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We investigate constructions of higher arity self-distributive operations, and give rela-
tions between cohomology groups corresponding to operations of different arities. For
this purpose we introduce the notion of mutually distributive n-ary operations gen-
eralizing those for the binary case, and define a cohomology theory labeled by these
operations. A geometric interpretation in terms of framed links is described, with the
scope of providing algebraic background of constructing 2-cocycles for framed link in-
variants. This theory is also studied in the context of symmetric monoidal categories.
Examples from Lie algebras, coalgebras and Hopf algebras are given.
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1. Introduction

Self-distributivity of binary operations and its cohomology theories, motivated by
knot theory, have been studied extensively in recent years, see for example [3, 5-
7, 10, 21]. In particular, in [6], the authors have introduced a (co)homology theory
of quandles and utilized the 2-cocycles with abelian coefficients to define a link
invariant, called cocycle invariant. In [3], it has been given a non-abelian version of
these results, and it has been shown that the cocycle invariant is a quantum invariant
based on previous work of Grafia, see [12]. Mutually distributive binary operations
were investigated in [22] in which the author proposed a general framework to study
homology of distributive structures. Ternary self-distributivity, which is a natural
generalization of the binary case, and its cohomology theory have been studied in
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[9, 19]. In this paper, we consider higher arity self-distributivity and its cohomology,
which provide an algebraic background suitable to the definition of 2-cocycle framed
link invariants.

We generalize the notion of mutual distributive operations given in [22] to n-
ary operations. We show that composing mutually distributive operations results
in new higher arity self-distributive operations (Proposition 3.1). Specifically, for
m-ary and n-ary self-distributive operations W,, and W,, on X, respectively, under
the condition called mutual distributivity defined in Sec. 3, the composition W :
X™m*t7=1 5 X defined by

W(x7 Yy, Z) = Wn(Wm(x7 y)7 Z)

is shown to be an (m+n — 1)-ary self-distributive operation. This procedure, in the
specific case of mutually distributive binary operations, is particularly proficuous to
describe colorings of framed link diagrams by means of ternary operations, paving
the way for the possibility of introducing an analogue of the cocycle invariant in the
context of framed links. We defer the study of such an invariant to a subsequent
work.

We generalize both the n-ary distributive homology [9] and homology of dis-
tributive sets [22] to mutually distributive sets of general n-ary operations (Defini-
tion 4.1). The relation between this chain complex and the n-ary operations that
result from mutually distributive sets by composition as in Definition 5.1, is given
in the form of a chain map.

We also present constructions, called doubling, for mutually distributive sets,
that are similar to the composition introduced in Sec. 3 but defined on the prod-
uct X x X. A geometric interpretation uses parallel strings and allows us to relate
colorings of diagrams of links and colorings of diagrams of framed links. The coho-
mological counterpart of this procedure, also described in this paper, is expected to
provide the algebraic context for the definition of a framed link cocycle invariant.
The relation between the doubling and the composition in Sec. 3, as well as its
implications to cohomology are discussed.

Higher arity self-distributivity is also investigated in the context of symmet-
ric monoidal categories. We define the notion of n-ary self-distributive object in
a symmetric monoidal category, providing therefore a higher arity version of the
work in [2]. In particular, we show how to produce ternary self-distributive objects
in the category of vector spaces, starting from binary self-distributive objects (The-
orem 8.1). Specifically, let (X, A) be a comonoid in a (strict) symmetric monoidal
category C (e.g. a coalgebra in the category of vector spaces). Let ¢ : X KX — X
be a morphism such that (X, ¢) is a binary self-distributive object in C. Then the
pair (X, T), where T' = q(¢X 1), defines a ternary self-distributive object in C. The
construction defines a functor F : BSD — TSD, from the category of binary self-
distributive objects in C, to the category of ternary self-distributive objects in C.
This procedure of internalization of higher order self-distributivity indeed produce
interesting examples of self-distributive objects among coalgebras. Examples from
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Lie algebras, coalgebras and Hopf algebras are given. As in [2] this categorical ver-
sion is expected to be related to the Yang—Baxter equation in tensors of vector
spaces through Hopf algebras.

The paper is organized in the following manner. Section 2 gives the basics of
binary and ternary racks with examples. In Sec. 3, we introduce the higher ar-
ity case and show that composing mutually distributive operations results in new
higher arity self-distributive operations. In Sec. 4, we define a cohomology theory
that generalizes those given in [9, 22] to mutually distributive operations in various
arities. A chain map that relates this chain complex and the one for the opera-
tion resulted from composition is given in Sec. 5. In Sec. 6, we introduce functors
(which we call doubling) in the binary and ternary mutually distributive rack cate-
gories. Section 7 shows the passages between binary mutually distributive racks and
ternary self-distributive racks. We exhibit a direct construction of ternary cocycles
from binary cocycles. We close the circle of functors relating binary and ternary
operations by introducing a construction that brings back from ternary to binary.
The relations among these functors are also discussed and a geometric interpre-
tation is given. Section 8 is devoted to the development of a categorical point of
view of m-ary self-distributivity, extending the previous results of [2]. We define
self-distributive objects in symmetric monoidal categories and construct examples
in the category of vector spaces. We describe a procedure to obtain higher order
self-distributive operations from Lie algebras. Appendix A deals with some detailed
computations related to Lie algebras. In Appendix B, we introduce a higher order
analogue of augmented rack that enables us to produce Hopf algebra versions of
group theoretic examples, such as the heap operation.

2. Preliminary
2.1. Basics of Racks

We review, for the convenience of the reader, some basic definitions of shelves, racks
and quandles and give a few examples. This material can be found, for example, in
[7, 10, 11, 21, 22].

Definition 2.1. A shelf X is a set with a binary operation (a,b) — a*b such that
for any a,b,c € X, we have (a xb) xc = (axc) x (b*c).

If, in addition, the maps R, : x — x * y are bijections of X, for all y € X, then
(X, %) is called a rack.

A quandle is an idempotent (a * a = a, for all a € X) rack.

Example 2.1. The following are typical examples of quandles:

e A group G with conjugation as operation: a*b = b~'ab, denoted by X =
Conj(@), is a quandle.
e A group G with the operation a *b = ba~'b is a quandle called the core quandle.
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e Any A(= Z[t,t"!])-module M is a quandle with axb = ta+ (1 —t)b, for a,b € M,
and is called an Alexander quandle.

e For any group G, and an automorphism f € Aut(G), the operation z x y =
f(zy~ 1)y defines a quandle structure on G, usually referred to as generalized
Alexander quandle.

A rack homomorphism f : (X,%) — (X',#) is a map satisfying f(z xy) =
f(z) + f(y) for all z,y € X. The category of racks is denoted by R.

Let (X, *) be a rack and A be an abelian group. A function ¢ : X x X — A is
said to be a (rack) 2-cocycle if for all z,y,z € X, the following holds:

Pz, y) + oz *y,2) = d(x,2) + ¢z * 2,y * 2).
Lemma 2.1 ([4]). Let (X, *) be a rack, A be an abelian group, and ¢ : X x X — A
be a 2-cocycle. Define an operation * on X X A by
(z,a) * (y,0) := (z * y,a + o(x,y)).

Then (X x A, x) is a rack.

Rack and quandle 2-cocycles have been constructed from extensions [4], poly-
nomial expressions [1, 18], determinants [20], and computer calculations [24].

2.2. Ternary distributive structures

Ternary racks and quandles were investigated in [9, 13, 19] and generalized further
in [8]. Here, we review the basics of ternary racks and give some examples.

Definition 2.2. Let (X,T) be a set equipped with a ternary operation T : X x
X x X — X. The operation T is said to be (right) distributive if it satisfies the
following condition for all x,y, z,u,v € X:

T(T(x,y,2),u,v)=T(T(z,u,v), T(y,u,v),T(z,u,v)).
In this paper, we will consider distributivity from the right.
Definition 2.3. Let T: X x X x X — X be a ternary distributive operation on

a set X. If for all a,b € X, the map R, : X — X given by Rg () = T(z,a,b) is
invertible, then (X, T) is said to be ternary rack.

Example 2.2. The following constructions are found in [9]:

o Let (X, %) be arack and define a ternary operation on X by T'(z,y, z) = (x*y)*z,
for all z,y,z € X. It is straightforward to see that (X, T) is a ternary rack. Note
that in this case R4, = Ry o R,. We will say that this ternary rack is induced by
a (binary) rack.

In particular, if (X, ) is an Alexander quandle with z x y = tx + (1 — ¢)y,
then the ternary rack coming from X has the operation

T(z,y,2) =tz +t(1—t)y+ (1 —1t)z.

2150116-4



Higher arity self-distributive operations in Cascades and their cohomology

e Let M be any A-module where A = Z[t*!, s]. The operation T'(z,y,2) = tx +
sy + (1 —t — s)z defines a ternary rack structure on M. We call this an affine
ternary rack.

