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ABSTRACT: How far the Hadley circulation’s ascending branch extends into the summer hemisphere is a fundamental
but incompletely understood characteristic of Earth’s climate. Here, we present a predictive, analytical theory for this
ascending edge latitude based on the extent of supercritical forcing. Supercriticality sets the minimum extent of a large-scale
circulation based on the angular momentum and absolute vorticity distributions of the hypothetical state were the circu-
lation absent. We explicitly simulate this latitude-by-latitude radiative—convective equilibrium (RCE) state. Its depth-
averaged temperature profile is suitably captured by a simple analytical approximation that increases linearly with sing,
where ¢ is latitude, from the winter to the summer pole. This, in turn, yields a one-third power-law scaling of the
supercritical forcing extent with the thermal Rossby number. In moist and dry idealized GCM simulations under sol-
sticial forcing performed with a wide range of planetary rotation rates, the ascending edge latitudes largely behave

according to this scaling.
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1. Introduction

Why does the shared, ascending edge of Earth’s Hadley
cells sit around 15° latitude in the summer hemisphere, in-
stead of say 1.5° or at the summer pole? Results from ideal-
ized general circulation model (GCM) simulations suggest
that neither limit is as outlandish as may initially seem. For
the former, an O(1) increase in the surface—atmosphere sys-
tem’s thermal inertia time scale leaves the ascending branch
insufficient time to migrate more than a few degrees off the
equator before the insolation maximum moves back toward
the opposite hemisphere (e.g., Donohoe et al. 2014). For the
latter, the insolation distribution that ultimately drives the
general circulation maximizes at the summer pole, and an
O(1) decrease in the planetary rotation rate yields nearly
pole-to-pole solsticial Hadley circulations (e.g., Williams and
Holloway 1982).

Although increasing the system’s thermal inertia (or has-
tening the annual cycle) pulls the solsticial ascending branch
equatorward, decreasing it (or slowing the annual cycle) does
not push the branch much poleward—even in the limit of
time-invariant solsticial forcing (e.g., Faulk et al. 2017,
hereafter F17; Zhou and Xie 2018; Singh 2019, hereafter S19).
This suggests the presence of a dynamical constraint ema-
nating from the time-mean forcing at solstice.

Several theories exist of direct or indirect relevance to this
fundamental property of the general circulation, but each is
limited in one or more substantive ways. The energetic
framework for the position of the intertropical convergence
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zone (ITCZ; e.g., Kang et al. 2008; Schneider et al. 2014) is
diagnostic! and not always accurate, even qualitatively (e.g.,
Hill 2019). The solsticial equal-area model of Lindzen and Hou
(1988, hereafter LH88) is predictive but inaccurate over much
of the relevant parameter space, even restricting to axisym-
metric atmospheres for which it is strictly applicable (cf. Hill
et al. 2019)—though we will make ample use of the analytical
forcing profile introduced by LHS88. A recent theory for the
ascending edge based on slantwise convective neutrality (S19)
is quantitatively accurate across the idealized GCM simula-
tions against which it has been tested, but it is diagnostic. Here,
we will pursue an alternative, predictive theory based on the
extent of supercritical radiative forcing.

A supercritical latitude is one at which, supposing no large-scale
overturning circulation existed, the resulting state of latitude-by-
latitude radiative—convective equilibrium (RCE) would possess
impermissible distributions of angular momentum and absolute
vorticity (Plumb and Hou 1992; Emanuel 1995)—that is, distri-
butions that violate Hide’s theorem (Hide 1969).% A large-scale

! By diagnostic, we mean that the theory requires knowledge of
one or more fields from the dynamically equilibrated state that is
nominally being predicted. By predictive, we mean that the theory
requires knowledge only of fields related to the forcing, thereby
yielding a true prediction of the dynamically equilibrated state.
Naturally, all else equal, a predictive theory is preferable.

% Particularly in extratropical contexts, the term ‘super-
criticality”” is sometimes used in reference to the isentropic
slope. In this manuscript, however, supercriticality always re-
fers to Hide’s theorem.
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overturning circulation must therefore span at minimum all
supercritical latitudes (Held and Hou 1980). Recent studies
using idealized dry, axisymmetric (Hill et al. 2019) and moist,
eddying (F17; S19) GCMs explore the qualitative utility of the
supercritical forcing extent as a predictor of the solsticial
Hadley cell extent as planetary rotation rate is varied. But they
fall short of deriving a closed, analytical expression for the
solsticial supercritical forcing extent.

An attractive feature of the supercritical forcing extent is
that its interpretation as setting the minimum extent of a large-
scale circulation holds equally for axisymmetric and zonally
varying atmospheres: by definition, RCE implies the absence
of any large-scale circulation, and therefore over those lati-
tudes where RCE cannot be sustained some circulation has to
emerge. At the same time, it does not specify the nature of the
large-scale circulation that emerges, in particular whether even
Hadley like at all or instead strongly macroturbulent as in the
extratropics. Using the supercritical forcing extent as a theory
specifically for the Hadley cell ascending edge, therefore, en-
tails some additional empirical justification. A more beneficial
corollary of this dynamical agnosticism, though, is that the
supercritical forcing extent’s validity does not depend on the
resulting Hadley cells being in one of the two limiting regimes
of the zonal momentum budget—angular momentum con-
serving or eddy dominated. Such limit-based approaches will
always be incomplete for the simple reason that Earth’s sol-
sticial Hadley cells do not consistently adhere to one or the
other limit (e.g., Schneider 2006; Bordoni and Schneider 2008).

For annual-mean forcing, an analytical expression for the
extent of supercritical forcing has been known for decades
thanks to Held and Hou (1980), who assume an RCE depth-
averaged temperature profile varying simply as sin’p, where ¢ is
latitude.? For solsticial forcing, then, a natural starting place is the
analytical RCE profile from LH88 that moves the global maxi-
mum of the RCE temperature field off the equator but retains
the simple sin’p meridional dependence as in Held and Hou
(1980). In fact, a cruder sing approximation will prove adequate.

This paper addresses these issues by showing that

conceptually, supercritical forcing extent can constitute a
meaningful theory for the solsticial Hadley circulation as-
cending latitude in zonally varying atmospheres, provided
certain empirical claims are established (section 2);

the LHS8S forcing usefully approximates latitude-by-latitude
RCE under solsticial forcing with respect to fields relevant to
the Hadley cells (section 3);

a simple, approximate analytical solution exists for the
supercritical forcing extent at solstice based on the LH88
forcing (section 4); and

the cross-equatorial Hadley cell extent obeys this simple
scaling in previously reported moist idealized GCM simu-

3 Of course, in the annual mean the ascending edge will reliably
sit near the equator (potentially as a double ITCZ straddling the
equator), and the utility of the supercritical forcing extent is as a
lower bound for the location of the poleward, descending Hadley
cell edges.
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FIG. 1. Insolation (W m™?) for averaging windows centered on
northern summer solstice of 1, 30, and 90 days. It is computed using
the “daily_insolation” function of the climlab package (Rose
2018), and is based on the methods of Berger and Loutre (1991).

lations as well as newly performed dry idealized GCM sim-
ulations (section 5).

