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ABSTRACT

Heaps are algebraic structures endowed with para-associative ternary oper-
ations, bijectively exemplified by groups via the operation ðx, y, zÞ 7! xy

�1
z:

They are also ternary self-distributive and have a diagrammatic interpret-
ation in terms of framed links. Motivated by these properties, we define
para-associative and heap cohomology theories and also a ternary self-dis-
tributive cohomology theory with abelian heap coefficients. We show that
one of the heap cohomologies is related to group cohomology via a long
exact sequence. Moreover, we construct maps between second cohomol-
ogy groups of normalized group cohomology and heap cohomology, and
show that the latter injects into the ternary self-distributive second coho-
mology group. We proceed to study heap objects in symmetric monoidal
categories providing a characterization of pointed heaps as involutory
Hopf monoids in the given category. Finally, we prove that heap objects
are also “categorically” self-distributive in an appropriate sense.
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1. Introduction

Self-distributive magmas, called shelves, and their cohomology theories have been extensively

studied in recent decades with applications to constructing invariants of classical knots and knot-

ted surfaces [6–8]. Ternary self-distributivity (TSD) and its cohomology has been studied, for

example, in [9, 11], and shown in [11] to have a diagrammatic interpretation in terms of framed

links. Constructions of ternary self-distributive operations from binary ones are also given

in [11], and it was shown that the (co)homology of ternary operations thus obtained and the

(co)homology of the binary operations used for this construction are related through certain

(co)chain maps.

A heap is an abstraction of a group endowed with the ternary operation a� b� c 7! ab�1c,

that allows to “forget” which element of the group is the unit. In fact, the operation just described

extends to a functor that determines an equivalence between the category of pointed (i.e. an

element is specified) heaps and the category of groups. More specific definitions will be given in

Section 2. Heaps have been studied in algebra and algebraic geometry under the name of torsors.

They appeared in knot theory in relation to region colorings as well (see, for example, [18, 19]).

It was pointed out in [9] that heaps are ternary self-distributive, and consequently, the aforemen-

tioned diagrammatic interpretation of ternary self-distributive operations specializes to the case of

heaps, as depicted in Figure 1 (cf. [11]).
Each of parallel arcs is colored by a group heap element. In the top left of the figure, a

doubled crossing is colored by ðx, x0Þ and (y, z) at the top arcs. The left arc below the crossing

traced from the arc colored x is colored by xy�1z, the value of heap operation. The other arc is
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similarly colored by x0y�1z: At the bottom right of x-colored string, the left- and right-hand side

of the Reidemeister type III move in Figure 1, the implications of the coloring condition are com-

puted. The output corresponds to the TSD, as expected, for the heap operation.
In the present article, we introduce and develop a cohomology theory for heaps, a homology

theory for TSD with heap coefficients, and present relations between them.
Specifically, the para-associativity comes in three types which we call type 0, 1, and 2, where

type 0 takes the familiar form ½½x, y, z�, u, v� ¼ ½x, y, ½z, u, v��: In this case, we define a chain com-

plex in a similar manner to group homology, and establish a long exact sequence relating the two

homology theories. For the other types, however, such an analogue in general dimensions is elu-
sive. Thus, we take an approach of defining low dimensional cochain maps from point of view of
extensions, and with the goal of applying them to the TSD cohomology. In particular, the second
cohomology group classifies isomorphism classes of heap extensions. We also provide relations

between 2-cocycles for groups and para-associative (PA) 2-cocycles of types 1 and 2. Our motiv-
ation is to use this relation to construct TSD cocycles from group cocycles.

The main results of the article are introducing and studying a TSD homology theory with
abelian group heap coefficients. This differs from [9, 11] in that the heap structure of the coeffi-
cient is essentially used in the definition of the chain complex. The definition again provides the
classification of extensions with heap coefficients by the second TSD cohomology group. We then

present an injective map from heap to TSD cohomology groups H2
HðX,AÞ ! H2

SDðX,AÞ in

dimension 2. Non-trivial examples are provided throughout.
Binary self-distributive operations have been studied in relation to the Yang-Baxter operators

through tensor categories (e.g. [5]). In [11], a diagrammatic interpretation of TSD was given in
terms of framed links, providing set-theoretic Yang-Baxter operations. It is, then, a natural ques-

tion whether the constructions of TSD operations from heaps generalize to monoidal categories.
For this goal, we introduce category versions of heaps and TSD operations, and prove that a heap
object in symmetric monoidal category is also a TSD object.

The article is organized as follows. After a review of basic materials of heaps in Section 2, a
cohomology theory and extensions by 2-cocycles are presented in Section 3. Using the bijection
between pointed heaps and groups, constructions of heap 2-cocycles from group 2-cocycles, and

vice versa, are discussed in Section 4. A cohomology theory of TSD operations with abelian group
heap coefficients is introduced in Section 5, and the extension theory is built from 2-cocycles. A

Figure 1. Diagrammatic interpretation of ternary self-distributivity of heaps as Reidemeister type III move for framed links.
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construction of TSD 2-cocycles from heap 2-cocycles is given in Section 6, and internalization in
the symmetric monoidal category is discussed in Section 7.

2. Basic review of heaps

In this section, we recall the definitions of PA structure on a set and introduce the nomenclature
that will be followed throughout the rest of the article. Given a set with a ternary operation ½��,
we call the equalities

x1, x2, x3½ �, x4, x5½ � ¼ x1, x2, x3, x4, x5½ �½ �

x1, x2, x3½ �, x4, x5½ � ¼ x1, x4, x3, x2½ �, x5½ �

x1, x2, x3, x4, x5½ �½ � ¼ x1, x4, x3, x2½ �, x5½ �

the type 0, 1, 2 para-associativity (or simply para-associativity), respectively. Observe that any
pair of equalities of type 0, 1, or 2 implies that the remaining one also holds. If a ternary oper-
ation satisfies all types of para-associativity, then it is called PA. We call the condition ½x, x, y� ¼ y
and ½x, y, y� ¼ x the degeneracy (conditions).

Definition 2.1. A semi-heap is a non-empty set with a ternary operation satisfying para-associa-
tivity [10]. A heap is a semi-heap whose operation further satisfies the degeneracy conditions.

We mention that a structure satisfying the para-associativity conditions only, is called semi-
heap in Chapter 8 of [15].

A typical example of a heap is a group G where the ternary operation is given by ½x, y, z� ¼

xy�1z, which we call a group heap. If G is abelian, we call it an abelian (group) heap. Conversely,
given a heap X with a fixed element e, one defines a binary operation on X by x � y ¼ ½x, e, y�
which turns ðX, �Þ into a group with e as the identity, and the inverse of x is ½e, x, e� for
any x 2 X:

Once this correspondence from a heap to a group is established, quandle structures on groups

can be defined on heaps. For instance, conjugation and core quandles can be constructed via x �

y ¼ y�1 � x � y and x � y ¼ y � x�1 � y, respectively [13]. Relations between the heap structure and
these quandle structures, along with their cohomology theories are of interest as well.

We refer the reader to the classical reference [2], chapter IV, which contains a short historical
background and a description in terms of universal algebra. In [22], a quantum version of heap
was introduced and it has been shown, in analogy to the “classical” case, that the category of
quantum heaps is equivalent to the category of pointed Hopf algebras. Further developments of
the thematics introduced in [22] can also be found in [16, 21]. Other sources include [3, 17]. We
observe that the definition of quantum heap given in [22] is in some sense dual to the notion of
heap object in a symmetric monoidal category, that we introduce in Section 7. Our heap objects
in symmetric monoidal categories are much in the same spirit as in the definition of non-com-
mutative torsor treated in [3].

3. Heap cohomology

In this section, we introduce a heap cohomology. Let ðX, ½��Þ be a semi-heap and A be an abelian

group. The n-dimensional cochain group Cn
PAðX,AÞ, is the group of functions ff : X2n�1 ! Ag

for n ¼ 1, 2:

Definition 3.1. Let ðX, ½��Þ be a semi-heap and A be an abelian group. Then the 1-dimensional

coboundary map d1 : C1
PAðX,AÞ ! C2

PAðX,AÞ is defined for f 2 C1
PAðX,AÞ by

d1f ðx, y, zÞ ¼ f ð x, y, z½ �Þ � f ðxÞ þ f ðyÞ � f ðzÞ:
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The kernel Z1
PAðX,AÞ of d1 is called the 1-dimensional cocycle group. In this case, we define 1-

dimensional cohomology group H1
PAðX,AÞ to be Z1

PAðX,AÞ:

We observe that f 2 Z1
PAðX,AÞ if and only if f is a PA homomorphism from X to A regarded

as an abelian heap. We determine Z1
PAðX,AÞ for the following two examples.

Example 3.2. Consider Z2 with the abelian heap operation ½x, y, z� ¼ xþ yþ z: We compute the

group Z1
PAðZ2,Z2Þ: Given three variables x, y, and z, at least two of them need to coincide.

Consider the case when x¼ y, the 1-cocycle condition becomes f ð½x, x, z�Þ ¼ f ðzÞ which is satis-

fied. The other cases are analogous. It follows that Z1
PAðZ2,Z2Þ ¼ C1

PAðZ2,Z2Þ ffi Z2 � Z2: This
operation is also ternary self-distributive, see Lemma 6.1.