In particular, consider Zg with the ternary operation T'(z,y, z) = 3z+2y+4z.
This affine ternary rack given in [9] is not induced by an Alexander quandle

structure as described in the preceding item since 3 is not a square in Zg.

-1

e Any group G with the ternary operation T'(x,y, z) = xy~ 'z gives a ternary rack.

This operation is well known and called a heap (sometimes also called a groud)
of the group G.

A morphism of ternary racks is a map f : (X,T) — (X’,T’) such that
F(T(@,y,2)) = T'(f(2), f(y), f(2))-

A bijective ternary rack endomorphism is called ternary rack automorphism. We
denote by T the category of ternary racks.

Let (X, T) be a ternary rack and A be an abelian group. A function ¢:X x X x
X — A is said to be a ternary 2-cocycle if for all x,y, z,u,v € X, the following
hold:

Y(@,y,2) +(T(2,y,2), u,v)
=Y(z,u,v) + (T (z,u,v), T(y,u,v),T(z,u,v)).
This equation is motivated by the following lemma, which is verified by calculations.

Lemma 2.2. Let (X,T) be a ternary rack and A be an abelian group. Let ¢: X x
X x X — A be a map. The set X x A with the ternary operation given by

T((x,a)7 (yvb)7 (27 C)) = (T(x7yvz)va + w(%y»z))

is a ternary rack if and only if the map ¢ satisfies the following ternary 2-cocycle
condition:

o(x,y,2) + o(T(x,y,2),u,v)
= ¢(z,u,v) + o(T(x,u,v), T (y,u,v), T(z,u,v)).
For a ternary distributive operation 7" on X, we also use the notation
zxy =T (x,y0,y1),

where y = (yo,y1). Although strictly speaking T'(z,yo,y1) is not equal to
( , (Yo, y1)), no confusion is likely to arise by this convention. Furthermore, for
= (zp, 1), we use the notation x * y to represent

(o xy, 1 *xy) = (T(w0,90,y1), T'(T1, Y0, y1))-
In this notation, the ternary distributivity can be written as
(xxy)*xz=(r*2z)*(y*2)

in analogy to the binary case.
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x
X*y T(X oY1)
:)(*y

Fig. 1. Diagrammatic representations of a binary (left) and ternary (right) operations.

Figure 1 depicts diagrammatic representations of binary and ternary operations,
on the left and on the right, respectively. See [7], for example, for more details on
diagrammatics for racks and their knot colorings.

We also recall the definition of homology of ternary racks [9]. Define first C,, (X)
to be the free abelian group generated by (2n+1)-tuples (xo, x1, . . ., T2y, ) of elements
of a ternary rack (X, T). Define the differentials 9,, : Cp,(X) — Cp—1(X) as

8n(a:0,a:1, e ,xgn)
n
=) (=D"[(x0,- - T2i—1,Tai; - -, Tan)
i=1
( (x07x2i717x2i)7 ) 7T(x2i727x2i717x2i7 )755/%\71752\@’7 v 7£C2n)].

Definition 2.4. The nth homology group of the ternary rack X is defined to be:
H,(X) = kerd, /im0y 41.

By dualizing the chain complex given above, we get a cohomology theory for
ternary racks.

Remark 2.1. Similar definitions give a homology and a cohomology theory for
higher arity self-distributive operations.

3. Compositions of n-Ary Self-Distributive Operations

In this section, we generalize the notion of mutual distributive operations found
in [22] to n-ary operations. The vector notation for ternary operations is di-
rectly generalized to the n-ary ones: Let (X, W) be an n-ary distributive set. Let
y = (y1,---,Yn_1) € X" 1. Then the operation W : X" — X is denoted by
W(z,y1,---,yn—1) = W(z,y). An n-ary operation is also denoted by = xy :=
W (x,y). Here the extra parentheses caused by the vector notation is ignored, i.e.
fory = (y1,...,Yn—1) and z = (21,...,2,—1), the concatenation (y,z) or simply
v,z denotes (y1,...,Yn—1,21,---,2n—1). Furthermore, for x = (x1,...,2,,) € X™
and y € X" !, denote (W (z1,y),..., W(zm,y)) by W(x,y) or x *y.

Definition 3.1. Let W,,, and W,, be m-ary and n-ary distributive operations on
X, respectively. The two operations W,,, and W, are called mutually distributive if
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they satisfy
Wi (Win(2,5),2) = Win(Wa(z,2), Wa(y, 2)),
Wi (Wi (z,u),v) = W, (W, (z,v), W, (u, v))
foralz € X,y,ve X™ land z,ue X» 1

Example 3.1. Let (X,*x), (Y,*y) be racks. Define *g,*; on X X Y, respec-
tively, by

(!E07y0) *0 (!Ehyl) = (960 * X 56173/0),

(!E07y0) *1 (!Ehyl) = (56073/0 *y y1)~

Then computation shows that (xg,*1) are mutually distributive.

Example 3.2. The following construction appears in [14] and provides examples
of mutually distributive rack operations. Denote by *™ the rack operation on X
defined by n-fold leftmost product « «™ y = (--- (z *y) *xy) * - - - x y. Then %o = *™
and x; = %™ are mutually distributive for positive integers m and n.

More generally, the following appears in [15, 22]. Let X be a group, and let
fo, f1 € Aut(X) be mutually commuting group automorphisms. Let %, be the gen-
eralized Alexander quandles with respect to f. for e = 0, 1. Thus z*.y = (zy~!) <y,
where the action is denoted in exponential notation. Then computations show that
xo and *x; are mutually distributive.

There are mutually distributive operations with different arities, as the following
example shows.

Example 3.3. Let X be a module over Z[uil,til,s] and *, T be affine binary

and ternary rack operations, respectively, defined by
zxy =uzx+ (1 —u)y,
T(z,y,z) =te+sy+ (1 —t—s)z.
Then computations show that * and T are mutually distributive.

Remark 3.1. We note that for a group G, the core binary operation (zxy =
yr~ly) and the ternary operation heap (z % (yo,y1) = xyo_lyl) satisfy (z xy) %z =
(x%2)* (y*z) but not (x%y) *xz = (z % 2)*(y * 2).

Next, we show that composing mutually distributive operations results in new
higher arity self-distributive operations.

Proposition 3.1. Let W,,, and W,, be mutually distributive m-ary and n-ary dis-
tributive operations on X. Then W : X™tn~1 & X defined by

W(z,y,z) = W, (Wpn,(z,y),2)

is an (m +n — 1)-ary distributive operation.
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Proof. We establish the equality
WW(z,y,z),u,v) =WW(z,u,v), W(y,u,v), W(z,u,v)).
We replace W, (z,y) by the notation x x,, y. Thus we have
W(z,y,z) = (T % Y) *n 2.
Then we compute

W(W(z,y,z),u,v)

) #m (Y tm W] #n (2 4m 0)] %5 v
= [[(@ #m 1) 5 (y m W)] 5 V] 0 [(2 %0 1) 5 V]
= [[(@ s w) s V]t (7 5m @) 5 V]| (250 1) 0 V]
=WW(z,u,v), W(y,u,v), W(z u,v)),

where the second and the fifth equalities follow from the mutual distributivity of
%, and *,. This concludes the proof. O

Remark 3.2. Let (X *g,*1) be mutually distributive binary operations. Let T be
the TSD operation defined in Proposition 3.1. Then it is written as T'(z,y,2) =
(x %0 y) *1 z for x,y,z € X. We note that the two ternary structures T'(z,y,2) =
(x %0 y)*1 z and T'(z,y,2) = (x *1 y) *0 2 may not be isomorphic in general as the
following example shows.

Consider the set Zs with the two binary operations x %oy = x and x %, y =
2y — x. The induced ternary structures T'(x,y, z) = (x *¢ y) *1 z and T'(z,y, 2) =
(x *1 y) *o z are not isomorphic. In fact, if f : (Z3,T) — (Z3,T") is an isomor-
phism then for all z,y, z in Z3, we have f(T(z,y,2)) = T'(f(z), f(y), f(2)). Then
f(2z—z) =2f(y)— f(z). One obtains then a contradiction, for example, by setting
z=2z=0.

Definition 3.2. Let *,,, j = 1,...,k, be distributive nj-ary operations on X
that are pairwise mutually distributive. Then we call (X, {*,, }é‘?:l) a mutually
distributive set.

