities of tuples of a N𝐴𝑈 -database (or relation) with that of one

possible world of an incomplete N-database (or relation). Based on

tuple matchings we then define how to bound possible worlds.

Definition 9. Let R be an 𝑛-ary AU-relation and 𝑅 an 𝑛-ary rela-

tion. A tuple matching TM for R and 𝑅 is a function (D𝐼 )
𝑛 ×D𝑛 →

N. s.t.the following conditions hold:

∀t ∈ D𝐼
𝑛
: ∀𝑡 ⋢ t : TM(t, 𝑡) = 0 ∀𝑡 ∈ D𝑛 :

∑︂
t∈D𝐼

𝑛

TM(t, 𝑡) = 𝑅(𝑡)

A tuple matching distributes the multiplicity of a tuple from 𝑅

over one or more matching tuples from R. Multiple tuples from

an AU-DB may encode the same tuple when the multidimensional

rectangles of their attribute-level range annotations overlap, as

with the first two tuples of the AU-DB in Fig. 4 and the SGW.

Definition 10. Given an n-ary AU-DB relation R and an n-ary

deterministic N-relation 𝑅 (a possible world), relation R bounds 𝑅

(denoted 𝑅 ⊏ R) iff there exists a tuple matching TM for R and 𝑅 s.t.

∀t ∈ D𝐼
𝑛
:

∑︂
𝑡 ∈D𝑛

TM(t, 𝑡) ≥ R(t)↓ and
∑︂
𝑡 ∈D𝑛

TM(t, 𝑡) ≤ R(t)↑

Having defined when a possible world is bound by a N𝐴𝑈 -

relation, we are ready to define bounding of incompleteN-relations.

Definition 11. Given an incomplete N-relation R and a N𝐴𝑈 -

relation R, we say that R bounds R, written as R ⊏ R iff

∀𝑅 ∈ R : 𝑅 ⊏ R ∃𝑅 ∈ R : 𝑅 = R
𝑠𝑔

These definitions are extended to databases in the obvious way.

Example 4. Consider the AU-DB of Ex. 3 and the worlds of Fig. 4b.

The AU-DB bounds these worlds, since there exist tuple matchings that

provide a lower and an upper bound for the annotations of the tuples

of each world. For instance, denoting the tuples from this example as

t1 ≔ ⟨ [1/1/1], [1/1/1] ⟩ t2 ≔ ⟨ [1/1/1], [1/1/3] ⟩

t3 ≔ ⟨ [1/2/2], [3/3/3] ⟩

Tuple matching TM1 (shown below) bounds 𝐷1.

TM1 (t1, 𝑡1) = 2 TM1 (t2, 𝑡1) = 3 TM1 (t3, 𝑡1) = 0

TM1 (t1, 𝑡2) = 0 TM1 (t2, 𝑡2) = 0 TM1 (t3, 𝑡2) = 1

6.4 Tightness of Bounds

Given an incomplete database, there are many possibleAU-DBs that

bound it of varying tightness. For instance, both t1 ≔ ⟨ [1/15/100] ⟩
and t2 ≔ ⟨ [13/14/15] ⟩ bound tuple ⟨ 15 ⟩, but intuitively the

bounds provided by t2 are tighter. We develop a metric for the tight-

ness of the approximation provided by an AU-DB and prove that

finding an AU-DB that maximizes tightness is intractable. Given

two AU-DBs D and D
′ that both bound an incomplete N-database

D, D is a tighter bound than D
′ if the set of worlds bound by D is

a subset of the set of worlds bound by D
′.

Definition 12. Consider two N𝐴𝑈 -databases D and D′ over the

same schema 𝑆 . We say that D is at least as tight as D′, written as

D ⪯𝐼 D
′, if for all N-databases 𝐷 with schema 𝑆 we have:

𝐷 ⊏ D → 𝐷 ⊏ D
′

We say that D is strictly tighter than D
′, written as D ≺𝐼 D

′ if

D ⪯𝐼 D
′ and there exists 𝐷 ⊏ D

′ with 𝐷 ̸⊏ D. Furthermore, we call

D a maximally tight bound for an incomplete N-database D if:

D ⊏ D ∄D′
: D ⊏ D

′ ∧ D
′ ≺𝐼 D

This notion of tightness is well-defined even if the data domainD

is infinite. In general AU-DBs that are tighter bounds are preferable.

However, computing a maximally tight bound is intractable.

Theorem 2. Let D be an incomplete N-database encoded as a C-

table [36]. Computing a maximally tight bound D for D is NP-hard.

Proof Sketch. Proven by reduction from 3-colorability [26].

We construct a C-table with one tuple and encode the 3-colorability

of the input graph 𝐺 in the local condition of the tuple, i.e., the

tuple is possible iff 𝐺 is 3-colorable. The maximally tight upper

multiplicity bound for this tuple is 1 iff graph𝐺 is 3-colorable. □

7 AU-DB QUERY SEMANTICS

We now introduce a semantics for RA+ queries over AU-DBs that

preserves bounds, i.e., if the input of a query 𝑄 bounds an incom-

pleteN-databaseD, then the output bounds𝑄 (D). AU-DBs follow
the standard K-relational semantics for all RA+ operations except

selection. The revised selection operator (described below) remains

linear in the size of its input, thus implying PTIME query evalua-

tion [10, 26]. Recall the standard semantics for evaluating selection

conditions over N-relations: The multiplicity of a tuple 𝑡 in the

result of a selection 𝜎𝜃 (𝑅) is computed by multiplying 𝑅(𝑡) with
𝜃 (𝑡). 𝜃 (𝑡) is defined as a function B → {0, 1} that returns 1 if 𝜃

evaluates to true on 𝑡 and 0 otherwise. InN𝐴𝑈 -relations, 𝑡 is a tuple

of range-annotated values. Using the range-annotated semantics

for expressions from Sec. 5, selection conditions evaluate to triples

of boolean values B3. For example, [𝐹/𝐹/𝑇 ] means that the condi-

tion may be false in some worlds, is false in the SGW, and may be

true in some worlds. To define selection semantics compatible with

N-relational query semantics, these triples must be translated to

elements of N𝐴𝑈 .





for sum andmin: SUM ≔ ⟨ R, +, 0 ⟩ andMIN ≔ ⟨ R,min,∞ ⟩. For
𝑀 ∈ {SUM,MIN,MAX} (count uses SUM), we define a correspond-

ing monoid𝑀𝐼 using range-annotated expression semantics (Sec. 5).

Note that this gives us aggregation functions which can be applied

to range-annotated values and are bound preserving, i.e., the result

of the aggregation function bounds all possible results for any set

of values bound by the inputs. For example, min is expressed as

min(𝑣,𝑤) ≔ if 𝑣 ≤ 𝑤 then 𝑣 else𝑤 .

Lemma 1. SUM𝐼 ,MIN𝐼 , MAX𝐼 are monoids.

