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1. Introduction

Self-distributivity of binary operations and its cohomology theories, motivated by

knot theory, have been studied extensively in recent years, see for example [3, 5–

7, 10, 21]. In particular, in [6], the authors have introduced a (co)homology theory

of quandles and utilized the 2-cocycles with abelian coefficients to define a link

invariant, called cocycle invariant. In [3], it has been given a non-abelian version of

these results, and it has been shown that the cocycle invariant is a quantum invariant

based on previous work of Graña, see [12]. Mutually distributive binary operations

were investigated in [22] in which the author proposed a general framework to study

homology of distributive structures. Ternary self-distributivity, which is a natural

generalization of the binary case, and its cohomology theory have been studied in
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[9, 19]. In this paper, we consider higher arity self-distributivity and its cohomology,

which provide an algebraic background suitable to the definition of 2-cocycle framed

link invariants.

We generalize the notion of mutual distributive operations given in [22] to n-

ary operations. We show that composing mutually distributive operations results

in new higher arity self-distributive operations (Proposition 3.1). Specifically, for

m-ary and n-ary self-distributive operations Wm and Wn on X , respectively, under

the condition called mutual distributivity defined in Sec. 3, the composition W :

Xm+n−1 → X defined by

W (x,y, z) = Wn(Wm(x,y), z)

is shown to be an (m+n−1)-ary self-distributive operation. This procedure, in the

specific case of mutually distributive binary operations, is particularly proficuous to

describe colorings of framed link diagrams by means of ternary operations, paving

the way for the possibility of introducing an analogue of the cocycle invariant in the

context of framed links. We defer the study of such an invariant to a subsequent

work.

We generalize both the n-ary distributive homology [9] and homology of dis-

tributive sets [22] to mutually distributive sets of general n-ary operations (Defini-

tion 4.1). The relation between this chain complex and the n-ary operations that

result from mutually distributive sets by composition as in Definition 5.1, is given

in the form of a chain map.

We also present constructions, called doubling, for mutually distributive sets,

that are similar to the composition introduced in Sec. 3 but defined on the prod-

uct X ×X . A geometric interpretation uses parallel strings and allows us to relate

colorings of diagrams of links and colorings of diagrams of framed links. The coho-

mological counterpart of this procedure, also described in this paper, is expected to

provide the algebraic context for the definition of a framed link cocycle invariant.

The relation between the doubling and the composition in Sec. 3, as well as its

implications to cohomology are discussed.

Higher arity self-distributivity is also investigated in the context of symmet-

ric monoidal categories. We define the notion of n-ary self-distributive object in

a symmetric monoidal category, providing therefore a higher arity version of the

work in [2]. In particular, we show how to produce ternary self-distributive objects

in the category of vector spaces, starting from binary self-distributive objects (The-

orem 8.1). Specifically, let (X,∆) be a comonoid in a (strict) symmetric monoidal

category C (e.g. a coalgebra in the category of vector spaces). Let q : X�X −→ X

be a morphism such that (X, q) is a binary self-distributive object in C. Then the

pair (X,T ), where T = q(q��), defines a ternary self-distributive object in C. The

construction defines a functor F : BSD → T SD, from the category of binary self-

distributive objects in C, to the category of ternary self-distributive objects in C.

This procedure of internalization of higher order self-distributivity indeed produce

interesting examples of self-distributive objects among coalgebras. Examples from
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Lie algebras, coalgebras and Hopf algebras are given. As in [2] this categorical ver-

sion is expected to be related to the Yang–Baxter equation in tensors of vector

spaces through Hopf algebras.

The paper is organized in the following manner. Section 2 gives the basics of

binary and ternary racks with examples. In Sec. 3, we introduce the higher ar-

ity case and show that composing mutually distributive operations results in new

higher arity self-distributive operations. In Sec. 4, we define a cohomology theory

that generalizes those given in [9, 22] to mutually distributive operations in various

arities. A chain map that relates this chain complex and the one for the opera-

tion resulted from composition is given in Sec. 5. In Sec. 6, we introduce functors

(which we call doubling) in the binary and ternary mutually distributive rack cate-

gories. Section 7 shows the passages between binary mutually distributive racks and

ternary self-distributive racks. We exhibit a direct construction of ternary cocycles

from binary cocycles. We close the circle of functors relating binary and ternary

operations by introducing a construction that brings back from ternary to binary.

The relations among these functors are also discussed and a geometric interpre-

tation is given. Section 8 is devoted to the development of a categorical point of

view of n-ary self-distributivity, extending the previous results of [2]. We define

self-distributive objects in symmetric monoidal categories and construct examples

in the category of vector spaces. We describe a procedure to obtain higher order

self-distributive operations from Lie algebras. Appendix A deals with some detailed

computations related to Lie algebras. In Appendix B, we introduce a higher order

analogue of augmented rack that enables us to produce Hopf algebra versions of

group theoretic examples, such as the heap operation.

2. Preliminary

2.1. Basics of Racks

We review, for the convenience of the reader, some basic definitions of shelves, racks

and quandles and give a few examples. This material can be found, for example, in

[7, 10, 11, 21, 22].

Definition 2.1. A shelf X is a set with a binary operation (a, b) �→ a∗ b such that

for any a, b, c ∈ X , we have (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

If, in addition, the maps Ry : x �→ x ∗ y are bijections of X , for all y ∈ X , then

(X, ∗) is called a rack.

A quandle is an idempotent (a ∗ a = a, for all a ∈ X) rack.

Example 2.1. The following are typical examples of quandles:

• A group G with conjugation as operation: a ∗ b = b−1ab, denoted by X =

Conj(G), is a quandle.

• A group G with the operation a ∗ b = ba−1b is a quandle called the core quandle.
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• Any Λ(= Z[t, t−1])-module M is a quandle with a∗b = ta+(1− t)b, for a, b ∈ M ,

and is called an Alexander quandle.

• For any group G, and an automorphism f ∈ Aut(G), the operation x ∗ y =

f(xy−1)y defines a quandle structure on G, usually referred to as generalized

Alexander quandle.

A rack homomorphism f : (X, ∗) → (X ′, ∗′) is a map satisfying f(x ∗ y) =

f(x) ∗′ f(y) for all x, y ∈ X . The category of racks is denoted by R.

Let (X, ∗) be a rack and A be an abelian group. A function φ : X ×X → A is

said to be a (rack) 2-cocycle if for all x, y, z ∈ X , the following holds:

φ(x, y) + φ(x ∗ y, z) = φ(x, z) + φ(x ∗ z, y ∗ z).

Lemma 2.1 ([4]). Let (X, ∗) be a rack, A be an abelian group, and φ : X×X → A

be a 2-cocycle. Define an operation ∗ on X ×A by

(x, a) ∗ (y, b) := (x ∗ y, a+ φ(x, y)).

Then (X ×A, ∗) is a rack.

Rack and quandle 2-cocycles have been constructed from extensions [4], poly-

nomial expressions [1, 18], determinants [20], and computer calculations [24].

2.2. Ternary distributive structures

Ternary racks and quandles were investigated in [9, 13, 19] and generalized further

in [8]. Here, we review the basics of ternary racks and give some examples.

Definition 2.2. Let (X,T ) be a set equipped with a ternary operation T : X ×

X × X → X . The operation T is said to be (right) distributive if it satisfies the

following condition for all x, y, z, u, v ∈ X :

T (T (x, y, z), u, v) = T (T (x, u, v), T (y, u, v), T (z, u, v)).

In this paper, we will consider distributivity from the right.

Definition 2.3. Let T : X ×X ×X → X be a ternary distributive operation on

a set X . If for all a, b ∈ X , the map Ra,b : X → X given by Ra,b(x) = T (x, a, b) is

invertible, then (X,T ) is said to be ternary rack.

Example 2.2. The following constructions are found in [9]:

• Let (X, ∗) be a rack and define a ternary operation onX by T (x, y, z) = (x∗y)∗z,

for all x, y, z ∈ X . It is straightforward to see that (X,T ) is a ternary rack. Note

that in this case Ra,b = Rb ◦Ra. We will say that this ternary rack is induced by

a (binary) rack.

In particular, if (X, ∗) is an Alexander quandle with x ∗ y = tx + (1 − t)y,

then the ternary rack coming from X has the operation

T (x, y, z) = t2x+ t(1− t)y + (1− t)z.
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• Let M be any Λ-module where Λ = Z[t±1, s]. The operation T (x, y, z) = tx +

sy + (1 − t − s)z defines a ternary rack structure on M . We call this an affine

ternary rack.

In particular, consider Z8 with the ternary operation T (x, y, z) = 3x+2y+4z.

This affine ternary rack given in [9] is not induced by an Alexander quandle

structure as described in the preceding item since 3 is not a square in Z8.

• Any group G with the ternary operation T (x, y, z) = xy−1z gives a ternary rack.

This operation is well known and called a heap (sometimes also called a groud)

of the group G.

A morphism of ternary racks is a map f : (X,T ) → (X ′, T ′) such that

f(T (x, y, z)) = T ′(f(x), f(y), f(z)).

A bijective ternary rack endomorphism is called ternary rack automorphism. We

denote by T the category of ternary racks.