4. Homology of Mutually Distributive Sets

We generalize both the n-ary distributive homology [9] and homology of distributive
sets [22] to mutually distributive sets of general n-ary operations as follows. The
relation between this chain complex and the m-ary operations that result from
mutually distributive sets as in Proposition 3.1 will be given in Sec. 5 in the form
of chain map.
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Definition 4.1. Let (X,{*nj}le) be a mutually distributive set. Let € =

(€1,...,€n—1) be a vector such that e € {n;}s_, for i = 1,...,n — 1. Let
chain groups C¢(X) be defined by the free abelian group generated by tuples
x = (20, (X1,€1),- -+, (Xn_1,€n_1)). Define C,,(X) = @C%(X) where the direct sum

ranges over all possible vectors €. Define the differential 95 : CS(X) — Cy,—1(X) by

n—1

¢ i R
O (x) = Z(—l) (w0 *e; Xiy (X1 *e; Xiy€1), .-+, (Xi1 *e; Xy €i-1), (Xis €),
i=1
(Xi+17€i+1)7 ceey (anlv 67’7,71))
—_—
—(IE(), (X17€1)7 ey (Xi7 6i)7 ey (Xn717 Enfl))L

and let

O =Y 05 : Co(X) = Cpa(X).

Lemma 4.1. Let (X, {*,, }?Zl) be a mutually distributive set. Then the sequence
(Ch(X),0y) defines a chain complex.

Proof. We define, for each vector € and i = 1,...,n — 1, linear maps
.- —_—
O (%) = [(w0 *e; Xi, (X1 *e; Xis €1), -+ (Xim1 *e; Xiy €1-1), (X4, €),
(Xi+17€i+1)7 cey (X’nflvenfl))
—_—
- (xOv (X1761)7 ceey (Xiv Ei)v sy (Xﬂ—lv Eﬂ—l))]'

Therefore by definition, 95 = >, (—1)?9¢€. It is enough to show now that the maps

3
i€ satisfy the pre-simplicial complex relation: 92¢ | 9J¢€ = 83;1853“)6 foreachn € N
whenever j < i.

Fix a vector € = (e1,...,€6,—1) and consider an element (zg, (z1,€1),...,
(Ty—1,€n—1)) € C5(X). Then we have
871171831('2:07 (X17 61)7 T (Xn—h Gn_l))
—_—
= ((LUQ *e; Xj) *eip1 Xitl, ((Xl *e,; Xj) *eip1 Xitl, 61)7 R (Xj7 Ej)7
—_—
(Xj+1 *Xi+17€j+1)7 vy (Xis€)y oy (Xn—1,€nm1))
—_—
- (.’L’07 (X17 61)7 ey (vaej)v
—_—
(Xj+17€j+1)7 cees (Xi+17€i+1)7 ceey (anhenfl))'
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Xo (x1.8)  (xi.8)  (x,.€8) Xo(x.€) (x;.8) (x,.€)

LTI -

Fig. 2. Curtain diagram representing chain maps.

Di(x): 5 (1! ‘
i S
|

On the other hand we have

Lo, (1, 2)s - (et nn)

= ((330 *eit1 Xi+1) *e (Xj *eit1 xi+1)7 ((Xl *eit1 Xi+1) *e; (Xj *eit1 Xi+1)761)7

—_— —_—
(X5, €5), (K1 Feppy Xi1, €541), - s (Xip1, €i41)5 -+ (Xn—1, €n—1))
—_—
- (330, (X17 61)7 ) (va ej)v
—_—
(Xj+17€j+1)7 cey (Xi+l7 6i+1)7 ceey (Xn717 enfl))v

where we have used the vector notation introduced in Sec. 3. The two quantities
are equal, in virtue of the property of mutual distributivity of the set {*; }é‘?:l.
O

Definition 4.2. The chain complex defined by Definition 4.1 and the homology
that it induces will be called labeled chain complex and labeled homology and will
be denoted CL(X) and HL(X), respectively.

Remark 4.1. The chain complex in Definition 4.1 has a diagrammatic interpreta-
tion as in Fig. 2. In particular, the mutual distributivity condition takes the same
form as in the curtain homology of [23].

Remark 4.2. We observe that if (X, {*,,}) is a mutually distributive set, then
CL(X) contains the standard self-distributive complexes relative to each *p, as
subcomplexes.

Remark 4.3. The multiplication on binary operations considered in [22] can be
directly generalized to m-ary operations as follows. Given a nonempty set X, let
Dist s (X) denotes the set of all n-ary mutually distributive operations on X. Define
the following multiplication on Distas(X):

(W : W/)({I?,y) = W(W/({I?,y),y)

forallz € X andy € X"~ 1. Then it is straightforward to see that the multiplication
defined above makes Dist s (X) into a monoid with identity Wy given by Wy (z,y) =
z,forallz € X andy € X" 1.
For example, let (X, T') be a ternary rack. Define, inductively,
Tn(x7 Yo, yl) = T(Tn_l(xv Yo, y1)7 Yo, yl)

Then (X,T™) is a ternary distributive set for all positive integer n.
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Remark 4.4. For a given abelian group A, we obtain a labeled cochain complex
with coefficients in A, upon dualizing the chain complex in Definition 4.1. We will
write C}7(X; A) and H}(X; A) to indicate the labeled nth cochain and cohomology
groups with coefficients in A, respectively.

5. Chain Maps Under n-Ary Compositions

In this section, we show that the cohomology of an operation obtained by composing
mutually distributive operations as in Proposition 3.1 and the cohomology of the
operations themselves are related to the labeled cohomology of Definition 4.1 via
chain maps as follows. The algebraic and geometric motivations and significance of
the chain maps are explained later in this section.

Definition 5.1. Let (X, %o, *1) be a distributive set, where % and *; are operations
of arity k and k', respectively. Call W the (k + k' — 1)-ary corresponding self-
distributive operation. We define chain maps Fy,, : C/V (X) — CL(X), from the
(k + k' — 1)-ary cochain complex relative to W, to the chain complex defined by
Lemma 4.1 for n = 1, 2, 3. Explicitly

]:ti,l =1,
-F)i,Q(x7Y()7y1) = (anO)O + (33 *0 YO7Y1)17
Fi3(x,¥0,¥1,20,21) = (2, ¥0,%0)00 + (T *0 Z0, Yo *0 Zo, Z1)o1

+ (2 %0 ¥0,¥1,20)10 + ((Z *0 Y0) *0 Z0, Y1 *0 Z0, Z1)11,

where we put the labels as a subscript and y;, z; are vectors of appropriate lengths,
according to the conventions explained in Sec. 3.

Definition 5.2. Let (X, *0,*1) be a mutually distributive racks and A be an
abelian group. Let F#" : C%(X,A) — Cl(X,A) for n = 2,3 be the maps ob-
tained from Fy, by dualization.

Theorem 5.1. For n = 2,3 the maps Fy, define chain maps. Therefore they
define induced homomorphisms Fi, : HV (X, A) — HE(X, A) in homology and
Fom HY (X, A) = Hip, (X, A) in cohomology.

Proof. We prove the statement in the case of two binary mutually distributive op-
erations %o and *1, resulting in a ternary self-distributive operation T'. The general
case being an application of the same procedure with vector notation. For a ternary
2-chain (x, yo, y1) we have

OFy2(z,y0,y1) = —(x %0 yo) + () — ((z %0 Yo) *1 y1) + (¥ *0 yo) = O (7, Yo, Y1)
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By direct computation, we also have
Fi,207(, 90, Y1, 20, 21)
= (7, 20)0 + (2 *0 20, 21)1 — (T'(2, Y0, Y1), 20)0
— (T'(x,y0,y1) *0 20, 21)1 — (T, 90)0 — ( *0 Yo, Y1 )1
+ (T'(z, 20, 21), T (Yo, 20, 21))o
+ (T'(=, 20, 21) *0 T'(Y0, 20, 21), T(y1, 20, 21))1-
On the other hand, the following holds:
OF3(,Y0, Y1, 20, 21)
= (z,20)0 — ( *0 Y0, 20)0 — (¥, Y0)o
+( %0 20, Yo *0 20)o + (¥ *0 20, 21)1 — ((* *0 20) *0 (Yo *0 20), 21)1

— (z *0 20, Yo *0 20)o + (T (z, 20, 21), T (Yo, 20, 21))o

+

(
( *0 Y0, 20)0 — (T'(, Y0, Y1), 20)o

= (z %0 y0,y1)1 + (( *0 Yo) *0 20, Y1 *0 20)1

+ (@ %0 yo) *0 20, 21)1 — (((& *0 Yo) *0 20) *1 (y1 *0 20), 21)1

— (= *0 yo) *0 20, y1 *0 20)1 + (((2 *0 Yo) *0 20) *1 21, T (Y1, 20, 21))1-
The two quantities can be seen to be equal, making use of the identity:
T(x, 20, 21) *0 T(Y0, 20, 21) = ((x *0 Yo) *0 20) *1 21.

Therefore, we obtain Fy20r = 0F; 3, which concludes the proof of the first state-
ment. The second statement follows easily from the first one by standard arguments
in homological algebra. O

Remark 5.1. Let (X, %0, *1) be a mutually distributive rack and let C%(X; A) be
the second labeled cochain group with coefficients in A, then the labeled 2-cocycle
conditions corresponding to 6Dy = 0 and §(19¢ = 0 take the following form:

do(x,y) + d1(x %0y, 2) = ¢1(,2) + do(w *1 2,y *1 2),
d1(x,y) + do(x *1y,2) = do(w,2) + ¢1(w %0 2,y *0 2).