Proof Sketch. Proven by unfolding of definitions to show that

the addition operations of these monoids is pointwise application

of the operation of the monoids they originated from. □

Semimodules. Aggregation over K-relations has to take the an-

notations of tuples into account for computing aggregation results.

For instance, consider an N-relation 𝑅(𝐴) with tuples ⟨ 30 ⟩ ↦→ 2

and ⟨ 40 ⟩ ↦→ 3, (i.e., respectively 2 and 3 duplicates). The sum over

𝐴 should be 30 ·2+40 ·3 = 180. More generally speaking, we need an

operation ∗𝑀 : N ×𝑀 → 𝑀 that combines the tuple multiplicities

with domain values. As observed in [9] this operation has to fulfill

the algebraic laws of semimodules. Note that ∗ is well-defined for

N and all of the monoids we consider:

𝑘 ∗SUM𝑚 = 𝑘 ·𝑚 𝑘 ∗MIN𝑚 = 𝑘 ∗MAX𝑚 =

{︄
𝑚 if 𝑘 ≠ 0

0 else

Unfortunately, as the following lemma shows, it is not possible

to use semimodules for aggregation over N𝐴𝑈 -relations, because

such semimodules, if they exist, cannot be bound preserving.

Lemma 2. ∗N𝐴𝑈 ,SUM, if it is well-defined, is not bound preserving.

Proof Sketch. Assume that this semimodule exists and is bound

preserving. We lead this assumption to a contradiction by deriving

two different results for the expression (1, 1, 2) ∗N𝐴𝑈 ,SUM [0/0/0]
using semimodule laws: (i) the obvious [0/0/0] and (ii) [−1/0/1] =
(1, 1, 2) ∗N𝐴𝑈 ,SUM ( [−1/−1/−1] + [1/1/1]) (full proof in [26]). □

In spite of this negative result, not everything is lost. Observe

that it not necessary for the operation that combines semiring ele-

ments (tuple annotations) with elements of the aggregation monoid

to follow semimodule laws. After all, what we care about is that

the operation is bound-preserving. Below we define operations ⊛𝑀
that are not semimodules, but are bound-preserving. To achieve

bound-preservation we can rely on the bound-preserving expres-

sion semantics we have defined in Sec. 5. For example, since ∗SUM is

multiplication, we can define ⊛SUM using multiplication for range-

annotated values. This approach of computing the bounds as the

minimum and maximum over all pair-wise combinations of value

and tuple-annotation bounds also works forMIN andMAX. In [26]

we prove that ⊛𝑀 is in fact bound preserving.

Definition 15. Consider a monoid𝑀 ∈ {SUM,MIN,MAX}. Let
[𝑚↓/𝑚/𝑚↑] be a range-annotated value from D𝐼 and (𝑘↓, 𝑘, 𝑘↑) ∈

N𝐴𝑈 . We define (𝑘↓, 𝑘, 𝑘↑) ⊛𝑀 [𝑚↓/𝑚/𝑚↑] =

[𝑚𝑖𝑛(𝑘↓ ∗𝑀 𝑚↓, 𝑘↓ ∗𝑀 𝑚↑, 𝑘↑ ∗𝑀 𝑚↓, 𝑘↑ ∗𝑀 𝑚↑),

𝑘 ∗𝑀 𝑚,

𝑚𝑎𝑥 (𝑘↓ ∗𝑀 𝑚↓, 𝑘↓ ∗𝑀 𝑚↑, 𝑘↑ ∗𝑀 𝑚↓, 𝑘↑ ∗𝑀 𝑚↑)]

8.1 Bound-Preserving Aggregation

We now define a bound preserving aggregation semantics based

on the ⊛𝑀 operations. Since AU-DBs can be used to encode an

arbitrary number of groups as a single tuple, we need to decide how

to trade conciseness of the representation for accuracy. Furthermore,

we need to ensure that the aggregation result in the SGW is encoded

by the result. There are many possible strategies for how to group

possible aggregation results. In this paper, we limit the discussion

to a default strategy that we introduce next (see [26] for a general

treatment). Afterwards, we demonstrate how to calculate group-by

attribute and aggregation result ranges for output tuples.

Grouping Strategy. Our grouping strategy takes as input an n-ary

N𝐴𝑈 -relation R and a list of group-by attributes 𝐺 and returns a

pair (G, 𝛼) where G(𝐺,R) is a set of output tuples Ð one for every

SG group (an input tuple’s group-by values in the SGW), and 𝛼

assigns each input tuple to one output based on its SG group-by

values. Even if the SG annotation of an input tuple is 0, we still use

its SG values to assign it to an output tuple. Only tuples that are

not possible (annotated with 0N𝐴𝑈 = (0, 0, 0)) are not considered.
Since output tuples are identified by their SG group-by values, we

will use these values to identify elements from G.

Definition 16. Consider a query 𝑄 ≔ 𝛾𝐺,𝑓 (𝐴) (R). Let t ∈ D𝐼
𝑛 .

The default grouping strategy G𝑑𝑒𝑓 ≔ (G, 𝛼) is defined as:

G(𝐺,R) ≔ {𝑡 .𝐺 | ∃t : t𝑠𝑔 = 𝑡 ∧ R(t) ≠ 0N𝐴𝑈 } 𝛼 (t) ≔ t.𝐺𝑠𝑔

For instance, consider three tuples t1 ≔ ⟨ [1/2/2] ⟩ and t2 ≔

⟨ [2/2/4] ⟩ and t3 ≔ ⟨ [2/3/4] ⟩ of a relation R(𝐴). Furthermore,

assume that R(t1) = (1, 1, 1), R(t2) = (0, 0, 1), and R(t3) = (0, 0, 3).
Grouping on𝐴, the default strategy will generate two output groups

𝑔1 for SG group (2) and 𝑔2 for SG group (3). Based on their SG

group-by values, 𝛼 assigns t1 and t2 to 𝑔1 and t3 to 𝑔2.

Aggregation Semantics. We now introduce an aggregation se-

mantics based on this grouping strategy. For simplicity we define

aggregation without group-by as a special case of aggregation with

group-by (the only difference is how tuple annotations are handled).

We first define how to construct a result tuple t𝑔 for each output

group 𝑔 returned by the grouping strategy and then present how

to calculate tuple annotations. The construction of an output tuple

is divided into two steps: (i) determine range annotations for the

group-by attributes and (ii) determine range annotations for the

aggregation function result attributes. To ensure that all possible

groups that an input tuple t with 𝛼 (t) = 𝑔 belongs to are contained

in t𝑔 .𝐺 we have to merge the group-by attribute bounds of all of

these tuples. Furthermore, we use the unique SG group-by values

common to all input tuples assigned to t𝑔 (i.e., t𝑔 .𝐺
𝑠𝑔

= 𝑔) as the

output’s SG group-by value.