We then discuss how our theory relates to the aforementioned
slantwise convective neutrality diagnostic (section 6) before
concluding with a summary of key results (section 7).

2. Supercritical forcing: Basis and interpretation in
eddying atmospheres

a. Solsticial insolation

Figure 1 shows the diurnally averaged insolation distribution
on the day of boreal summer solstice for Earth’s present-day
orbit (all results are equally applicable to austral summer).
Insolation is zero in the polar night region spanning the win-
ter high latitudes. Moving northward, it increases, reaching
~386 W m 2 at the equator, but with steadily decreasing slope
up to a local maximum of ~485 W m ™2 near 43°N. From there
it decreases modestly to a local minimum of ~478 W m ™2 near
62°N and finally increases monotonically from there to its
global maximum of ~525W m™? at the north pole. Figure 1
also shows insolation for longer averaging periods of 30 and
90 days centered on northern summer solstice. Differences
across the three averaging periods are modest.

b. Conceptual basis of supercritical forcing extent

If RCE prevailed at each latitude, then large-scale meridi-
onal and vertical velocities would vanish. The large-scale zonal
velocity field would be in gradient balance (i.e., thermal wind
balance but also including the nonlinear metric term) with the
temperature field that is determined by the interactions be-
tween radiative and convective processes at each latitude.
But this exhibits physically untenable features, most obvi-
ously at the equator where the Coriolis parameter vanishes:
no gradient-balanced solution is attainable with a nonzero
cross-equatorial insolation gradient (which occurs at all times
other than equinox; LH88).

Away from the equator in the summer hemisphere where
RCE temperature increases moving poleward, gradient bal-
ance yields upper-tropospheric easterlies (assuming zonal wind
is small at the surface due to drag) that draw angular momentum
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below its local planetary value. If sufficiently strong, these
easterlies can cause the RCE angular momentum field, denoted
M., to be increasing poleward, thereby changing the sign of
the M,.. meridional gradient and thus of the RCE absolute
vorticity, denoted 7,c. (Plumb and Hou 1992). Symbolically,
this implies ;.. <0 (Emanuel 1995), where f = 2Qsing is the
planetary vorticity (i.e., the Coriolis parameter) with plane-
tary rotation rate ). That cannot be a time-mean solution for
multiple reasons [see Adam and Paldor (2009) and Hill et al.
(2019) for details]: it implies local extrema in M., which
cannot be sustained in the presence of nonzero viscosity; it is
the sufficient condition for symmetric instability; and, near
the tropopause where vertical velocity vanishes, a change in
sign would require the absolute vorticity to pass through a fixed
point (i.e., where d,m,. = 0) that occurs at ... = 0 in the vorticity
equation. A large-scale circulation must emerge spanning at
minimum all such latitudes, which are referred to as supercritical.
Equivalently, where 7, = 0 in the summer hemisphere consti-
tutes the minimal extent of the large-scale circulation in that
hemisphere.*

c. Supercritical forcing in eddying atmospheres

Supercritical forcing extent has not figured centrally in
theories for Earth’s solsticial Hadley cell ascending edge for
reasons that seem plausible in passing but that falter under
scrutiny.

First is the notion that supercriticality is meaningful in axi-
symmetric atmospheres only and is in principle inapplicable to
macroturbulent atmospheres. One can see how this would
emerge. Supercriticality (though not referred to as such) was
popularized by Held and Hou (1980) as an intermediate step in
developing their highly influential axisymmetric, angular-
momentum-conserving model for the annual-mean Hadley
cells. For solstice, the fn,.e < 0 facet was presented by Plumb
and Hou (1992) also in a purely axisymmetric context [though
soon extended to moist, zonally varying contexts by Emanuel
(1995)]. Moreover, the marginally critical state of 7, = 0
corresponds to uniform M,.., which, with its homogeneous
angular momentum distribution, might sound like a de-
scription of the axisymmetric (and nearly inviscid) angular-
momentum-conserving model.

But the angular momentum that is spatially homogeneous in
the angular-momentum-conserving model is that of the dy-
namically equilibrated state, M, and crucially M,.. # M. By
definition, the latitude-by-latitude RCE state is one in which
there is no large-scale circulation, zonally symmetric or oth-
erwise. Irrespective of whether the Hadley cells in the dy-
namically equilibrated state end up perfectly homogenizing
angular momentum, or are totally controlled by eddies, or

4 A latitude is also supercritical if M., > Qa? or Myee <0 (Held
and Hou 1980). But in the summer hemisphere, at least for Earth,
the m,.e = 0 point sits poleward of these conditions, save perhaps
for just after spring equinox when the M, = Qa® point can be
farther (cf. Figs. 3 and 4 of Hill et al. 2019). Henceforth we take the
summer hemisphere supercritical forcing extent as identical to
where 1. = 0.
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FIG. 2. Temperature as a function of latitude and pressure from
the solsticial RCE simulation, as indicated in the color bar. The
gray line at 200 hPa indicates the level at which the temperature is
used to compute the gradient-balanced wind.

(most likely) something in between, latitude-by-latitude RCE
cannot be sustained over any latitude that is supercritically
forced. Therefore, at least in the narrow sense regarding the
minimal extent of a large-scale circulation of some kind, super-
critical forcing extent is meaningful in all rotating atmospheres.
This leads to a second concern: whether in practice the su-
percritical forcing extent usefully predicts, much more specif-
ically, the location of the Hadley cell ascending edge. In
simulations for which supercritical extent has been explicitly
computed, the ascending edge latitude sits poleward of the
Mree = 0 latitude (F17; Hill et al. 2019; S19).> As such, to be a
useful predictor, the supercritical forcing extent must scale
proportionally with the actual ascending cell edge latitude. As
section 5 will demonstrate—albeit empirically—this does in
fact hold in a diverse range of idealized GCM simulations.

3. Latitude-by-latitude RCE under solsticial forcing
a. Numerical simulations

We use the climlab single-column model (Rose 2018) to
simulate solsticial latitude-by-latitude RCE. Each single-column
simulation is forced with insolation corresponding to present-
day, boreal summer solstice at a specified latitude, with the
chosen latitudes in 1° increments spanning from equator to the
pole in the summer hemisphere and from the equator to 55° in
the winter hemisphere. Apart from using solsticial rather than
annual-mean insolation, the setup is identical to that of Hill et al.
(2020), to which readers are referred for more details.