Let (X,T ) be a ternary rack and A be an abelian group. A function ψ:X×X×

X → A is said to be a ternary 2-cocycle if for all x, y, z, u, v ∈ X , the following

hold:

ψ(x, y, z) + ψ(T (x, y, z), u, v)

= ψ(x, u, v) + ψ(T (x, u, v), T (y, u, v), T (z, u, v)).

This equation is motivated by the following lemma, which is verified by calculations.

Lemma 2.2. Let (X,T ) be a ternary rack and A be an abelian group. Let φ :X ×

X ×X → A be a map. The set X ×A with the ternary operation given by

T ((x, a), (y, b), (z, c)) = (T (x, y, z), a+ ψ(x, y, z))

is a ternary rack if and only if the map φ satisfies the following ternary 2-cocycle

condition:

φ(x, y, z) + φ(T (x, y, z), u, v)

= φ(x, u, v) + φ(T (x, u, v), T (y, u, v), T (z, u, v)).

For a ternary distributive operation T on X , we also use the notation

x ∗ y := T (x, y0, y1),

where y = (y0, y1). Although strictly speaking T (x, y0, y1) is not equal to

T (x, (y0, y1)), no confusion is likely to arise by this convention. Furthermore, for

x = (x0, x1), we use the notation x ∗ y to represent

(x0 ∗ y, x1 ∗ y) = (T (x0, y0, y1), T (x1, y0, y1)).

In this notation, the ternary distributivity can be written as

(x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)

in analogy to the binary case.
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Fig. 1. Diagrammatic representations of a binary (left) and ternary (right) operations.

Figure 1 depicts diagrammatic representations of binary and ternary operations,

on the left and on the right, respectively. See [7], for example, for more details on

diagrammatics for racks and their knot colorings.

We also recall the definition of homology of ternary racks [9]. Define first Cn(X)

to be the free abelian group generated by (2n+1)-tuples (x0, x1, . . . , x2n) of elements

of a ternary rack (X,T ). Define the differentials ∂n : Cn(X) −→ Cn−1(X) as

∂n(x0, x1, . . . , x2n)

=

n∑

i=1

(−1)i[(x0, . . . , x̂2i−1, x̂2i, . . . , x2n)

− (T (x0, x2i−1, x2i), . . . , T (x2i−2, x2i−1, x2i, ), x̂2i−1, x̂2i, . . . , x2n)].

Definition 2.4. The nth homology group of the ternary rack X is defined to be:

Hn(X) = ker∂n/im∂n+1.

By dualizing the chain complex given above, we get a cohomology theory for

ternary racks.

Remark 2.1. Similar definitions give a homology and a cohomology theory for

higher arity self-distributive operations.

3. Compositions of n-Ary Self-Distributive Operations

In this section, we generalize the notion of mutual distributive operations found

in [22] to n-ary operations. The vector notation for ternary operations is di-

rectly generalized to the n-ary ones: Let (X,W ) be an n-ary distributive set. Let

y = (y1, . . . , yn−1) ∈ Xn−1. Then the operation W : Xn → X is denoted by

W (x, y1, . . . , yn−1) = W (x,y). An n-ary operation is also denoted by x ∗ y :=

W (x,y). Here the extra parentheses caused by the vector notation is ignored, i.e.

for y = (y1, . . . , yn−1) and z = (z1, . . . , zn−1), the concatenation (y, z) or simply

y, z denotes (y1, . . . , yn−1, z1, . . . , zn−1). Furthermore, for x = (x1, . . . , xm) ∈ Xm

and y ∈ Xn−1, denote (W (x1,y), . . . ,W (xm,y)) by W (x,y) or x ∗ y.

Definition 3.1. Let Wm and Wn be m-ary and n-ary distributive operations on

X , respectively. The two operations Wm and Wn are called mutually distributive if
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they satisfy

Wn(Wm(x,y), z) = Wm(Wn(x, z),Wn(y, z)),

Wm(Wn(x,u),v) = Wn(Wm(x,v),Wm(u,v))

for all x ∈ X , y,v ∈ Xm−1 and z,u ∈ Xn−1.

Example 3.1. Let (X, ∗X), (Y, ∗Y ) be racks. Define ∗0, ∗1 on X × Y , respec-

tively, by

(x0, y0) ∗0 (x1, y1) = (x0 ∗X x1, y0),

(x0, y0) ∗1 (x1, y1) = (x0, y0 ∗Y y1).

Then computation shows that (∗0, ∗1) are mutually distributive.

Example 3.2. The following construction appears in [14] and provides examples

of mutually distributive rack operations. Denote by ∗n the rack operation on X

defined by n-fold leftmost product x ∗n y = (· · · (x ∗ y) ∗ y) ∗ · · · ∗ y. Then ∗0 = ∗m

and ∗1 = ∗n are mutually distributive for positive integers m and n.

More generally, the following appears in [15, 22]. Let X be a group, and let

f0, f1 ∈ Aut(X) be mutually commuting group automorphisms. Let ∗ε be the gen-

eralized Alexander quandles with respect to fε for ε = 0, 1. Thus x∗εy = (xy−1)fεy,

where the action is denoted in exponential notation. Then computations show that

∗0 and ∗1 are mutually distributive.

There are mutually distributive operations with different arities, as the following

example shows.

Example 3.3. Let X be a module over Z[u±1, t±1, s] and ∗, T be affine binary

and ternary rack operations, respectively, defined by

x ∗ y = ux+ (1− u)y,

T (x, y, z) = tx+ sy + (1− t− s)z.

Then computations show that ∗ and T are mutually distributive.

Remark 3.1. We note that for a group G, the core binary operation (x ∗ y =

yx−1y) and the ternary operation heap (x ∗̂ (y0, y1) = xy−1
0 y1) satisfy (x ∗ y) ∗̂ z =

(x ∗̂ z) ∗ (y ∗̂ z) but not (x ∗̂y) ∗ z = (x ∗ z) ∗̂ (y ∗ z).

Next, we show that composing mutually distributive operations results in new

higher arity self-distributive operations.

Proposition 3.1. Let Wm and Wn be mutually distributive m-ary and n-ary dis-

tributive operations on X. Then W : Xm+n−1 → X defined by

W (x,y, z) = Wn(Wm(x,y), z)

is an (m+ n− 1)-ary distributive operation.
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Proof. We establish the equality

W (W (x,y, z),u,v) = W (W (x,u,v),W (y,u,v),W (z,u,v)).

We replace Wn(x,y) by the notation x ∗n y. Thus we have

W (x,y, z) := (x ∗m y) ∗n z.

Then we compute

W (W (x,y, z),u,v)

= [[(x ∗m y) ∗n z] ∗m u] ∗n v

= ([(x ∗m y) ∗m u] ∗n [z ∗m u]) ∗n v

= [[(x ∗m u) ∗m (y ∗m u)] ∗n (z ∗m u)] ∗n v

= [[(x ∗m u) ∗m (y ∗m u)] ∗n v] ∗n [(z ∗m u) ∗n v]

= [[(x ∗m u) ∗n v] ∗m [(y ∗m u) ∗n v]] ∗n [(z ∗m u) ∗n v]

= W (W (x,u,v),W (y,u,v),W (z,u,v)),

where the second and the fifth equalities follow from the mutual distributivity of

∗m and ∗n. This concludes the proof.

Remark 3.2. Let (X, ∗0, ∗1) be mutually distributive binary operations. Let T be

the TSD operation defined in Proposition 3.1. Then it is written as T (x, y, z) =

(x ∗0 y) ∗1 z for x, y, z ∈ X . We note that the two ternary structures T (x, y, z) =

(x ∗0 y) ∗1 z and T ′(x, y, z) = (x ∗1 y) ∗0 z may not be isomorphic in general as the

following example shows.

Consider the set Z3 with the two binary operations x ∗0 y = x and x ∗1 y =

2y − x. The induced ternary structures T (x, y, z) = (x ∗0 y) ∗1 z and T ′(x, y, z) =

(x ∗1 y) ∗0 z are not isomorphic. In fact, if f : (Z3, T ) → (Z3, T
′) is an isomor-

phism then for all x, y, z in Z3, we have f(T (x, y, z)) = T ′(f(x), f(y), f(z)). Then

f(2z−x) = 2f(y)−f(x). One obtains then a contradiction, for example, by setting

x = z = 0.

Definition 3.2. Let ∗nj
, j = 1, . . . , k, be distributive nj-ary operations on X

that are pairwise mutually distributive. Then we call (X, {∗nj
}kj=1) a mutually

distributive set.

4. Homology of Mutually Distributive Sets

We generalize both the n-ary distributive homology [9] and homology of distributive

sets [22] to mutually distributive sets of general n-ary operations as follows. The

relation between this chain complex and the n-ary operations that result from

mutually distributive sets as in Proposition 3.1 will be given in Sec. 5 in the form

of chain map.
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Definition 4.1. Let (X, {∗nj
}kj=1) be a mutually distributive set. Let �ε =

(ε1, . . . , εn−1) be a vector such that εi ∈ {nj}
k
j=1 for i = 1, . . . , n − 1. Let

chain groups C�ε
n(X) be defined by the free abelian group generated by tuples

x = (x0, (x1, ε1), . . . , (xn−1, εn−1)). Define Cn(X) = ⊕�εC
�ε
n(X) where the direct sum

ranges over all possible vectors �ε. Define the differential ∂�εn : C�ε
n(X) → Cn−1(X) by

∂�εn(x) =

n−1∑

i=1

(−1)i[(x0 ∗εi xi, (x1 ∗εi xi, ε1), . . . , (xi−1 ∗εi xi, εi−1), (̂xi, εi),

(xi+1, εi+1), . . . , (xn−1, εn−1))

−(x0, (x1, ε1), . . . , (̂xi, εi), . . . , (xn−1, εn−1))],

and let

∂n =
∑

�ε

∂�εn : Cn(X) → Cn−1(X).