Definition 17. Consider a result group 𝑔 ∈ G(𝐺,R) for an aggre-
gation with group-by attributes𝐺 over a N𝐴𝑈 -relation R. The bounds

for the group-by attributes values of t𝑔 are defined as shown below.

For all 𝑎 ∈ 𝐺 we define:

t𝑔 .𝑎
↓
= min

t:𝛼 (t)=𝑔
t.𝑎↓ t𝑔 .𝑎

𝑠𝑔
= 𝑔.𝑎 t𝑔 .𝑎

↑
= max

t:𝛼 (t)=𝑔
t.𝑎↑

Note that in the definition above,min andmax are the minimum

and maximum wrt. to the order over the data domain D which we



used to define range-annotated values. Reconsider the three exam-

ple tuples and two result groups from above. The group-by range an-

notation for output tuple t𝑔1 is [min(1, 2)/2/max(2, 4)] = [1/2/4].
Observe that [1/2/4] bounds every group t1 and t2 may belong

to in some possible world. To calculate bounds on the result of

an aggregation function for one group, we have to reason about

the minimum and maximum possible aggregation function result

based on the bounds of aggregation function input values, their as-

sociated row annotations, and their possible and guaranteed group

memberships. To calculate a conservative lower bound of the ag-

gregation function result for an output tuple t𝑔 , we use ⊛𝑀 to pair

the aggregation function value of each tuple t for which 𝛼 (t) = 𝑔
holds with the tuple’s annotation and then extract the lower bound

from the resulting range-annotated value. The group membership

of a contributing tuple is uncertain if either its group-by values are

uncertain or if it need not exist in all possible worlds (its certain

multiplicity is 0). We thus take the minimum of the neutral element

of the aggregation monoid and the result of ⊛𝑀 for such tuples. We

introduce an uncertain group predicate ug(𝐺,R, t) for this purpose:

ug(𝐺,R, t) ≔ (∃𝑎 ∈ 𝐺 : t.𝑎↓ ≠ t.𝑎↑) ∨ R(t)↓ = 0

We then sum up the resulting values in the aggregation monoid.

Note that here summation is addition in𝑀 . The upper bound calcu-

lation is analogous (using the upper bound and maximum instead).

The SG result is calculated using standard N-relational semantics.

We use t⊓ t′ to denote that the range annotations of tuples t and t′

with the same schema (𝐴1, . . . , 𝐴𝑛) overlap on each attribute𝐴𝑖 , i.e.,

t ⊓ t′ ≔
⋀︂

𝑖∈{1,...,𝑛}

[t.𝐴𝑖
↓, t.𝐴𝑖

↑] ∩ [t′.𝐴𝑖
↓, t′.𝐴𝑖

↑] ≠ ∅

Definition 18. Consider input R, set of group-by attributes 𝐺 ,

an output 𝑔 ∈ G(𝐺,R), and aggregation function 𝑓 (𝐴) with monoid

𝑀 . We use ð(𝑔) to denote the set of inputs with group-by attribute

bounds overlaping t𝑔 .𝐺 , i.e., belonging to a group represented by t𝑔 :

ð(𝑔) ≔ {t | R(t) ≠ 0N𝐴𝑈 ∧ t.𝐺 ⊓ t𝑔 .𝐺}

The aggregation function result bounds for tuple t𝑔 are defined as:

t𝑔 .𝑓 (𝐴)
↓
=

∑︂
t∈ð(𝑔)

lbagg(t) t𝑔 .𝑓 (𝐴)
↑
=

∑︂
t∈ð(𝑔)

ubagg(t)

t𝑔 .𝑓 (𝐴)
𝑠𝑔

=

∑︂
t∈ð(𝑔)

(R(t) ⊛𝑀 t.𝐴)𝑠𝑔

lbagg(t) =

{︄
𝑚𝑖𝑛(0𝑀 , (R(t) ⊛𝑀 t.𝐴)↓) if ug(𝐺,R, t)

(R(t) ⊛𝑀 t.𝐴)↓ otherwise

ubagg(t) =

{︄
𝑚𝑎𝑥 (0𝑀 , (R(t) ⊛𝑀 t.𝐴)↑) if ug(𝐺,R, t)

(R(t) ⊛𝑀 t.𝐴)↑ otherwise

Example 6. For instance, consider calculating the sum of 𝐴 group-

ing on 𝐵 for a relation 𝑅(𝐴, 𝐵), which consists of two tuples t1 ≔

⟨ [3/5/10], [3/3/3] ⟩ and t2 ≔ ⟨ [−4/−3/−3], [2/3/4] ⟩ that are
both annotated with (1,2,2) (appear certainly once and may appear

twice). Consider calculating the aggregation function result bounds

for the result tuple t𝑔 for the output group 𝑔 ≔ ⟨ 3 ⟩. The lower bound∑︁
t∈ð(𝑔) lbagg(t) on sum(A) is calculated (Def. 15) as:

=((1, 2, 2) · [3/5/10])↓ +𝑚𝑖𝑛(0, ((1, 2, 2) · [−4/−3/−3])↓)

=[3/10/20]↓ +𝑚𝑖𝑛(0, [−8/−6/−3]↓) = 3 +𝑚𝑖𝑛(0,−8) = −5

The aggregation result is guaranteed to be greater than or equal to

−5 since t1 certainly belongs to 𝑔 (no minimum operation), because

its group-by attribute value [3/3/3] is certain and the tuple certainly

exists ((1, 2, 1)↓ > 0). This tuple contributes 3 to the sum and t2

contributions at least −8. While it is possible that t2 does not belong

to 𝑔 this can only increase the final result (3 + 0 > 3 + −8).

We still need to calculate the multiplicity annotation for each

result tuple. For aggregation without group-by, there is always

exactly one result tuple. In this case there exists a single possible

SG output group (the empty tuple ⟨ ⟩ ) and all input tuples are

assigned to it through 𝛼 . Let t⟨ ⟩ denote this single output tuple.

Recalling that all remaining tuples have multiplicity 0, we define:

𝛾𝑓 (𝐴) (R) (t)
↓
= 𝛾𝑓 (𝐴) (R) (t)

𝑠𝑔
= 𝛾𝑓 (𝐴) (R) (t)

↑ ≔

{︄
1 if t = t⟨ ⟩

0 otherwise

In order to calculate the upper bound on the possible multiplicity

for a result tuple of a group-by aggregation, we have to determine

the maximum number of distinct groups this output tuple could

correspond to. We compute the bound for an output t𝑔 based on G
making the worst-case assumption that (i) each input tuple t with

𝛼 (t) = 𝑔 has the maximal multiplicity possible (R(t)↑); (ii) each
tuple 𝑡 encoded by t is in a separate group; and (iii) groups produced

from two inputs t and t′ do not overlap. We can improve this

bound by partitioning the input into two sets: tuples with uncertain

group-by values and tuples with certain group membership. When

calculating the maximum number of groups for an output t𝑔 , the set

of input tuples with certain group-by values that fall into the group-

by bounds of t𝑔 only contribute the number of distinct SG group-by

values from this set to the bound. For the first set we still apply

the worst-case assumption. To determine the lower bound on the

certain annotation of a tuple we have to reason about which input

tuples certainly belong to a group. These are inputs whose group-

by attributes are certain. For such tuples we sum up their tuple

annotation lower bounds. We then need to derive the annotation of

a result tuple from relevant input tuple annotations. [9] extended

semirings with a duplicate elimination operator 𝛿N for this purpose

which is defined as 𝛿N (𝑘) = 0 if 𝑘 = 0 and 𝛿N (𝑘) = 1 otherwise.