Time-averaged fields from the single-column simulations
are concatenated together in latitude to yield latitude—

3 Earth’s extratropics, which are nominally subcritical by this
definition throughout the annual cycle, obviously are not in a state
of latitude-by-latitude RCE. There, the hypothetical RCE state is
unstable in other ways, of most relevance baroclinically. Such
baroclinic instability—and with it an extratropical dynamical re-
gime—could in principle extend into the supercritically forced
region, pushing the solsticial Hadley cell ascending latitude equa-
torward thereof (much as it limits the Hadley descending, poleward
edges; cf. Held 2000; Korty and Schneider 2008; Kang and
Lu 2012).
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pressure distributions of each field. Figure 2 shows the resulting
temperature field 7. From the temperature distribution, zonal
wind at each level is inferred by assuming gradient wind balance
and integrating the gradient balance expression from the surface
where u ~ 0 is assumed to the given level:

_ 1 R, D aT
u(p,qo)—QaCOS(p \/1 mﬂzazln(; % 1

M

where T is the log-pressure-weighted average temperature
from the surface pressure p; = 1000 hPa to the given pressure p,
and Ry is the dry-air gas constant. We restrict attention to values
at a specified tropopause pressure of 200 hPa. Results are qual-
itatively insensitive to reasonable variations in the tropopause
treatment, an issue explored at length by Hill et al. (2020).

From this zonal wind field, the angular momentum and ab-
solute vorticity fields are subsequently calculated. Specifically,
angular momentum is

M = acosp(Qacosp + u), 2)

and absolute vorticity is proportional to the meridional deriv-
ative of absolute angular momentum:

-1 oM
= cose 90 f+¢, 3)
where { = —(a cos<p)_18(,,(u cos) is the relative vorticity.

The solid curves in Fig. 3 show the simulated meridional pro-
files of temperature averaged from the surface to 200 hPa and of
the inferred 200-hPa zonal wind, absolute angular momentum,
and absolute vorticity. The depth-averaged temperature field
(shown as a deviation from its 45°S-45°N mean) retains the ex-
trema locations of the insolation and varies meridionally by
roughly 25 K from the equator to the summer pole and 75 K from
the equator to the region of polar night. The inferred gradient
wind is westerly throughout the winter hemisphere and asymp-
totes toward infinity approaching the equator; it is undefined in a
narrow range of the summer hemisphere near the equator, pole-
ward of which very strong easterlies gradually weaken, turning to
weak westerlies around 40°N. This zonal wind field causes the
angular momentum field to deviate sharply from its planetary
value (overlain in Fig. 3c). Angular momentum is undefined from
the equator to ~5°N and increases to a local maximum near
~15°N, poleward of which it tends toward the planetary value as u
weakens and the distance from the rotation axis diminishes. The
absolute vorticity field changes sign at the angular momentum
maximum ~15°N, and this constitutes the poleward extent of
supercritical forcing in the summer hemisphere.

b. Analytical approximation

We approximate the numerically simulated RCE state using
the equilibrium temperature profile originally presented by
LHS88. It is specified in terms of potential temperature aver-
aged at each latitude over the fixed depth H of a Boussinesq
atmosphere and may be written

) A
ree — 1 4+ —h[] - 3(sing_ — sing)’], )
9, 3 m
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FIG. 3. In solid red, results from numerical simulations of
latitude-by-latitude radiative—convective equilibrium, compared to
approximations thereto as dashed curves. Dashed yellow corre-
sponds to the analytical forcing profile given by Eq. (4), and dashed
purple corresponds to the further-simplified forcing that is linear
rather than quadratic in sing,, — sing. (a) Vertically averaged
temperature or potential temperature, shown as deviation from
45°S to 45°N mean; (b) gradient-balanced zonal wind at the tro-
popause; (c) absolute angular momentum at the tropopause; and
(d) absolute vorticity at the tropopause.
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where 6 is potential temperature, the hat denotes a depth av-
erage, 6 is the Boussinesq reference potential temperature, 6
maximizes at the latitude ¢,,, and A, is a parameter controlling
(in conjunction with ¢.,) the fractional variations in rce With
latitude. The “rce” subscript emphasizes that we are treating
(4) as an approximation to the hypothetical latitude-by-
latitude RCE state that would occur absent a large-scale
circulation.

The Boussinesq expression for gradient-balanced zonal
wind at height H is nearly identical to (1), with Rg In( p/ps)aq,f
replaced by (gH/60)d,,0:

1 H 90
u=Qacosp |41 ——— f — -1
cos@ sIng () a290 o

where g is gravity and the surface zonal wind has been assumed
negligible due to surface friction. We use (4) as 6 in this ex-
pression to find u;ce; Myce and 7y then follow using (2) and (3)
(the corresponding analytical expressions are shown in the next
section).

With g, ), and a set to appropriate Earth values, there are
still four free parameters between (4) and (5), namely, H, 6y,
¢m, and Ay—enough to potentially overtune to the numerically
simulated RCE fields of interest. Appendix A details our
procedure for choosing these values; in short, we choose con-
ventional values of H = 10km and 6, = 300K and then
perform a two-dimensional parameter sweep over A, and ¢y,
values to find best fits to the simulated RCE temperature field
over 45°S-45°N (rather than directly for the 7,.. = 0 point of
ultimate interest). Fortunately, provided ¢,,, = 30°, the product
Ay, sing,,—which will figure centrally in our scaling below—is
nearly constant, provided that for each ¢, one sets Ay, to its
best-fit value for that ¢,.

The resulting Oyce, tirces Mrce, and nyee fields with ¢, = 90°N
and Ay, = 1/15 are overlain in Fig. 3 as dashed orange curves. In
short, the LHS88 forcing approximation captures the numeri-
cally simulated RCE state well throughout most of the domain
of relevance to the Hadley cells. In more detail, the nu-
merically simulated depth-averaged temperature field has
greater meridional curvature than the LHS88 forcing ap-
proximation in the extratropics, but at lower latitudes of
more relevance to the Hadley cells the two are nearly co-
incident. The same largely holds for the zonal wind, though
it begins to deviate substantially (=20ms™!) from the LH88
forcing approximation by the southern subtropics and de-
viates further poleward thereof. The effect of this is weaker,
however, on the angular momentum and absolute vorticity
fields. In the summer hemisphere the absolute vorticity field
is very accurately captured by the LHS88 forcing approxi-
mation deep into the extratropics—including the zero
crossing near ~15°N that constitutes the poleward edge of
the supercritical forcing extent.