Lemma 4.1. Let (X, {∗nj
}kj=1) be a mutually distributive set. Then the sequence

(Cn(X), ∂n) defines a chain complex.

Proof. We define, for each vector �ε and i = 1, . . . , n− 1, linear maps

∂i�ε
n (x) = [(x0 ∗εi xi, (x1 ∗εi xi, ε1), . . . , (xi−1 ∗εi xi, εi−1), (̂xi, εi),

(xi+1, εi+1), . . . , (xn−1, εn−1))

− (x0, (x1, ε1), . . . , (̂xi, εi), . . . , (xn−1, εn−1))].

Therefore by definition, ∂�εn =
∑

i(−1)i∂i�ε
n . It is enough to show now that the maps

∂i�ε
n satisfy the pre-simplicial complex relation: ∂i�ε

n−1∂
j�ε
n = ∂j�ε

n−1∂
(i+1)�ε
n for each n ∈ N

whenever j < i.

Fix a vector �ε = (ε1, . . . , εn−1) and consider an element (x0, (x1, ε1), . . . ,

(xn−1, εn−1)) ∈ C�ε
n(X). Then we have

∂i
n−1∂

j
n(x0, (x1, ε1), . . . , (xn−1, εn−1))

= ((x0 ∗εj xj) ∗εi+1 xi+1, ((x1 ∗εj xj) ∗εi+1 xi+1, ε1), . . . , ̂(xj , εj),

(xj+1 ∗ xi+1, εj+1), . . . , (̂xi, εi), . . . , (xn−1, εn−1))

− (x0, (x1, ε1), . . . , ̂(xj , εj),

(xj+1, εj+1), . . . , ̂(xi+1, εi+1), . . . , (xn−1, εn−1)).
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Fig. 2. Curtain diagram representing chain maps.

On the other hand we have

∂j�ε
n−1∂

(i+1)�ε
n (x0, (x1, ε1), . . . , (xn−1, εn−1))

= ((x0 ∗εi+1 xi+1) ∗εj (xj ∗εi+1 xi+1), ((x1 ∗εi+1 xi+1) ∗εj (xj ∗εi+1 xi+1), ε1),

. . . ̂(xj , εj), (xj+1 ∗εi+1 xi+1, εj+1), . . . , ̂(xi+1, εi+1), . . . , (xn−1, εn−1))

− (x0, (x1, ε1), . . . , ̂(xj , εj),

(xj+1, εj+1), . . . , ̂(xi+1, εi+1), . . . , (xn−1, εn−1)),

where we have used the vector notation introduced in Sec. 3. The two quantities

are equal, in virtue of the property of mutual distributivity of the set {∗nj
}kj=1.

Definition 4.2. The chain complex defined by Definition 4.1 and the homology

that it induces will be called labeled chain complex and labeled homology and will

be denoted CL
• (X) and HL

• (X), respectively.

Remark 4.1. The chain complex in Definition 4.1 has a diagrammatic interpreta-

tion as in Fig. 2. In particular, the mutual distributivity condition takes the same

form as in the curtain homology of [23].

Remark 4.2. We observe that if (X, {∗nj
}) is a mutually distributive set, then

CL
• (X) contains the standard self-distributive complexes relative to each ∗nj

as

subcomplexes.

Remark 4.3. The multiplication on binary operations considered in [22] can be

directly generalized to n-ary operations as follows. Given a nonempty set X , let

DistM (X) denotes the set of all n-ary mutually distributive operations on X . Define

the following multiplication on DistM (X):

(W ·W ′)(x,y) := W (W ′(x,y),y)

for all x ∈ X and y ∈ Xn−1. Then it is straightforward to see that the multiplication

defined above makes DistM (X) into a monoid with identityW0 given byW0(x,y) =

x, for all x ∈ X and y ∈ Xn−1.

For example, let (X,T ) be a ternary rack. Define, inductively,

T n(x, y0, y1) = T (T n−1(x, y0, y1), y0, y1).

Then (X,T n) is a ternary distributive set for all positive integer n.
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Remark 4.4. For a given abelian group A, we obtain a labeled cochain complex

with coefficients in A, upon dualizing the chain complex in Definition 4.1. We will

write Cn
L(X ;A) and Hn

L(X ;A) to indicate the labeled nth cochain and cohomology

groups with coefficients in A, respectively.

5. Chain Maps Under n-Ary Compositions

In this section, we show that the cohomology of an operation obtained by composing

mutually distributive operations as in Proposition 3.1 and the cohomology of the

operations themselves are related to the labeled cohomology of Definition 4.1 via

chain maps as follows. The algebraic and geometric motivations and significance of

the chain maps are explained later in this section.

Definition 5.1. Let (X, ∗0, ∗1) be a distributive set, where ∗0 and ∗1 are operations

of arity k and k′, respectively. Call W the (k + k′ − 1)-ary corresponding self-

distributive operation. We define chain maps F�,n : CW
n (X) −→ CL

n (X), from the

(k + k′ − 1)-ary cochain complex relative to W , to the chain complex defined by

Lemma 4.1 for n = 1, 2, 3. Explicitly

F�,1 = 1,

F�,2(x,y0,y1) = (x,y0)0 + (x ∗0 y0,y1)1,

F�,3(x,y0,y1, z0, z1) = (x,y0, z0)00 + (x ∗0 z0,y0 ∗0 z0, z1)01

+(x ∗0 y0,y1, z0)10 + ((x ∗0 y0) ∗0 z0,y1 ∗0 z0, z1)11,

where we put the labels as a subscript and yi, zi are vectors of appropriate lengths,

according to the conventions explained in Sec. 3.

Definition 5.2. Let (X, ∗0, ∗1) be a mutually distributive racks and A be an

abelian group. Let F �,n : Cn
L(X,A) → Cn

W (X,A) for n = 2, 3 be the maps ob-

tained from F�,n by dualization.

Theorem 5.1. For n = 2, 3 the maps F�,n define chain maps. Therefore they

define induced homomorphisms F∗,n : HW
n (X,A) → HL

n (X,A) in homology and

F∗,n : Hn
L(X,A) → Hn

W (X,A) in cohomology.

Proof. We prove the statement in the case of two binary mutually distributive op-

erations ∗0 and ∗1, resulting in a ternary self-distributive operation T . The general

case being an application of the same procedure with vector notation. For a ternary

2-chain (x, y0, y1) we have

∂F�,2(x, y0, y1) = −(x ∗0 y0) + (x) − ((x ∗0 y0) ∗1 y1) + (x ∗0 y0) = ∂T (x, y0, y1).
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By direct computation, we also have

F�,2∂T (x, y0, y1, z0, z1)

= (x, z0)0 + (x ∗0 z0, z1)1 − (T (x, y0, y1), z0)0

− (T (x, y0, y1) ∗0 z0, z1)1 − (x, y0)0 − (x ∗0 y0, y1)1

+(T (x, z0, z1), T (y0, z0, z1))0

+(T (x, z0, z1) ∗0 T (y0, z0, z1), T (y1, z0, z1))1.

On the other hand, the following holds:

∂F�,3(x, y0, y1, z0, z1)

= (x, z0)0 − (x ∗0 y0, z0)0 − (x, y0)0

+(x ∗0 z0, y0 ∗0 z0)0 + (x ∗0 z0, z1)1 − ((x ∗0 z0) ∗0 (y0 ∗0 z0), z1)1

− (x ∗0 z0, y0 ∗0 z0)0 + (T (x, z0, z1), T (y0, z0, z1))0

+(x ∗0 y0, z0)0 − (T (x, y0, y1), z0)0

− (x ∗0 y0, y1)1 + ((x ∗0 y0) ∗0 z0, y1 ∗0 z0)1

+((x ∗0 y0) ∗0 z0, z1)1 − (((x ∗0 y0) ∗0 z0) ∗1 (y1 ∗0 z0), z1)1

− ((x ∗0 y0) ∗0 z0, y1 ∗0 z0)1 + (((x ∗0 y0) ∗0 z0) ∗1 z1, T (y1, z0, z1))1.

The two quantities can be seen to be equal, making use of the identity:

T (x, z0, z1) ∗0 T (y0, z0, z1) = ((x ∗0 y0) ∗0 z0) ∗1 z1.

Therefore, we obtain F�,2∂T = ∂F�,3, which concludes the proof of the first state-

ment. The second statement follows easily from the first one by standard arguments

in homological algebra.

Remark 5.1. Let (X, ∗0, ∗1) be a mutually distributive rack and let C2
L(X ;A) be

the second labeled cochain group with coefficients in A, then the labeled 2-cocycle

conditions corresponding to δ(01)ψ = 0 and δ(10)ψ = 0 take the following form:

φ0(x, y) + φ1(x ∗0 y, z) = φ1(x, z) + φ0(x ∗1 z, y ∗1 z),

φ1(x, y) + φ0(x ∗1 y, z) = φ0(x, z) + φ1(x ∗0 z, y ∗0 z).