Definition 19. Let 𝑄 ≔ 𝛾𝐺,𝑓 (𝐴) (R) and G𝑑𝑒𝑓 (R,𝐺) = (G, 𝛼).
Consider a tuple t such that ∃𝑔 ∈ G with t = t𝑔 . Then,

𝛾𝐺,𝑓 (𝐴) (R) (t)
↓ ≔ 𝛿N

⎛⎜⎝
∑︂

t′:𝛼 (t′)=𝑔∧¬ug(𝐺,R,t′)

R(t′)↓
⎞⎟⎠

𝛾𝐺,𝑓 (𝐴) (R) (t)
𝑠𝑔 ≔ 𝛿N

⎛⎜⎝
∑︂

t′:𝛼 (t′)=𝑔

R(t′)𝑠𝑔
⎞⎟⎠

𝛾𝐺,𝑓 (𝐴) (R) (t)
↑ ≔

∑︂
t′:𝛼 (t′)=𝑔

R(t′)↑

For any tuple t such that ¬∃𝑔 ∈ G with t = t𝑔 , we define

𝛾𝐺,𝑓 (𝐴) (R) (t)
↓
= 𝛾𝐺,𝑓 (𝐴) (R) (t)

𝑠𝑔
= 𝛾𝐺,𝑓 (𝐴) (R) (t)

↑
= 0

The following example illustrates the application of the aggrega-

tion semantics we have defined in this section.

Example 7. Consider the relation shown in Fig. 6 which records ad-

dresses (street, street number, number of inhabitants). Following [62],



street number #inhab N𝐴𝑈

Canal [165/165/165] [1/1/1] (1,1,2)

Canal [154/153/156] [1/2/2] (1,1,1)

State [623/623/629] [2/2/2] (2,2,3)

Monroe [3574/3550/3585] [2/3/4] (0,0,1)

(a) Input relation address

SELECT street ,

count (*) AS cnt

FROM address

GROUP BY street;

street cnt N𝐴𝑈

Canal [1/2/3] (1,1,2)

State [2/2/4] (1,1,1)

Monroe [1/1/2] (0,0,1)
(b) Aggregation with Group-by

Figure 6: Aggregation over AU-DBs

uncertain text fields are marked in red to indicate that their bound

encompasses the whole domain. Street values 𝑣 in black are certain,

i.e., 𝑣↓ = 𝑣𝑠𝑔 = 𝑣↑. We are uncertain about particular street numbers,

number of inhabitants at certain addresses, and one street name. Fur-

thermore, several tuples may represent more than one address. For the

query shown in Fig. 6b consider the second result tuple (group State).

This tuple certainly exists since the 3rd tuple in the input appears

twice in every world and its group-by value is certain. Thus, the count

for group State is at least two. The second input tuple could also belong

to this group and, thus, the count could be 4 (the upper bound). Note

also the multiplicity of the first output tuple (group Canal): [1/1/2].
In the SGW the first two input tuples belong to this group. However,

the second input tuple need not be in this group in all worlds, and

in fact may not belong to any existing group. Thus, in some possible

worlds this one AU-DB tuple may represent 2 distinct output tuples.

We are ready to state the main result of this section: our aggre-

gation semantics for AU-DBs is bound-preserving.

Theorem 4. Let 𝑄 ≔ 𝛾𝐺,𝑓 (𝐴) (𝑅) or 𝑄 ≔ 𝛾𝑓 (𝐴) (𝑅). N𝐴𝑈 -rel-

ational query semantics preserves bounds for 𝑄 .

Proof Sketch. The claim is proven by demonstrating that for

every possible world 𝑅 of the input incomplete N-relation R and a

tuple matching TM based on which R bounds 𝑅, we can construct

a tuple matching based on which 𝑄 (R) bounds 𝑄 (𝑅). For each
aggregation result 𝑡 in 𝑅, we show that there is a result in 𝑄 (R)
that bounds the values of 𝑡 , because our aggregation semantics

computes aggregation function results based on the minimum and

maximum contribution of each possible input tuple, and group-

by attribute bounds are generated by conservatively merging the

group-by bounds of input tuples. See [26] for the full proof. □

Our main technical result follows from Thm. 4, [26, Thm. 3]

(bound preservation for set difference) and Thm. 3:

Corollary 1. N𝐴𝑈 -semantics preserves bounds for RA𝑎𝑔𝑔 .

9 EXPERIMENTS

We compare AU-DBs (AU-DB) implemented on Postgres against

(1) Det: Deterministic SGQP; (2) Libkin: An under-approximation

of certain answers [33, 47]; (3) UA-DB: An under-approximation

of certain answers combined with SGQP [25]; (4) MayBMS: MayBMS

used to compute all possible answers3; (5) MCDB: Database sampling

3Times listed for MayBMS and MCDB include only computing possible answers and not
computing probabilities.

(10 samples) in the spirit of MCDB [37] to over-approximate certain

answers; (6) Trio: A probabilistic DB with bounds for aggrega-

tion [7]; and (7) Symb: An SMT solver (Z3) calculating aggregation

result bounds based on the symbolic representation from [9]. All

experiments are run on a 2×6 core AMDOpteron 4238 CPUs, 128GB

RAM, 4×1TB 7.2K HDs (RAID 5). We report the average of 10 runs.

9.1 Uncertain TPC-H (PDBench)

We use PDBench [11], a modified TPC-H data generator [23] that

creates an x-DB (block-independent database) with attribute-level

uncertainty by replacing random attributes with multiple randomly

selected possible alternatives. We directly run MayBMS queries (with-

out probability computations) on its native columnar data repre-

sentation. For MCDB, we approximate tuple bundles with 10 samples.

We apply Libkin on a database with labeled nulls for uncertain

attributes using the optimized rewriting from [33]. We run Det

on one randomly selected world Ð this world is also used as the

SGW for UA-DB and AU-DB. We construct an AU-DB instance by

annotating each cell in this world with the minimum and maximum

possible values for this cell across all worlds. For UA-DB we mark

all tuples with at least one uncertain value as uncertain.

