
Audio-Visual Event Localization via Recursive Fusion by Joint Co-Attention

Bin Duan1 Hao Tang2 Wei Wang2 Ziliang Zong3 Guowei Yang3 Yan Yan1

1Illinois Institute of Technology, USA
2University of Trento, Italy 3Texas State University, USA

tuffrr5@gmail.com, {hao.tang,wei.wang}@unitn.it, {ziliang,gyang}@txstate.edu,yyan34@iit.edu

Abstract

The major challenge in audio-visual event localization

task lies in how to fuse information from multiple modali-

ties effectively. Recent works have shown that the attention

mechanism is beneficial to the fusion process. In this paper,

we propose a novel joint attention mechanism with multi-

modal fusion methods for audio-visual event localization.

Particularly, we present a concise yet valid architecture that

effectively learns representations from multiple modalities

in a joint manner. Initially, visual features are combined

with auditory features and then turned into joint represen-

tations. Next, we make use of the joint representations to

attend to visual features and auditory features, respectively.

With the help of this joint co-attention, new visual and audi-

tory features are produced, and thus both features can enjoy

the mutually improved benefits from each other. It is worth

noting that the joint co-attention unit is recursive meaning

that it can be performed multiple times for obtaining better

joint representations progressively. Extensive experiments

on the public AVE dataset have shown that the proposed

method achieves significantly better results than the state-

of-the-art methods.

1. Introduction

Humans explore the surroundings with their advanced

sensory system in daily life, e.g., eyes, ears, and noses.

Heterogeneous information from various sensors floods into

the human perceptual system, among which sound and vi-

sion are two dominant components. In multimodal ma-

chine learning, it turns out that the joint learning of audio

and visual modalities usually achieves better performance

than using single modality for various tasks, e.g., sound

localization [1, 12, 23, 46, 24], sound source separation

[7, 42, 9, 23, 46, 16, 43, 10, 27] and audio-visual event lo-

calization [19, 36, 38].

In this paper, we focus on the audio-visual event localiza-

tion task. As shown in Fig. 1, an Audio-Visual Event (AVE)

is defined in a video sequence that is both audible and visi-

video sequence
Figure 1. Audio-Visual Event (AVE) is an event both audible and

visible. e.g., a person can see a helicopter in the visual sequence

(the bottom row) and also hear the helicopter’s engine sound in the

audio sequence (the top row).

ble. The audio-visual event localization task consists of two

sub-tasks, one of which is to predict the event label while

the other is to predict which segment of the video sequence

has an audio-visual event of interest. As in the AVE defini-

tion, localizing an AVE must deal with heterogeneous infor-

mation from both audio and visual modalities. Moreover,

recent works [19, 36, 38] show that the performance after

fusion outperforms the one that only uses a single modality.

Although these approaches present interesting explorations,

how to smartly fuse representations from both modalities is

still a challenging task.

Multimodal fusion provides a global view of multiple

representations for a specific phenomenon. To tackle the

AVE localization problem, existing methods [19, 36] either

fuse cell states out of LSTMs [36], or fuse both hidden

states and cell states from LSTMs [19]. Both aforemen-

tioned approaches exploit a plain multimodal fusion strat-

egy, where the fusion results might be unstable as it is hard

to guarantee good quality of the information used for the

fusion, e.g., some noisy information from the background

segments may also be included. Therefore, a more robust

fusion strategy is needed for better representations. Wu

et al. [38] introduce a cross-modal matching mechanism

that exploits global temporal co-occurrences between two

modalities and excludes the noisy background segments

from the sequence. Intuitively, having global features to

interact with local features would help to localize the event,

but it needs additional supervision to manually filter the

background segments.
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To summarize, existing methods either follow a straight-

forward multimodal fusion strategy (fuse both features di-

rectly), or require extra supervision (exclude background

segments). Taking advantage of recursive fusion interac-

tions between multimodal representations, we propose a

novel joint co-attention fusion approach that is able to learn

more robust representations with less supervision on ex-

cluding background segments.