Definition 5.3. We call a pair (¢g, ¢1) satisfying the preceding equations mutually
distributive.

Observe that (¢g, ¢1) being a labeled 2-cocycle means that it is mutually dis-
tributive, ¢¢ is a 2-cocycle for the operation *y and ¢ is a 2-cocycle for *;.

Remark 5.2. Let (X, xg,*1) be mutually distributive binary operations and T
be the ternary self-distributive operation defined in Proposition 3.1. Let A be an
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abelian group. By Theorem 5.1, F#2(¢, ¢1) = 1 is a ternary 2-cocycle in C2(X, A)
for a labeled 2-cocycle (¢g, ¢1). The explicit form of the ternary 2-cocycle

U(@,y,2) = ¢o(,y) + ¢1(x %0y, 2).

Remark 5.3. The case of mutually distributive binary operations whose composi-
tion gives a ternary operation is of particular interest to us since this is the algebraic
counterpart of a diagrammatic doubling procedure particularly adapt to interpret
colorings of framed tangles by ternary racks. The ternary 2-cocycles resulting from
Theorem 5.1 can therefore be used to define cocycle invariants for framed tangles.
This construction of cocycles corresponds to those in [14] for handlebody-links.

From this geometric point of view, we present a direct, geometric proof that ¢
in Remark 5.2 satisfies the ternary 2-cocycle condition. We show

w(x7y07y1) + w(T(xvy(byl)v 20, Zl)
= (x,20,21) + V(T (x, 20, 21), T (Yo, 20, 21), T(y1, 20, 21))-

The computations below are aided by diagrams shown in Fig. 3, where each equality
is represented by a type III Reidemeister move. In the figure and the computations
below, underlines highlight those terms to which the cocycle condition is applied.

LHS = ¢o(x, yo) + ¢1(x *0 yo,y1) + ¢o(((x *0 yo) *1 y1), 20)

+ 01 (((z *0 o) *1 Y1) *0 20, 21)

= ¢o(z,y0) + do( *0 Yo, 20) + &1((( *0 Yo) *1 Y1) *0 20, 21)

+ ¢1((z *0 Yo) *0 20, Y1 *0 20)

= ¢o(x, 20) + Po(z *0 20, Yo *0 20) + @1 ((( *0 Yo) *0 20) *0 20, Y1 *0 20)

+ d1((( *0 o) *1 Y1) *0 20, 21)

= ¢o(x, 20) + ¢o(x *q 20, Yo *0 20) + &1 (((2 *0 Yo) *0 20), 21)

= ¢o(z,20) + ¢1(x %0 20, 21)

(

)

(

+ 1 (((z %0 o) *o0 20) *1 21, (1 *0 20) *1 21)

(

+ 1 (((z %0 o) *o0 20) *1 21, (1 *0 20) *1 21)
)

+ 00 (((z *0 Yo) *0 20) *1 21, (Y1 *0 20) *1 21) = RHS

Example 5.1. Let (X, xx), (Y, *y) be racks, and (g, *1) be mutually distributive
operations defined on X x Y in Example 3.1. Let ¢x and ¢y be 2-cocycles of
(X, *x) and (Y, *y), respectively. Define 2-cocycles of X X Y corresponding to *q,

*1, respectively, by ¢o((%o,y0), (z1,y1)) = ¢x (20, 21) and ¢1((wo, yo), (z1,y1)) =
oy (Yo, y1). Then computations show that (¢o, ¢1) are mutually distributive.
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X Zy 2y

(X ()yo y) ¢ ((X*q y(’ %0Zg » Y*OZ())
9, ((x%o }’0)*1)’1 Zy) ¢0(X yo
\\ Yy \\

Oy (X#0Zq » ¥ %0 Zg)

¢, (X%0Z, y(,*ozo) \
(X*()Zo Z) ¢(((X*0)’0)*1}’)*Olo z,)
\ \ ¢l((X*o Yy) #0Zg > ¥,%0 %)

%((X*o Zg)¥1 2y ((Yy*0Zg)*0 2, ) ¢(((x*0 ¥y) %02y, Zy) ¢(((x*0 Y #0201 Zy (Y, %0Zg) *1 Z;)

Fig. 3. Diagrammatic proof of 2-cocycle conditions.

Example 5.2. The following construction, found in [14], provides examples of
mutually distributive 2-cocycles. Let (X, *) be a rack, ¢ : X x X — A be a 2-
cocycle, and (F = X X A, %) be the corresponding extension. Recall that *™ denotes
the n-fold leftmost product x ™ y = (--- (z *y) x y) * - - - * y. Then the function ¢,
defined by

On(2,y) = d(2,y) + d(x *y,y) + - + oz " y,y)

is a 2-cocycle.

Let (X, x9 = *™, %1 = %™) be the mutually distributive rack defined in Exam-
ple 3.2, and let ¢.,,, ¢,, be 2-cocycles defined above. Then ¢, and ¢,, are mutually
distributive. This is seen by the diagrammatic interpretation of parallel strings.

6. The Doubling Functor

In this section, we describe a construction called doubling, that is similar to the
composition defined in Sec. 3 but defined on the product X x X. A diagrammatic
interpretation is to take parallel strings and provides a method of producing cocycle
invariants for framed links by means of ternary cohomology. The relation between
the doubling and the composition in Sec. 3 as well as implications to cohomology
are discussed in the next section.

6.1. Doubling binary operations

Lemma 6.1. Let (X, *g,%1) be mutually distributive racks. Define the operation
for (zo, 1), (yo,y1) € X x X by

(0, 21) * (Yo, y1) = (20 *0 Yo) *1 Y1, (T1 *0 Yo) *1 Y1)-
Then (X x X, %) is a rack.
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Yo ¥i

Fig. 4. Diagrammatic representation of doubling.

A diagrammatic representation of the preceding lemma is depicted in Fig. 4,
and the computations in its proof are facilitated by the corresponding type III
Reidemeister move with doubled strings.

Definition 6.1. Let Rj; be the category defined as follows. The objects consist
of (X, *,%1), where X is a set and (g, *;) is mutually distributive. For objects
(X, %0,%1) and (X', *(,*}), a morphism f is a map f : X — X’ that is a rack
morphism for both (xq, *() and (x1,x}).

We observe that if f : X — X’ is a morphism in the sense of this definition, then
f will automatically respect the mutual distributivity. Specifically, simple compu-
tations imply the following.

Lemma 6.2. If f : (X, %q,%1) — (X', %, *]) is a morphism in R, then it holds
that

fl@xoy) #12) = (f(2) #1 f(2)) %o (f () *1 f(2))-

Computations also show the following.

Lemma 6.3. Let (X,%q,%*1) and (X', x(,*}) be two mutually distributive racks,
and (X x X, %) and (X' x X', «") be racks as in Lemma 6.1. If f : (X, *0,%1) —
(X', %0, %]) is a morphism in Ry, then the map F : (X x X,*) = (X' x X', «)
defined by F(z,y) = (f(x), f(y)) is a rack morphism.

Definition 6.2. The functor D from Rjs to the category R of binary racks
defined on objects by Dr(X,*g,*1) = (X x X, x) through Lemma 6.1 and on
morphisms by Dr(f) = f x f through Lemma 6.3, is called the doubling functor.

Remark 6.1. The functor Dpg is injective on objects and morphisms, but not
surjective on either.

A direct computation gives the following lemma.

Lemma 6.4. Let (X, *0,*1) be a mutually distributive rack, and (¢o, $1) be mu-
tually distributive rack 2-cocycles. Let (E,%.) be abelian extensions of (X, *¢) with
respect to @,

(x,a) % (y,b) = (2 *e Y, a + ¢e(,y))

fore=0,1. Then (E, %o, *1) is a mutually distributive rack.
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Theorem 6.1. Let (X, *g,*1) and (X x X, *) be as described in Lemma 6.1. Let
¢o, @1 be rack 2-cocycles of (X, xo) and (X, x1), respectively, that satisfy the mutually
distributive rack 2-cocycle condition. Then

(w0, 1), (Y0, y1)) = do(w0, yo) + ¢1(To *0 Yo, Y1) + do(1,Y0) + P1(x1 *0 Yo, Y1)

is a rack 2-cocycle of (X x X, x). This assignment induces a well defined map © :

H?(X) — H%(X xX), where the subscript R indicates the binary rack cohomology.

A proof will be given at the end of Sec. 7. The right-hand side corresponds to
Fig. 4. We call ¢ the doubled rack 2-cocycle.

6.2. Doubling ternary operations

In this section, we give a doubling construction for ternary racks. The condition
required for this construction differs from the mutual distributivity and defined as
follows.