PDBench Queries. To evaluate the overhead of our approach com-

pared to UA-DBs for queries supported by this model, we repro-

duce the experimental setup from [25], which uses the queries of

PDBench (simple SPJ queries). With a scale factor 1 (SF1) database

(∼1GB per world), we evaluate scalability relative to amount of un-

certainty. Using PDBench, we vary the percentage of uncertain cells:

2%, 5%, 10% and 30%. Each uncertain cell has up to 8 possible values

picked uniformly at random over the whole domain, resulting in

large ranges, a worst-case scenario for AU-DBs and a best-case

scenario for MayBMS. As Fig. 7a shows, our approach has constant

overhead (a factor of ∼ 5), resulting from the many possible tuples

created by joins on attributes with ranges across the entire domain.

To evaluate scalability, we use 100MB, 1GB, and 10GB datasets (SF

0.1, 1, and 10) and fix the uncertainty percentage (2%). As evident

from Fig. 7b, AU-DBs scale linearly in the SF for such queries.

TPC-Hqueries.Wenow evaluate actual TPC-H queries on PDBench

data. These queries contain aggregation with uncertain group-by

attributes (only supported by AU-DB and MCDB). Results are shown

in Fig. 9. For most queries, AU-DB has an overhead factor of between

3-7 over Det. This overhead is mainly due to additional columns

and scalar expressions. Compared to MCDB, AU-DB is up to 570%

faster, while producing hard bounds instead of an estimation.

Simple Aggregation. We use a simple aggregation query with

certain group-by attributes on an SF0.1 instance to compare against

a wider range of approaches, varying the number of aggregation

operators (#agg-ops). For systems that do not support subqueries

like Trio, operator outputs are materialized as tables. In this ex-

periment, Trio produces incorrect answers, as its representation

of aggregation results (bounds) is not closed under queries; We

are only interested in its performance. Fig. 8 shows the runtime of

our technique compared to Trio which is significantly slower, and

Symb (only competitive for low #agg-ops values).



 0.1

 1

 10

 100

2% 5% 10% 30%R
u
n
ti
m

e
 /
 D

e
t-

ru
n
ti
m

e

Amount of Uncertainty

Det
UA-DB

AU-DB
Libkin

MayBMS
MCDB

(a) Varying uncertainty (1GB)

 0.1

 1

 10

 100

0.1GB 1GB 10GB

R
u
n
ti
m

e
 /
 D

e
t-

ru
n
ti
m

e

Data size

Det
UA-DB

AU-DB
Libkin

MayBMS
MCDB

(b) Varying DB size (2% uncertainty)
Figure 7: PDbench Queries

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 1  2  3  4  5  6  7  8  9  10

T
im

e
 (

s
e

c
)

# Aggregation Operators

Det
AUDB
Trio
Symb
MCDB

Figure 8: Simple aggregation over TPC-H data

Queries 2%/SF0.1 2%/SF1 5%/SF1 10%/SF1 30%/SF1

Q1
AU-DB 1.607 15.636 15.746 15.811 16.021
Det 0.560 1.833 1.884 1.882 1.883
MCDB 5.152 19.107 18.938 19.063 19.279

Q3
AU-DB 0.713 7.830 8.170 8.530 7.972
Det 0.394 1.017 1.058 1.092 1.175
MCDB 4.112 11.138 11.222 10.936 11.454

Q5
AU-DB 0.846 8.877 8.803 8.839 8.925
Det 0.247 0.999 1.012 1.123 1.117
MCDB 2.599 10.152 10.981 11.527 11.909

Q7
AU-DB 0.791 7.484 7.537 7.303 7.259
Det 0.145 0.977 0.985 0.989 1.044
MCDB 1.472 10.123 10.277 10.749 10.900

Q10
AU-DB 0.745 7.377 7.283 7.715 8.012
Det 0.263 1.024 0.993 1.004 1.015
MCDB 2.691 10.743 10.937 11.826 11.697

Figure 9: TPC-H query performance (runtime in sec)

9.2 Micro-benchmarks

We use a synthetic table with 100 attributes with uniform random

values to evaluate the performance and accuracy of our approach.

Varying number of group-by attributes. We use an sum aggre-

gation with 1 to 99 group-by attributes on a table with 35k rows and

5% uncertainty. Our implementation applies an aggregate analog

of the join optimization described in Sec. 7.1: possible groups are

compressed before being joined with the output groups (see [26]).

This improves performance when there are fewer result groups.

As Fig. 10a shows, overhead over Det is up to a factor of 6 to 7.

Varying number of aggregates.Using a similar query and dataset,

and 1 group-by attribute, we vary the number of aggregation func-

tions from 1 to 99. As Fig. 10b shows, the overhead of our approach

compared to Det varies between a factor of 5 to 6.

Compression Trade-off for Aggregation.We evaluate the trade-

offs between tightness and compression for aggregation using sum

aggregation with group-by. Fig. 10d shows the runtime overhead

of our approach over Det when increasing the number of tuples

in the compressed pre-aggregation result. The input table has 10%

uncertainty and 10k rows. For tightness we calculate tight bounds

for the aggregation function results for each possible group (a group

that exists in at least one world). We then measure for each such

group the relative size of our approximate bounds compared to the

maximally tight bounds and report the average of this number.

Attribute Bound Size. Next, we vary the average size of attribute-

level bounds (same query as above). We generate tables with 35k

rows each and 5% uncertainty, varying the range of uncertain at-

tribute values from 0% to 100% of the attribute’s domain. We mea-

sure runtime, varying the number of tuples in the compressed result

(CT) for the pre-aggregation step. For more aggressive compression

(Fig. 10c), the runtime of our approach is only slightly affected by

the size of attribute-level bounds. We also measure how the size

of attribute ranges affects precision. We generate x-DBs with 2%,

3%, and 5% of uncertain tuples (10 alternatives per uncertain tu-

ple) varying attribute ranges from 1% to 10% of the entire value

domain. We create an AU-DB from the x-DB ([26] details how this

is achieved). Fig. 12a and 12b show the percentage of over-grouping

for AU-DB (increase in group size, because of over-estimation of

possible group-by attribute values) and relative factor of aggre-

gation result range over-estimation. The range over-estimation

grows faster than over-grouping, as it is affected by uncertainty in

aggregation function inputs as well as the over-grouping.

Join Optimizations. Next, we evaluate the impact of our join

optimization. Fig. 11a shows the runtime for a single equi-join (log-

scale) varying the size of both input relations from 5k to 20k rows

containing 3% uncertain values ranging over 2% of the value domain.

The optimized version is between ∼ 1 and ∼ 2 orders of magnitude

faster depending on the compression rate (i.e., CT). As a simple

accuracy measure, Fig. 11a shows the number of possible tuples

in the join result. Next, we join tables of 4k rows with 3% or 10%

uncertainty and vary the number of joins (1 to 4 chained equality

joins, i.e., no overlap of join attributes between joins). As shown in

Fig. 13, joins without optimization are up to 4 orders of magnitude

more expensive, because of the nested loop joins that are needed

for interval-overlap joins and resulting large result relations.