Example 3.3. We proceed to compute Z1
PAðZ3,ZnÞ, where Z3 is given the same ternary operation

as before: ½x, y, z� ¼ xþ yþ z: Observe that this operation does not define a heap, but it is PA.
Take x ¼ y ¼ 1 in the 1-cocycle condition. We obtain f ðz þ 2Þ ¼ f ðzÞ, which implies that f is the

constant map. It follows that Z1
PAðZ3,ZnÞ ffi Zn for all n, including the coefficient group A ¼ Z:

Definition 3.4. Define C3
PAðiÞðX,AÞ for i¼ 0, 1, 2 to be three isomorphic copies of the abelian

group of functions ff : X5 ! Ag: The 2-dimensional coboundary map d2ðiÞ : C
2
PAðX,AÞ !

C3
PAðiÞðX,AÞ of type i¼ 0, 1, 2, respectively, are defined by

d2ð0Þgðx1, x2, x3, x4, x5Þ ¼ gðx1, x2, x3Þ þ gð x1, x2, x3½ �, x4, x5Þ

� gðx3, x4, x5Þ � gðx1, x2, x3, x4, x5½ �ÞÞ,

d2ð1Þgðx1, x2, x3, x4, x5Þ ¼ gðx1, x2, x3Þ þ gð x1, x2, x3½ �, x4, x5Þ

þ gðx4, x3, x2Þ � gðx1, x4, x3, x2½ �, x5ÞÞ,

d2ð2Þgðx1, x2, x3, x4, x5Þ ¼ gðx3, x4, x5Þ þ gðx1, x2, x3, x4, x5½ �Þ

þ gðx4, x3, x2Þ � gðx1, x4, x3, x2½ �, x5ÞÞ:

Direct calculations give the following.

Lemma 3.5. If ðX, ½��Þ is a semi-heap, then d2ðiÞd
1 ¼ 0 for i¼ 0, 1, 2.

Definition 3.6. Let ðX, ½��Þ be a semi-heap and let A be an abelian group. Define C3
PAðX,AÞ ¼

C3
PAð1ÞðX,AÞ � C3

PAð2ÞðX,AÞ: Then, d2 ¼ d2ð1Þ � d2ð2Þ defines a homomorphism C2
PAðX,AÞ !

C3
PAðX,AÞ: Define the group of 2-cocycles Z2

PAðX,AÞ by kerðd2Þ: Define the second coboundary

group B2
PAðX,AÞ by imðd1Þ: Then the second cohomology group is defined as usual: H2

PAðX,AÞ ¼

Z2
PAðX,AÞ=B

2
PAðX,AÞ:

Definition 3.7. Let ðX, ½��Þ be a semi-heap and let A be an abelian group. A 2-cocycle g 2

Z2
PAðX,AÞ is said to satisfy the degeneracy condition if the following holds for all x, y 2

X : gðx, x, yÞ ¼ 0 ¼ gðx, y, yÞ:

We observe that 2-coboundaries d1f satisfy the degeneracy condition.

Definition 3.8. Let X be a heap and A be an abelian group. The second heap cocycle group

Z2
HðX,AÞ is defined as the subgroup of Z2

PAðX,AÞ consisting of 2-cocycles that satisfy the degener-

acy conditions. The second heap cohomology group H2
HðX,AÞ is defined as the quo-

tient Z2
HðX,AÞ=B

2
PAðX,AÞ:
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Example 3.9. Let X ¼ Z2 with group heap operation and A ¼ Z2: Computations show that g 2

Z2
PAðX,AÞ if and only if g satisfies the following set of equations:

gð0, 0, 0Þ ¼ gð0, 0, 1Þ ¼ gð1, 0, 0Þ,

gð1, 1, 1Þ ¼ gð1, 1, 0Þ ¼ gð0, 1, 1Þ,

gð0, 0, 0Þ þ gð1, 1, 1Þ þ gð0, 1, 0Þ þ gð1, 0, 1Þ ¼ 0:

Express g ¼
P

gðx, y, zÞvðx, y, zÞ by characteristic functions vðx, y, zÞ: By setting gð0, 0, 0Þ ¼

a, gð1, 1, 1Þ ¼ b and gð0, 1, 0Þ ¼ c, the last equation above implies gð1, 0, 1Þ ¼ �ðaþ bþ cÞ: Then,
g is expressed as

g ¼ a v 0, 0, 0ð Þ þ v 0, 0, 1ð Þ þ v 1, 0, 0ð Þ � v 1, 0, 1ð Þð Þ

þ b v 1, 1, 1ð Þ þ v 1, 1, 0ð Þ þ v 0, 1, 1ð Þ � v 1, 0, 1ð Þð Þ

þ c v 0, 1, 0ð Þ � v 1, 0, 1ð Þð Þ:

Since the group of coboundaries is zero from Example 3.2, it follows that H2
PA Z2,Z2ð Þ ¼

Z2
PA Z2,Z2ð Þ ffi Z2 � Z2 � Z2: Since the degeneracy condition implies a ¼ b ¼ 0, we have

H2
H Z2,Z2ð Þ ffi Z2:

Definition 3.10. Let X be a heap, A be an abelian group and g : X � X � X ! A be a 2-cochain.
We define the heap extension of X by the 2-cochain g with coefficients in A, denoted X �g A, as

the cartesian product X�A with ternary operation given by:

x, að Þ, y, bð Þ, z, cð Þ
� �

¼ x, y, z½ �, a� bþ cþ g x, y, zð Þ
� �

:

Although direct computation gives the following lemma, it is one of the motivations of the
definition of the heap differential maps.

Lemma 3.11. The abelian extension X�gA of the heap X by a 2-cochain g satisfies para-associativ-
ity of type 1, 2, and degeneracy if and only if g is a heap 2-cocycle of type 1, 2, and with degener-
acy condition, respectively. In particular, a 2-cochain g defines a heap extension if and only if it
satisfies para-associativity of type 1, 2, and degeneracy.

It is not clear at this time whether extensions above can be defined for non-abelian case, or in
other generalized settings as in the quandle extensions.

Example 3.12. The following is a common construction applied to the heap. Let 0 !

A !
i
E !

p
G ! 0 be a short exact sequence of abelian groups, and s : G ! E be a set-theoretic

section (ps ¼ id). Since s is a section, we have that s xð Þ � s yð Þ þ s zð Þ � s x, y, z½ �ð Þ is in the kernel

of p for all x, y, z 2 G, so that there is g : G� G� G ! A such that

ig x, y, zð Þ ¼ s xð Þ � s yð Þ þ s zð Þ � s x, y, z½ �ð Þ:

Then, computations of the two 2-cocycle conditions and the degeneracy conditions give
the following.

Lemma 3.13. g 2 Z2
H G,Að Þ:

Example 3.14. For a positive integer n> 0, let 0 ! Zn !
i
Zn2 !

p
Zn ! 0 be as above, where

s xð Þmod n2ð Þ ¼ x, representing elements of Zm by f0, :::,m� 1g: Then for all x, y, z 2 G ¼ Zn,

ig x, y, zð Þ is divisible by n in E ¼ Zn2 , so that the value of g is computed by g x, y, zð Þ ¼

ig x, y, zð Þ=n: For example, for n¼ 3, g 2, 0, 2ð Þ ¼ s 2ð Þ � s 0ð Þ þ s 2ð Þ � s 2, 0, 2½ �ð Þ
� �

=3 ¼ 1 2 Z3: We

will show in Example 3.22 that g½ � 6¼ 0 and therefore H2
H Z3,Z3ð Þ is nontrivial.
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Definition 3.15. Let X�gA and X�g0A be two heap extensions with coefficients in an abelian
group A, by two 2-cocycles g and g0 of type 1, 2 and with degeneracy condition. We define a
morphism of extensions, indicated by / : X�gA ! X�g0A, to be a morphism of heaps making

the following diagram (of sets) commute.

An invertible morphism of extensions is also called isomorphism of extensions, which induces an
equivalence relation, and its equivalence classes are called isomorphism classes.

The following is one of the motivations and significance of our definition of the heap differen-
tial in dimension 2.

Proposition 3.16. There is a bijective correspondence between isomorphism classes of heap exten-

sions by A, and the second heap cohomology group H2
H X;Að Þ:

Proof. Standard arguments, similar to the group-theoretic case, give the result. w

Lemma 3.17. Let g0 be a heap 2-cocycle of type 0 that satisfies the degeneracy condition. Then, the
following equality holds

g0 x1, x2, x3ð Þ þ g0 x1, x2, x3½ �, x3, x2ð Þ ¼ 0:

Proof. The 2-cocycle condition applied to g0 x1, x2, x3, x3, x2ð Þ becomes

d20ð Þg0 x1, x2, x3, x3, x2ð Þ

¼ g0 x1, x2, x3ð Þ þ g0 x1, x2, x3½ �, x3, x2ð Þ

�g0 x3, x3, x2ð Þ � g0 x1, x2, x3, x3, x2½ �ð Þ:

By applying the degeneracy condition and the degeneracy heap axiom, we obtain the result. w

As we have mentioned, the heap operation has a diagrammatic representation by framed links
as described in [11]. The TSD cohomology and its 2-cocycles in the form originally defined in
[10, 14], and studied in [11], was used to construct a cocycle invariant in [23]. It is, however, not
clear at this time whether 2-cocycles defined in this article using heap coefficients can be used for
defining cocycle knot invariants, and it is a problem of interest.