Definition 6.3. Let Ty and 77 be two ternary operations on a set X. We say that
Ty and T are compatible if they satisfy

To(To(wo, Yo, Y1), 20, 21)

= To(To(zo, 20, 21), To (Yo, 20, 21), T1 (Y1, 20, 21)),
Ty (T1 (1, Y0, Y1), 20, 21)
),

= T (T (21, 20, 21), To (Yo, 20, 21), T1 (Y1, 20, 21))-

A diagrammatic representation of the compatibility is depicted in Fig. 5. Ob-
serve that it corresponds to type III Reidemeister move for ribbons.

Example 6.1. Consider a A-module M where A = Z[t*!,#'*! s s']. The following
two ternary operation To(x,y,z) =tz + sy + (1 —t — s)z and Ty (z,y,2) = t'z +
s'y+ (1 —t — §')z are compatible if and only if the following conditions hold:

(I-t—s)(t' —1t)=0, (1-t-§Ht—-t)=0,
and
(I1—-t—s)(s —s)=0, (1-t' —-s)(s—5)=0.
For example, one can choose M = Zg with Ty(z,y,2) = 3z + 2y + 42 and
Ti(2,y,2) = — + 2.

Definition 6.4. The category T¢ of compatible ternary distributive racks is defined
as follows. The objects consist of triples (X, Ty, 71) where X is a set and (7, 71) are
compatible ternary operations on X. A morphism between two objects (X, Ty, 71)
and (Y, T4, Ty) is amap f : X — Y which is morphism in the ternary category for
both (Ty, T§) and (Ty,TY).

We observe that if f : X — X’ is a morphism in the sense of Definition 6.4,
then it will automatically respect the mutual ternary distributivity. Specifically,
computations imply the following.
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XX Y, Y, %47

\//

T, (T,X0.¥y.Y,) Z, Z)
T, (T,(X1.Y,.Y,).20.2,)

Ty (Ty(Xo,%y,29) Ty (g 29,2 Ty (¥ ’ZO’ZI))
T (Ty (%1,2y,29) Ty (¥ 29,2 Ty (% ’ZO’ZI))

Fig. 5. Diagrammatic representation of compatible ternary rack operations.
Lemma 6.5. If f : (X,To,T1) — (X', T3, Ty) is a morphism in Tc, then it holds
that

F(To(To(zo, Yo, Y1), 20, 21))

= Ty(T5(f (o), f(20), £ (21)), To(f (y0), f (20), £ (21)), T1(f (1), £ (20), £ (21))),
F(T1(T1 (2o, Yo, Y1), 20, 21))

= T{(T{(f(w0) f(20), £ (21)), To(f (y0), f (20), £ (21)), TL(f (1), f (20), £ (21)))-

Theorem 6.2. Let (Ty,T1) be compatible ternary distributive operations on X.
Then T : X2 x X2 x X2 = X? defined by

T((zo, 1), (Y0, Y1) (205 21))
= (TO(TO(xO7yO7y1)7 20, Zl)le(Tl(xlvy(byl)v 205 Zl))

is a ternary distributive operation on X2.

Proof. It is enough to establish
T(T((wo, 1), (Yo, y1), (20, 21)), (o, u1), (vo, v1))
=T (T ((wo, 1), (uo, u1), (vo, v1)),
T((yo, 1), (wo, u1), (vo,v1)), T'((20, 21), (w0, u1), (vo, v1))).-

A diagrammatic representation of this equality is depicted in Fig. 6. This diagram-
matic equality follows from a sequence of moves depicted in Fig. 5. Thus calculations
are obtained by applications of defining relations of compatibility accordingly. O

The following is analogous to Lemma 6.3 and is shown by direct computations.

Lemma 6.6. Let (X,Ty,T1) and (X',T4,T7) be sets with mutually distributive
ternary operations, and (X x X,T) and (X' x X', T") be ternary distributive racks
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X Yon Zont Yot Von Xo Yon Zon Yon Von

0/1

Fig. 6. Diagrammatic representation of Theorem 6.2.

constructed in Theorem 6.2. If f : (X, Ty, T1) — (X', T3, 1Y) is a morphism in Tc,
then F defined from [ by f x [ is a morphism of Tc.

Definition 6.5. We denote the functor from 7o to the category of ternary racks
defined on objects by D (X, To,T1) = (X x X,T) and on morphisms by Dr(f) =
fx f, and call it doubling.

Remark 6.2. The functor Dr is injective on both objects and morphisms, but is
not surjective on either.

Definition 6.6. Let (Tp,71) be compatible ternary distributive operations on X.
Let 19, 11 be 2-cocycles with respect to Ty and 77, respectively. Then the following
are called the compatibility conditions for 1y and ;:

Yo(0, Yo, y1) + Y1 (T1(21, Y0, Y1), 20, 21)
= Y1(x1, 20, 21) + Yo (To (w0, 20, 21), To(Yo, 20, 21), T1(y1, 20, 21)),
Y1(21, 90, Y1) + Yo(To(zo, Yo, Y1), 20, 21)
= 1o (20, 20, 21) + 1 (T1 (20, 20, 21), To (Yo, 20, 21), T1 (Y1, 20, 21))-

Theorem 6.3. Let (Ty,T1) be compatible ternary distributive operations on X . Let
T be the doubled ternary operation defined in Theorem 6.2. Let 1g, 11 be 2-cocycles
with respect to Ty and Ty, respectively, that satisfy the compatibility condition defined
in Definition 6.6. Then

(w0, 1) (o, y1)s (20, 21))
= vo(20, Yo, 1) + ¥1(21, Y0, Y1)
+vo(To(wo, Yo, y1), 20, 21) + Y1(T1(21, Yo, Y1), 20, 21)
is a ternary rack 2-cocycle of (X x X, T).

A proof will be given at the end of Sec. 7. We call ¢ the doubled ternary rack
2-cocycle.
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7. From Binary Racks to Ternary Racks and Back

In this section, we provide relations among constructions of self-distributive oper-
ations discussed so far. To simplify the arguments, we focus on binary and ternary
operations. Specifically, we observe that the doubling functors of binary (respec-
tively, ternary) operations factor through ternary (respectively, binary) operations.
This main result of the section is stated in Proposition 7.2. Furthermore corre-
sponding constructions of 2-cocycles are given, and proofs of Theorems 6.1 and 6.3
are provided at the end of the section. We start with defining a functor for the
construction given in Proposition 3.1.

Definition 7.1. The assignment of objects defined by Proposition 3.1 when W,
and W, are binary operations (hence the obtained W := T is ternary), is denoted
F (X, *0,%1) = (X, T). This assignment on objects can be extended on morphisms
as the identity, to define a functor F : Ry; — 7T, from the category of mutually
distributive binary racks (see Section 6), to the category of ternary racks, using
Lemma 6.2.

By definition F is injective and surjective on morphisms. Computations give
the following.

Lemma 7.1. Let {x,%q,*1} be a mutually distributive binary set. Let (X,T) =
F(X,*0,%1). Then {x,T} are mutually distributive.

Next we define the opposite construction of binary from ternary operations.

Lemma 7.2. Let Ty and T be a two compatible ternary rack operations. Then the
binary operation on the cartesian product X x X defined by

(@0, 21) * (Yo, y1) = (To(zo, Y0, Y1), T1 (1,90, y1)) = (To *0 Y, T1 *1Y)
gives a rack structure (X x X, *).

Definition 7.2. The functor defined by Lemma 7.2 is denoted by G : 7T¢ — R,
where G(X,Tp,T1) = (X x X, *) on objects, and G(f) = f x f on morphisms.

Observe that G is injective on objects and on morphisms.

Proposition 7.1. The functor G is not surjective on objects.

Proof. Consider the binary rack structure on Z x Z defined by

(w0, 1) * (Yo, y1) = (xo + 71, 21).

This rack is not in the image of G since the first entry depends on both zy and x;.
O

Theorem 7.1. Let (X,To,T1) be an object in Tc, and (X x X,*) = G(X, Ty, Th)
be as in Lemma 7.2. Suppose 1y and 1 are compatible ternary 2-cocycles of
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respectively (X,Ty) and (X,T1). Then

d((wo, 1), (Y0, y1)) := Yo(To, Yo, y1) + P1(21, Yo, Y1)

defines a 2-cocycle ¢ of (X x X, *).

Proof. We check that ¢ satisfies the following equation:

o((zo, 1), (Yo, y1)) + ¢((z0, 21) * (Yo, Y1), (20, 21))
= ¢((wo, 1), (20, 21)) + ¢((0,71) * (20, 21), (Yo, Y1) * (20, 21))-

We have

LHS = vo(z0, Yo, y1) + ¥1(1,Y0, Y1)
+%o(To (20, Yo, Y1), 20, 21) + Y1 (T1 (21, Yo, Y1), 20, 21),
RHS = o(0, 20, 21) + ¥1(21, 20, 21)
+ Yo (To(2o, 20, 21), To (Yo, 20, 21), T1(y1, 20, 21))
+ 1 (T1(x1, 20, 21), To (Yo, 20, 21), T1(y1, 20, 21))-

The compatibility conditions of ¥ and 1, show that LHS and RHS coincide. O

The constructions are summarized as follows.