9.3 Real World Data

For this experiment, we repaired key violations for real world

datasets (references shown in Fig. 14). To repair key violations,

we group tuples by their key attributes so that each group repre-

sents all possibilities of a single tuple with the corresponding key

value. For each group, we randomly pick one tuple for the SGW

and use all tuples in the group to determine its attribute bounds as

the minimum (maximum) value within the group. Fig. 14 shows for

each dataset the percentage of tuples with uncertain values and for

all such tuples the average number of possibilities. We generated

SPJ (SPJ) and simple aggregation queries with group-by (GB) for

each of these datasets (query types are shown in Fig. 14, see [26]

for additional details). Fig. 14 shows the runtime for these queries

comparing AU-DBwith MCDB, Trio and UA-DB. AU-DB is significantly

faster than Trio and consistently outperforms MCDB. As a compari-

son point and to calculate our quality metrics, for each query we

calculated the precise set of certain and possible tuples and exact

bounds for attribute-level uncertainty in the query result. We exe-

cute those queries in each system and report the recall of certain

and possible tuples it returns versus the exact result. Note that

for possible tuple recall, we report two metrics. The first ignores

attribute-level uncertainty. Possible tuples are grouped by their key

(or group-by values for aggregation queries) and we measure the



 0

 1

 2

 3

 4

 5

 6

 7

 0  10  20  30  40  50  60  70  80  90

T
im

e
 (

s
e
c
)

# groupby attributts

AUDB
Det

(a) Varying #group by

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  10  20  30  40  50  60  70  80  90

T
im

e
 (

s
e
c
)

# aggregation functions

AUDB
Det

(b) Varying #aggregation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0  0.2  0.4  0.6  0.8  1

T
im

e
 (

s
e

c
)

Attribute bound size / Domain size

CT=4
CT=32
CT=256
CT=512

(c) Varying attribute range

 0

 20

 40

 60

 80

T
im

e
(s

) Runtime

0 
10M
20M
30M
40M
50M

4 32 256 4096 65536

R
a

n
g

e

Compression result size (CT)

Mean Range

(d) Varying compression rate

Figure 10: Aggregation Microbenchmarks - Performance and Accuracy

 10

 100

 1000

 10000

 100000

 1x10
6

6k 8k 10k 12k 14k 16k 18k 20k

T
im

e
 (

m
s
)

Data size

Non-Op
CT=4

CT=32
CT=256

CT=1024

(a) Runtime

0 

50M

100M

150M

200M

250M

6k 8k 10k 12k 14k 16k 18k 20k

P
o

s
s
b

ile
 s

iz
e

Data size

Non-Op
CT=4

CT=32
CT=256

CT=1024

(b) Attribute-level Accuracy

Figure 11: Join Optimizations - Performance and Accuracy

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1  2  3  4  5  6  7  8

P
e

rc
e

n
ta

g
e

 (
%

)

Max relative uncertain range (%)

2% uncertainty
3% uncertainty
5% uncertainty

(a) Over-grouping

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  2  4  6  8  10

fa
c
to

r

Max relative uncertain range (%)

2% uncertainty
3% uncertainty
5% uncertainty

(b) Range over-estimation

Figure 12: Aggregation - varying attribute range
Comp. Size 1 join 2 joins 3 joins 4 joins

4
3% 0.004 0.006 0.009 0.015
10% 0.004 0.007 0.010 0.015

16
3% 0.005 0.008 0.012 0.017
10% 0.005 0.009 0.012 0.017

64
3% 0.009 0.027 0.47 0.069
10% 0.009 0.029 0.049 0.070

256
3% 0.036 0.308 0.627 0.969
10% 0.043 0.337 0.660 1.019

No 3% 0.216 1.351 6.269 29.639
Comp. 10% 0.213 2.565 29.379 333.695

Figure 13: Join query performance (runtime in sec)
Datasets Time cert. attr. bounds pos.tup. pos.tup.
& Queries (sec) tup. min max by id by val

N
e
tfl

ix
[3
]

(1
.9
%
,2
.1
)

AU-DB 0.011 100% 1 1 100% 100%
𝑄𝑛,1 Trio 0.900 100% 1 1 100% 100%
SPJ MCDB 0.049 N.A. 1 1 99.6% 98.5%

UA-DB 0.006 100% N.A. N.A. 99.1% 97.3%
AU-DB 0.082 100% 1 4 100% 100%

𝑄𝑛,2 Trio 1.700 100% 1 1 98.8% 98.0%
GB MCDB 0.118 N.A. 1 1 99.9% 97.9%

UA-DB 0.009 0% N.A. N.A. 99.3% 95.7%

C
ri
m
e
s
[2
]

(0
.1
%
,3
.2
)

AU-DB 1.58 100% 1 1 100% 100%
𝑄𝑐,1 Trio 59.0 100% 1 1 100% 100%
SPJ MCDB 6.91 N.A. 0.6 1 99.9% 92.1%

UA-DB 0.63 100% N.A. N.A. 99.9% 87.5%
AU-DB 2.09 100% 1 1.01 100% 100%

𝑄𝑐,2 Trio 103.1 100% 1 1 100% 100%
GB MCDB 5.24 N.A. 0.99 0 100% ∼ 0%

UA-DB 0.47 0% N.A. N.A. 100% ∼ 0%

H
e
a
lt
h
ca
re

[1
]

(1
.0
%
,2
.7
)

AU-DB 0.179 99.5% 1 1 100% 100%
𝑄ℎ,1 Trio 20.6 100% 1 1 100% 100%
SPJ MCDB 0.501 N.A. 0.4 1 99.9% 87.6%

UA-DB 0.042 98.2% N.A. N.A. 99.3% 65.4%
AU-DB 0.859 100% 1 45 100% 100%

𝑄ℎ,2 Trio 29.2 100% 1 1 100% 100%
GB MCDB 2.31 N.A. 0.78 1 100% ∼ 0%

UA-DB 0.235 0% N.A. N.A. 100% ∼ 0%

Figure 14: Real world data - performance and accuracy

percentage of returned groups (a group is łcoveredž if at least one

possible tuple from the group is returned). The second metric just

measures the percentage of all possible tuples (without grouping)

that are returned. We also measure the tightness of attribute-level

bounds for certain rows by measuring for each tuple the average

size of its attribute-level bounds relative to exact bounds. Fig. 14

shows the minimum and maximum of this metric across all certain

result tuples. Since MCDB relies on samples, it (i) may not return all

possible tuples and (ii) calculating bounds for attributes values from

the sample, we get bounds that may not cover all possible values.