Toward extending cohomology theory to general dimensions, we propose the following
3-differentials.

Figure 2. Heap 3-cocycle notations.
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Definition 3.18. Let X be a set with PA operation �½ � and let A be an abelian group. Let

C4
PA ið Þ

X,Að Þ be three isomorphic copies of the abelian group of functions ff : X7 ! Ag for i¼ 1,

2, 3. Let C4
PA X,Að Þ ¼ �i¼1, 2, 3C

4
PA ið Þ

X,Að Þ: For f1, f2ð Þ 2 C3
PA X,Að Þ ¼ C3

PA 1ð Þ X,Að Þ � C3
PA 2ð Þ X,Að Þ,

define d3ið Þ : C
3
PA X,Að Þ ! C4

PA ið Þ
X,Að Þ, for i¼ 1, 2, 3, as follows.

d31ð Þ f1, f2ð Þ x1, x2, x3, x4, x5, x6, x7ð Þ

¼ f1 x1, x2, x3½ �, x4, x5, x6, x7ð Þ þ f1 x1, x2, x3, x6, x5, x4½ �, x7ð Þ

�f1 x6, x5, x4, x3, x2ð Þ � f1 x1, x2, x3, x4, x5ð Þ

þf2 x1, x2, x3, x4, x5ð Þ � f1 x1, x2, x3, x4, x5½ �, x6, x7ð Þ,

d32ð Þ f1, f2ð Þ x1, x2, x3, x4, x5, x6, x7ð Þ

¼ f2 x1, x2, x3, x4, x5, x6, x7½ �ð Þ þ f2 x1, x4, x3, x2½ �, x5, x6, x7ð Þ

�f2 x6, x5, x4, x3, x2ð Þ � f2 x3, x4, x5, x6, x7ð Þ

þf1 x3, x4, x5, x6, x7ð Þ � f2 x1, x2, x3, x4, x5½ �, x6, x7ð Þ,

d33ð Þ f1, f2ð Þ x1, x2, x3, x4, x5, x6, x7ð Þ

¼ f2 x1, x2, x3½ �, x4, x5, x6, x7ð Þ þ f1 x1, x2, x3, x6, x5, x4½ �, x7ð Þ

þf1 x6, x5, x4, x3, x2ð Þ � f1 x1, x2, x3, x4, x5, x6, x7½ �ð Þ

�f2 x1, x4, x3, x2½ �, x5, x6, x7ð Þ � f2 x6, x5, x4, x3, x2ð Þ:

Figure 3. Heap 3-cocycle conditions.
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Then, define d3 :¼ �i¼1, 2, 3d
3
ið Þ : C

3
PA X,Að Þ ! C4

PA X,Að Þ:

Let X be a heap, and let xi 2 X for i ¼ 1, :::, 5: We utilize the following diagrammatic represen-
tations of heap 3-cocycles in Theorem 3.19. In Figure 2, 3-cocycles are associated to changes of
diagrams. The three tree diagrams with top vertices labeled represent the elements in the equality

x1, x2, x3½ �, x4, x5½ � ¼ x1, x4, x3, x2½ �, x5½ � ¼ x1, x2, x3, x4, x5½ �½ �,

from left to right, respectively. The 3-cocycle f1 x1, x2, x3, x4, x5ð Þ (resp. f2 x1, x2, x3, x4, x5ð Þ) is asso-

ciated to the change from left to middle (resp. right to middle) tree diagrams as depicted by the
solid arrows. The 3-cocycle f0 x1, x2, x3, x4, x5ð Þ is associated to the change from left to right, and

depicted by the dotted arrow.
In Figure 3, the 3-cocycle conditions are represented by diagrams with seven elements. In the

figure, labeled arrows represent 3-cocycles as described above. In the middle, there is a hexagon
formed by labeled arrows, and has double arrow labeled by (3). This hexagon represents the dif-

ferential d33ð Þ: The definition of the differentials, as well as the proof of Theorem 3.19, are aided

by this figure.

Theorem 3.19. The composition d3d2 vanishes.

Proof. This follows by proving, for g 2 C2
PA X,Að Þ and fi ¼ d2ið Þg for i¼ 1, 2, that d3jð Þ f1, f2ð Þ ¼ 0

for j¼ 1, 2, 3. For d33ð Þ f1, f2ð Þ ¼ 0, first we compute positive terms:

f2 x1, x2, x3½ �, x4, x5, x6, x7ð Þ

þf1 x1, x2, x3, x6, x5, x4½ �, x7ð Þ þ f1 x6, x5, x4, x3, x2ð Þ

¼ fg x5, x6, x7ð Þ þ g x1, x2, x3½ �, x4, x5, x6, x7½ �ð Þ

�g x6, x5, x4ð Þ � g x1, x2, x3½ �, x6, x5, x4½ �, x7ð Þg

þfg x1, x2, x3ð Þ þ g x1, x2, x3½ �, x6, x5, x4½ �, x7ð Þ

�g x6, x5, x4½ �, x3, x2ð Þ � g x1, x6, x5, x4½ �, x3, x2½ �, x7ð Þg

þfg x6, x5, x4ð Þ þ g x6, x5, x4½ �, x3, x2ð Þ

�g x3, x4, x5ð Þ � g x6, x3, x4, x5½ �, x2ð Þg

where canceling terms are underlined. For the remaining terms, one computes

f1 x1, x2, x3, x4, x5, x6, x7½ �ð Þ

þf2 x1, x4, x3, x2½ �, x5, x6, x7ð Þ þ f2 x6, x5, x4, x3, x2ð Þ

¼ fg x1, x2, x3ð Þ þ g x1, x2, x3½ �, x4, x5, x6, x7½ �ð Þ

�g x4, x3, x2ð Þ � g x1, x4, x3, x2½ �, x5, x6, x7½ �ð Þg

þfg x5, x6, x7ð Þ þ g x1, x4, x3, x2½ �, x5, x6, x7½ �ð Þ

�g x6, x5, x4, x3, x2½ �ð Þ � g x1, x6, x5, x4, x3, x2½ �½ �, x7ð Þg

þfg x4, x3, x2ð Þ þ g x6, x5, x4, x3, x2½ �ð Þ

�g x3, x4, x5ð Þ � g x6, x3, x4, x5½ �, x2ð Þg

and all terms cancel.

The conditions d31ð Þ f1, f2ð Þ ¼ 0 and d32ð Þ f1, f2ð Þ ¼ 0 follow similarly from direct computa-

tions. w

For a type 0 condition, a chain complex is defined in a similar manner to the group homology
as follows.
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Definition 3.20. Let X be a set with a type 0 PA ternary operation �½ �: The nth (type 0) PA chain

group, denoted by CPA
n Xð Þ, is defined to be the free abelian group on tuples x1, :::, x2n�1ð Þ, xi 2

X, and the boundary map @ 0ð Þ
n : CPA

n Xð Þ ! CPA
n�1 Xð Þ is defined by

@ 0ð Þ
n x1, :::, x2n�1ð Þ

¼ � x3, :::, x2n�1ð Þ

þ
Xn

i¼1

�1ð Þiþ1
x1, :::, x2i�2, x2i�1, x2i, x2iþ1½ �, x2iþ2, :::, x2n�1ð Þ

þ �1ð Þnþ1
x1, :::, x2n�3ð Þ

for n 	 2 and @ 0ð Þ
2 x1, x2, x3ð Þ ¼ x1, x2, x3½ �ð Þ � x1ð Þ þ x2ð Þ � x3ð Þ:

It is straightforward to verify that the boundary maps defined above do indeed satisfy the dif-
ferential condition and define therefore a chain complex. The dual cochain groups with coeffi-
cient group A and their dual differential maps coincide with those in Definitions 3.1 and 3.4 for
(type 0) cochain maps.

Definition 3.21. The homology of the chain complex introduced in Definition 3.20 is called type

0 PA homology, and written H 0ð Þ
n Xð Þ:

We note that @ 0ð Þ
2 defined above is dual to d1 in Definition 3.1. Therefore, if / is a 2-coboun-

dary and a is a 2-cycle, then

/ að Þ ¼ d1f að Þ ¼ f @ 0ð Þ
2 a

� �
¼ f 0ð Þ ¼ 0:

Hence, the standard argument applies that if / að Þ 6¼ 0 for a 2-cycle a then / is not null

cohomologous.

Example 3.22. Consider 0 ! Z3 !
i
Z9 !

p
Z3 ! 0 as in Example 3.14 and the corresponding g.

The 2-chain a :¼ 1, 0, 2ð Þ þ 0, 1, 0ð Þ þ 1, 2, 0ð Þ is easily seen to be a heap 2-cycle and g að Þ ¼ 1 6¼

0: Hence, g is non-trivial. Therefore, H2
PA Z3,Z3ð Þ 6¼ 0:

4. From heap cocycles to group cocycles and back

The main purpose of this section is to elucidate connections between group (co)homology and

heap (co)homology. For a group G, let denote the group chain complex by G, @ð Þ: We consider
the trivial action case.

4.1. Group homology and type 0 heap homology

In this section, we provide an explicit relation between type 0 heap homology and
group homology.