Proposition 7.2. It holds that Go F = Dr and F o G = Dr.

Proof. Let (X, *0,%1) be a set with mutually distributive rack operations. Let
(X,T) = F(X,*g,*1). Then by definition T(z,yo,y1) = (« *0 yo) *1 y1. Lemma 7.2
implies that (X x X, %) = G(X,T,T) is a rack, since T is mutually distributive over
itself. One computes
g(X7 T7 T) = (IE(), fEl) * (y07 3/1)
- (T(.’EQ, Yo, yl)» T(.’E]_, Yo, 3/1))
= ((zo0 *0 Yo) *1 Y1, (1 *0 Yo) *1 Y1)

(
DRr(X, *0, *1)

as desired.

Let (X,T5,71) be a set with mutually distributive ternary rack opera-
tions. Let (X x X,x) = G(X,To,71). Then by definition (xo,z1) * (yo,y1) =
(To(zo,yo,y1), T1(x1,Y0,y1))- Since * is mutually distributive over itself, we have
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that (X x X,T) = F(X x X, ,%) is a rack, as in Definition 7.1. One computes

F(X x X *,%) = T((x0,21), (Yo, ¥1), (20, 21))
= (@0, z1) * (yo,y1)] * (20, 21)
= (To(wo, 9o, y1), Ta (21,50, y1)) * (20, 21)
= (To(To(zo, Yo, y1), 20, 21), Ta (T1(21, Yo, ¥1), 20, 21))
=Dr(X,To, Th)
as desired. O
Proof of Theorem 6.1. Let (g, *1) be mutually distributive rack operations on
X. Let (X,T) = F(X, %0, *1). We have that (X,T) is a ternary rack. Let ¢o, ¢1 be

mutually distributive rack 2-cocycles of (X, o) and (X, %1), respectively. Then by
Theorem 7.1,

(2, y0,y1) = Po(x,Y0) + d1(x *0 Yo, Y1)

is a ternary rack 2-cocycle of (X, T). Since T is compatible over itself,

(G o F)(X, %0, *1)((w0, 71), (Y0, Y1), (20, 21))
= g(X x X, T, T)((xfbxl)v (y07y1)7 (ZO7Z1))
= (T(T(z0,y0, 1) 20, 21), T(T'(x1, Yo, Y1), 20, 21))

is a rack operation by Theorem 6.2. Then Theorem 7.1 applied to (X x X,T.,T)
with mutually distributive cocycles (1, ) implies that

d((xo, 1), (Yo, 1))
= Y(zo,yo,y1) + Y (x1, Y0, Y1)
= ¢o(z,y0) + ¢1(z *0 Yo, y1) + ¢o(21,¥0) + ¢1(T1 *0 Yo,%1)

as desired. To show that the assignment ©(¢o, $1) = 1 passes to cohomology, it
is enough to show that if (¢o, 1) = 0} f, we have that ©(d} f) = dkg, for some
1-cochain g. It is easy to see that the map g(xo,x1) := f(z0) + f(z1) does indeed
serve the purpose. O

Proof of Theorem 6.3. Let (Tp, T1) be compatible ternary distributive operations
on X, and (X x X,%*) = G(X,Tp,T1). By Lemma 7.2, (X x X, ) is a rack. Let
10,1 be compatible ternary 2-cocycles of (X, Ty) and (X, T1), respectively. Then
by Theorem 7.1,

¢(($0,$1), (y07y1)) = ¢0(x07y07y1) + ¢1($17?J07y1)
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is a rack 2-cocycle of (X x X, x). Since * is mutually distributive over itself,
(-FO g)(X7 TQ,Tl)((fE(LfE]_), (y07y1)7 (20721))
= T((.’EQ7 .’E]_), (y07 y1)7 (207 Zl))

= [(5607561) * (ZUO»yl)] * (20, 21)

is a ternary rack operation by Lemma 6.2. Then Theorem 5.1 applied to (X x X, %, *)
with mutually distributive cocycles (¢, ¢) implies that

¥((wo, 1), (Yo, y1), (20, 21))
= ¢((wo, 1), (o, y1)) + ¢((20, 21) * (Y0, Y1), (20, 21))
= ¢((z0, 1), (o, y1)) + &((To (o, Yo, y1), T1 (21, Y0, y1)), (20, 21))
= vo(w0, Y0, y1) + ¥1(21, Y0, y1)
+ to((To(zo, Yo, Y1) 20, 21) + b1 (T (21, Yo, y1)), 20, 21)

as desired. O

8. Internalization of Higher Order Self-Distributivity

We begin this section with the definition of n-ary self-distributive object in a sym-
metric monoidal category, providing therefore a higher arity version of the work
in [2]. We will use the symbol K to indicate the tensor product in the symmetric
monoidal category C, not to confuse the general setting with the standard tensor
product in vector spaces, to be found in the examples. We remind the reader first,
that a symmetric monoidal category is a monoidal category C together with a fam-
ily of isomorphisms 7xy : X XY — Y K X, natural in X and Y, satisfying the
following conditions [17, Sec. 11]. The hexagon:

XX (YXZ)

QV y&z
(XKY)KX YXZ)X X
TX,Yx]IJ/ lay,z,x
YR X)K R (Z K X)

‘Xm AZ

YX(XKZ)

is commutative for all objects X,Y and Z in C, where a.x v,z indicates the associator
of the monoidal category. We further have the following identity for all objects X
and Y:

Ty, xTx,y = lxmy-
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For the sake of simplicity, we work on a strict symmetric monoidal category for the
rest of the paper and therefore do not keep track of the bracketing. We recall also
that a comonoid in a symmetric monoidal category is an object X € C endowed
with morphisms A : X — X X X, called comultiplication or diagonal, and € :
X — I, called counit, where I is the unit object of the monoidal category. The
comultiplication and the counit satisfy the usual coherence diagrams analogous
to the coalgebra axioms. In virtue of the coassociative axiom we can inductively
define an n-diagonal A, : X — X" by the assignment: A, = (AKX 1)A,,_;,
for all n € N. Let us define the isomorphism 7; ;41 : XMy xBn 49 Tiitl =
1861 i Tx,x X 18 =i=1) Tt is easy to verify that the morphisms 7; ;4 satisfy
the relations of the transposition (i,7+ 1) in $,,, the symmetric group on n letters.
We therefore obtain, for every object X, an action of $, on X®" by mapping
(2,4 + 1) to 7iit1, and extending to a homomorphism of groups between $,, and
Aut(X®"), the automorphism group of X" In particular we will make use of the
automorphism of X g"27 corresponding to the permutation

W, =(2,n+1)3,2n+1)---(n,(n —1)n+1)
(n+3,2n+2)(n+4,3n+2)---(2n,(n — 1)n + 2)
o ((n=2)n+n,(n—)n+n-—1).

We are ready now to define n-ary self-distributive objects in a symmetric monoidal
category C.

Definition 8.1. An n-ary self-distributive object in a symmetric monoidal category
C is a pair (X, W), where X is a comonoid object in C and W : X®¥" — X is a
morphism making the following diagram commute:

Xn X(n—1
mn? L BA D o1
X — X

W, W‘lmnm

XIZ|n2 X@n
WK...XW w
X&n 7 X

Example 8.1. Clearly, any n-ary rack is an n-ary self-distributive object in the
symmetric monoidal category of sets, with 7 and A defined in the obvious way.

In the rest of this section, we will make use of Sweedler notation in the following
form: A(z) = 2 @ (),

Example 8.2. Let H be an involutive Hopf algebra, i.e. S = 1. Define a ternary
operation T : H ® H ® H — H by the assignment T'(z ® y ® z) = x5(y)z,
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extended by linearity, where we use juxtaposition as a shorthand to indicate the
multiplication p of H and S is the antipode. By direct computation on tensor
monomials we obtain, for the left-hand side of ternary self-distributivity:

TTrR®yRz2)Qud 2)
=T(zS(y)z@u®v)
=zS(y)zS(u)v.
The right-hand side is
TT® L3 (1P @A DA (AR DA)(zRYy® 2@ U v)
=TT®((z @ u™ @ v @ (y @ u® © v1?) @ (z @ u® @ v?))
=T (xS M)™) © yS () © 28(u®)®)
=zS(u (11)) (11)S(yS( (12) o (12) )25 (u (2)) 2)
S(u“”)v“”S( 0282 (u2)5 ()28 ()0
S(@M)e(vM - 1)52(u) 5 (y) 28 (w®)p®
S(e(u) - 1)S(y)zS (w)e(vD)o®
(
(

|
8

I
8

I
8

S(y)zS (e(u)u®)o
zS(y)zS (u)v.

Note that we have used the fact that H is involutive in the sixth equality, to obtain
S(u)y(D) = (1), This ternary structure is the Hopf algebra analogue of the
heap operation in group theory, which is known to be ternary self-distributive. We
also observe that H being involutive is a parallel to the operation of taking inverses,
obviously involutive as well.