)

4. Analytical expression for solsticial supercritical
forcing extent

Inserting (4) into (5) yields the gradient-balanced zonal wind
under LH88 forcing,

Brought to you by UNIVERSITY OF CALIFORNIA Los Angeles | Unauthenticated | Downloaded 07/12/21 08:36 PM UTC

HILL ET AL.

2003

1 1
u,, =Qacosp [\/1 +2Ro,, ( Sng - simp) - 1} , 6)

where
_gH .
Ro, = o A, sing 7)

is the thermal Rossby number. Equivalently Roy, = BuAy, singyy,,
where Bu = gH/(Qa)? is the planetary Burger number. Our in-
clusion of sing,, in the thermal Rossby number is nonstandard
and makes (7) relevant to solsticial seasons only (since sin¢g,, = 0
for the equinoctial seasons and the annual mean). It is motivated
by appendix A, which shows that different fits of the LH88
forcing to the solsticial RCE state largely collapse onto a single
value of Aysing,, (for ¢, values outside the tropics, as is
appropriate).

Using (6) in (2) then yields the corresponding absolute an-
gular momentum field,

1 1
— 02 el
M. =Qa"cos <p\/1 +2Ro,, (F% - sin<p) , ®)

and similarly using (6) in (3) yields the corresponding absolute
vorticity field:

1 1
Ny = 20 sing \/1 +2Ro,, ( - —— )
sing,  sing

x|1- 120 o o
s (/)1+2R0m( — —— )
sing_~ sing

Equation (9) comprises three terms multiplying one another.
The first is simply the local planetary vorticity f, which is ir-
relevant to the zero crossing within the summer hemi-
sphere. The second, the square root term, amounts by (8)
to M,../(Qa” cos?o). Its zero crossing corresponds to the
latitude very near the equator where M,.. = 0. Here u,. is
strongly negative, and it becomes less so moving toward ¢y,
such that M, increases, and thus fn,.. <0, over some span
poleward of this point. Therefore, the actual n,.. = 0 point
in the summer hemisphere always sits poleward of the
M,.. = 0 point (see Fig. 3a of Hill et al. 2019) and depends
on the third term in (9), i.e., everything within the large
square brackets.

Without approximation, the third term vanishes at the lati-
tude ¢, satisfying

Ro . 3 . 1
(1 + 2,7“1) sin’p, —=Ro,, sin’p, —=Ro, =0.  (10)

sing 2 2
An exact solution to this third-order polynomial in sin¢g, can be
found using the cubic formula, but its form (not shown) is too
complicated to draw physical insights from. We therefore
pursue an approximate solution as follows. If we assume 0 <
Roy, < sing, = 1and 0 < ¢, < sing, = 1, then ¢, = sing, and
to leading order (10) becomes
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FIG. 4. (a),(b) Supercritical forcing extent under the forcing given by (4) as a function of different parameters,
with the full numerical solution, the small-angle numerical solution, and the analytical solution given by (12) as
indicated in the legend in (b). In (a) ¢, = 90° and solutions are shown as a function of Rog,. In (b) BuAy, = 0.1 and

solutions are shown as a function of ¢,.

3 1
(pg - 7Rolh<p§ —5Ro, =0.

> > 11)

This is only meaningful if Roy, < ¢, since Roy, ~ ¢, would
lead to a self-contradictory balance between terms of order
Ro;, with a term of order Roy, (or equivalently ¢? with ¢,).°
Thus, assuming 0 < Roy, <€ ¢. < singy,, the approximate so-
lution to (11) is simply

Ro, 13
P\ .

According to (12), the solsticial Hadley ascending edge lati-
tude varies with the thermal Rossby number to the one-
third power.

As shown in appendix B, a Ro}}” scaling for the supercritical
forcing extent also emerges for any fyc. « (sing,, — sing)" with
integer n = 1. That more general solution is

13
o = nRo,,
c 4 °

This includes the n = 1 case in which the forcing is simply linear
in sing. This can be seen from the overlain dashed purple
curves in Fig. 3, which are the Brce Urces Mice, and Nree fields
computed with n = 1, ¢, = 90°N, and Ay, = 2/15, i.e., twice the
value used for the n = 2 case, such that nRoy, is the same be-
tween them. Though certainly less accurate than the n = 2
approximation overall, the n = 1 case captures the numerically
simulated RCE behavior in the tropics suitably. We conclude
that, with respect to the supercritical forcing extent, the ex-
tratropical wiggles and meridional curvature in the tropics of
the solsticial insolation matter little compared to the overall
increase moving toward the summer pole.

Figure 4a shows the supercritical forcing extent, i.e., where
(9) vanishes, solved numerically, if ¢, = 90° as Roy, is varied

(12)

(13)

© A third mathematically possible case, 0 < ¢, < Roy, < singy,
yields a physically nonsensical result.
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over 0 < Roy, < 1.5, and Fig. 4b shows the same but with
BuA;, = 0.1 as ¢y, is varied from equator to pole. Figure 4 also
shows numerical solutions for the small-angle approximation
(11) and the analytical expression (12). For the given ¢, = 90°
(Fig. 4a), the true zero crossing and the approximation thereto
move poleward monotonically with Ro,. The approxima-
tion (12) captures the exact expression reasonably well even
for Roy, ~ 1, though it is consistently equatorward of the
exact value by a modest degree. Similarly, for a reasonably
Earthlike BuA;, ~ 0.1, the zero crossing moves poleward
most rapidly as ¢, moves off the equator by a few degrees
and increases more gradually poleward thereof (Fig. 4b). In
the small-angle approximation, for example, the maximum
value of 23.6° occurs for ¢, = 90°, but it is displaced only 2°
equatorward thereof for ¢, moved all the way to 55°N.
The approximate solution again is accurate though biased
slightly equatorward for large ¢,,.

Finally, as noted above the actual solsticial Hadley cell as-
cending edge, ¢, tends to be displaced poleward of ¢. by a
constant multiplicative factor. But we do not have a theory for
that factor, which furthermore will prove to vary across ide-
alized GCMs in the simulations in the next section. As such,
from (12) we arrive at a scaling (rather than precise prediction)
for ¢,:

@, Rol. (14)

We deem noteworthy and worth future exploration that this
scaling is essentially the same as that derived by Caballero et al.
[2008, cf. their Eq. (56)] for the descending edge in the winter
hemisphere, despite seemingly unrelated sets of assumptions
between the two studies. Specifically, motivated by their nu-
merical, axisymmetric simulations, Caballero et al. (2008) as-
sume that the Hadley cell zonal wind field conserves angular
momentum from the equator to the winter hemisphere de-
scending edge and that the descending edge latitude is pro-
portional to the ascending edge latitude ¢,; they then use
equal-area arguments to find a one-third power-law scaling
with the thermal Rossby number of the descending edge lati-
tude (and implicitly of ¢,). We make no assumptions about the
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Hadley cell zonal wind field that emerges, with our scaling for
¢, emerging instead as where the latitude-by-latitude RCE
absolute vorticity vanishes in the summer hemisphere.