Proposition 4.1. Let X be a heap, e 2 X, and G be the associated group, so that xy ¼ x, e, y½ � for

all x, y 2 X. Let Wn : C
G
n ! C 0ð Þ

n Xð Þ be the map on chain groups defined by

Wn x1, :::, xnð Þ ¼ x1, e, x2, e, :::, e, xnð Þ:

Then, W
 is a chain map and therefore induces a well-defined map

�Wn : H
G
n Xð Þ ! H 0ð Þ

n Xð Þ:

Proof. This is a direct computation, using the fact that x2i, e, x2iþ1½ � ¼ x2i � x2iþ1 by definition. w
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Due to the complexity in computing the second (co)homology group of racks and quandles,
there has been much attention devoted toward constructing chain maps from rack/quandle com-
plexes to group homology complexes. Various approaches have been shown to be proficuous, as
seen in [1, 12, 20]. Proposition 4.1 gives a construction of this sort in the case of type 0 heap
homology. It would be of interest to study a possible relation between this chain map and those
given in [1, 12, 20] when considering quandle structures induced by the heap operation, as
described in Section 2.

Remark 4.2. By dualizing Proposition 4.1, we obtain a cochain map between type 0 heap coho-
mology and group cohomology. In the specific case of the second cohomology group, we observe
that Proposition 4.1 corresponds to the construction of a group from a heap through extensions
as follows. Let X be a heap, A an abelian group, E ¼ X � A the heap extension defined in
Definition 3.10 with a heap 2-cocycle g. Let e, cð Þ 2 E be a fixed element. Then, the group struc-

ture on E defined from the heap structure on E is computed as

x, að Þ � y, bð Þ

¼ x, að Þ, e, cð Þ, y, bð Þ
� �

¼ x, e, y½ �, a� cþ bþ g x, e, yð Þ
� �

¼ xy, aþ bþ h x, yð Þ
� �

giving rise to the relation h x, yð Þ ¼ g x, e, yð Þ � c, a difference of a constant comparing to

Proposition 4.1.

Let X be a heap, and e 2 X: We define chain subgroups Ĉ
0ð Þ

n Xð Þ to be the free abelian group

generated by

x1, :::, x2n�1ð Þ 2 C 0ð Þ
n Xð Þ j x2i ¼ e, i ¼ 1, 2, :::, n� 1

n o
,

and Ĉ
0ð Þ

1 Xð Þ ¼ C 0ð Þ
1 Xð Þ: It is checked by direct computation that @ 0ð Þ

n Ĉ
0ð Þ

n Xð Þ
� �

� Ĉ
0ð Þ

n�1 Xð Þ, so

that fĈ
0ð Þ

n Xð Þ, @ 0ð Þ
n g forms a chain subcomplex. Let Ĥ

0ð Þ

n Xð Þ denote the homology groups of this

subcomplex, and let ~H
0ð Þ

n Xð Þ denote the relative homology groups for the quotient

C 0ð Þ
n Xð Þ=Ĉ

0ð Þ

n Xð Þ: We now have the following result.

Theorem 4.3. In the same setting as in Proposition 4.1, the map �Wn is an injection for all n.
Furthermore, there is a long exact sequence of homology groups

� � � ! HG
n Xð Þ ! H 0ð Þ

n Xð Þ ! ~H
0ð Þ

n Xð Þ !
@
HG

n�1 Xð Þ ! � � � :

Proof. The chain map Wn gives an isomorphism between chain groups CG
n Xð Þ and Ĉ

0ð Þ

n Xð Þ and
commute with differentials, giving rise to an isomorphism of chain complexes. Through the map,

�Wn,H
G
n Xð Þ is identified with Ĥ

0ð Þ

n Xð Þ:
The second statement follows from the short exact sequence of chain complexes

0 ! Ĉ
0ð Þ


 Xð Þ ! C 0ð Þ

 Xð Þ ! C 0ð Þ


 Xð Þ=Ĉ
0ð Þ


 Xð Þ ! 0

using the isomorphism W
 and defining @ as the usual connecting homomorphism, via the Snake
Lemma. w

Definition 4.4. The homology ~H
0ð Þ


 Xð Þ is called the type zero essential heap homology.
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Remark 4.5. The essential homology of a group heap X is regarded as a measure of how far
group homology is from being isomorphic to the type zero heap homology.

Example 4.6. We show that ~H
0ð Þ


 Xð Þ can be nontrivial. Consider the group heap corresponding
to Z2: The 2-chain (0, 1, 1) is easily seen to be a type zero 2-cycle. We show that the class

0, 1, 1ð Þ½ � 2 ~H
0ð Þ

2 Xð Þ is nontrivial. The 2-cochain g 1, 1, 1ð Þ ¼ g 1, 1, 0ð Þ ¼ g 0, 1, 1ð Þ ¼ 1, and zero

otherwise is a heap 2-cocycle, as seen in Example 3.9. As previously observed, a heap 2-cocycle is

also a type zero 2-cocycle. Furthermore, @ 0ð Þ
1 is dual to d1PA, so that g is nontrivial as a type zero

heap cocycle. Suppose that 0, 1, 1ð Þ½ � ¼ 0 in ~H
0ð Þ

2 Xð Þ: Then, there is a 3-chain a such that @ 0ð Þ
3 a�

0, 1, 1ð Þ 2 Ĉ
0ð Þ

2 Xð Þ: Therefore, g @ 0ð Þa� 0, 1, 1ð Þ
� �

¼ 0, since by definition g vanishes on Ĉ
0ð Þ

2 Xð Þ:

Since g @ 0ð Þð Þ ¼ d 0ð Þ
g and g is a type zero 2-cocycle, we have obtained that g 0, 1, 1ð Þ ¼ 0, in

contradiction with the choice of g. Therefore, 0, 1, 1ð Þ½ � is nontrivial in ~H
0ð Þ

2 Xð Þ:

4.2. From group cocycles to PA cocycles

In this section, we present a construction of PA 2-cocycles from group 2-cocycles. The following
gives an answer to a natural question on how the relation between groups and heaps descends to
relations in their homology theories. It also provides a construction of ternary self-distributive 2-
cocycles from group 2-cocycles through heap 2-cocycles (Section 6). We recall that the group 2-
cocycle condition [4] with trivial action on the coefficient group is written as

h x, yð Þ þ h xy, zð Þ ¼ h y, zð Þ þ h x, yzð Þ

for all x, y, z 2 G of a group G. The normalized 2-cocycle satisfies h x, 1ð Þ ¼ 0 ¼ h 1, xð Þ, and it fol-

lows that normalized 2-cocycles satisfy h x, x�1ð Þ ¼ h x�1, xð Þ: Define the normalized 2-cochain

group Ĉ
2

G Xð Þ to consist of normalized 2-cochains, and the normalized 1-cochain group Ĉ
1

G Xð Þ to

consist of f 2 C1
G Xð Þ such that f 1ð Þ ¼ 0: Then, these form a subcomplex up to dimension 2, and

the corresponding 2-dimensional cohomology group is denoted by Ĥ
2

G Xð Þ:

Theorem 4.7. Let G be a group, and X be its group heap. Let h be a normalized group 2-cocycle
with trivial action on the coefficient group A. Then,

g x, y, zð Þ :¼ h x, y�1
� �

þ h xy�1, z
� �

� h y, y�1
� �

is a PA 2-cocycle. This construction U2 hð Þ ¼ g defines a cohomology map �U2 : Ĥ
2

G Xð Þ ! H2
PA Xð Þ:

Proof. First we note that for an extension group 2-cocycle h, the condition y�1 zu�1ð Þ ¼

uz�1ð Þy
� ��1

implies the following identity

h z, u�1ð Þ þ h y�1, zu�1
� �

� h y, y�1
� �

� h u, u�1ð Þ

¼ h u, z�1ð Þ þ h z, z�1ð Þ þ h u�1, uz�1ð Þ � h y, y�1
� �

¼ h u, z�1ð Þ þ h uz�1, y
� �

� h z, z�1ð Þ � h uz�1y, y�1zu�1
� �

,

which we call the product-inversion relation. Observe that the normalization condition has been

implicitly used to rewrite the term corresponding to h y�1, y
� �

: For d21ð Þ gð Þ ¼ 0, one computes
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g x, y, zð Þ þ g x, y, z½ �, u, vð Þ

¼ h x, y�1
� �

þ h xy�1, z
� �

� h y, y�1
� �

þh xy�1z, u�1
� �

þ h xy�1zu�1, v
� �

� h u, u�1ð Þ

¼ h y�1, z
� �

þ h x, y�1z
� �

� h y, y�1
� �

þh xy�1z, u�1
� �

� h u, u�1ð Þ þ h xy�1zu�1, v
� �

¼ h y�1, z
� �

þ h y�1z, u�1
� �

þ h x, y�1zu�1
� �

�h y, y�1
� �

� h u, u�1ð Þ þ h xy�1zu�1, v
� �

¼ h z, u�1ð Þ þ h y�1, zu�1
� �

þ h x, y�1zu�1
� �

þh xy�1zu�1, v
� �

� h y, y�1
� �

� h u, u�1ð Þ

¼ h u, z�1ð Þ þ h uz�1, y
� �

� h z, z�1ð Þ

�h uz�1y, y�1zu�1
� �

þ h x, y�1zu�1
� �

þ h xy�1zu�1, v
� �

¼ g u, z, yð Þ þ g x, u, z, y½ �, vð Þ,

where we have underlined the terms undergoing the group 2-cocycle relation at each step, and used

the product-inverse relation in the penultimate equality. Similar computations show d22ð Þ gð Þ ¼ 0:

To complete the proof, consider the maps U1 :¼ �1 : Ĉ
1

G Xð Þ ! C1
PA Xð Þ, and U2 : Ĉ

2

G Xð Þ !