Attention mechanism has been applied to many

tasks [45, 34, 8, 41, 6, 3, 21, 33]. For example, recent works

in generative adversarial networks [45, 34, 35] utilize a self-

attention mechanism that relates different portions of a sin-

gle image to compute a representation for itself. Besides

self-attention, other works in Video Question Answering

(VQA) [20, 22] propose a co-attention mechanism, in which

the image representation guides the text attention gener-

ation and in the meanwhile, the text representation also

guides image attention generation. Moreover, both atten-

tion mechanisms allow attention-driven, long-range depen-

dency modeling for their corresponding tasks. Motivated

by these two attention techniques, we propose a new Joint

Co-Attention (JCA) mechanism which develops on the ba-

sis of self-attention and co-attention. We utilize the joint

representation to generate the attention masks for two uni-

modalities while previous methods [20, 22] independently

generate attention mask for each other. In our approach, in-

stead of using features from one single modality, each atten-

tion mask is generated using features from both modalities

and thus it is more informative. As a result, each modal-

ity is attended not only by the features from itself (self-

attended), but also by the features from the other modality

(co-attended).

While the attention mechanism allows multimodal fu-

sion in depth, we further introduce a double fusion mech-

anism, that can be integrated with attention mechanisms,

allowing fusion both in depth and breadth. Existing

works [17, 40] exploit the double fusion to integrate rep-

resentations from different modalities in a hybrid fusion

manner, i.e., they fuse features using both early fusion (be-

fore feature embedding) and late fusion (after feature em-

bedding). Different from existing methods [19, 36, 17, 40]

that fuse representations from multiple modalities simply

by averaging, weighting, or concatenation. In this paper,

we propose to integrate the double fusion method with our

JCA mechanism. First, the audio-guided attention [36] is

performed as early fusion. Then, we exploit Bi-LSTM [28]

with residual embedding to extract features where we com-

bine features before Bi-LSTM and after Bi-LSTM, leading

to global temporal cues. After the Bi-LSTMs, the represen-

tations of two modalities are fused using the JCA mecha-

nism as late fusion. Note that the JCA unit is recursive so

that the joint co-attention process can be repeated for mul-

tiple times.

Overall, our contributions in this paper are summarized

as follows:

• We revisit the audio-visual event localization task and

tackle the task from a multimodal fusion perspective

which targets for better representations.

• We propose a novel joint co-attention mechanism and

deploy it in deep audio-visual learning. It learns more

robust representations by recursively performing fu-

sions of the representations from two modalities.

• The integration of attention mechanism and double fu-

sion method enables the model to learn long-range de-

pendencies. Extensive experiments show the superior-

ity of our framework.

2. Related Work

Audio-Visual Event Localization aims to identify the

event of interest in a video sequence and predict what cat-

egory the event belongs to. Tian et al. [36] first define

audio-visual event localization problem aiming to detect

event which is both audible and visible. They design an

audio-guided attention dual-LSTM network that captures

each uni-modal representation and fuses them by concate-

nation for the final prediction. Lin et al. [19] propose a

dual-modality sequence-sequence framework that explores

the global features of audio and visual modalities. Wu et

al. [38] introduce a dual attention matching mechanism

that conducts cross-matching across modalities. They also

leverage the global event feature by only considering seg-

ments containing audio-visual events, i.e., they filter out

background segments to compute the global feature. How-

ever, determining background segments often requires more

supervision. In our work, we propose to use less supervi-

sion to fulfill the task. Different from [36], we introduce a

recursive layer that can be stacked and therefore recursively

fuses two uni-modal representations multiple times to ob-

tain more robust representations.

Sound Localization is to associate certain regions in a

video that has the corresponding sound with visual-aid. To

this end, Hershey et al. [12] use a Gaussian process model to

measure the mutual information of the audio and visual mo-

tion. Owens and Efros [23] propose a multi-sensory model

that learns audio-visual correspondence in a self-supervised

style to align the audio and visual frames and then localizes

the sound source afterward. To investigate the correspon-

dences between audio and visual components, Hu et al. [14]

propose a deep multimodal clustering network that adds

similar parts among two modalities to the final output. Zhao

et al. [46] propose PixelPlayer that learns to locate image

regions by leveraging large amounts of unlabeled videos.

Arandjelovic and Zisserman [1] design two sub-networks

that individually learn from audio tracks and image frames.
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After learning, they fuse two branches to predict correspon-

dence. Senocak et al. [29] develop a localization module

that is based on the attention mechanism to capture the cor-

relation between audio and visual features. The attention

mechanism they adopt is quite plain where they transpose

visual embedding and then multiply with audio embedding.