In Fig. 7, a diagrammatic representation of categorical distributivity is depicted.
It is read from top to bottom, where the top 3 end points of both sides represent

X®Yy ®z X QYy®z

Q(x®\}’</ \&

T (x®y®z) = q(@®1)(xQYy®2Z) \
q (q®q)LL|2(1®A)(x®y®z)

Fig. 7. Diagrammatic representation of categorical distributivity.
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T ®y ® z, a trivalent vertex with a small triangle represents a self-distributive
morphism ¢ : X ® X — X, and the left-hand side represents T' = ¢(¢ ® 1).

Given a symmetric monoidal category C, we define categories nSD, for each
n € N, as follows. The objects are n-ary self-distributive objects in C, as in Definition
8.1. Given two objects (X, q) and (X', ¢’), we define the morphism class between
them to be the class of morphism f : X — X’ in C , such that foq=¢ o f&". In
particular we define BSD = 28D and TSD = 3SD, B and T standing for binary
and ternary, respectively.

We will make use of the following results in Theorem 8.1.

Lemma 8.1. Let C be a strict symmetric monoidal category. Suppose (X, A, €) is
a comonoid in C. Then the switching morphism and the comultiplication commute.
More specifically, we have: AR 1o7Txy =Ty yx2 0 LKA,

This lemma is represented in Fig. 8(a) below.

Proof. Consider the following diagram:

XXY /5 vV RX 2L yR2R X

m %@2 TE&TX Y

XXY®2 _ L YRXKY
Txvyg]l

The outmost diagram commutes by naturality of switching map 7x,y with re-
spect to X and Y. The lower right triangle commutes by the hexagon axiom:

(YXY)
Yg/ \
YXRY)X (XKY)XY
N [rom
X (Y XX) YXRX)XY
]l&‘rx\ /
(XXY)
The assertion now follows. |

Lemma 8.2. Let (X, q) be a binary self-distributive object in a strict symmetric
monoidal category C. Then the switching morphism and the self-distributive opera-
tion commute. More specifically, we have: Txy oqW 1 =1KqgoTym: .

This lemma is represented in Fig. 8(b) below.

Proof. Similar to Lemma 8.1 and left to the reader. O

2150116-25



M. Elhamdadi, M. Saito & E. Zappala

Fig. 8. The switching morphism commutes with comultiplication and binary self-distributive
operation.

In general, the following result is useful to produce ternary self-distributive ob-
jects in the category of vector spaces, starting from binary self-distributive objects
(see also [2]). Compare it to the construction of Sec. 3.

Theorem 8.1. Let (X, A) be a comonoid in a (strict) symmetric monoidal category
C (e.g. a coalgebra in the category of vector spaces). Let ¢ : X KX — X be a
morphism such that (X, q) is a binary self-distributive object in C. Then the pair
(X,T), where T = q(¢ X 1), defines a ternary self-distributive object in C. The
construction defines a functor F : BSD — TSD.

Proof. We define F on objects as F(X,q) = (X,T) and as the identity on mor-
phisms. To show that the map T = ¢(q X 1) is ternary self-distributive, we can
proceed as in Fig. 9. In the left column of the figure, the part of the diagram rep-
resenting each T = ¢(¢ X 1) are indicated by dotted circles. At each step we are
using the definition of T, the binary self-distributivity of ¢ and Lemmas 8.1 and
82. If f: (X,q) — (Y,q¢) is a morphism in BSD, we can show that f is also
a morphism in 78D between (X,T = ¢(¢ K 1)) and (Y,7" = ¢'(¢ K 1)) via the
following diagram:

XHXHX 2 xmy -5 X

lfﬁfﬁf Jf‘xf lf

YRYRY 225 vyRyY —L5 vy
where the commutativity of the left and right squares is just a restatement of the
fact that ¢ is a morphism in BSD. The consequent commutativity of the outer
rectangle means that f is a morphism in TSD as well. It is also clear that F
preserves composition of morphisms. O

The following is a rephrased version of [2, Lemma 3.3], adapted to our language
in this paper.

Lemma 8.3. Let L be a Lie algebra over a ground field k. Define X =k & L and
endow it with a comultiplication A, defined by (a,z) — (a,z)®(1,0)+(1,0)®(0, x),
and a counit €, defined by (a,z) — a. Then (X, A, €) is a comonoid in the symmetric
monoidal category of vector spaces. The morphism q : X @ X — X defined by
(a,z) ® (byy) = (ab,bx + [z,y]) turns X into a binary self-distributive object.

Proof. By direct computation making use of the Jacobi identity. This is done
explicitly in [2, Lemma 3.3]. |
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Fig. 9. Diagrammatic proof of doubling procedure.

Example 8.3. Let L be a Lie algebra and let X = k& L be as in Lemma 8.3. The
map 7 : X ® X ® X — X defined by

(a,z) ® (b,y) ® (¢, z) —> (abe, bex + clx, y] + blz, 2] + [[z, y], 2]),

and extended by linearity, is such that (X, T) is a ternary self-distributive object in
the category of vector spaces by an easy application of Theorem 8.1. An explicit, and
tedious, computation that shows the self-distributivity of T' directly, is postponed
to Appendix A.

If H is a Hopf algebra, we can use the adjoint map to produce a ternary self-
distributive map, as the following example shows.

Example 8.4. The map defined by T'(z®@y®2) = S(z1)S(yM)2y? 23 is ternary
self-distributive, as an easy direct computation shows. This is the Hopf algebra
analogue of the iterated conjugation quandle.

Remark 8.1. It is possible, a priori, to develop the theory of higher self-
distributivity in braided monoidal categories, where the switching morphism sat-
isfies the hexagon axiom but we do not require 7y, x7x,y = lxgy. Similarly as
above we have an action of the braid group on n strings on every object X®" and
the shuffle map L, takes now into account over passing and under passing of the
strings.

Appendix A. Example 8.3 Revisited

In this appendix, we explicitly show that the map in Example 8.3 is indeed self-
distributive. Each equality is obtained by applying the Jacobi identity as in the
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proof of Lemma 3.3 in [2]. In fact, each step corresponds to one of the diagrams
in the proof of Theorem 8.1 (cf. Fig. 9). Recall also the definition of the diagonal
A, from Lemma 8.3, and the inductive definition for A3 at the beginning of Sec. 8.
Explicitly, we have for Ag:

As(a,z) = (a,2) ® (1,0) ® (1,0) + (1,0) ® (0,z) ® (1,0) + (1,0) ® (1,0) ® (0, ).

To make the steps easier for the reader, we declare the terms that are going to be
replaced according to the Jacobi identity, and underline the replacing terms in the
subsequent equality. We obtain therefore

T(T((a,z) @ (bo,yo) @ (b1,y1)) @ (co, 20) @ (c1,21))
= (abobycoes, bobrcoer + bicoes [, yo] + bococt [z, 1)
+coct[[2, yo), 1] + bobrea [, zo] + baea [[x, o), zo]

+boci[[z, 91l zo] + e[z, yol, 91, 0] + bobico[, 21]

+ bicol[z, yol, z1] + boco[[z, 1], 21] + co[[[2, yol, 1], 21]
+ bob1 [[z, 20], 21] + b1 [[[z, yol, z0], z1] + bo[[[z, y1], 20], 21]
+ [[[[z, yol. 1], 20], 1))

Applying the Jacobi identity to the terms boci[[z,y1],20], ll[*,yol,y1], 20,
bo[[[x7y1]720]721] and [[[[xvy()]vyl]vz()]vzl] we obtain

= (aboblcgcl, boblc()clJ? + b10061 [a:, yo] + b0b101 [J?, Z()]
+bicr[[w, yol, z0] + bococ [T, y1] + cocr[[w, yol, y1]

+boci ([, z0], y1] + e[z, yol, 20], y1] + boca [z, [y1, 20]]

+ e[z, yol, [y1, z0]] + bobico[x, z1) + bico[[2, Yo, z1]

+ bobl[[a?, Zo], 21] + b1 [[[a:, yo], Z()], 21] + boCQ[[J?, yl], 2’1]

+ co[[[z, yol, y1l, 21] + bol[[z, z0], y1], 21] + [[[[%, yol; 20], ¥, 21]

+ bol[, [y1, 2o0l], z1] + [[[, yol, [y1, 20l 21])-

We now apply the Jacoby identity to the term bicy[[z, yo], 0], bi[[[x, yo]; z0], 1],
Cl[[[xvy()]v ZO]vyl] and [[[[xvy()]v 20]7y1]7 Zl] to obtain

= (aboblcgcl, boblcocla: + b0b101 [J?, Z()] + b10061 [a:, yo]
+ blcl [[Ji, ZO]7 yO] + bOCOcl [1‘, yl] + boCl [[Ji, ZO]? yl]

+cocr[[z, yol, y1] + cill[z, 20, yol, ya] + bici[z, [yo, 20]]