Furthermore, MCDB cannot distinguish between certain and possible

tuples. For Trio the bounds on aggregation results are tight, but

Trio does not support uncertainty in group-by attributes (no result

is returned for a group with uncertain group-by values). As shown

in Fig. 14, our attribute-level bounds are close to the tight bounds

produced by Trio for most of the certain result tuples. MCDB does

not return all possible aggregation result values (the ones not cov-

ered by the samples). Furthermore, we never miss possible tuples

like both Trio and MCDB, and seldomly report a certain tuple as un-

certain, while MCDB cannot distinguish certain from possible. UA-DB

has performance close to conventional (SGQP) query processing

and outperforms all other methods. However, UA-DBs provide no

attribute level uncertainty and only contain tuples from the SGW

and, thus, miss most possible tuples. Furthermore, aggregates over

UA-DBs will not return any certain answers, as doing so requires

having a bound on all possible input tuples for the aggregate and

often additionally requires attribute-level uncertainty (the group

exists certainly in the result, but the aggregation function result

for this group is uncertain). For aggregates over UA-DBs, the range

of the attribute bounds is significantly affected by the attribute

domain and the aggregation functions used. 𝑄𝑛,2 and 𝑄𝑐,2 use max

and count, which return a relatively small over-estimation of the

actual bounds. 𝑄ℎ,2 uses sum, where the larger domain for the

attribute over which we are aggregating over, and the combined

effect of over-grouping and over-estimation of possible attribute

values results in a larger over-estimation.

10 CONCLUSIONS

We present attribute-annotated uncertain databases (AU-DBs), an

efficient scheme for approximating certain and possible answers

for full relational algebra and aggregation. Our approach stands

out in that it is (i) more general in terms of supported queries than

most past work, (ii) has guaranteed PTIME data complexity, and (iii)

compactly encodes over-approximations of incomplete databases.

In future work, we will investigate extensions of this model for

queries with ordering (top-k queries and window functions). We

will also explore how to manage non-ordinal categorical attributes.



REFERENCES
[1] https://data.medicare.gov/data/hospital-compare. Medicare Hospital

Dataset. (https://data.medicare.gov/data/hospital-compare).
[2] https://www.kaggle.com/currie32/crimes-in-chicago. Chicago Crimes

Dataset. (https://www.kaggle.com/currie32/crimes-in-chicago).
[3] https://www.kaggle.com/shivamb/netflix-shows. Netflix Dataset.

(https://www.kaggle.com/shivamb/netflix-shows).
[4] Serge Abiteboul, T.-H. Hubert Chan, Evgeny Kharlamov, Werner Nutt, and Pierre

Senellart. 2010. Aggregate queries for discrete and continuous probabilistic XML.
In ICDT. 50ś61.

[5] Serge Abiteboul, Paris C. Kanellakis, and Gösta Grahne. 1991. On the Represen-
tation and Querying of Sets of Possible Worlds. Theor. Comput. Sci. 78, 1 (1991),
158ś187.

[6] Foto N. Afrati and Phokion G. Kolaitis. 2008. Answering aggregate queries in
data exchange. In PODS. 129ś138.

[7] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha U.
Nabar, Tomoe Sugihara, and Jennifer Widom. 2006. Trio: A System for Data,
Uncertainty, and Lineage. In VLDB.

[8] Parag Agrawal, Anish Das Sarma, Jeffrey Ullman, and Jennifer Widom. 2010.
Foundations of uncertain-data integration. PVLDB 3, 1-2 (2010), 1080ś1090.

[9] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for Aggre-
gate Queries. In PODS. 153ś164.

[10] Yael Amsterdamer, Daniel Deutch, and Val Tannen. 2011. Provenance for aggre-
gate queries. In PODS. 153ś164.

[11] L. Antova, T. Jansen, C. Koch, and D. Olteanu. 2008. Fast and Simple Relational
Processing of Uncertain Data. In ICDE.

[12] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki. 1999. Consistent Query
Answers in Inconsistent Databases. In PODS.

[13] Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki, Xin He, Vijay Raghavan,
and Jeremy P. Spinrad. 2003. Scalar aggregation in inconsistent databases. Theor.
Comput. Sci. 296, 3 (2003), 405ś434.

[14] Leopoldo E. Bertossi. 2011. Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers.

[15] George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. 2014. Sampling
from Repairs of Conditional Functional Dependency Violations. VLDBJ 23, 1
(2014), 103ś128.

[16] Mike Brachmann, Carlos Bautista, Sonia Castelo, Su Feng, Juliana Freire, Boris
Glavic, Oliver Kennedy, Heiko Müller, Rémi Rampin, William Spoth, and Ying
Yang. 2019. Data Debugging and Exploration with Vizier. In SIGMOD.

[17] Douglas Burdick, Prasad M. Deshpande, T. S. Jayram, Raghu Ramakrishnan, and
Shivakumar Vaithyanathan. 2007. OLAP over uncertain and imprecise data.
VLDBJ 16, 1 (2007), 123ś144.

[18] Diego Calvanese, Evgeny Kharlamov, Werner Nutt, and Camilo Thorne. 2008.
Aggregate queries over ontologies. In International Workshop on Ontologies and
Information Systems for the Semantic Web (ONISW). 97ś104.

[19] Andrea Calì, Domenico Lembo, and Riccardo Rosati. 2003. On the decidability
and complexity of query answering over inconsistent and incomplete databases.
In PODS.

[20] Arbee L. P. Chen, Jui-Shang Chiu, and Frank Shou-Cheng Tseng. 1996. Evaluating
Aggregate Operations Over Imprecise Data. IEEE Trans. Knowl. Data Eng. 8, 2
(1996), 273ś284.

[21] Marco Console, Paolo Guagliardo, and Leonid Libkin. 2019. Fragments of Bag
Relational Algebra: Expressiveness and Certain Answers. In ICDT. 8:1ś8:16.

[22] Marco Console, Paolo Guagliardo, Leonid Libkin, and Etienne Toussaint. 2020.
Coping with Incomplete Data: Recent Advances. In PODS. ACM, 33ś47.

[23] Transaction Processing Performance Council. [n.d.]. TPC-H specification.
http://www.tpc.org/tpch/.

[24] Wenfei Fan. 2008. Dependencies revisited for improving data quality. In PODS.
159ś170.

[25] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2019. Uncertainty
Annotated Databases - A Lightweight Approach for Approximating Certain
Answers. In SIGMOD.

[26] Su Feng, Aaron Huber, Boris Glavic, and Oliver Kennedy. 2021. Efficient Uncer-
tainty Tracking for Complex Queries with Attribute-Level Bounds (extended
version). (2021). arXiv:2102.11796 [cs.DB]

[27] Robert Fink, Larisa Han, and Dan Olteanu. 2012. Aggregation in Probabilistic
Databases via Knowledge Compilation. PVLDB 5, 5 (2012), 490ś501.

[28] Robert Fink, Jiewen Huang, and Dan Olteanu. 2013. Anytime approximation in
probabilistic databases. VLDBJ 22, 6 (2013), 823ś848.