Definition 5.3. We call a pair (φ0, φ1) satisfying the preceding equations mutually

distributive.

Observe that (φ0, φ1) being a labeled 2-cocycle means that it is mutually dis-

tributive, φ0 is a 2-cocycle for the operation ∗0 and φ1 is a 2-cocycle for ∗1.

Remark 5.2. Let (X, ∗0, ∗1) be mutually distributive binary operations and T

be the ternary self-distributive operation defined in Proposition 3.1. Let A be an
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abelian group. By Theorem 5.1, F �,2(φ0, φ1) = ψ is a ternary 2-cocycle in C2
T (X,A)

for a labeled 2-cocycle (φ0, φ1). The explicit form of the ternary 2-cocycle

ψ(x, y, z) := φ0(x, y) + φ1(x ∗0 y, z).

Remark 5.3. The case of mutually distributive binary operations whose composi-

tion gives a ternary operation is of particular interest to us since this is the algebraic

counterpart of a diagrammatic doubling procedure particularly adapt to interpret

colorings of framed tangles by ternary racks. The ternary 2-cocycles resulting from

Theorem 5.1 can therefore be used to define cocycle invariants for framed tangles.

This construction of cocycles corresponds to those in [14] for handlebody-links.

From this geometric point of view, we present a direct, geometric proof that ψ

in Remark 5.2 satisfies the ternary 2-cocycle condition. We show

ψ(x, y0, y1) + ψ(T (x, y0, y1), z0, z1)

= ψ(x, z0, z1) + ψ(T (x, z0, z1), T (y0, z0, z1), T (y1, z0, z1)).

The computations below are aided by diagrams shown in Fig. 3, where each equality

is represented by a type III Reidemeister move. In the figure and the computations

below, underlines highlight those terms to which the cocycle condition is applied.

LHS = φ0(x, y0) + φ1(x ∗0 y0, y1) + φ0(((x ∗0 y0) ∗1 y1), z0)

+φ1(((x ∗0 y0) ∗1 y1) ∗0 z0, z1)

= φ0(x, y0) + φ0(x ∗0 y0, z0) + φ1(((x ∗0 y0) ∗1 y1) ∗0 z0, z1)

+φ1((x ∗0 y0) ∗0 z0, y1 ∗0 z0)

= φ0(x, z0) + φ0(x ∗0 z0, y0 ∗0 z0) + φ1(((x ∗0 y0) ∗0 z0) ∗0 z0, y1 ∗0 z0)

+φ1(((x ∗0 y0) ∗1 y1) ∗0 z0, z1)

= φ0(x, z0) + φ0(x ∗0 z0, y0 ∗0 z0) + φ1(((x ∗0 y0) ∗0 z0), z1)

+φ1(((x ∗0 y0) ∗0 z0) ∗1 z1, (y1 ∗0 z0) ∗1 z1)

= φ0(x, z0) + φ1(x ∗0 z0, z1)

+φ1(((x ∗0 y0) ∗0 z0) ∗1 z1, (y1 ∗0 z0) ∗1 z1)

+φ0(((x ∗0 y0) ∗0 z0) ∗1 z1, (y1 ∗0 z0) ∗1 z1) = RHS

Example 5.1. Let (X, ∗X), (Y, ∗Y ) be racks, and (∗0, ∗1) be mutually distributive

operations defined on X × Y in Example 3.1. Let φX and φY be 2-cocycles of

(X, ∗X) and (Y, ∗Y ), respectively. Define 2-cocycles of X × Y corresponding to ∗0,

∗1, respectively, by φ0((x0, y0), (x1, y1)) = φX(x0, x1) and φ1((x0, y0), (x1, y1)) =

φY (y0, y1). Then computations show that (φ0, φ1) are mutually distributive.
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Fig. 3. Diagrammatic proof of 2-cocycle conditions.

Example 5.2. The following construction, found in [14], provides examples of

mutually distributive 2-cocycles. Let (X, ∗) be a rack, φ : X × X → A be a 2-

cocycle, and (E = X×A, ∗̃) be the corresponding extension. Recall that ∗n denotes

the n-fold leftmost product x ∗n y = (· · · (x ∗ y) ∗ y) ∗ · · · ∗ y. Then the function φn

defined by

φn(x, y) = φ(x, y) + φ(x ∗ y, y) + · · ·+ φ(x ∗n−1 y, y)

is a 2-cocycle.

Let (X, ∗0 = ∗m, ∗1 = ∗n) be the mutually distributive rack defined in Exam-

ple 3.2, and let φm, φn be 2-cocycles defined above. Then φm and φn are mutually

distributive. This is seen by the diagrammatic interpretation of parallel strings.

6. The Doubling Functor

In this section, we describe a construction called doubling, that is similar to the

composition defined in Sec. 3 but defined on the product X ×X . A diagrammatic

interpretation is to take parallel strings and provides a method of producing cocycle

invariants for framed links by means of ternary cohomology. The relation between

the doubling and the composition in Sec. 3 as well as implications to cohomology

are discussed in the next section.

6.1. Doubling binary operations

Lemma 6.1. Let (X, ∗0, ∗1) be mutually distributive racks. Define the operation

for (x0, x1), (y0, y1) ∈ X ×X by

(x0, x1) ∗ (y0, y1) := ((x0 ∗0 y0) ∗1 y1, (x1 ∗0 y0) ∗1 y1).

Then (X ×X, ∗) is a rack.
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Fig. 4. Diagrammatic representation of doubling.

A diagrammatic representation of the preceding lemma is depicted in Fig. 4,

and the computations in its proof are facilitated by the corresponding type III

Reidemeister move with doubled strings.

Definition 6.1. Let RM be the category defined as follows. The objects consist

of (X, ∗0, ∗1), where X is a set and (∗0, ∗1) is mutually distributive. For objects

(X, ∗0, ∗1) and (X ′, ∗′0, ∗
′
1), a morphism f is a map f : X → X ′ that is a rack

morphism for both (∗0, ∗
′
0) and (∗1, ∗

′
1).

We observe that if f : X → X ′ is a morphism in the sense of this definition, then

f will automatically respect the mutual distributivity. Specifically, simple compu-

tations imply the following.

Lemma 6.2. If f : (X, ∗0, ∗1) → (X ′, ∗′0, ∗
′
1) is a morphism in RM , then it holds

that

f((x ∗0 y) ∗1 z) = (f(x) ∗′1 f(z)) ∗
′
0 (f(y) ∗

′
1 f(z)).

Computations also show the following.

Lemma 6.3. Let (X, ∗0, ∗1) and (X ′, ∗′0, ∗
′
1) be two mutually distributive racks,

and (X × X, ∗) and (X ′ × X ′, ∗′) be racks as in Lemma 6.1. If f : (X, ∗0, ∗1) →

(X ′, ∗′0, ∗
′
1) is a morphism in RM , then the map F : (X × X, ∗) → (X ′ × X ′, ∗′)

defined by F (x, y) = (f(x), f(y)) is a rack morphism.

Definition 6.2. The functor DR from RM to the category R of binary racks

defined on objects by DR(X, ∗0, ∗1) = (X × X, ∗) through Lemma 6.1 and on

morphisms by DR(f) = f × f through Lemma 6.3, is called the doubling functor.

Remark 6.1. The functor DR is injective on objects and morphisms, but not

surjective on either.

A direct computation gives the following lemma.

Lemma 6.4. Let (X, ∗0, ∗1) be a mutually distributive rack, and (φ0, φ1) be mu-

tually distributive rack 2-cocycles. Let (E, ∗̃ε) be abelian extensions of (X, ∗ε) with

respect to φε,

(x, a) ∗̃ε (y, b) = (x ∗ε y, a+ φε(x, y))

for ε = 0, 1. Then (E, ∗̃0, ∗̃1) is a mutually distributive rack.
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Theorem 6.1. Let (X, ∗0, ∗1) and (X ×X, ∗) be as described in Lemma 6.1. Let

φ0, φ1 be rack 2-cocycles of (X, ∗0) and (X, ∗1), respectively, that satisfy the mutually

distributive rack 2-cocycle condition. Then

φ((x0, x1), (y0, y1)) = φ0(x0, y0) + φ1(x0 ∗0 y0, y1) + φ0(x1, y0) + φ1(x1 ∗0 y0, y1)

is a rack 2-cocycle of (X ×X, ∗). This assignment induces a well defined map Θ :

H2
L(X) −→ H2

R(X×X), where the subscript R indicates the binary rack cohomology.

A proof will be given at the end of Sec. 7. The right-hand side corresponds to

Fig. 4. We call φ the doubled rack 2-cocycle.

6.2. Doubling ternary operations

In this section, we give a doubling construction for ternary racks. The condition

required for this construction differs from the mutual distributivity and defined as

follows.

Definition 6.3. Let T0 and T1 be two ternary operations on a set X . We say that

T0 and T1 are compatible if they satisfy

T0(T0(x0, y0, y1), z0, z1)

= T0(T0(x0, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)),

T1(T1(x1, y0, y1), z0, z1)

= T1(T1(x1, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)).

A diagrammatic representation of the compatibility is depicted in Fig. 5. Ob-

serve that it corresponds to type III Reidemeister move for ribbons.