Multimodal Attention involves interaction at least two fea-

tures from different modalities. In Video Question Answer-

ing (VQA), Lu et al. [20] propose a hierarchical attention

technique that co-attends to the features extracted from text

language modality and visual modality. Another work in

VQA, Nguyen and Okatani [22] introduce a memory-based

co-attention technique that enables dense interactions be-

tween the two modalities, and then both modalities con-

tribute to the selection of the right answer. In emotion

recognition, Zadeh et al. [44] exploit a small neural net-

work that takes the concatenated cell states of three differ-

ent LSTMs for language, audio, and visual components as

input and then output the attended features. Wang et al. [37]

present an attention gating mechanism where they try to

learn a nonverbal shift vector by weighting features from

different modalities. Different from the two aforementioned

work that only perform attention operation once, we de-

velop a joint co-attention mechanism that can be recursively

performed.

Multimodal Fusion also known as the integration of infor-

mation from multiple modalities [2], allows for more ro-

bust representations by leveraging multiple modalities and

it can be categorized into two types: model-agnostic and

model-based. Here, we only review the model-agnostic ap-

proaches, i.e., early fusion [31], late fusion [26, 31] and

hybrid fusion [17, 40] as it is more related to our work.

Early fusion combines low-level features of each modal-

ity while late fusion uses uni-modal decision values based

on a fusion algorithm, e.g., averaging, weighting. Hy-

brid fusion, or double fusion, attempts to take advantage of

both early and late fusion mechanisms. It has been widely

used in the research of multimodal learning, e.g., multi-

modal speech recognition [39, 32] and multimedia event

detection [17, 40, 15]. Besides a bigger picture of fu-

sion strategies, there are many specific fusion strategies in

terms of feature-level. Rahman et al. [25] adopt element-

wise addition or multiplication, channel-wise concatena-

tion, and fully-connected neural network to fuse informa-

tion from three different modalities: language, audio, and

visual modality.

3. Approach

In this section, we introduce the overall architecture of

our proposed joint co-attention network for the supervised

audio-visual event localization task layer by layer, as shown

in Fig. 2. To start with the description, we first set forth

the notations in Sec. 3.1, then the sequence feature re-

Table 1. Main symbols used throughout the paper.

Symbol Definition

Sa/Sv audio/visual sequence

sta/s
t
v audio/visual t-th segment-level feature

f t
a/f

t
v audio/visual feature after re-representation layer

A/V/J audio/visual/joint sequence-level feature

Ca/Cv joint-audio/joint-visual affinity matrix

da/dv/d dimmesion of audio/visual/joint feature

ℓ recursive times of joint co-attention layer

Ha/Hv audio/visual feature after joint co-attention layer

Wja/Wjv parameters between (J and A)/(J and V)

Wa/Wv parameters for feature A/V
Wca/Wcv parameters for feature Ca/Cv

Wha
/Whv

parameters for feature Ha/Hv

representation layer is described in Sec. 3.2. Next, we in-

troduce the proposed joint co-attention layer in Sec. 3.3.

Lastly, we explain the final prediction layer in Sec. 3.4.

3.1. Notations

The symbols used throughout the paper are listed in Ta-

ble 1. An Audio-Visual Event (AVE) is defined as an event

that is both visible and audible [36]. As in [36, 38], for

a given audio-visual video sequence S = (Sa, Sv), while

Sa denotes the audio portion and Sv denotes the visual por-

tion. The video sequence S is split into N non-overlapping

yet continuous segments where each segment is typically

one second long. For each segment, a label y ∈ {0, 1} is

given, while 0 indicates the segment is background and 1

indicates that is an AVE. The sequence features, i.e., Sa and

Sv are extracted using a pre-trained CNN. We denote the

extracted segment-level feature as sta and stv correspond-

ing to the audio and visual modality respectively, where

t ∈ {1, 2, · · · , N}. Our network is built on the basis of

fixed sta and stv .