C2
PA Xð Þ, h 7! g, as in the previous part of the proof. It is easy to see that d1GU2 ¼ U1d

1
PA, there-

fore showing that �U is well defined on cohomology groups. w

Remark 4.8. Extensions of groups and heaps, in this case, are related as in Remark 4.2. The
group extension is defined, for a group G and the coefficient abelian group A, by

x, að Þ � y, bð Þ ¼ xy, aþ bþ h x, yð Þ
� �

for x, y 2 G and a, b 2 A: For the heap E ¼ G� A constructed from the group E ¼ G� A defined
above, one computes

x, að Þ, y, bð Þ, z, cð Þ
� �

¼ x, að Þ y, bð Þ�1 z, cð Þ

¼ x, að Þ y�1, � b� h y, y�1
� �� �

z, cð Þ

¼ xy�1z, a� bþ cþ h x, y�1
� �

þ h xy�1, z
� �

� h y, y�1
� �� �

so that we obtain the correspondence

g x, y, zð Þ ¼ h x, y�1
� �

þ h xy�1, z
� �

� h y, y�1
� �

:

Let h be a group 2-cocycle satisfying the inverse property: h x�1, y�1
� �

¼ �h y, xð Þ for all x, y 2

X: Then g x, y, zð Þ :¼ h x, y�1
� �

þ h xy�1, z
� �

is a PA 2-cocycle.

5. Ternary self-distributive cohomology with heap coefficients

In this section, we introduce a cohomology theory of ternary self-distributive operations with
abelian group heap coefficients, and investigate extension theory by 2-cocycles. A ternary oper-
ation T on a set X is called ternary self-distributive (TSD for short) if it satisfies

T T x, y, zð Þ, u, v
� �

¼ T T x, u, vð Þ,T y, u, vð Þ,T z, u, vð Þ
� �
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for all x, y, z, u, v 2 X: Such operations have been widely studied (e.g. [9, 11] and references

therein). The set X with TSD operation T, or the pair (X, T), is also called a ternary shelf. In [9,

11], homology theories of ternary shelves are defined and studied. The theory introduced here

differs in the use of heap structures.
Let (X, T) be a ternary shelf, and let us define the nth chain group of X with heap coefficients

in A, denoted by CSD
n Xð Þ, to be the free abelian group on 2n� 1ð Þ-tuples X2n�1: We set by defin-

ition CSD
0 Xð Þ to be the trivial group. We introduce maps @i

n : C
SD
n Xð Þ ! CSD

n�1 Xð Þ, for all i ¼

1, :::, n: The map @1
1 ¼ 0 by definition, while for n 	 2 we distinguish case i¼ 1, where we set

@i
n x1, :::, x2n�1ð Þ

¼ x1, x4, :::, x2n�1ð Þ � x2, x4, :::, x2n�1ð Þ

þ x3, x4, :::, x2n�1ð Þ � T x1, x2, x3ð Þ, x4, :::, x2n�1

� �
,

and case i 	 2 where we set

@i
n x1, :::, x2n�1ð Þ

¼ x1, :::,cx2i , dx2iþ1 , :::, x2n�1ð Þ

� T x1, x2i, x2iþ1ð Þ, :::,T x2i�1, x2i, x2iþ1ð Þ,cx2i , dx2iþ1 , :::, x2n�1

� �
,

where^denotes the deletion of that factor.

Proposition 5.1. The maps @i
n define a pre-simplicial module structure on the chain

groups fCSD
n Xð Þg:

Proof. Recall that by definition, the maps @i
n define a pre-simplicial module structure on

fCSD
n Xð Þg if they satisfy the face map relations @

j�1
n�1@

i
n ¼ @i

n�1@
j
n for i< j. To show that the pre-

simplicial equations hold, the cases with i 	 2 are standard, while the remaining cases 1 ¼ i < j

can be verified by a direct computation. We show, as an example, the computations for the case

i ¼ 1, j ¼ 2: On the one hand, we have

@1
n�1@

2
n x1, :::, x2n�1ð Þ

¼ x1, x6, :::, x2n�1ð Þ � x2, x6, :::, x2n�1ð Þ

þ x3, x6, :::, x2n�1ð Þ � T x1, x2, x3ð Þ, x6, :::, x2n�1

� �

� T x1, x4, x5ð Þ, x6, :::, x2n�1

� �
þ T x2, x4, x5ð Þ, x6, :::, x2n�1

� �

� T x3, x4, x5ð Þ, x6, :::, x2n�1

� �

þ T T x1, x4, x5ð Þ,T x2, x4, x5ð Þ,T x3, x4, x5ð Þ
� �

, x6, :::, x2n�1

� �
:

On the other hand, we have

@1
n�1@

1
n x1, :::, x2n�1ð Þ

¼ x1, x6, :::, x2n�1ð Þ � x4, x6, :::, x2n�1ð Þ

þ x5, x6, :::, x2n�1ð Þ � T x1, x4, x5ð Þ, x6, :::, x2n�1

� �

� x2, x6, :::, x2n�1ð Þ þ x4, x6, :::, x2n�1ð Þ

� x5, x6, :::, x2n�1ð Þ þ T x2, x4, x5ð Þ, x6, :::, x2n�1

� �

þ x3, x6, :::, x2n�1ð Þ � x4, x6, :::, x2n�1ð Þ

þ x5, x6, :::, x2n�1ð Þ � T x3, x4, x5ð Þ, x6, :::, x2n�1

� �

� T x1, x2, x3ð Þ, x6, :::, x2n�1

� �
þ x4, x6, :::, x2n�1ð Þ

� x5, x6, :::, x2n�1ð Þ þ T T x1, x2, x3ð Þ, x4, x5
� �

, x6, :::, x2n�1

� �
:

The two expressions coincide. w
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Standard arguments imply that, for each n, the alternating sum @n ¼ �1ð Þn
Pn

i¼1 �1ð Þi@i
n satis-

fies the equation @2 ¼ 0: It follows that CSD
n Xð Þ, @

� �
is a chain complex, and the following is

well posed.

Definition 5.2. Let X be a ternary shelf and let CSD
n Xð Þ be the nth chain group as defined above.

The homology corresponding to the chain complex CSD
n Xð Þ, @

� �
is indicated by the symbol

HSD
n Xð Þ: By dualization, given an abelian group A, we obtain a cochain complex with coefficients

in the abelian heap A, Cn
SD X,Að Þ whose cohomology is indicated by Hn

SD X,Að Þ:

Our focus is on significance and constructions of 2-cocycles in relation to heaps for this the-
ory, so that we provide explicit cocycle conditions in low dimensions below.

Example 5.3. Let (X, T) be a ternary shelf, and A be an abelian group heap. Then cochain groups
and differentials dual to Definition 5.2 in low dimensions are formulated as follows. The cochain

groups Cn
SD X,Að Þ are defined to be the abelian groups of functions ff : X2n�1 ! Ag: The differ-

entials dn ¼ dnSD : Cn
SD X,Að Þ ! Cnþ1

SD X,Að Þ are formulated for n¼ 1, 2, 3 as follows.

d1n x1, x2, x3ð Þ

¼ n x1ð Þ � n x2ð Þ þ n x3ð Þ � n T x1, x2, x3ð Þ
� �

,

d2g x1, x2, x3, x4, x5ð Þ

¼ g x1, x2, x3ð Þ þ g T x1, x2, x3ð Þ, x4, x5
� �

�g x1, x4, x5ð Þ þ g x2, x4, x5ð Þ � g x3, x4, x5ð Þ

�g T x1, x4, x5ð Þ,T x2, x4, x5ð Þ,T x3, x4, x5ð Þ
� �

,

d3w x1, x2, x3, x4, x5, x6, x7ð Þ

¼ w x1, x2, x3, x4, x5ð Þ þ w T x1, x4, x5ð Þ,T x2, x4, x5ð Þ,T x3, x4, x5ð Þ, x6, x7
� �

þw x1, x4, x5, x6, x7ð Þ � w x2, x4, x5, x6, x7ð Þ þ w x3, x4, x5, x6, x7ð Þ

�w T x1, x2, x3ð Þ, x4, x5, x6, x7
� �

� w x1, x2, x3, x6, x7ð Þ

�w T x1, x6, x7ð Þ,T x2, x6, x7ð Þ,T x3, x6, x7ð Þ,T x4, x6, x7ð Þ,T x5, x6, x7ð Þ
� �

:

The case n¼ 0 is defined by convention that C0
SD X,Að Þ ¼ 0:

We investigate properties of TSD 2-cocycles. We start with extensions by abelian group heaps.

Definition 5.4. Let (X, T) be a ternary self-distributive set, A an abelian group heap and g :

X � X � X ! A a 2-cocycle of X with values in A. We define the self-distributive cocycle exten-
sion of X with heap coefficients in A, by the cocycle g to be the cartesian product X�A,
endowed with the ternary operation T0 given by

x, að Þ � y, bð Þ � z, cð Þ 7! T x, y, zð Þ, a� bþ cþ g x, y, zð Þ
� �

:

In this situation, we denote the extension by X�gA:

Lemma 5.5. The TSD 2-cocycle condition gives extension cocycles of TSDs with abelian group heap
coefficients. Specifically, the ternary operation in Definition 5.4, corresponding to a 2-cocycle g satis-

fying the second condition d2g ¼ 0 in 5.3, is ternary self-distributive.