Example 6.1. Consider a Λ-module M where Λ = Z[t±1, t′±1, s, s′]. The following

two ternary operation T0(x, y, z) = tx + sy + (1 − t − s)z and T1(x, y, z) = t′x +

s′y + (1− t′ − s′)z are compatible if and only if the following conditions hold:
{
(1− t− s)(t′ − t) = 0,

(1− t− s)(s′ − s) = 0,
and

{
(1− t′ − s′)(t− t′) = 0,

(1− t′ − s′)(s− s′) = 0.

For example, one can choose M = Z8 with T0(x, y, z) = 3x + 2y + 4z and

T1(x, y, z) = −x+ 2y.

Definition 6.4. The category TC of compatible ternary distributive racks is defined

as follows. The objects consist of triples (X,T0, T1) where X is a set and (T0, T1) are

compatible ternary operations on X . A morphism between two objects (X,T0, T1)

and (Y, T ′
0, T

′
1) is a map f : X → Y which is morphism in the ternary category for

both (T0, T
′
0) and (T1, T

′
1).

We observe that if f : X → X ′ is a morphism in the sense of Definition 6.4,

then it will automatically respect the mutual ternary distributivity. Specifically,

computations imply the following.
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Fig. 5. Diagrammatic representation of compatible ternary rack operations.

Lemma 6.5. If f : (X,T0, T1) → (X ′, T ′
0, T

′
1) is a morphism in TC , then it holds

that

f(T0(T0(x0, y0, y1), z0, z1))

= T ′
0(T

′
0(f(x0), f(z0), f(z1)), T

′
0(f(y0), f(z0), f(z1)), T

′
1(f(y1), f(z0), f(z1))),

f(T1(T1(x0, y0, y1), z0, z1))

= T ′
1(T

′
1(f(x0), f(z0), f(z1)), T

′
0(f(y0), f(z0), f(z1)), T

′
1(f(y1), f(z0), f(z1))).

Theorem 6.2. Let (T0, T1) be compatible ternary distributive operations on X.

Then T : X2 ×X2 ×X2 → X2 defined by

T ((x0, x1), (y0, y1), (z0, z1))

= (T0(T0(x0, y0, y1), z0, z1), T1(T1(x1, y0, y1), z0, z1))

is a ternary distributive operation on X2.

Proof. It is enough to establish

T (T ((x0, x1), (y0, y1), (z0, z1)), (u0, u1), (v0, v1))

= T (T ((x0, x1), (u0, u1), (v0, v1)),

T ((y0, y1), (u0, u1), (v0, v1)), T ((z0, z1), (u0, u1), (v0, v1))).

A diagrammatic representation of this equality is depicted in Fig. 6. This diagram-

matic equality follows from a sequence of moves depicted in Fig. 5. Thus calculations

are obtained by applications of defining relations of compatibility accordingly.

The following is analogous to Lemma 6.3 and is shown by direct computations.

Lemma 6.6. Let (X,T0, T1) and (X ′, T ′
0, T

′
1) be sets with mutually distributive

ternary operations, and (X ×X,T ) and (X ′ ×X ′, T ′) be ternary distributive racks
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Fig. 6. Diagrammatic representation of Theorem 6.2.

constructed in Theorem 6.2. If f : (X,T0, T1) → (X ′, T ′
0, T

′
1) is a morphism in TC ,

then F defined from f by f × f is a morphism of TC .

Definition 6.5. We denote the functor from TC to the category of ternary racks

defined on objects by DT (X,T0, T1) = (X ×X,T ) and on morphisms by DT (f) =

f × f , and call it doubling.

Remark 6.2. The functor DT is injective on both objects and morphisms, but is

not surjective on either.

Definition 6.6. Let (T0, T1) be compatible ternary distributive operations on X .

Let ψ0, ψ1 be 2-cocycles with respect to T0 and T1, respectively. Then the following

are called the compatibility conditions for ψ0 and ψ1:

ψ0(x0, y0, y1) + ψ1(T1(x1, y0, y1), z0, z1)

= ψ1(x1, z0, z1) + ψ0(T0(x0, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)),

ψ1(x1, y0, y1) + ψ0(T0(x0, y0, y1), z0, z1)

= ψ0(x0, z0, z1) + ψ1(T1(x0, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)).

Theorem 6.3. Let (T0, T1) be compatible ternary distributive operations on X. Let

T be the doubled ternary operation defined in Theorem 6.2. Let ψ0, ψ1 be 2-cocycles

with respect to T0 and T1, respectively, that satisfy the compatibility condition defined

in Definition 6.6. Then

ψ((x0, x1), (y0, y1), (z0, z1))

= ψ0(x0, y0, y1) + ψ1(x1, y0, y1)

+ψ0(T0(x0, y0, y1), z0, z1) + ψ1(T1(x1, y0, y1), z0, z1)

is a ternary rack 2-cocycle of (X ×X,T ).

A proof will be given at the end of Sec. 7. We call ψ the doubled ternary rack

2-cocycle.
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7. From Binary Racks to Ternary Racks and Back

In this section, we provide relations among constructions of self-distributive oper-

ations discussed so far. To simplify the arguments, we focus on binary and ternary

operations. Specifically, we observe that the doubling functors of binary (respec-

tively, ternary) operations factor through ternary (respectively, binary) operations.

This main result of the section is stated in Proposition 7.2. Furthermore corre-

sponding constructions of 2-cocycles are given, and proofs of Theorems 6.1 and 6.3

are provided at the end of the section. We start with defining a functor for the

construction given in Proposition 3.1.

Definition 7.1. The assignment of objects defined by Proposition 3.1 when Wn

and Wm are binary operations (hence the obtained W := T is ternary), is denoted

F(X, ∗0, ∗1) = (X,T ). This assignment on objects can be extended on morphisms

as the identity, to define a functor F : RM → T , from the category of mutually

distributive binary racks (see Section 6), to the category of ternary racks, using

Lemma 6.2.

By definition F is injective and surjective on morphisms. Computations give

the following.

Lemma 7.1. Let {∗, ∗0, ∗1} be a mutually distributive binary set. Let (X,T ) =

F(X, ∗0, ∗1). Then {∗, T } are mutually distributive.

Next we define the opposite construction of binary from ternary operations.

Lemma 7.2. Let T0 and T1 be a two compatible ternary rack operations. Then the

binary operation on the cartesian product X ×X defined by

(x0, x1) ∗ (y0, y1) := (T0(x0, y0, y1), T1(x1, y0, y1)) = (x0 ∗0 y, x1 ∗1 y)

gives a rack structure (X ×X, ∗).

Definition 7.2. The functor defined by Lemma 7.2 is denoted by G : TC → R,

where G(X,T0, T1) = (X ×X, ∗) on objects, and G(f) = f × f on morphisms.

Observe that G is injective on objects and on morphisms.

Proposition 7.1. The functor G is not surjective on objects.

Proof. Consider the binary rack structure on Z× Z defined by

(x0, x1) ∗ (y0, y1) = (x0 + x1, x1).

This rack is not in the image of G since the first entry depends on both x0 and x1.

Theorem 7.1. Let (X,T0, T1) be an object in TC , and (X ×X, ∗) = G(X,T0, T1)

be as in Lemma 7.2. Suppose ψ0 and ψ1 are compatible ternary 2-cocycles of
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respectively (X,T0) and (X,T1). Then

φ((x0, x1), (y0, y1)) := ψ0(x0, y0, y1) + ψ1(x1, y0, y1)

defines a 2-cocycle φ of (X ×X, ∗).

Proof. We check that φ satisfies the following equation:

φ((x0, x1), (y0, y1)) + φ((x0, x1) ∗ (y0, y1), (z0, z1))

= φ((x0, x1), (z0, z1)) + φ((x0, x1) ∗ (z0, z1), (y0, y1) ∗ (z0, z1)).

We have

LHS = ψ0(x0, y0, y1) + ψ1(x1, y0, y1)

+ψ0(T0(x0, y0, y1), z0, z1) + ψ1(T1(x1, y0, y1), z0, z1),

RHS = ψ0(x0, z0, z1) + ψ1(x1, z0, z1)

+ψ0(T0(x0, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1))

+ψ1(T1(x1, z0, z1), T0(y0, z0, z1), T1(y1, z0, z1)).

The compatibility conditions of ψ0 and ψ1 show that LHS and RHS coincide.

The constructions are summarized as follows.

Proposition 7.2. It holds that G ◦ F = DR and F ◦ G = DT .

Proof. Let (X, ∗0, ∗1) be a set with mutually distributive rack operations. Let

(X,T ) = F(X, ∗0, ∗1). Then by definition T (x, y0, y1) = (x ∗0 y0) ∗1 y1. Lemma 7.2

implies that (X×X, ∗) = G(X,T, T ) is a rack, since T is mutually distributive over

itself. One computes

G(X,T, T ) = (x0, x1) ∗ (y0, y1)

= (T (x0, y0, y1), T (x1, y0, y1))

= ((x0 ∗0 y0) ∗1 y1, (x1 ∗0 y0) ∗1 y1)

= DR(X, ∗0, ∗1)

as desired.