3.2. Re­Representation Layer

Sequence representation contains temporal cues among

the sequential stream, and LSTM has shown its superior-

ity in learning those temporal cues. Therefore, we use the

LSTM to modulate the sequence representations. Differ-

ent from existing methods [19, 36], we add a residual em-

bedding to the output of the LSTM in order to produce

better representation. The structure of the proposed re-

representation layer is shown in Fig. 2.

Audio Representation. In general, a sequence of au-

dio feature A contains N continuous segments, i.e.,

{s1a, s2a, · · · , sNa }, where each sta is a 128 × 1 dimensional

vector. We adopt Bi-directional LSTM [28] with residual

embedding, in our case, concatenation, to learn the audio

representation:

−→

f t
a= Bi-LSTM(

[

−→

f t−1
a

sta

]

), (1)
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Figure 2. The overall structure of the proposed framework. We split it into three parts, i.e., sequence feature re-representation layer, joint

co-attention network and category prediction layer. For the symbols, +© denotes concatenation, F© denotes early fusion of audio feature

and visual feature, σ© denotes the softmax function, T© is transpose operator, and ×© is matrix multiplication operator.

←−

f t
a= Bi-LSTM(

[

←−

f t+1
a

sta

]

), (2)

where the arrow indicates the direction of information flow-

ing. Therefore, f t
a = concat(

←−

f t
a ,

−→

f t
a ). We concatenate N

segments along the time axis and create a new feature ma-

trix, i.e., A = concat(f1
a , . . . , f

N
a ) ∈ R

N×da .

Visual Representation. Unlike audio features which are

1D features, visual features are 2D features extracted from

image frames. This brings problems as the model needs to

process two types of features with different dimensions si-

multaneously. Typically, the size of each visual feature is

512 × 7 × 7 as in [36, 38]. If we simply conduct pooling

in the height and width dimensions and reduce them into

size 1 (7 → 1), the performance of this reduction proce-

dure can barely be guaranteed as the stride is big and may

leave out useful information. Further study about the in-

fluence of applying different pooling methods is conducted

in the ablation studies in Sec. 4.3. To smoothly reduce the

dimension of raw visual features, we obtain the scaled dot-

product of audio feature and visual feature for each seg-

ment. We denote the scaled dot-product as f t
v . Then we

follow a similar routine to encode the sequence of visual

features like the audio sequence using LSTM with residual

embedding. Consequently, we use a matrix for visual rep-

resentation V = concat(f1
v , . . . , f

N
v ) ∈ R

N×dv .

3.3. Joint Co­Attention Network

We now introduce the Joint Co-Attention (JCA) layer as

shown in Fig. 2. The proposed joint co-attention layer at-

tends to visual features and audio features simultaneously.

It takes the audio representation A and the visual represen-

tation V as inputs and concatenates two representations as

the joint representation J. We employ J to co-attend to A

and V, respectively. It is worth noting that we only pre-

serve J→A (i.e., joint feature attend to audio feature) and

J → V (i.e., joint feature attend to visual feature), the in-

verse directions of A → J and V → J are abandoned for

simplicity, which is different from the original co-attention

mechanism [20]. One property of JCA is mutual attention,

that is, it can attend to features from two different modal-

ities simultaneously. Another special property of JCA is

stackability, i.e., we can stack several JCAs so that we can

recursively perform the process multiple times. Extensive

experiments on different recursive times of the JCA unit are

shown in Sec. 4.3.

Primary Idea for Joint Co-Attention. Recent studies [20,

22] explore the co-attention theory in Visual Question An-

swering (VQA). The text sequence representations and the

visual sequence representations attend mutually to obtain

new representations. Inspired by this, we explore a mode

that allows representation from one modality not only at-

tending to the other representation from the other modal-

ity but also attending to the representation from its orig-

inal modality. Given audio representation A ∈ R
N×da ,

and visual representation V ∈ R
N×dv , the joint represen-

tation J ∈ R
N×d is acquired by the concatenation of A

and V, i.e, J =

[

A

V

]

, where d = da + dv . We take

audio feature A
ℓ as an example to elaborate the process of
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joint co-attention. Here, we denote A
1 as the initial state

of audio feature and A
ℓ as the audio feature after ℓ-th joint

co-attention layer. First, the (ℓ−1)-th layer’s audio repre-

sentation A
ℓ−1 is concatenated with V

ℓ−1 to obtain joint

representation J
ℓ−1; next, we employ the J

ℓ−1 to attend to

A
ℓ−1 and finally obtain the ℓ-th layer’s audio feature A

ℓ.