[29] A. Fuxman, E. Fazli, and R.J. Miller. 2005. Conquer: Efficient management of
inconsistent databases. In SIGMOD. 155ś166.

[30] Ariel D Fuxman and Renée J Miller. 2005. First-order query rewriting for incon-
sistent databases. In ICDT.

[31] Floris Geerts, Fabian Pijcke, and Jef Wijsen. 2017. First-order under-
approximations of consistent query answers. International Journal of Approximate
Reasoning 83 (2017), 337ś355.

[32] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Provenance Semir-
ings. In PODS.

[33] Paolo Guagliardo and Leonid Libkin. 2016. Making SQL Queries Correct on
Incomplete Databases: A Feasibility Study. In PODS.

[34] Paolo Guagliardo and Leonid Libkin. 2017. Correctness of SQL Queries on
Databases with Nulls. SIGMOD Record 46, 3 (2017), 5ś16.

[35] Alon Halevy, Anand Rajaraman, and Joann Ordille. 2006. Data integration: the
teenage years. In VLDB. 9ś16.

[36] Tomasz Imielinski and Witold Lipski Jr. 1984. Incomplete Information in Rela-
tional Databases. J. ACM 31, 4 (1984), 761ś791.

[37] Ravi Jampani, Fei Xu, Mingxi Wu, Luis Leopoldo Perez, Christopher Jermaine,
and Peter J Haas. 2008. MCDB: a monte carlo approach to managing uncertain
data. In SIGMOD.

[38] T. S. Jayram, Satyen Kale, and Erik Vee. 2007. Efficient aggregation algorithms
for probabilistic data. In SODA. 346ś355.

[39] Shawn R. Jeffery, Gustavo Alonso, Michael J. Franklin, Wei Hong, and Jennifer
Widom. 2006. Declarative Support for Sensor Data Cleaning. In PERVASIVE.
83ś100.

[40] O. Kennedy and C. Koch. 2010. PIP: A database system for great and small
expectations. In ICDE. 157ś168.

[41] Phokion G. Kolaitis and Enela Pema. 2012. A dichotomy in the complexity of
consistent query answering for queries with two atoms. Inf. Process. Lett. 112, 3
(2012), 77ś85.

[42] Paraschos Koutris and Jef Wijsen. 2018. Consistent Query Answering for Primary
Keys and Conjunctive Queries with Negated Atoms. In PODS.

[43] Poonam Kumari, Said Achmiz, and Oliver Kennedy. 2016. Communicating Data
Quality in On-Demand Curation. In QDB.

[44] Willis Lang, Rimma V. Nehme, Eric Robinson, and Jeffrey F. Naughton. 2014.
Partial results in database systems. In SIGMOD. 1275ś1286.

[45] Jens Lechtenbörger, Hua Shu, and Gottfried Vossen. 2002. Aggregate Queries
Over Conditional Tables. J. Intell. Inf. Syst. 19, 3 (2002), 343ś362.

[46] Xi Liang, Zechao Shang, Sanjay Krishnan, Aaron J. Elmore, and Michael J.
Franklin. 2020. Fast and Reliable Missing Data Contingency Analysis with
Predicate-Constraints. In SIGMOD. 285ś295.

[47] Leonid Libkin. 2016. SQL’s Three-Valued Logic and Certain Answers. TODS 41,
1 (2016), 1:1ś1:28.

[48] Witold Lipski. 1979. On Semantic Issues Connected with Incomplete Information
Databases. TODS 4, 3 (1979), 262ś296.

[49] Raghotham Murthy, Robert Ikeda, and Jennifer Widom. 2011. Making Aggrega-
tion Work in Uncertain and Probabilistic Databases. IEEE Trans. Knowl. Data
Eng. 23, 8 (2011), 1261ś1273.

[50] Dan Olteanu, Lampros Papageorgiou, and Sebastiaan J van Schaik. 2013. Pigora:
An Integration System for Probabilistic Data. In ICDE. 1324ś1327.

[51] Alexander J. Ratner, Stephen H. Bach, Henry R. Ehrenberg, and Christopher
Ré. 2017. Snorkel: Fast Training Set Generation for Information Extraction. In
SIGMOD. 1683ś1686.

[52] Raymond Reiter. 1986. A sound and sometimes complete query evaluation
algorithm for relational databases with null values. J. ACM 33, 2 (1986), 349ś370.

[53] Christopher Ré and Dan Suciu. 2009. The trichotomy of HAVING queries on a
probabilistic database. VLDBJ 18, 5 (2009), 1091ś1116.

[54] Sunita Sarawagi et al. 2008. Information extraction. Foundations and Trends® in
Databases 1, 3 (2008), 261ś377.

[55] Yannis Sismanis, Ling Wang, Ariel Fuxman, Peter J. Haas, and Berthold Reinwald.
2009. Resolution-Aware Query Answering for Business Intelligence. In ICDE.
976ś987.

[56] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. 2008. Proba-
bilistic top-k and ranking-aggregate queries. TODS 33, 3 (2008), 13:1ś13:54.

[57] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. 2011. Probabilistic
databases. Synthesis Lectures on Data Management 3, 2 (2011), 1ś180.

[58] Bruhathi Sundarmurthy, Paraschos Koutris, Willis Lang, Jeffrey F. Naughton, and
Val Tannen. 2017. m-tables: Representing Missing Data. In ICDT.

[59] Jef Wijsen. 2010. On the first-order expressibility of computing certain answers
to conjunctive queries over uncertain databases. In PODS.

[60] Jef Wijsen. 2012. Certain conjunctive query answering in first-order logic. TODS
37, 2 (2012), 9:1ś9:35.

[61] Mohan Yang, Haixun Wang, Haiquan Chen, and Wei-Shinn Ku. 2011. Querying
uncertain data with aggregate constraints. In SIGMOD. 817ś828.

[62] Ying Yang, Niccolò Meneghetti, Ronny Fehling, Zhen Hua Liu, and Oliver
Kennedy. 2015. Lenses: An On-demand Approach to ETL. PVLDB 8, 12 (2015),
1578ś1589.


	Abstract
	1 Introduction
	2 Related Work
	3 Notation and Background
	3.1 K-Relations
	3.2 Incomplete K-Relations
	3.3 UA-Databases

	4 Overview
	5 Scalar Expressions
	5.1 Incomplete Expression Evaluation
	5.2 Range-Annotated Domains

	6 AU-DBs
	6.1 NAU-relations
	6.2 Extracting Selected-Guess Worlds
	6.3 Encoding Bounds
	6.4 Tightness of Bounds

	7 AU-DB Query Semantics
	7.1 Join Optimizations
	7.2 Creating AU-DBs

	8 Aggregation
	8.1 Bound-Preserving Aggregation

	9 Experiments
	9.1 Uncertain TPC-H (PDBench)
	9.2 Micro-benchmarks
	9.3 Real World Data

	10 Conclusions
	References