Let (X,T0, T1) be a set with mutually distributive ternary rack opera-

tions. Let (X × X, ∗) = G(X,T0, T1). Then by definition (x0, x1) ∗ (y0, y1) =

(T0(x0, y0, y1), T1(x1, y0, y1)). Since ∗ is mutually distributive over itself, we have
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that (X ×X,T ) = F(X ×X, ∗, ∗) is a rack, as in Definition 7.1. One computes

F(X ×X, ∗, ∗) = T ((x0, x1), (y0, y1), (z0, z1))

= [(x0, x1) ∗ (y0, y1)] ∗ (z0, z1)

= (T0(x0, y0, y1), T1(x1, y0, y1)) ∗ (z0, z1)

= (T0(T0(x0, y0, y1), z0, z1), T1(T1(x1, y0, y1), z0, z1))

= DT (X,T0, T1)

as desired.

Proof of Theorem 6.1. Let (∗0, ∗1) be mutually distributive rack operations on

X . Let (X,T ) = F(X, ∗0, ∗1). We have that (X,T ) is a ternary rack. Let φ0, φ1 be

mutually distributive rack 2-cocycles of (X, ∗0) and (X, ∗1), respectively. Then by

Theorem 7.1,

ψ(x, y0, y1) := φ0(x, y0) + φ1(x ∗0 y0, y1)

is a ternary rack 2-cocycle of (X,T ). Since T is compatible over itself,

(G ◦ F)(X, ∗0, ∗1)((x0, x1), (y0, y1), (z0, z1))

= G(X ×X,T, T )((x0, x1), (y0, y1), (z0, z1))

= (T (T (x0, y0, y1), z0, z1), T (T (x1, y0, y1), z0, z1))

is a rack operation by Theorem 6.2. Then Theorem 7.1 applied to (X × X,T, T )

with mutually distributive cocycles (ψ, ψ) implies that

φ((x0, x1), (y0, y1))

= ψ(x0, y0, y1) + ψ(x1, y0, y1)

= φ0(x, y0) + φ1(x ∗0 y0, y1) + φ0(x1, y0) + φ1(x1 ∗0 y0, y1)

as desired. To show that the assignment Θ(φ0, φ1) = ψ passes to cohomology, it

is enough to show that if (φ0, φ1) = δ1Lf , we have that Θ(δ1Lf) = δ1Rg, for some

1-cochain g. It is easy to see that the map g(x0, x1) := f(x0) + f(x1) does indeed

serve the purpose.

Proof of Theorem 6.3. Let (T0, T1) be compatible ternary distributive operations

on X , and (X × X, ∗) = G(X,T0, T1). By Lemma 7.2, (X × X, ∗) is a rack. Let

ψ0, ψ1 be compatible ternary 2-cocycles of (X,T0) and (X,T1), respectively. Then

by Theorem 7.1,

φ((x0, x1), (y0, y1)) := ψ0(x0, y0, y1) + ψ1(x1, y0, y1)
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is a rack 2-cocycle of (X ×X, ∗). Since ∗ is mutually distributive over itself,

(F ◦ G)(X,T0, T1)((x0, x1), (y0, y1), (z0, z1))

= T ((x0, x1), (y0, y1), (z0, z1))

= [(x0, x1) ∗ (y0, y1)] ∗ (z0, z1)

is a ternary rack operation by Lemma 6.2. Then Theorem 5.1 applied to (X×X, ∗, ∗)

with mutually distributive cocycles (φ, φ) implies that

ψ((x0, x1), (y0, y1), (z0, z1))

= φ((x0, x1), (y0, y1)) + φ((x0, x1) ∗ (y0, y1), (z0, z1))

= φ((x0, x1), (y0, y1)) + φ((T0(x0, y0, y1), T1(x1, y0, y1)), (z0, z1))

= ψ0(x0, y0, y1) + ψ1(x1, y0, y1)

+ψ0((T0(x0, y0, y1), z0, z1) + ψ1(T1(x1, y0, y1)), z0, z1)

as desired.

8. Internalization of Higher Order Self-Distributivity

We begin this section with the definition of n-ary self-distributive object in a sym-

metric monoidal category, providing therefore a higher arity version of the work

in [2]. We will use the symbol � to indicate the tensor product in the symmetric

monoidal category C, not to confuse the general setting with the standard tensor

product in vector spaces, to be found in the examples. We remind the reader first,

that a symmetric monoidal category is a monoidal category C together with a fam-

ily of isomorphisms τX,Y : X � Y −→ Y �X , natural in X and Y , satisfying the

following conditions [17, Sec. 11]. The hexagon:

X � (Y � Z)

(X � Y )� Z (Y � Z)�X

(Y �X)� Z Y � (Z �X)

Y � (X � Z)

τX,Y�ZαX,Y,Z

τX,Y �� αY,Z,X

αY,X,Z ��τX,Z

is commutative for all objectsX ,Y and Z in C, where αX,Y,Z indicates the associator

of the monoidal category. We further have the following identity for all objects X

and Y :

τY,XτX,Y = �X�Y .

2150116-22



Higher arity self-distributive operations in Cascades and their cohomology

For the sake of simplicity, we work on a strict symmetric monoidal category for the

rest of the paper and therefore do not keep track of the bracketing. We recall also

that a comonoid in a symmetric monoidal category is an object X ∈ C endowed

with morphisms ∆ : X −→ X � X , called comultiplication or diagonal, and ε :

X −→ I, called counit, where I is the unit object of the monoidal category. The

comultiplication and the counit satisfy the usual coherence diagrams analogous

to the coalgebra axioms. In virtue of the coassociative axiom we can inductively

define an n-diagonal ∆n : X −→ X�n by the assignment: ∆n = (∆ � �)∆n−1,

for all n ∈ N. Let us define the isomorphism τi,i+1 : X�n −→ X�n as τi,i+1 =

��(i−1)
� τX,X � ��(n−i−1). It is easy to verify that the morphisms τi,i+1 satisfy

the relations of the transposition (i, i+1) in �n, the symmetric group on n letters.

We therefore obtain, for every object X , an action of �n on X�n, by mapping

(i, i + 1) to τi,i+1, and extending to a homomorphism of groups between �n and

Aut(X�n), the automorphism group of X�n. In particular we will make use of the

automorphism of X�n2

, corresponding to the permutation

�n = (2, n+ 1)(3, 2n+ 1) · · · (n, (n− 1)n+ 1)

(n+ 3, 2n+ 2)(n+ 4, 3n+ 2) · · · (2n, (n− 1)n+ 2)

· · · ((n− 2)n+ n, (n− 1)n+ n− 1).

We are ready now to define n-ary self-distributive objects in a symmetric monoidal

category C.

Definition 8.1. An n-ary self-distributive object in a symmetric monoidal category

C is a pair (X,W ), where X is a comonoid object in C and W : X�n −→ X is a

morphism making the following diagram commute:

X�n2

X�(2n−1)

X�n2

X�n

X�n X

�n

�
�n

�∆�(n−1)
n

W��
�(n−1)

W�···�W W

W

Example 8.1. Clearly, any n-ary rack is an n-ary self-distributive object in the

symmetric monoidal category of sets, with τ and ∆ defined in the obvious way.

In the rest of this section, we will make use of Sweedler notation in the following

form: ∆(x) = x(1) ⊗ x(2).

Example 8.2. Let H be an involutive Hopf algebra, i.e. S2 = �. Define a ternary

operation T : H ⊗ H ⊗ H −→ H by the assignment T (x ⊗ y ⊗ z) = xS(y)z,
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extended by linearity, where we use juxtaposition as a shorthand to indicate the

multiplication µ of H and S is the antipode. By direct computation on tensor

monomials we obtain, for the left-hand side of ternary self-distributivity:

T (T (x⊗ y ⊗ z)⊗ u⊗ z)

= T (xS(y)z ⊗ u⊗ v)

= xS(y)zS(u)v.

The right-hand side is

TT⊗3
�3 (�

⊗3 ⊗ (∆⊗ �)∆⊗ (∆⊗ �)∆)(x ⊗ y ⊗ z ⊗ u⊗ v)

= TT⊗3((x⊗ u(11) ⊗ v(11) ⊗ (y ⊗ u(12) ⊗ v(12))⊗ (z ⊗ u(2) ⊗ v(2)))

= T (xS(u(11))v(11))⊗ yS(u(12))v(12) ⊗ zS(u(2))v(2))

= xS(u(11))v(11)S(yS(u(12))v(12))zS(u(2))v(2)

= xS(u(11))v(11)S(v(12))S2(u(12))S(y)zS(u(2))v(2)

= xS(u(11))ε(v(1) · 1)S2(u(12))S(y)zS(u(2))v(2)

= xS(ε(u(1)) · 1)S(y)zS(u(2))ε(v(1))v(2)

= xS(y)zS(ε(u(1))u(2))v

= xS(y)zS(u)v.

Note that we have used the fact that H is involutive in the sixth equality, to obtain

S(u(12))u(11) = u(1). This ternary structure is the Hopf algebra analogue of the

heap operation in group theory, which is known to be ternary self-distributive. We

also observe that H being involutive is a parallel to the operation of taking inverses,

obviously involutive as well.

In Fig. 7, a diagrammatic representation of categorical distributivity is depicted.

It is read from top to bottom, where the top 3 end points of both sides represent

Fig. 7. Diagrammatic representation of categorical distributivity.
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x ⊗ y ⊗ z, a trivalent vertex with a small triangle represents a self-distributive

morphism q : X ⊗X → X , and the left-hand side represents T = q(q ⊗ �).