Following the similar rules, the new visual feature V
ℓ is

obtained.

Learning to Joint Co-Attend. Fusion is one of the key

challenges for multimodal learning [2]. Following recent

studies [20, 22] in VQA, we specifically derive the fusion

to fit our audio-visual event localization task. After calcu-

lating the joint representation matrix J, we use it to attend to

different uni-modal representations via the following equa-

tion:

Ca = Tanh

(

A
T
WjaJ√
d

)

, (3)

where Ca is the joint-audio affinity matrix, T denotes trans-

pose operation, and Wja ∈ R
N×N is a learnable weight

matrix (Wja is implemented as fully-connected layer). Fol-

lowing the same rule, the joint-visual affinity matrix Cv can

be written as

Cv = Tanh

(

V
T
WjvJ√
d

)

, (4)

where Wjv ∈ R
N×N is also a learnable weight

matrix. After calculating the joint uni-modal affin-

ity matrices Ca and Cv , we then calculate the at-

tention probabilities map Ha,Hv of two modalities

as, Ha = ReLU
(

WaA+WcaC
T
a

)

and Hv =

ReLU
(

WvV +WcvC
T
v

)

, where Ha ∈ R
k×da ,Hv ∈

R
k×dv represent the attention probabilities map of audio

modality and visual modality, respectively. Wa,Wv ∈
R

k×N , Wca,Wcv ∈ R
k×d are learnable weight matrices.

After obtaining the attention map Ha and Hv , we re-

compute the new audio representation and new visual rep-

resentation by

A
ℓ = g(Aℓ−1,WT

hℓ
a

H
ℓ
a), (5)

V
ℓ = g(Vℓ−1,WT

hℓ
v

H
ℓ
v), (6)

where Whℓ
a
,Whℓ

v
∈ R

k×N are learnable weight matrices

in the ℓ-th layer. ℓ−1 represents the features produced by

the ℓ−1-th layer. In our case, g is a summation function.

Fusion by Fusion. Multimodal fusion can generate more

robust representation using the features from multiple

modalities that are collected for the same phenomenon. Ear-

lier studies [19, 36, 38] particularly exploit the method in

an audio-visual dual-modality setting either directly fusing

the features or using cross dot product operation. Different

from them, we consider multimodal fusion as a recursive

process, where we fuse audio representation A and visual

representation V recursively to obtain more robust repre-

sentations. Following Eq. (5) and Eq. (6), we generalize

this recursive process as

A
ℓ = g(· · · g(A0,WT

h1
a

H
1
a) · · · ,WT

hℓ
a

H
ℓ
a), (7)

V
ℓ = g(· · · g(V0,WT

h1
v

H
1
v) · · · ,WT

hℓ
v

H
ℓ
v), (8)

where ℓ represents the amount of times that the joint co-

attention is repeated. After fusing ℓ times, we will obtain

two more robust representations for audio and visual modal-

ity, respectively.

3.4. Prediction Layer

The audio-visual event localization task aims to identify

an AVE in a given video sequence and predict which cat-

egory the AVE belongs to. Note that the input sequences

of different categories and the backgrounds are heteroge-

neous. As a consequence, it is even harder to complete the

task. Different from [38], we use less supervision by only

considering event category labels. Before prediction, early

fusion of two separate modalities is performed, and then

two uni-modal representations are re-represented as A and

V. Next, following the fusion method in Sec. 3.3 of joint

co-attention, we fuse two uni-modal representations multi-

ple times to get Aℓ and V
ℓ. Finally, Aℓ and V

ℓ are taken

as input into the final category prediction layer:

prediction = MLP

(

Bi-LSTM
(

[

A
ℓ

V
ℓ

]

)

)

. (9)

where MLP denotes Multilayer Perceptron and Bi-LSTM

is to modulate audio and visual representations jointly. In

experiments, the MLP is implemented by using a two-layer

fully-connected network embedded with 1,024/256 hidden

units and a Sigmoid layer σ, as shown in Fig. 2. After that,

the predicted category is the one that corresponds to the max

value in the prediction vector. During training, we use the

Multi Label Soft Margin loss function to optimize the entire

network.