5. Ascending edge latitude in idealized GCM simulations

Among other things, (14) implies ¢, « Q*°. Here we
present evidence that this accurately characterizes the moist
idealized GCM simulations originally presented by F17 and
S19 as well as newly performed simulations in an idealized dry
GCM. Each of the three idealized GCMs—the idealized
aquaplanet of Frierson et al. (2006) for F17, the version thereof
as modified by O’Gorman and Schneider (2008) for S19, and
the dry idealized GCM of Schneider (2004)—are widely used
and documented in the literature. As such, we leave details of
model formulation in appendix C and describe here only the
salient properties specific to the simulation sets used here.

a. Description of simulations

For the F17 simulations, insolation follows the present-day
Earth annual cycle, diurnally averaged, using a 360-day cal-
endar. Across the simulations, planetary rotation rate is varied
by factors of 2 from 4 X to 1/32 X Qg, where Qg is Earth’s
value, as well as one with 1/6 X Qg, with all other planetary
parameters taking their standard Earth values. The simulations
are run at T42 horizontal spectral resolution, with 25 levels
unevenly spaced in the o vertical coordinate, and for ten 360-
day years. Results are averaged over the 30 days centered on
northern solstice across the last 8 years.” Three additional
simulations, at 1, 1/8, and 1/32 X g, are forced with time-
invariant solsticial rather than seasonally varying insolation,
and we present averages over the final 8 years of these 10-yr
integrations.

The simulations of S19 were run at T42 spectral horizontal
resolution with 30 unevenly spaced o levels. Rather than sea-
sonally varying insolation, these simulations are forced at all
times by the diurnally averaged insolation occurring at present-
day northern solstice. Planetary rotation rate is varied across
the simulations, one each for 8, 4, 3, 2, 3/2, 1, 3/4, 2/3, 1/2, 1/4,
and 1/8 X Qg. The simulations span 6 X 360 = 2160 days, and
results are averaged over the final 720 days.

In the idealized dry GCM, radiative transfer is approxi-
mated by Newtonian cooling toward a prescribed equilibrium
temperature profile, which thereby defines the hypothetical
latitude-by-latitude RCE temperature field. As such, we set its
meridional structure to be (4), with 6y = 300K, ¢, = 90° and
Ay, = 1/15, the same values as used in section 3. Simulations are
performed with planetary rotation rates of 2, 1, and 1/4 X Qg
with A, = 1/15. One additional sensitivity test is performed at
Earth’s rotation rate with A, = 1/6 as in LH88 (though the
largest ¢, used by that study was 8°). All simulations ran for

7 This deviates from the procedure of F17, who vary their 40-day
solsticial averaging window across simulations based on the sea-
sonal timing of the ITCZ poleward migration into the summer
hemisphere. Results are qualitatively insensitive to this difference
(not shown).
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1440 days, with averages taken over the final 360 days. We refer
to these as the LH88-forced simulations.

For all simulations, we compute the Hadley cell ascending
edge latitude using the definition of S19, as described in
appendix C. We diagnose Roy, for each simulation using the
appropriate value of (), standard Earth values of a and g, and
the sing,, = 1 and A, = 1/15 best-fit values inferred from the
latitude-by-latitude RCE simulations. For the approximate
RCE tropospheric depth H, we infer it to be ~10km for the
F17 and S19 simulations based on the explicit latitude-by-
latitude RCE simulation performed by $19.% For the LHS8-
forced simulations, we infer H directly from the imposed
equilibrium temperature field, yielding ~7 km (not shown).

b. Simulation results

Figure 5 shows the mass overturning streamfunctions from
the four LHS88-forced simulations, each normalized by the
solsticial Hadley cell’s overall maximum overturning rate oc-
curring at the cell center. This facilitates comparison of the cell
spatial structures across simulations in the face of large varia-
tions in strength, over an order of magnitude between the
2 X QF case and the 1 X Qg, Ay, = 1/6 case. In the three A}, =
1/15 cases, the weakness of the cross equatorial forcing gradi-
ent results in an equatorial jump of near-surface streamlines
out of the boundary layer (cf. Pauluis 2004).

Comparing to the streamfunctions of F17 (their Figs. 3 and
4) and S19 (his Fig. 3), at Earth’s rotation rate there are dif-
ferences in detail, but to first order the simulated cells are
similar. At 1/4 times Earth’s rotation rate, there is more het-
erogeneity across the simulation sets, with the F17 cell ex-
tending the least far poleward and the S19 cell extending the
farthest poleward. Across all the simulations for each model
the cross-equatorial Hadley cell grows as the planetary rota-
tion rate decreases (as was shown by F17 and S19 and as ex-
pected for the LH88-forced simulations).

Figure 6 shows the ascending edge latitude in each simula-

tion as a function of Ro}”. Plotted in this way, simulations that

fall on a straight line, whatever their slope, scale with Rotllﬁ3 as
(14) predicts. Overlain solid lines correspond to the linear best
fit for each of the three simulation sets, restricted to simula-
tions with Roy, < 1 where the small-angle and small-Roy, as-
sumptions are plausible (for the LH88 simulations, this also
does not include the outlier A}, = 1/6 case, for reasons discussed
below). A Rollf scaling aptly characterizes each of the simu-
lation sets in the relevant regime—there is only moderate
scatter for each simulation set about its linear best fit. This
includes simulations with Roy, ~ 1, despite the scaling as-
suming Roy, < 1.

The slopes of the linear best fits in (Roj}j°, ¢,) space for the
F17, S19, and LH88-forced simulations are approximately 1.0,

8 Specifically, from Fig. 5 of $19, over the summer hemisphere
latitudes relevant to supercriticality the troposphere-average
temperature (f) is ~275K, and the ratio of the tropopause
and surface pressures (p,/ps) is ~0.35. Ignoring virtual effects,
the hypsometric equation then yields a tropopause height
of H = (Ru/g)T In(p,/p,) ~10km.
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FIG. 5. Mass overturning streamfunction normalized by its maximum value in each of the LH88-forced simu-
lations. Each panel corresponds to the simulation as labeled in the panel’s top-left corner, where  is Earth’s
rotation rate. The blue dot indicates the solsticial cell maximum in the free troposphere, and the adjacent number
indicates the mass overturning strength (10°kgs™') at that point. The vertical solid orange line in each panel is
the simulated ¢, computed using (C1). The vertical dashed red line is the approximation thereto from a linear
best fit in Ro}* across the three simulations with A, = 1/15.