Given a symmetric monoidal category C, we define categories nSD, for each

n ∈ N, as follows. The objects are n-ary self-distributive objects in C, as in Definition

8.1. Given two objects (X, q) and (X ′, q′), we define the morphism class between

them to be the class of morphism f : X −→ X ′ in C , such that f ◦ q = q′ ◦ f�n. In

particular we define BSD = 2SD and T SD = 3SD, B and T standing for binary

and ternary, respectively.

We will make use of the following results in Theorem 8.1.

Lemma 8.1. Let C be a strict symmetric monoidal category. Suppose (X,∆, ε) is

a comonoid in C. Then the switching morphism and the comultiplication commute.

More specifically, we have: ∆� � ◦ τX,Y = τX,Y �2 ◦ ��∆.

This lemma is represented in Fig. 8(a) below.

Proof. Consider the following diagram:

X � Y Y �X Y �2
�X

X � Y �2 Y �X � Y

τX,Y

��∆

∆��

τX,Y ��

τ
X,Y �2

��τX,Y

The outmost diagram commutes by naturality of switching map τX,Y with re-

spect to X and Y . The lower right triangle commutes by the hexagon axiom:

X � (Y � Y )

(Y � Y )�X (X � Y )� Y

Y � (Y �X) (Y �X)� Y

Y � (X � Y )

τX,Y �2

τX,Y ��

��τX,Y

The assertion now follows.

Lemma 8.2. Let (X, q) be a binary self-distributive object in a strict symmetric

monoidal category C. Then the switching morphism and the self-distributive opera-

tion commute. More specifically, we have: τX,Y ◦ q � � = �� q ◦ τX�2,Y .

This lemma is represented in Fig. 8(b) below.

Proof. Similar to Lemma 8.1 and left to the reader.
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Fig. 8. The switching morphism commutes with comultiplication and binary self-distributive
operation.

In general, the following result is useful to produce ternary self-distributive ob-

jects in the category of vector spaces, starting from binary self-distributive objects

(see also [2]). Compare it to the construction of Sec. 3.

Theorem 8.1. Let (X,∆) be a comonoid in a (strict) symmetric monoidal category

C (e.g. a coalgebra in the category of vector spaces). Let q : X � X −→ X be a

morphism such that (X, q) is a binary self-distributive object in C. Then the pair

(X,T ), where T = q(q � �), defines a ternary self-distributive object in C. The

construction defines a functor F : BSD → T SD.

Proof. We define F on objects as F(X, q) = (X,T ) and as the identity on mor-

phisms. To show that the map T = q(q � �) is ternary self-distributive, we can

proceed as in Fig. 9. In the left column of the figure, the part of the diagram rep-

resenting each T = q(q � �) are indicated by dotted circles. At each step we are

using the definition of T , the binary self-distributivity of q and Lemmas 8.1 and

8.2. If f : (X, q) −→ (Y, q′) is a morphism in BSD, we can show that f is also

a morphism in T SD between (X,T = q(q � �)) and (Y, T ′ = q′(q′ � �)) via the

following diagram:

X �X �X X �X X

Y � Y � Y Y � Y Y

f�f�f

q��

f�f

q

f

q′�� q′

where the commutativity of the left and right squares is just a restatement of the

fact that q is a morphism in BSD. The consequent commutativity of the outer

rectangle means that f is a morphism in T SD as well. It is also clear that F

preserves composition of morphisms.

The following is a rephrased version of [2, Lemma 3.3], adapted to our language

in this paper.

Lemma 8.3. Let L be a Lie algebra over a ground field �. Define X = �⊕ L and

endow it with a comultiplication ∆, defined by (a, x) �→ (a, x)⊗(1, 0)+(1, 0)⊗(0, x),

and a counit ε, defined by (a, x) �→ a. Then (X,∆, ε) is a comonoid in the symmetric

monoidal category of vector spaces. The morphism q : X ⊗ X −→ X defined by

(a, x) ⊗ (b, y) �→ (ab, bx+ [x, y]) turns X into a binary self-distributive object.

Proof. By direct computation making use of the Jacobi identity. This is done

explicitly in [2, Lemma 3.3].
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Fig. 9. Diagrammatic proof of doubling procedure.

Example 8.3. Let L be a Lie algebra and let X = �⊕L be as in Lemma 8.3. The

map T : X ⊗X ⊗X −→ X defined by

(a, x)⊗ (b, y)⊗ (c, z) �−→ (abc, bcx+ c[x, y] + b[x, z] + [[x, y], z]),

and extended by linearity, is such that (X,T ) is a ternary self-distributive object in

the category of vector spaces by an easy application of Theorem 8.1. An explicit, and

tedious, computation that shows the self-distributivity of T directly, is postponed

to Appendix A.

If H is a Hopf algebra, we can use the adjoint map to produce a ternary self-

distributive map, as the following example shows.

Example 8.4. The map defined by T (x⊗y⊗z) = S(z(1))S(y(1))xy(2)z(2) is ternary

self-distributive, as an easy direct computation shows. This is the Hopf algebra

analogue of the iterated conjugation quandle.

Remark 8.1. It is possible, a priori, to develop the theory of higher self-

distributivity in braided monoidal categories, where the switching morphism sat-

isfies the hexagon axiom but we do not require τY,XτX,Y = �X�Y . Similarly as

above we have an action of the braid group on n strings on every object X�n and

the shuffle map �n takes now into account over passing and under passing of the

strings.

Appendix A. Example 8.3 Revisited

In this appendix, we explicitly show that the map in Example 8.3 is indeed self-

distributive. Each equality is obtained by applying the Jacobi identity as in the

2150116-27



M. Elhamdadi, M. Saito & E. Zappala

proof of Lemma 3.3 in [2]. In fact, each step corresponds to one of the diagrams

in the proof of Theorem 8.1 (cf. Fig. 9). Recall also the definition of the diagonal

∆, from Lemma 8.3, and the inductive definition for ∆3 at the beginning of Sec. 8.

Explicitly, we have for ∆3:

∆3(a, x) = (a, x)⊗ (1, 0)⊗ (1, 0) + (1, 0)⊗ (0, x)⊗ (1, 0) + (1, 0)⊗ (1, 0)⊗ (0, x).

To make the steps easier for the reader, we declare the terms that are going to be

replaced according to the Jacobi identity, and underline the replacing terms in the

subsequent equality. We obtain therefore

T (T ((a, x)⊗ (b0, y0)⊗ (b1, y1))⊗ (c0, z0)⊗ (c1, z1))

= (ab0b1c0c1, b0b1c0c1x+ b1c0c1[x, y0] + b0c0c1[x, y1]

+ c0c1[[x, y0], y1] + b0b1c1[x, z0] + b1c1[[x, y0], z0]

+ b0c1[[x, y1], z0] + c1[[[x, y0], y1], z0] + b0b1c0[x, z1]

+ b1c0[[x, y0], z1] + b0c0[[x, y1], z1] + c0[[[x, y0], y1], z1]

+ b0b1[[x, z0], z1] + b1[[[x, y0], z0], z1] + b0[[[x, y1], z0], z1]

+ [[[[x, y0], y1], z0], z1]).

Applying the Jacobi identity to the terms b0c1[[x, y1], z0], c1[[[x, y0], y1], z0],

b0[[[x, y1], z0], z1] and [[[[x, y0], y1], z0], z1] we obtain

= (ab0b1c0c1, b0b1c0c1x+ b1c0c1[x, y0] + b0b1c1[x, z0]

+ b1c1[[x, y0], z0] + b0c0c1[x, y1] + c0c1[[x, y0], y1]

+ b0c1[[x, z0], y1] + c1[[[x, y0], z0], y1] + b0c1[x, [y1, z0]]

+ c1[[x, y0], [y1, z0]] + b0b1c0[x, z1] + b1c0[[x, y0], z1]

+ b0b1[[x, z0], z1] + b1[[[x, y0], z0], z1] + b0c0[[x, y1], z1]

+ c0[[[x, y0], y1], z1] + b0[[[x, z0], y1], z1] + [[[[x, y0], z0], y1], z1]

+ b0[[x, [y1, z0]], z1] + [[[x, y0], [y1, z0]], z1]).

We now apply the Jacoby identity to the term b1c1[[x, y0], z0], b1[[[x, y0], z0], z1],

c1[[[x, y0], z0], y1] and [[[[x, y0], z0], y1], z1] to obtain

= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b1c0c1[x, y0]

+ b1c1[[x, z0], y0] + b0c0c1[x, y1] + b0c1[[x, z0], y1]

+ c0c1[[x, y0], y1] + c1[[[x, z0], y0], y1] + b1c1[x, [y0, z0]]

+ c1[[x, [y0, z0]], y1] + b0c1[x, [y1, z0]] + c1[[x, y0], [y1, z0]]
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+ b0b1c0[x, z1] + b0b1[[x, z0], z1] + b1c0[[x, y0], z1]

+ b1[[[x, z0], y0], z1] + b0c0[[x, y1], z1] + b0[[[x, z0], y1], z1]

+ c0[[[x, y0], y1], z1] + [[[[x, z0], y0], y1], z1] + b1[[x, [y0, z0]], z1]

+ [[[x, [y0, z0]], y1], z1] + b0[[x, [y1, z0]], z1] + [[[x, y0], [y1, z0]], z1]).