4. Experiments

4.1. Experimental Setup

Audio-Visual Event Dataset. The Audio-Visual Event

(AVE) dataset by [36] is a subset of AudioSet [11]. It

consists of 4, 143 video clips that involve 28 event cat-

egories. We adopt the split technology of [36] where

train/validation/test sets are 3, 309/402/402 video clips, re-

spectively. While training, the model has no access to

the test portion to better evaluate the model’s generaliza-

tion ability. For the AVE dataset, it contains comprehen-

sive audio-visual event types, in general, instrument perfor-

mances, human daily activities, vehicle activities, and ani-

mal actions. To be more specific, for more detailed event
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categories, take instrument performances as an example,

AVE dataset contains accordion playing, guitar playing, and

ukulele playing, etc. A typical video clip is 10 seconds long

and is labeled with the start point and endpoint at the seg-

ment level to clarify whether the segment is an audio-visual

event. Sample images and their attended images are shown

in Fig. 3.

Evaluation Metrics. We follow [19, 36, 38] and adopt the

global classification accuracy obtained from the last predic-

tion layer as the evaluation metric. For an input video se-

quence, our goal is to predict the category label for each

segment. It is worth noting that the background category

contains 28 backgrounds since each event category can have

its own background so that it is hard to predict.

Experimental Details. Following [36, 38], we adopt pre-

trained CNN models to extract features for each audio and

visual segment. Specifically, we exploit the VGG19 [30]

network pre-trained on ImageNet [5] as the backbone to ex-

tract segment-level visual features. Meanwhile, for the au-

dio segment, we extract the segment feature using a Vggish

network [13] which is pre-trained on AudioSet [11]. For

a fair comparison, we use the same extracted features (i.e,

audio and visual features) as used in [36, 38]. In the train-

ing stage, the only supervision we exploit is the annotation

labels for the temporal segments.

4.2. Comparison with Existing Methods

State-of-the-Art Comparison. Results compared with the

leading methods are reported in Table 2. We take a sim-

ilar model architecture as in [36] and run single modal-

ity models as our baselines, which only take audio fea-

tures or visual features during the experiments. First, to

validate the proposed method can enable efficient interac-

tions between audio features and visual features, we com-

pare with a state-of-the-art temporal labeling network, i.e,

ED-TCN [18], which can integrate information from mul-

tiple temporal segments. Next, to verify the effectiveness

of our fusion strategy of audio feature and visual feature,

we compare with two methods, i.e, Audio-Visual [36] and

AVSDN [19]. Both methods utilize a straightforward fu-

sion strategy, where fuses the audio and visual features out

of LSTMs by concatenation. Lastly, to evaluate that our

method is tolerant with less supervision, we compare our

method with DAM [38], which needs additional supervi-

sion to exclude event-irrelevant segments during training.

Comparison Analysis. Due to the absence of interactions

between audio modality and visual modality, our proposed

model can easily surpass the performance of the baselines.

In addition, by comparing with ED-TCN, our model enables

more effective interactions between two modalities. Thus, it

can be testified that interactions or fusion can boost the task

performance and our model is more superior on enabling

interactions between two different modalities. Unsurpris-

Table 2. Results of comparisons with the state-of-the-art methods

on the AVE dataset. For a fair comparison, * is obtained by ex-

ploiting the same pre-trained audio and visual features. While the

task is hard, it can still be observed that our model outperforms the

existing methods.

Method Accuracy (%)

Audio Only (Vggish [13]) 59.5

Visual Only (Vgg19 [30]) 55.3

ED-TCN [18] 46.9

Audio-Visual [36] 71.4

AVSDN* [19] 72.6

Full-Audio-Visual [36] 72.7

DAM [38] 74.5

Ours 76.2

Table 3. Ablation studies on the proposed framework. Uni-modal

Bi-LSTM is the LSTM in sequence feature re-representation layer

while Joint Bi-LSTM is the one in the prediction layer. * denotes

we remove the residual embedding of LSTMs while † denotes that

we adopt the primary co-attention mechanism into the proposed

framework.