1.7, and 2.1, respectively (with dimensions radians per Ro}{l3 .

The corresponding y intercepts (in degrees latitude rather than
radians) are approximately 4, —2, and —11, respectively. Our
scaling (14) is agnostic to the slope but would predict a y in-
tercept of zero. The proportionality constants span from nearly
the lower bound of unity (F17 cases) to a little more than twice
that (LH88-forced cases). By eye from Fig. 6 and given the
limited number of simulations and ambiguities in the estimate
of H, it is not clear how seriously the differences in the y in-
tercepts from zero should be taken.

Unfilled squares in Fig. 6 show ¢, in the three F17 perpetual
solstice cases. The ascending edge at 1/32 X Qg is nearly
identical for either insolation treatment, but in the 1 X and
1/8 X Qg time-invariant forced cases ¢, is a few degrees
poleward from that of corresponding seasonally varying case.
This difference is not large, and the perpetual solstice F17 ¢,
values still sit equatorward of the corresponding S19 ones. We
lack an explanation for this difference between the perpetual
solstice simulations of F17 and S19, which is somewhat sur-
prising given seemingly modest differences in model formula-
tion. The slope and y intercept of the linear fit for the F17 1X
and 1/8 X Qg time-invariant forced cases (1.1 radians per Ro}?
and 4°, respectively) are also nearly identical to the annual-
cycle counterparts.

We have also computed best fit power-law exponents by a
standard least squares fit to each simulation set in (logRoy,,
logg.) space, again restricting to Roy, < 1. For the F17, S19,
and A, = 1/15 LH88-forced sets, the best fit {) exponents are
0.28, 0.34, and 0.41, respectively—all reasonably close to the
1/3 power predicted by (14), and nearly identical to it, at 0.34, in
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their average. The exponent inferred for the 1 X and 1/8 X Qg
F17 perpetual-solstice simulations is 0.30, slightly closer to the
1/3 value than the 0.28 value from the F17 seasonal cycle
simulations. Again given the uncertainties, this small differ-
ence may or may not be physically meaningful.
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FIG. 6. Cross-equatorial Hadley cell edge in the summer hemi-
sphere in idealized aquaplanet simulations of F17 and S19 and in
the idealized dry simulations of the present study as a function of
the thermal Rossby number to the one-third power, each signified
by different symbols as indicated in the legend. The solid lines show
the linear best fit to ¢, as a function of Ro%?* for the given simu-
lation set, restricting to Rog, < 1, with red, blue, and yellow for
the S19, F17, and the A, = 1/15 dry simulations, respectively.
The dotted gray curve is the numerical solution to (10).
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Finally, the overlain dotted curve in Fig. 6 shows the nu-
merical solution to the full expression for ¢, (10), which does
not assume small Roy, or small ¢. This lower bound qualita-
tively captures the leveling off of ¢, in the F17 and S19 simu-
lations with large Roy, where the cells become nearly pole
to pole.

c. LH88-forced case with Ay, = 1/6

The unfilled triangle in Fig. 6 corresponds to the LHS88-
forced simulation at Earth’s rotation rate in which A, = 1/6
rather than 1/15 as in the others (but still with ¢,,, = 90°). The
2.5-times increase in Ay increases Roy, accordingly, and the
ascending edge latitude does move poleward, but not enough
to fall along the same scaling as the A, = 1/15 cases. This
suggests that modifying Ay, at a fixed rotation rate excites one
or more mechanisms that influence ¢, that the supercritical
forcing extent does not account for. This could constitute an
important limitation to our theory’s applicability to e.g.,
changes under global warming. Adjudicating this would re-
quire additional simulations and analyses beyond the scope of
the present study, but we do speculate on one potential can-
didate, namely, influences of A}, on zonally asymmetric eddy
processes.

In the A}, = 1/6 case, the northern subtropics to extratropics
exhibit a very long-lasting wave-3 pattern that propagates
westward but persists for hundreds of days (not shown). The
wave is very regular. It spans meridionally over ~20°-60°N,
and its three centers are located between 30° and 40°N. By
contrast, in the A, = 1/15 case, the summer hemisphere
zonally asymmetric circulation outside of the tropics is much
more Earthlike, with most commonly a wave-4 structure,
but with individual lows and highs growing, decaying, and
moving relative to each other, while on average being ad-
vected by the mean easterlies (not shown). Such qualita-
tively distinct extratropical circulations in the summer
hemisphere could very well impart very different influences
on the Hadley circulation.

6. Relationship to slantwise convective neutrality
constraint

In a state of slantwise convective neutrality, streamlines,
angular momentum contours, and saturation moist entropy
isolines are all parallel. By assuming this characterizes the
solsticial Hadley circulation, S19 derives a diagnostic for the
ascending edge latitude, which we denote ¢gj9 and can be
written

AT s,

S| B 15
20%a2 09 (15

Ps19

£ .3 —
Sin Ps19 COS({)519 =

where sy, is the boundary layer moist entropy, and AT is the
difference between the boundary layer temperature at the
latitude ¢s19 and the temperature at the equatorial tropo-
pause. This expression corresponds to the latitude ¢gi9
at which an angular momentum contour—and with it a
streamline—that emanates from the boundary layer crosses the
equator at the tropopause, thereby constituting the outermost
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streamline of the cross-equatorial Hadley cell, i.e., the ascending
edge @,.

S19 shows that this diagnostic predicts ¢, with quantitative
accuracy across his simulations. We showed above that in
those same simulations ¢, « ¢, ~ Ro};> ~ Bu'”, where replac-
ing Roy, with Bu is justified since all parameters other than ()
are constant. Assuming that the stratification in low latitudes
will be nearly moist adiabatic, we can approximate the lapse
rate as I' = yI'y, where I'y = g/c,, is the dry adiabatic lapse rate
and y ~ 0.7, analogous to the convective adjustment scheme
in the idealized dry GCM above. We further assume that the
tropopause temperature is meridionally uniform (Hill et al.
2020), such that AT in (15) can be replaced with the surface-
tropopause temperature drop in the local column.’ In that
case, we have gH ~ ¢,AT/y, such that the leading factor on
the rhs of (15) becomes yBu/(2c,). Separately, by definition
Sp = ¢, Infep, Where 6.y, is the subcloud equivalent potential
temperature. In the small-angle limit and recalling (12), this

yields
3
P9\ _ vy 9lnb,
®, A, sing 9o

Since @, ~ @si9and @, « ¢ in the S19 simulations, and since ¢,
v, and Ay, are all constants, it follows that the boundary layer
moist entropy gradient at the cell edge is itself constant across
the simulations:

(16)

Ps19

d1Ino
ap 0

~ constant. 17)

S19 notes that in the small-angle limit 8¢sb|% edge must be
small (and thus the cell edge sits near a local s, maximum; cf.
Privé and Plumb 2007), but this does not constrain it to be
constant. We deem this worthy of future study. One po-
tentially important distinction between the slantwise con-
vective neutrality diagnostic and our supercriticality-based
theory is that Aysing,, appears in the latter but not the for-
mer. This is as it should be, since Apsing,, characterizes the
RCE state which the supercriticality depends on, while the
slantwise convective neutrality diagnostic is a statement
about the dynamically equilibrated state. In other words,
Ps19 Bu'”?, whereas @ Ro}{f. Nevertheless, Ay singy,
likely does indirectly affect the slantwise convective neu-
trality by influencing sy,.