+ ci[[z, [yo, z0]], y1] + boci [z, [y1, 20]] + c1[x, yol, [y1, 20]]
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+ bobicolz, z1] + bob1[[z, 20, 21] + bico[x, yol, z1]

+ b1[[[z, z0], yol, 21] + boco[[z, y1], 1] + bo[[[z, 20], 41, 21]

+ co[l[z, yol, y1], z1] + [[[[=, 20], yo], y1], z1] + ba[[2, [yo, 20]], 21]

+ [[[=, [yo, zo], 1], 21] + bol[z, [y1, 20]]; 21] + [[[2, yol, [y1, z0]], 1])-

Next, we use the Jacoby identity on the terms boco[[z, y1], 21], bo[[[x, z0],y1], 21],
bol[z, [y1, 20]], z1], colll®s wol, v1l, z1], [ll[z, 20, ol v1l, 21], [[[=, Yo, 20]]; ¥1], 21] and
[z, yol, [y1, z0]), 21]:

= (abobicocr, bobicocrx + bobicy [z, zo] + bicoer [z, yo]
+biea[[x, 20, yo] + bobico[x, 21] + bob1[[x, 0], z1]
+ bicol[z, yol, 1] + ba[[[z, z0], yo], z1] + bococa [z, y1]

+boca[[z, z0], y1] + cocr[[x, yol, 11] + ea[[2, [yo, 20l], 1]

+biea [z, ]

+ coll[z, yol, 21], 1] + ba ([, [yo, 20]], 21] + [[[[z, z0], yo, 1], 91]

+ [llz, [yo, zol], 21], y1] + bocr [z, [y1, 20]] + ea [, wol, [y1, 20]

+bo[[z, z1], [y1, 20]] + [[[=, o], 21], [y1, 20]] + boco[=, [y1, 1]

+bo[[z, 20], [y1, 21]] + e[, 20], yol, 1] + collz; yol, [y1, 21]

+[[[2, 20], yol, [y1, 21]] + [, [yo, 2ol [y1, z1]] + bo[=, [

+ [z, yol, [[y1, 20], 21]])-

Lastly, making use of the Jacobi identity on the terms bico[[z, yo], 21], b1[[[=; 0],

Yol, 21], coll[z, yol, 21], val, b1 ([, [yo, 20]], 211, [[[[, 20, vol, z1], 1], [[[, [yo, 20]l, 1], 91]
and [[[z, o], 1], [y1, 20]] We obtain

[0, 20]] + bocol[x, 21], y1] + bol[[z, 20], 21], ¥1]

]
]
]
], 1]

[yl 20

= (ab0b100017 boblcoclx + boblcl [{,C, Z()] + boblco [LC7 Zl]
+ bob1 ([, 20], 21] + bicoci[x, yo] + brca[[z, zo], yo]

+bicol[z, z1], yo| + b1[[[x, z0], 21], yo] + bococi[z, yi]

NS NS

([, 21], ol
+boci[[z, z0], y1] + bocol[x, 21], y1] + bol[[z, 20], 21], y1]
[z, yol, 1]

+ cocr ||, Yol, Y1 + Cl[[[$7 Z0]7 y0]7 yl] + CO[[[xv Zl]v yO], yl]

+ [[[[z, 20], z1], yol, y1] + boci [z, [y1, z0]] + bo[[z, z1], [y1, 20]]

+c1l[z, yol, [y1, 20]] + [[[z, z1], yol, [y1, 20]] + brca [z, [yo, 20]]

+ b1[[x, 21], [Yo, z0]] + 1=, [yo, 20]]; y1] + [[[, 21], [yo, 20]]; v1]
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+bicol, [yo, 21]] + bi[[z, z0], [yo, 21]] + collz, [yo, 21]], 1]

+ [z, 20l [yo, 211} 91l + bal, [[yo, z0], z1]] + [, [[yo, 0], 1], 1]

+ ([, [yo, z1]], [y1, 20]] + bocolz, [y1, 21]] + bo[[x; 20]; [y1, 21]]

+ col[, yol, [y1, 21]] + [[[z, z0], yol, [y1, 21]] + [[2, [vo, 20]], [y1, 21]]
+bolz, [[y1, 20], 21]] + [[2, yol, [[y1, 20], 21]])-

This last term can be seen to coincide with the right-hand side of the self-
distributivity equation:

T(T%%) ws (1° ® AF?)((a,2) @ (bo, yo) @ (b1,y1)) ® (co, 20) @ (c1, 21)).-

It follows therefore, that the map 7" turns X into a ternary self-distributive object
in the category of vector spaces.

Appendix B. Augmented Ternary Racks for Sets and Hopf
Algebras

It is of an independent interest how the concept of augmented racks generalize to
ternary racks for both sets and monoidal categories in general. In this section, we
propose such generalization and provide key motivational examples in heaps and
Hopf algebras.

An augmented rack [11] (X, G) is a set X with a right group action by a group
G and a map p : X — G satisfying the identity p(x - g) = g 'p(z)g for all z € X,
g € G. An augmented rack has a rack operation defined by z xy = x - p(y) for
xz,y € X. The following definition can be considered a ternary analogue of an
augmented rack [11].

Definition B.1. Let X be a set with a right G-action denoted by X xG > (z, g) —
x-g € X.Let G act on the right of X x X diagonally, (yo,y1) -9 = (y0-9,¥1 - 9)
for yo,y1 € X and g € G. A (double) augmentation of X isamapp: X x X — G
satisfying the condition

p((y0,91) - 9) = g~ ' p((y0, y1))g
for all yp,y1 € X and g € G.

The following is a direct analogue of binary augmented rack and, therefore, the
proof is omitted.

Lemma B.1. Let X be a set with an augmentation p : X x X — G. Then the
ternary operation T : X3 — X defined by

T(z,y0,y1) == = - p((¥0,¥1))

is ternary self-distributive.
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Definition B.2. Let X be a set with an augmentation p : X? — G and T be
a ternary operation defined in Lemma B.1. Then (X,T) is called an augmented
ternary shelf.

Example B.1. Heaps can be endowed with augmentation as follows. Let G be a
group, with the TSD operation T'(z,y, z) = zy~'z. Consider the right multiplication
as the right action of G on itself. Then consider the diagonal right action of G' on
GxG,by (z,y)-z=(x-2,y-2). Let p: G x G — G be defined by p(y, z) =y~ ‘2.
Then we readily check the condition

(o, y1) - 9) =p((o - 9. y1 - 9)) = (Wog9) " (19) = 9~ "5 'yr9 = 9~ "p((y0,41))9-

Although more study on augmented ternary racks are desirable, we focus on the
following further generalization to Hopf algebras. The point of interest is that the
comultiplication plays the role of the diagonal map.

Definition B.3. Let X be a coalgebra, and let H be a Hopf algebra such that X is
a right H-module, therefore X ®? is also a right H-module via the comultiplication
in H. The map of coalgebras p : X®2 — H is a ternary augmented shelf if, for all
2z € X®? and g € H, we have

p(z- Alg)) = S(g™)p(2)g®.

This axiom is depicted diagrammatically in Fig. B.1, where solid lines refer to X,
and dashed lines refer to H. We have used A, m and S to indicate comultiplication,
multiplication and antipode in the Hopf algebra H, while p stands for the action
of H on X.

We have the following result.

Theorem B.1. Letp: X®2 — H be a ternary augmented shelf. Then the ternary
operation defined on monomials via x @ y ® z — x - p(y ® z), and extended by
linearity, is self-distributive.

Fig. B.1. Augmented ternary shelf axiom.
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Yo¥i 8

Fig. B.2. Hopf algebra heap as an augmented ternary shelf.

Proof. By direct computation we have, for the right-hand side of self-distributivity
axiom:

TT® w; (1% ® (A AR (A® H)A)( ® Yo ® Y1 ® 20 ® Zl)

=x-<p<zél )p(yo Pz <2>®y p(z >>>
=z (p(=" @ 2" )p(yo ® y1 - Ap((20 ® 21)@))))

=z (p(zo ® zl)“)S(p((zo ® 21)@))p(yo ® y1)p((20 @ 21)) )
=z (e(p(z0 ® 21)™M) - 1p(yo @ y1)p((20 ® 21))?)

=z (p(yo @ y1)p(20 ® 21)),

where we have used the fact that p is a coalgebra morphism in the third equality,
the defining axiom for augmented ternary shelf in the fourth equality, the antipode
and the counit axioms to obtain the fifth and sixth equations, respectively. It is
easy to see that it coincide with the left hand side of self-distributivity. O

Example B.2. Let H be an involutive Hopf algebra and let X = H. Then, H
acts on X via multiplication. Define p to be the map given by z ® y — S(z)y and
extended by linearity. The ternary rack structure obtained is the one in Example
8.2. A diagrammatic proof that the given p satisfies the augmented ternary rack
axiom is shown in Fig. B.2.
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