Next, we use the Jacoby identity on the terms b0c0[[x, y1], z1], b0[[[x, z0], y1], z1],

b0[[x, [y1, z0]], z1], c0[[[x, y0], y1], z1], [[[[x, z0], y0], y1], z1], [[[x, [y0, z0]], y1], z1] and

[[[x, y0], [y1, z0]], z1]:

= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b1c0c1[x, y0]

+ b1c1[[x, z0], y0] + b0b1c0[x, z1] + b0b1[[x, z0], z1]

+ b1c0[[x, y0], z1] + b1[[[x, z0], y0], z1] + b0c0c1[x, y1]

+ b0c1[[x, z0], y1] + c0c1[[x, y0], y1] + c1[[x, [y0, z0]], y1]

+ b1c1[x, [y0, z0]] + b0c0[[x, z1], y1] + b0[[[x, z0], z1], y1]

+ c0[[[x, y0], z1], y1] + b1[[x, [y0, z0]], z1] + [[[[x, z0], y0], z1], y1]

+ [[[x, [y0, z0]], z1], y1] + b0c1[x, [y1, z0]] + c1[[x, y0], [y1, z0]]

+ b0[[x, z1], [y1, z0]] + [[[x, y0], z1], [y1, z0]] + b0c0[x, [y1, z1]]

+ b0[[x, z0], [y1, z1]] + c1[[[x, z0], y0], y1] + c0[[x, y0], [y1, z1]]

+[[[x, z0], y0], [y1, z1]] + [[x, [y0, z0]], [y1, z1]] + b0[x, [[y1, z0], z1]]

+ [[x, y0], [[y1, z0], z1]]).

Lastly, making use of the Jacobi identity on the terms b1c0[[x, y0], z1], b1[[[x, z0],

y0], z1], c0[[[x, y0], z1], y1], b1[[x, [y0, z0]], z1], [[[[x, z0], y0], z1], y1], [[[x, [y0, z0]], z1], y1]

and [[[x, y0], z1], [y1, z0]] we obtain

= (ab0b1c0c1, b0b1c0c1x+ b0b1c1[x, z0] + b0b1c0[x, z1]

+ b0b1[[x, z0], z1] + b1c0c1[x, y0] + b1c1[[x, z0], y0]

+ b1c0[[x, z1], y0] + b1[[[x, z0], z1], y0] + b0c0c1[x, y1]

+ b0c1[[x, z0], y1] + b0c0[[x, z1], y1] + b0[[[x, z0], z1], y1]

+ c0c1[[x, y0], y1] + c1[[[x, z0], y0], y1] + c0[[[x, z1], y0], y1]

+ [[[[x, z0], z1], y0], y1] + b0c1[x, [y1, z0]] + b0[[x, z1], [y1, z0]]

+ c1[[x, y0], [y1, z0]] + [[[x, z1], y0], [y1, z0]] + b1c1[x, [y0, z0]]

+ b1[[x, z1], [y0, z0]] + c1[[x, [y0, z0]], y1] + [[[x, z1], [y0, z0]], y1]
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+ b1c0[x, [y0, z1]] + b1[[x, z0], [y0, z1]] + c0[[x, [y0, z1]], y1]

+ [[[x, z0], [y0, z1]], y1] + b1[x, [[y0, z0], z1]] + [[x, [[y0, z0], z1]], y1]

+ [[x, [y0, z1]], [y1, z0]] + b0c0[x, [y1, z1]] + b0[[x, z0], [y1, z1]]

+ c0[[x, y0], [y1, z1]] + [[[x, z0], y0], [y1, z1]] + [[x, [y0, z0]], [y1, z1]]

+ b0[x, [[y1, z0], z1]] + [[x, y0], [[y1, z0], z1]]).

This last term can be seen to coincide with the right-hand side of the self-

distributivity equation:

T (T⊗3)�3 (�
3 ⊗∆⊗2

3 )((a, x) ⊗ (b0, y0)⊗ (b1, y1))⊗ (c0, z0)⊗ (c1, z1)).

It follows therefore, that the map T turns X into a ternary self-distributive object

in the category of vector spaces.

Appendix B. Augmented Ternary Racks for Sets and Hopf

Algebras

It is of an independent interest how the concept of augmented racks generalize to

ternary racks for both sets and monoidal categories in general. In this section, we

propose such generalization and provide key motivational examples in heaps and

Hopf algebras.

An augmented rack [11] (X,G) is a set X with a right group action by a group

G and a map p : X → G satisfying the identity p(x · g) = g−1p(x)g for all x ∈ X ,

g ∈ G. An augmented rack has a rack operation defined by x ∗ y = x · p(y) for

x, y ∈ X . The following definition can be considered a ternary analogue of an

augmented rack [11].

Definition B.1. Let X be a set with a right G-action denoted by X×G 	 (x, g) �→

x · g ∈ X . Let G act on the right of X ×X diagonally, (y0, y1) · g = (y0 · g, y1 · g)

for y0, y1 ∈ X and g ∈ G. A (double) augmentation of X is a map p : X ×X → G

satisfying the condition

p((y0, y1) · g) = g−1p((y0, y1))g

for all y0, y1 ∈ X and g ∈ G.

The following is a direct analogue of binary augmented rack and, therefore, the

proof is omitted.

Lemma B.1. Let X be a set with an augmentation p : X × X → G. Then the

ternary operation T : X3 → X defined by

T (x, y0, y1) := x · p((y0, y1))

is ternary self-distributive.
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Definition B.2. Let X be a set with an augmentation p : X2 → G and T be

a ternary operation defined in Lemma B.1. Then (X,T ) is called an augmented

ternary shelf.

Example B.1. Heaps can be endowed with augmentation as follows. Let G be a

group, with the TSD operation T (x, y, z) = xy−1z. Consider the right multiplication

as the right action of G on itself. Then consider the diagonal right action of G on

G×G, by (x, y) · z = (x · z, y · z). Let p : G×G → G be defined by p(y, z) = y−1z.

Then we readily check the condition

p((y0, y1) · g) = p((y0 · g, y1 · g)) = (y0g)
−1(y1g) = g−1y−1

0 y1g = g−1p((y0, y1))g.

Although more study on augmented ternary racks are desirable, we focus on the

following further generalization to Hopf algebras. The point of interest is that the

comultiplication plays the role of the diagonal map.

Definition B.3. Let X be a coalgebra, and let H be a Hopf algebra such that X is

a right H-module, therefore X⊗2 is also a right H-module via the comultiplication

in H . The map of coalgebras p : X⊗2 −→ H is a ternary augmented shelf if, for all

z ∈ X⊗2 and g ∈ H , we have

p(z ·∆(g)) = S(g(1))p(z)g(2).

This axiom is depicted diagrammatically in Fig. B.1, where solid lines refer toX ,

and dashed lines refer to H . We have used ∆, m and S to indicate comultiplication,

multiplication and antipode in the Hopf algebra H , while µ stands for the action

of H on X .

We have the following result.

Theorem B.1. Let p : X⊗2 −→ H be a ternary augmented shelf. Then the ternary

operation defined on monomials via x ⊗ y ⊗ z �−→ x · p(y ⊗ z), and extended by

linearity, is self-distributive.

Fig. B.1. Augmented ternary shelf axiom.
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Fig. B.2. Hopf algebra heap as an augmented ternary shelf.

Proof. By direct computation we have, for the right-hand side of self-distributivity

axiom:

TT⊗3
�3 (�

⊗3 ⊗ (∆⊗ �)∆⊗ (∆⊗ �)∆)(x ⊗ y0 ⊗ y1 ⊗ z0 ⊗ z1)

= T (x · p(z
(1)
0 ⊗ z

(1)
1 )⊗ y0 · p(z

(2)
0 ⊗ z

(2)
1 )⊗ y1 · p(z

(3)
0 ⊗ z

(3)
1 ))

= x · (p(z
(1)
0 ⊗ z

(1)
1 )p(y0 · p(z

(2)
0 ⊗ z

(2)
1 )⊗ y1 · p(z

(3)
0 ⊗ z

(3)
1 )))

= x · (p(z
(1)
0 ⊗ z

(1)
1 )p(y0 ⊗ y1 ·∆p((z0 ⊗ z1)

(2))))

= x · (p(z0 ⊗ z1)
(1)S(p((z0 ⊗ z1)

(2)))p(y0 ⊗ y1)p((z0 ⊗ z1))
(3))

= x · (ε(p(z0 ⊗ z1)
(1)) · 1p(y0 ⊗ y1)p((z0 ⊗ z1))

(2))

= x · (p(y0 ⊗ y1)p(z0 ⊗ z1)),

where we have used the fact that p is a coalgebra morphism in the third equality,

the defining axiom for augmented ternary shelf in the fourth equality, the antipode

and the counit axioms to obtain the fifth and sixth equations, respectively. It is

easy to see that it coincide with the left hand side of self-distributivity.

Example B.2. Let H be an involutive Hopf algebra and let X = H . Then, H

acts on X via multiplication. Define p to be the map given by x⊗ y �−→ S(x)y and

extended by linearity. The ternary rack structure obtained is the one in Example

8.2. A diagrammatic proof that the given p satisfies the augmented ternary rack

axiom is shown in Fig. B.2.
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