Definition 5.6. Given two extensions X�gA and X�g0A, we define a morpshim of extensions to
be a morphism of ternary self-distributive sets making a commutative diagram identical to the
one in Definition 3.15. An invertible morphism of extensions is called isomorphism.

14 M. ELHAMDADI ET AL.



Similarly to Definition 3.15, this defines an equivalence relation and corresponding isomorph-
ism classes. We have the following result.

Proposition 5.7. There is a bijective correspondence between H2
SD X,Að Þ and equivalence classes

of extensions.

Proof. Similar to the group-theoretic case and Proposition 3.16. w

Example 5.8. Let X ¼ Z2 with the TSD operation T x, y, zð Þ ¼ xþ yþ z 2 Z2: This is in fact the
abelian heap Z2 and by Lemma 6.1 below, the same operation is self-distributive. In this example,

we compute the first cohomology group H1
SD X,Z2ð Þ and the second cohomology group

H2
SD X,Z2ð Þ with coefficients in the abelian heap Z2: For a function f : X ! Z2, a straightforward

computation gives that d1 fð Þ ¼ 0: This gives H1
SD X,Z2ð Þ ffi C1

SD X,Z2ð Þ: To compute the kernel of

d2, let us write an element / : X3 ! Z2 in terms of characteristic functions as / ¼
P

x, y, z / x, y, zð Þv x, y, zð Þ: Then, d
2 /ð Þ ¼ 0 gives the following system of equations in Z2 :

/ 1, 1, 1ð Þ þ / 0, 0, 0ð Þ ¼ 0

/ 1, 1, 0ð Þ þ / 0, 0, 1ð Þ ¼ 0

/ 1, 0, 1ð Þ þ / 0, 1, 0ð Þ ¼ 0

/ 1, 0, 0ð Þ þ / 0, 1, 1ð Þ ¼ 0

8
>>>>><
>>>>>:

implying that ker d2ð Þ is 4-dimensional with a basis v 1, 1, 1ð Þ þ v 0, 0, 0ð Þ, v 1, 1, 0ð Þ þ v 0, 0, 1ð Þ, v 1, 0, 1ð Þ þ

v 0, 1, 0ð Þ, and v 1, 0, 0ð Þ þ v 0, 1, 1ð Þ: Since im d1ð Þ ¼ 0, we then obtain that H2
SD X,Z2ð Þ ffi Z2

�4:

Example 5.9. In this example, we compute the first cohomology group H1
SD X,Z3ð Þ and the

second cohomology group H2
SD X,Z3ð Þ for the same X ¼ Z2 as above, with coefficients in the

abelian heap Z3: For a function f : X ! Z3, a direct computation gives that d1 fð Þ 1, 0, 1ð Þ ¼

f 0ð Þ � f 1ð Þ, d1 fð Þ 0, 1, 0ð Þ ¼ f 1ð Þ � f 0ð Þ and all other unspecified values of d1 fð Þ x, y, zð Þ are zeros.

This gives H1
SD X,Z3ð Þ ffi Z3: We continue to use the characteristic function notation. Then, hand

computations give that ker d2ð Þ is 3-dimensional with a basis v 1, 1, 1ð Þ þ v 0, 0, 0ð Þ þ v 1, 0, 0ð Þ þ v 0, 1, 1ð Þ,

v 1, 1, 0ð Þ þ v 0, 0, 1ð Þ � v 0, 1, 0ð Þ, and v 1, 0, 1ð Þ � v 0, 1, 0ð Þ: Since im d1ð Þ is generated by v 1, 0, 1ð Þ � v 0, 1, 0ð Þ, we

then obtain that H2
SD X,Z3ð Þ ffi Z3 � Z3:

Example 5.10. Let X be a finite trivial TSD set, that is T x, y, zð Þ ¼ x for all x, y, z 2 X, then the

differentials d1 and d2 take the following simpler forms:

d1n x, y, zð Þ ¼ n zð Þ � n yð Þ,

d2g x, y, z, u, vð Þ ¼ g y, u, vð Þ � g z, u, vð Þ:

This gives, for an abelian group A,

im d1ð Þ ¼ fg : X3 ! A, g x, y, zð Þ ¼ n zð Þ � n yð Þ, for some mapn : X ! Ag:

Thus, H1
SD X,Að Þ ¼ Z1

SD X,Að Þ is the group of constant functions, which is isomorphic to A. The

kernel of d2 is given by

kerðd2Þ ¼ fg : X3 ! A j gðx, y, zÞ ¼ gðx0, y, zÞ,8x, x0, y, z 2 Xg
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that are functions constant on the first variable. Hence, Z2
SD X,Að Þ is isomorphic to AX�X , the

group of functions AX�X from X�X to A. This group has the subgroup B2
SD X,Að Þ ¼

im d1ð Þ ¼ fg : X3 ! Ajg x, y, zð Þ ¼ n zð Þ � n yð Þ, n 2 AXg:

Let X ¼ Zn be equipped with the trivial TSD operation, and A be cyclic, Zm or Z: We repre-

sent elements of Zn by f0, :::, n� 1g: Then, an element g 2 Z2
SD X,Að Þ ffi AX�X as a function

g x, y, zð Þ is constant on x and with variables (y, z). Hence, Z2
SD X,Að Þ has basis of characteristic

functions v y, zð Þ 2 AX�X:

Since d1 nð Þ y, zð Þ ¼ n zð Þ � n yð Þ, we have d1 við Þ ¼
P

x 6¼i v x, ið Þ �
P

x 6¼i v i, xð Þ for i ¼ 0, :::, n� 1:

Since each term v x, yð Þ, x 6¼ y 2 Zn, appears exactly twice in
Pn�1

i¼0 d1 við Þ with opposite signs, we

have
Pn�1

i¼0 d1 við Þ ¼ 0: Hence B2
SD X,Að Þ is spanned by d1 við Þ, i ¼ 0, :::, n� 2:

We show that B2
SD X,Að Þ is a direct summand of Z2

SD X,Að Þ: Set vfx, yg ¼ v x, yð Þ � v y, xð Þ for x< y.

Then, fvfx, yg, v x, yð Þ, v x, xð Þjx < y, x, y 2 Zng forms a basis of Z2
SD X,Að Þ: One computes d1 við Þ ¼P

x<i vfx, ig �
P

i<y vfi, yg: The term �vfi, n�1g appears exactly once only in d1 við Þ for i ¼

0, :::, n� 2, and no other d1 vjð Þ for j 6¼ i: Hence, d1 við Þ, i ¼ 0, :::, n� 2, are linearly independent

and form a direct summand. Thus, we obtained Z2
SD X,Að Þ ffi An2 ,B2

SD X,Að Þ ffi An�1, and

H2
SD X,Að Þ ffi An2�nþ1:
The following provides an algebraic meaning of the TSD 3-cocycle condition.

Proposition 5.11. The TSD 3-cocycle condition gives obstruction cocycles of TSDs for short exact

sequences of coefficients. Specifically, let X be a TSD set and consider a short exact sequence of abel-
ian groups,

0 ! H !
i
E !

p
A ! 0,

where E is the extension heap corresponding to the 2-cocycle / 2 Z2 X,Að Þ, and a section

s : A ! E, such that s 0ð Þ ¼ 0, the obstruction for s/ to satisfy the 2-cocycle condition is a 3-cocycle
with heap coefficients in H.

Proof. We construct the mapping a : X5 ! H by the equality

ia x1, :::, x5ð Þ

¼ s/ x1, x2, x3ð Þ � s/ T x1, x4, x5ð Þ,T x2, x4, x5ð Þ,T x3, x4, x5ð Þ
� �

þs/ T x1, x2, x3ð Þ, x4, x5
� �

� s/ x1, x4, x5ð Þ

þs/ x2, x4, x5ð Þ � s/ x3, x4, x5ð Þ:

Since / satisfies the 2-cocycle condition, we see that pa is the zero map, where p : E ! A is the

projection. It follows that there is a : X5 ! H satisfying the above equality. It is proved that a :

X5 ! H so defined satisfies the 3-cocycle condition with heap coefficients in H, by a direct
(though long) calculation. w

Further study on homology groups with heap coefficients and their properties, such as exist-
ence of torsion, lower/upper bounds of their ranks and an interpretation of the rank of the 0-

dimensional homology group, would be desirable and of interest.

6. From heap cocycles to TSD cocycles

In this section, we show that heaps and their 2-cocycles give rise to those for TSDs. Although a

heap gives rise to a group, and T x, y, zð Þ ¼ xy�1z gives a TSD operation, the following lemma

provides a direct argument, which provides an idea for the proof of Theorem 6.2.
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Lemma 6.1. A heap is ternary self-distributive.