Separately, F17 show that the latitude of the ITCZ, defined
as the latitude of maximum zonal-mean precipitation, in their
seasonal-cycle simulations scales as Q%% very close to
the O~ %? scaling predicted by (12) (cf. their Fig. 6). This
ITCZ latitude is equatorward of the cell edge (cf. their
Fig. 5) and could in principle exhibit a unique scaling with

° In equating the tropopause depth in the ¢s;¢ expression—which
corresponds to the dynamically equilibrated state—with that in the
. expression—which corresponds to the latitude-by-latitude RCE
state—we are implicitly assuming that the emergence of the cir-
culation does not substantially change this depth.
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Royy, to that of the cell edge. Instead, evidently these hy-
drological and dynamical markers of the ascending branch
position vary in proportion to one another and, in turn, the
supercritical forcing extent.

7. Summary

We have presented a new theory for the latitude of the as-
cending edge of Earth’s Hadley circulation during solsticial
seasons and tested the theory’s predictions against simulations
in idealized GCMs. The theory posits that the ascending edge
latitude is determined by the meridional extent of supercritical
forcing. A supercritically forced latitude is one at which, sup-
posing no large-scale overturning circulation existed, the re-
sulting state of latitude-by-latitude RCE would generate
time-mean distributions of angular momentum and/or abso-
lute vorticity that are impermissible. It directly follows that a
large-scale circulation must exist that spans at the very least
all latitudes that are supercritically forced. The resulting
overturning circulation, however, can and typically does
span poleward of this lower bound, leading to our empirical
ansatz that the ascending edge latitude is proportional to the
supercritical forcing extent. Despite this empiricism, we ar-
gue that the resulting theory—which is predictive and
largely accurate with respect to the simulations we test it
against—offers advantages over other existing theories rele-
vant to the problem.

We use a single-column model to simulate RCE at in-
dividual latitudes under Earth’s present-day solsticial in-
solation, and by concatenating the simulations together we
infer gradient-balanced zonal wind, angular momentum,
and absolute vorticity distributions. We then use a simple
analytical expression (4), originally from LHS88, to ap-
proximate the simulated RCE depth-averaged tempera-
ture field as quadratic in sin¢g with its maximum located
in the summer hemisphere. The resulting expression for
the absolute vorticity zero crossing, i.e., the supercritical
forcing extent, can be solved analytically in the Earth-
relevant limit. The solution states that the ascending edge
latitude is proportional to Rol,/f. The solution is also un-
changed if the RCE depth-averaged temperatures vary
linearly in sing (or any positive integer power in sing, for
that matter) rather than quadratically. This indicates that
in the Earthlike regime the dominant influence on the su-
percritical forcing extent is the linear portion of the forcing
in sing, i.e., the overall increase from the equator toward
the summer midlatitudes.

We examine the ascending edge latitude in simulations
performed in two variants of an idealized, moist GCM and an
idealized dry GCM, across each of which planetary rotation
rate is varied. Under solsticial conditions, in each model the
cross-equatorial Hadley cell expands meridionally as the ro-
tation rate decreases, and for diagnosed Roy, values up to order
unity, this expansion follows the Rotl]/l3 scaling predicted by our
approximate solution. Simulations with very slow rotation
rates and thus large Roy, values deviate from the scaling, but
in a way that qualitatively resembles the more general solution
(solved numerically).
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Future work could further test the predictions of our scaling
(14). In particular, simulations varying parameters other than
the planetary rotation rate that appear in the thermal Rossby
number would be valuable. It is conceivable that changes in
planetary radius, the gravitational constant, or tropopause
height could induce processes not incorporated into the scaling
that cause the solsticial Hadley cell ascending edge to deviate
from the Ro,} prediction. This concern is even more acute for
the RCE bulk fractional temperature gradient Ay, given that
the LH88-forced simulation with A;, = 1/6 rather than 1/15
appeared to deviate somewhat from the rest of the LHSS
simulations.

We do not rest satisfied with a theory whose accuracy
is qualitative, whose justification is semiempirical, and whose
strict interpretation is as a lower bound rather than a precise
prediction. We do consider it a useful step forward.
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APPENDIX A

Choice of Free Parameters in the LH88 Forcing
Approximation

For a wide range of ¢, values spanning from the subtropics
to the summer pole, reasonably accurate approximations to the
numerical RCE simulations (at least with respect to the fields
of relevance to supercritical forcing) can be found by tuning the
value of A,. We perform a two-dimensional parameter sweep
of (4), for 1° = ¢, = 90°in 0.1° increments and 0.01 = A;, = 0.3
in 0.01 increments. For each profile, we compute awém and
compare it to the corresponding 8(,,7A" value from the numer-
ical RCE simulations over the latitudes 45°S—45°N, selecting
for each ¢, the A, value that minimizes the root-mean-
square error.

Figure A1l summarizes the results of these calculations,
showing as a function of ¢, the minimum root-mean-square
error, the corresponding Ay, value, the corresponding value of
the product Ay singy,, and the corresponding supercritical ex-
tent. The error in the analytical meridional temperature gra-
dient field relative to the simulated one over 45°S—45°N is
minimized for ¢, = 36° with Ay, ~ 0.145 ~ 1/7. Moving
equatorward thereof, the best-fit A;, increases, and the error
metric increases considerably. Moving poleward thereof, the
best-fit A}, decreases, and the error metric levels off at only
slightly higher values.

This decrease in the best-fit A, value as ¢, is increased leads
to the product Ay sing,,, remaining remarkably constant across
the profiles with ¢,, = 36°. This is important, because singy,
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FIG. Al. Results from two-dimensional parameter sweep of
(4), in ¢, and Ay, with respect to the accuracy of the fit to the
meridional temperature derivative field over 45°S-45°N from
the numerical simulations of solsticial RCE. (a) The minimum
root-mean-square error (RMSE) obtained as a function of ¢y,.
(b) The A, value corresponding to that minimum RMSE value.
(c) The product Ay sing,, using those values. (d) The latitude
where ;.. = 0 using those values.

only appears multiplied by A, in the analytical expressions
shown below for the supercritical forcing extent (though Ay
separately appears on its own). In other words, the LH88 ap-
proximations to the true RCE state, which might otherwise
seem degenerate in ¢, and Ay, effectively collapse into a single
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solution in Ay, sing,, space, at least with respect to the super-
critical forcing extent.