Proof. First, we note that for a heap operation it holds that

x, y, z½ �, z, y½ � ¼ x, y, z, z, y½ �½ � ¼ x, y, y½ � ¼ x:

Then, one computes

T T x1, x4, x5ð Þ,T x2, x4, x5ð Þ,T x3, x4, x5ð Þ
� �

¼ x1, x4, x5½ �, x2, x4, x5½ �, x3, x4, x5½ �½ �

¼ x1, x2, x4, x5½ �, x5, x4½ �, x3, x4, x5½ �½ �

¼ x1, x2, x3, x4, x5½ �½ �

¼ x1, x2, x3½ �, x4, x5½ �

¼ T T x1, x2, x3ð Þ, x4, x5
� �

Þ

as desired. The notation T x, y, zð Þ ¼ x, y, z½ � was used for clarification. w

Theorem 6.2. Let X be a heap, with the operation regarded as a TSD operation by Lemma 6.1,

and let A be an abelian group. Suppose that g 2 Z2
H X,Að Þ, that is, g satisfies d21ð Þg ¼ 0 ¼ d22ð Þg and

the degeneracy condition. Then g is a TSD 2-cocycle, g 2 Z2
SD X,Að Þ. This assignment induces an

injection of H2
H X,Að Þ into H2

SD X,Að Þ:

Proof. We note that d21ð Þg ¼ 0 ¼ d22ð Þg also implies d20ð Þg ¼ 0, and the equality x, y, z½ �, z, y½ � ¼ x

from the proof of Lemma 6.1. One computes

g x1, x4, x5ð Þ � g x2, x4, x5ð Þ þ g x3, x4, x5ð Þ

þg T x1, x4, x5ð Þ,T x2, x4, x5ð Þ,T x3, x4, x5ð Þ
� �

¼ �g x2, x4, x5½ �, x5, x4ð Þ þ g x1, x2, x4, x5½ �, x5, x4½ �, x3, x4, x5½ �ð Þ

¼ g x1, x2, x3, x4, x5½ �ð Þð Þ

�g x2, x4, x5ð Þ þ g x3, x4, x5ð Þ

¼ g x1, x2, x3ð Þ þ g x1, x2, x3½ �, x4, , x5ð Þ

�g x2, x4, x5½ �, x5, x4ð Þ � g x2, x4, x5ð Þ

¼ g x1, x2, x3ð Þ þ g T x1, x2, x3ð Þ, x4, , x5
� �

as desired. The equalities follow from d21ð Þg ¼ 0, d20ð Þg ¼ 0, and Lemma 3.17, respectively, and the

underlined terms indicate where they are applied. This proves that we have an inclusion h :

Z2
H X,Að Þ ,! Z2

SD X,Að Þ: Since we have the equality C1
H X,Að Þ ¼ C1

SD X,Að Þ and the first cochain

differentials for heap and TSD cohomologies coincide up to sign, d1H ¼ �d1SD, we have

h d1H fð Þ
� �

¼ �d1SD h fð Þð Þ and h B2
H X,Að Þ

� �
� B2

SD X,Að Þ, so that h induces a homomorphism �h :

H2
H X,Að Þ ! H2

SD X,Að Þ: Lastly, the map �h is injective. Indeed, for g 2 Z2
H X,Að Þ, assume that

h gð Þ 2 Z2
SD X,Að Þ is null-cohomologous. Then, h gð Þ ¼ d1SD n0ð Þ for some n0 2 C1

SD X,Að Þ: For n ¼

�n0 2 C1
H, we have g ¼ d1H nð Þ, so that g is null-cohomologous in Z2

H X,Að Þ: w

Example 6.3. In Example 3.22, a nontrivial heap 2-cocycle g was given for X ¼ Z3 ¼ A: By

Theorem 6.2, g is a non-trivial TSD 2-cocycle. Hence, we obtain H2
SD X,Að Þ 6¼ 0:

Remark 6.4. The construction in Theorem 6.2 and taking extensions commute (c.f. Remarks 4.2

and 4.8). Indeed, for a heap X and an abelian heap A, the heap extension X�A by a heap 2-
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cocycle g is defined by

x, að Þ, y, bð Þ, z, cð Þ
� �

¼ x, y, z½ �, a� bþ cþ g x, y, zð Þ
� �

,

and Lemma 6.1 states that this heap operation gives a ternary shelf. On the other hand, this

is the extension of a ternary shelf by a TSD 2-cocycle g with the heap coefficient A by

Definition 5.4.

7. Internalization

In this section, we generalize to monoidal categories, the construction of TSD structures from

heaps. Throughout the section, all symmetric monoidal categories are strict (the associator

A£Bð Þ£C ! A£ B£Cð Þ, the right and left unitors I£X ! X and X£ I ! X are all identity

maps, where I is the unit object).

Let C, £ð Þ be a symmetric monoidal category, X,D, �ð Þ be a comonoid object in C and con-

sider a morphism l : X£X£X ! X: We translate the heap axioms of Section 2 into commuta-

tive diagrams in the category C: The equalities of type 1 and 2 para-associativity are defined by

the commutative diagram

where the central arrow corresponds to the morphism l 1£ l£1ð Þs321 and s321 is defined by

s321 ¼ 1£ s£1
2ð Þ 1

2
£ s£1ð Þ 1£ s£1

2ð Þ:

The type 0 para-associativity is defined by

and follows from those of types 1 and 2. The degeneracy conditions are formulated as commuta-

tivity of the following diagrams.

and

Definition 7.1. A heap object in a symmetric monoidal category is a comonoid object X,D, �ð Þ,
where � : X ! I is a counital morphism to the unit object I, endowed with a morphism of como-

noids l : X£ 3 ! X making all the diagrams above commute.

Example 7.2. A (set-theoretic) heap in the sense of Section 2 is a heap object in the category

of sets.

The following appeared implicitly in [11].
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Example 7.3. Let H be an involutory Hopf algebra (i.e. S2 ¼ 1) over a field k: Then, H is a heap
object in the monoidal category of vector spaces and tensor products, with the ternary operation
l induced by the assignment

x� y� z 7! xS yð Þz

for single tensors. Indeed, we have

l l x� y� zð Þ � u� vð Þ

¼ xS yð ÞzS uð Þv

¼ xS yð ÞS
2 zð ÞS uð Þv

¼ xS uS zð Þyð Þv

¼ l x� l u� z � yð Þ � vð Þ

corresponding to the commutativity of the diagram representing equality of type 1. Observe that
we have used the involutory hypothesis to obtain the second equality. We also have

l 1� Dð Þ x� yð Þ

¼ l x� y 1ð Þ � y 2ð Þ
� �

¼ xS y 1ð Þ
� �

y 2ð Þ

¼ � yð Þx

which shows the left degeneracy constraint. The rest of the axioms can be checked in a simi-
lar manner.

The opposite direction in the group-theoretic case is the assertion that a pointed heap gener-
ates a group by means of the operation xy ¼ x, e, y½ �: The following is a Hopf algebra version and

can be obtained by calculations. More general statement of this can be found in [3] and below.

Proposition 7.4. Let X, �½ �
� �

be a heap object in a coalgebra category, and let e 2 X be a group-
like element (i.e. D eð Þ ¼ e� e and � eð Þ ¼ 1). Then, X is an involutory Hopf algebra with multipli-

cation m x� yð Þ :¼ le x� yð Þ :¼ x� e� y½ �, unit e, and antipode S xð Þ :¼ e� x� e½ �:

Proof. We use Sweedler’s notation D xð Þ ¼ x 1ð Þ � x 2ð Þ: The associativity of m follows from the type
0 para-associativity of l. A unit condition is computed by

m e� xð Þ ¼ l e� e� xð Þ ¼ l D eð Þ � xð Þ ¼ x

by the degeneracy condition and the assumption that e is group-like. The other condition
m x� eð Þ ¼ x is similar. The compatibility between m and D is computed as

Dm x� yð Þ ¼ Dl x� e� yð Þ

¼ ls D xð Þ � D eð Þ � D yð Þ
� �

¼ ls x 1ð Þ � x 2ð Þ � e� e� y 1ð Þ � y 2ð Þ
� �

¼ l x 1ð Þ � e� y 1ð Þ
� �

� l x 2ð Þ � e� y 2ð Þ
� �

¼ m x 1ð Þ � y 1ð Þ
� �

�m x 2ð Þ � y 2ð Þ
� �

as desired, where s is an appropriate permutation that give the third equality, and the group-like
assumption is used in the second equality. An antipode condition is computed as
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m S� 1ð ÞD xð Þ

¼ l l e� x 1ð Þ � e
� �

� e� x 2ð Þ
� �

¼ l e� x 1ð Þ � l e� e� x 2ð Þ
� �� �

¼ l e� x 1ð Þ � l D eð Þ � x 2ð Þ
� �� �

¼ l e� x 1ð Þ � x 2ð Þ
� �

� eð Þ

¼ e� xð Þ

as desired, where the group-like condition � eð Þ and the degeneracy condition for l were used.

The other case m 1� Sð ÞD xð Þ ¼ e� xð Þ is similar. This completes the proof. w

Remark 7.5. Observe that S so defined, is involutory. This observation corroborates the necessity

of including the involutory hypothesis in Example 7.3.

Remark 7.6. We observe a relation between a choice of a group-like element e in Proposition 7.4

and a coaugmentation map of a coalgebra. Let X,D, �ð Þ be a coalgebra. A coaugmentation is a

coalgebra morphism g : k ! X (i.e. Dg ¼ g� gð Þj, where j : k ! k� k is the canonical iso-

morphism, j 1ð Þ ¼ 1� 1) such that �g ¼ 1j
k
: Let e ¼ g 1ð Þ: We show that e is group-like. One

computes D eð Þ ¼ Dg 1ð Þ ¼ g 1ð Þ � g 1ð Þ ¼ e� e, and � eð Þ ¼ � g 1ð Þ
� �

¼ 1 as desired. Conversely,

for any group element e 2 X, let g be defined by g 1ð Þ ¼ e: Then, one computes Dg 1ð Þ ¼ D eð Þ ¼

e� e ¼ g eð Þ � g eð Þ ¼ g� gð Þj 1ð Þ and �g 1ð Þ ¼ � eð Þ ¼ 1: We observe that an advantage of using

coaugmentation map is that the desired condition can be stated by a map, without mention of

particular elements, which becomes advantageous in categorical definitions as we see below.

We generalize Example 7.3 and Proposition 7.4 to symmetric monoidal categories as follows,

using Remark 7.6. For this purpose, first we define a coaugmentation of a comonoid object

X,D, �ð Þ in a symmetric monoidal category with a unit object I as a comonoidal morphism g :

I ! X such that �g ¼ 1:

Definition 7.7. Let C be a symmetric monoidal category. We define the category of heap objects

in C,HC, as follows. The objects of HC are the heap objects as in Definition 7.1. The morphisms

are defined to be the morpshisms of C commuting with the heap maps and the comonoidal

structures. A heap object X, is called pointed, if it is endowed with a coaugmentation g : I ! X:
The category of pointed heap objects in C,H�

C, is the category consisting of pointed heap objects

over C, and morphisms of heap objects commuting with the coaugmentations.

An involutory Hopf monoid (object) in a symmetric monoidal category is equipped with a

monoidal product m, a unit object I, a comonoidal product D, an antipode S that is an antimor-

phism (i.e. DS ¼ S£ Sð ÞsD and Sm ¼ ms S£ Sð Þ) satisfying m S£1ð ÞD ¼ g� ¼ m 1£ Sð ÞD and

S2 ¼ 1, a unit morphism g : I ! X that satisfies the left and right unital conditions m g£1ð Þ ¼

1 and m 1£ gð Þ ¼ 1, and a counit morphism � : X ! I that satisfies the left and right counital

conditions �£1ð ÞD ¼ 1, 1£ �ð ÞD ¼ 1, and �g ¼ 1I:

Theorem 7.8. Let C be a symmetric monoidal category. There is an equivalence of categories

between the category H
�
C and the category of involutory Hopf monoids in C, sHC:

Proof. We define a functor F : H�
C ! sHC as follows. Let X, g,l, �,Dð Þ be a pointed heap object

in C, define F Xð Þ :¼ X, I, g, kg, qg,m, �,D, S
� �

, where multiplication m :¼ l 
 1£ g£1, antipode

S :¼ l 
 g£1£ g, the unit object I, the left and right unitors kg, qg by kg :¼ m g£1ð Þ : I£X !
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X and qg :¼ m 1£1ð Þ : X£ I ! X, and comonoidal structure unchanged. The functor F is

defined to be the identity on morphisms. The fact that F Xð Þ is a Hopf monoid in C is a transla-
tion of the computations in Example 7.3 in commutative diagrams or series of compos-
ite morphisms.

Specifically, defining conditions are verified as follows. The associativity of m follows from the
para-associativity as before. The unit g and the counit � are unchanged and a left unital condition
is checked by

m g£1ð Þ ¼ l g£ g£1ð Þ

¼ l Dg£1ð Þ ¼ �£1ð Þ g£1ð Þ ¼ �g£1 ¼ 1I £1 ¼ 1

as desired. The right unital condition is computed similarly. The compatibility between m and D

is computed as

m£mð Þ D£Dð Þ ¼ ½ l 1£ g£1ð Þ£ l 1£ g£1ð Þð � D£Dð Þ
�

¼ l£ lð Þ D£Dg£Dð Þ ¼ l£ lð Þ D£D£Dð Þ 1£ g£1ð Þ

¼ Dl 1£ g£1ð Þ ¼ Dm:

We note that the compositions involving D£D contain appropriate permutations of factors of
objects. The antipode condition is computed as

m S£1ð ÞD

¼ l 1£ g£1ð Þ l g£1£ gð Þ£1ð ÞD

¼ l g£1£1ð Þ l g£ g£1ð Þ£1ð ÞD

¼ g£ �ð Þ �g£1ð ÞD

¼ �g:

The other antipode condition is similar.
Similarly, we define a functor G : sHC ! H�

C by the assignment on objects G X, g,m, �,D, Sð Þ :¼

X, g,l, �,Dð Þ, with l :¼ m m£1ð Þ 1£ S£1ð Þ: Also, G is the identity on morphisms. The proof is
obtained by sequences of equalities of composite morphisms mimicking the computations in
Example 7.3. w

Next we show that Lemma 6.1 holds for a coalgebra (i.e. a comonoid in the category of vector
spaces). Although this is a special case of Theorem 7.12, we include its statement and proof here
to illustrate and further motivate Theorem 7.12. For this goal, we slightly modify the definition of
TSD maps in symmetric monoidal categories, given in [11].

Definition 7.9. Let X,D, �ð Þ be a comoidal object in a symmetric monoidal category C: A ternary
self-distributive object X,D, �, lð Þ in C is a comonoidal object that satisfies the following condition:

l l£ 3
� �

�3 D
0
£1ð ÞD£ D

0
£1ð ÞD½ � ¼ l l£1

£ 2
� �

where �3 denotes the composition of switching maps corresponding to transpositions

24ð Þ 37ð Þ 68ð Þ and D
0
:¼ sD:

This differs from the definition found in [11] only in the use of D0 instead of D. The main
examples, set theoretical ones and Hopf algebras, satisfy both definitions.

Proposition 7.10. Let H and l be as in the Example 7.3. Then, l defines a ternary self-distributive
object in the category of vector spaces.

Proof. One proceeds as in the proof of Lemma 6.1 as follows. We use the Sweedler notation

D xð Þ ¼ x 1ð Þ � x 2ð Þ and D� 1ð ÞD xð Þ ¼ x 11ð Þ � x 12ð Þ � x 2ð Þ: Then, one computes
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l l x� y 1ð Þ � z 1ð Þ
� �

� z 2ð Þ � y 2ð Þ
� �

¼ l x� y 1ð Þ � l z 1ð Þ � z 2ð Þ � y 2ð Þ
� ��

¼ l x� y 1ð Þ � y 2ð Þ
� �

� zð Þ ¼ x� yð Þ� zð Þ:

Then, we obtain

l l x1 � x 12ð Þ
4 � x 12ð Þ

5

� �
� l x2 � x 11ð Þ

4 � x 11ð Þ
5

� �
� l x3 � x 2ð Þ

4 � x 2ð Þ
5

� �� �

¼ l x1 � l l x2 � x 11ð Þ
4 � x 11ð Þ

5

� �
� x 12ð Þ

5 � x 12ð Þ
4

� �
� l x3 � x 2ð Þ

4 � x 2ð Þ
5

� �� �

¼ l x1 � x2� x 1ð Þ
4

� �
� x 1ð Þ

5

� �
� l x3 � x 2ð Þ

4 � x 2ð Þ
5

� �� 	

¼ l l x1 � x2 � x3ð Þ � � x 1ð Þ
4

� �
� x 1ð Þ

5

� �
x 2ð Þ
4 � x 2ð Þ

5

� �� 	

¼ l l x1 � x2 � x3ð Þ � x4 � x5ð ÞÞ

as desired. w

Our goal, next, is to show that a more general version of Lemma 6.1 and Proposition 7.10 holds

in an arbitrary symmetric monoidal category. We first have the following preliminary result.

Lemma 7.11. Let X,D, �, lð Þ be a heap object in a symmetric monoidal category with tensor prod-

uct £ and switching morphism s. Then, the following identity of morphisms holds

l l£1
£ 2

� �
s4, 5s3, 4 1£D£Dð Þ ¼ 1£ �£ �:

Proof. We observe that the following commutative diagram implies our statement.

where the rectangle on top, and the two triangles below commute because of naturality of the switch-

ing morphism, while the other parts of the diagram commute by heap and comonoid axioms. w

Theorem 7.12. Let X,D, �,lð Þ be a heap object in a symmetric monoidal category C. Then,

X,D, �,lð Þ is also a ternary self-distributive object in C:

Proof. Since X,D, �ð Þ is a comonoid in C by hypothesis, we just need to prove that TSD of l. We

use the following commutative diagram
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where we have omitted the symbol £ in the product of morphisms, omitted the subscripts corre-

sponding to the switching morphisms s, to slightly shorten the notation and, finally, we have

used the notation 
 to indicate the composition of morphisms. The leftmost map s : X7 ! X7 is

the composition of symmetry constraints corresponding to the transposition 5 6ð Þ 4 5ð Þ 5 6ð Þ

4 5ð Þ 3 4ð Þ, proceeding clockwise, s : X9 ! X9 corresponds to 3 4ð Þ 4 5ð Þ 2 3ð Þ: The reader can

easily find the correct compositions corresponding to the remaining s’s by a diagrammatic

approach. The triangles on the right and at the bottom, are instances of type 1 and type 0 axioms,

respectively. The middle triangle commutes as a consequence of Lemma 7.11. The other diagrams

can be seen to be commutative either by applying the comonoid axioms or naturality of the

switching morphism. Finally, by direct inspection we see that the upper perimeter of the diagram

corresponds to the LHS of TSD, as stated in Definition 7.9. This completes the proof. w
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