APPENDIX B

Absolute Vorticity Zero Crossing for .. Being an
Arbitrary Polynomial in sing — sing,,

Let the RCE depth-averaged potential temperature field
take the form

= ¢, — c(sing —sing_)", (B1)

)

0,
where n is a positive integer and ¢y and ¢ are constants.
For example, (4) is the special case of (Bl) with n = 2,
co=1+Ap/3, and ¢ = Ay. Using (B1) with (6), (8), and (9)
yields the corresponding gradient-balanced zonal wind, abso-
lute angular momentum, and absolute vorticity fields. After
introducing R=cBu (in analogy to Rog, = AyBu), and for
notational compactness u = sing and u,,, = sing,,, these are

_ n—1
u = Qacosep Ul*ﬂﬁwfl , (B2)
"
_ n—1
M=Qazcosz<p\/1—nléw,
"

(B3)
and
_ n—1
n=2Qsinp/1 - nR P Fn)
m
g n—-2
- —u+
X |1+ @cosz(p ( 'uzm) (n=2)m anfl . (B4
4 m p—nR(pw—p)

Setting the last, square-bracketed term of (B4) equal to zero
yields, after some manipulation,

D -1
w = nRp? (u = )"

+ R cosdpln =2 — ) u— =0, (BS)
Now consider the small-¢, small-R limit. Without loss of gen-
erality, we can set u,, = 1, because as described in section 3 for
the n = 2 case, an accurate fit to the actual solsticial insolation
profile can be found for any extratropical ¢, value by adjusting
the value of c. We then have

0= nR(p— 1) + "R (1= 2)p ~ 1o~ 1) > = 0. (B6)

The left-hand side comprises the sum of three terms. In the
R < ¢ < 1limit considered in the main text for the n = 2 case,
to lowest order the three terms are of magnitude (p3, Ii’(p"“,
and R, respectively. Since R < ¢, forn =1we have Rp? < ¢°,
and therefore the leading-order balance is between the first
and third terms:
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APPENDIX C

Formulation of Idealized GCMs Used

The simulations of F17 were performed in the Frierson et al.
(2006) idealized aquaplanet GCM. This model’s spectral dy-
namical core solves the primitive equations on the sphere with
no topography and a water-covered surface. The sigma vertical
coordinate is defined according to the local surface pressure,
o = plps. Simplified gray radiative transfer is used with a pre-
scribed, time-invariant, meridionally uniform longwave optical
depth field, no shortwave absorption in the atmosphere, and a
prescribed, uniform surface albedo. Surface turbulent fluxes of
latent heat and sensible heat are calculated via standard bulk
aerodynamic formulas. The surface approximates the ther-
modynamic effects of the ocean’s upper, well-mixed layer. Its
temperature tendency is determined by the net downward ra-
diative plus turbulent flux into the surface along with the pre-
scribed heat capacity, which corresponds to a water depth of
10m. There is no prescribed ocean heat flux divergence
(i-e., “Q flux”).

Moist convection is parameterized using the convective
adjustment scheme of Frierson (2007), based on so-called
Betts—Miller schemes (Betts 1986; Betts and Miller 1986),
that relaxes the humidity and temperature profiles of con-
vectively unstable columns toward a moist adiabat with a
prescribed 70% relative humidity over a fixed 2-h time scale.
Neither water vapor nor cloud radiative feedbacks operate, the
former because the prescribed longwave optical depth field
does not depend on water vapor. The latter is because there are
no clouds—liquid water generated either through the convec-
tive parameterization or by gridscale saturation is immediately
precipitated out to the surface.

We refer readers to F17 and Frierson et al. (2006) for further
details on the model formulation. We refer readers to S19,
Frierson et al. (2006), and O’Gorman and Schneider (2008) for
further details on the model formulation.

We perform additional simulations in the dry idealized
GCM of Schneider (2004). This model uses the same spectral
dynamical core as the moist simulations just described, with
horizontal resolution T85 and 20 unevenly spaced sigma levels.
The vertical dependence of its Newtonian relaxation temper-
ature field approximates the radiative equilibrium temperature
profile of a semigray atmosphere in the troposphere, and it
more crudely represents the stratosphere as an isothermal
layer of 200K extending to the model top. The Newtonian
relaxation time scale is 50 days in the free atmosphere, 7 days at
the surface, and varies linearly in o within the planetary
boundary layer with prescribed top at o = 0.85.

Within the troposphere, the equilibrium temperature profile
is statically unstable over much of the troposphere, and at each
time step any statically unstable column triggers a convec-
tive adjustment procedure. The convective adjustment relaxes
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statically unstable columns over a uniform 4-day time scale
toward a prescribed lapse rate of I' = yI'y, where I is the lapse
rate, I'y = glc,, is the dry adiabatic lapse rate, and y = 0.7. The
7y term acts to mimic the stabilizing effects of latent heat release
by moist convection while retaining the simplicity of an oth-
erwise dry fluid. The two dissipative processes are a conven-
tional V® hyperdiffusion and a quadratic drag on the zonal and
meridional winds within the boundary layer. Additional details
of the model formulation are described by Schneider (2004),
and note that various additional modifications made by Hill et al.
(2019)—in particular making the model axisymmetric—are not
employed in the present study.

For all simulations, we diagnose the ascending edge lati-
tude as follows. Denoting the meridional mass overturning
streamfunction ¥(¢, o), its maximum value above the
boundary layer (i.e., at the Hadley cell center) W ., and the
sigma level and latitude of W,y as o max and @pax, respec-
tively, ¢, is the latitude in the summer hemisphere satisfying

Y(p,, o v

max) =« max (Cl)
cosp, cosp_’

where a = 0.1. Apart from the cosine factors, this is equivalent
to the standard edge definition based on where the stream-
function drops below the specified fraction « (set here, as
typical, to 0.1) of its maximum value at the level of that max-
imum (e.g., Walker and Schneider 2006); using a small but
nonzero fractional threshold is needed for cases in which a
nonglobal Hadley cell emerges, but a Ferrel cell does not,
leading to the streamfunction retaining its sign all the way to the
pole. The cosine terms act as weights accounting for the de-
creasing circumference of latitude circles moving poleward. It
yields cell edges farther poleward than the conventional defini-
tion, the more so the larger the cell, but results are qualitatively
insensitive to whether this weighting is applied (not shown).
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