Model Accuracy (%)

Ours w/o Uni-modal Bi-LSTM 74.5

Ours w/o Joint Bi-LSTM 74.9

Ours w/o Residual Embedding* 75.2

Ours w/ GRU [4] 75.3

Ours w/ Average Pooling 75.1

Ours w/ Max Pooling 75.0

Ours w/ Co-Attention† [22] 75.4

Ours w/ Joint Co-Attention 76.2

Table 4. Results of different fusion strategies to generate joint rep-

resentation J.

Strategy Accuracy (%) Params ×10
6

Addition 75.0 22.67

Multiplication 74.6 22.67

Concatenation 75.2 22.72

Addition + FC 75.5 22.78

Multiplication + FC 75.3 22.78

Concatenation + FC 76.2 22.83

ingly, by fusing the two different features using our joint co-

attention mechanism, our model outperforms Audio-Visual

and AVSDN using a plain fusion strategy. Moreover, even

without additional effort to exclude event-irrelevant seg-

ments, our model can learn useful representations from

noisy inputs and contribute to better performance.

4.3. Ablation Study

Framework Decoupling. We break down the proposed

framework and evaluate them separately in different set-

tings, as shown in Table 3. For the Bi-LSTM, we define

it as two types, one in sequence feature re-representation as

uni-modal Bi-LSTM while the other in the prediction layer

as joint Bi-LSTM. Experiments on two Bi-LSTMs are de-

noted as ‘Ours w/o Uni-modal Bi-LSTM’ and ‘Ours w/o

Joint Bi-LSTM, respectively.
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Figure 3. Visualizing attention mask of the proposed joint co-attention mechanism on four categories of the AVE dataset.

Table 5. Variations on the proposed JCA architecture. Unlisted

value are identical to those of the first row of the model. Besides

accuracy, we also calculate the parameters of each setting.

da dv ℓ Accuracy (%) Params ×10
6

(A) 256×1024 256 1024 4 75.4 50.7

(B) 512× 512

512 512 1 75.1 14.9

2 75.4 17.5

3 75.6 20.1

4 76.2 22.8

5 75.6 25.4

(C) 256× 256

256 256 2 74.8 4.6

3 75.0 5.2

4 75.1 5.9

5 74.8 6.6

(D) 128× 128 128 128 4 73.8 1.6

Moreover, GRU [4] is used as an alternative to Bi-LSTM

for further investigation, denoted as ‘Ours w/ GRU’. For

early fusion, we evaluate two direct pooling methods i.e.,

global average pooling and global max pooling, denoted

as ‘Ours w/ Average Pooling’ and ‘Ours w/ Max Pool-

ing’, respectively. Lastly, the ‘Ours w/ Co-Attention’ rep-

resents that we replace joint co-attention with the original

co-attention [20]. Our full model is denoted as ‘Ours w/

Joint Co-Attention’.

Framework Analysis. Results are showed in Table 3. First,

the overall performance of the proposed framework outper-

forms the state-of-the-art method [38] which needs addi-

tional supervision. Among all the observed declines, Bi-

LSTM has the highest impact. That confirms the effective-

ness of the Bi-LSTM part. For alternatives to early fusion,

neither the global average pooling nor the global max pool-

ing surpasses our full model.

Among the experiment results with two different

co-attention mechanisms, i.e., original co-attention

method [22] and our joint co-attention method, our joint

co-attention method excels the original co-attention method

which follows a dual-modality mutual attending way

(visual features attend to audio features and audio features

attend to visual features). By not only attending to the

corresponding modality but also the modality of itself, our

proposed joint co-attention method performs better in the

audio-visual fusion task. To sum up, the ablation studies

demonstrate the efficiency of our proposed framework.

Studies on Different Fusion Strategies. To further inves-

tigate how different fusion strategies used to produce joint

representation J can influence the performance of the pro-

posed model, we exploit various fusion strategies as varia-

tions of our proposed model. (i) Element-wise addition; (ii)

Element-wise multiplication; (iii) Channel-wise concatena-

tion; (iv) Fully-connected neural network (FC).

Results are showed in Table 4. It can be witnessed that

directly making concatenation, addition or multiplication

impair the performance of the fusion representation while

introducing FC can slightly increase numbers of the param-

eters (less than 0.7%), but the performance can increase by

2.1%.

Studies on Recursive Times ℓ, and Dimensions of da and

dv . To further investigate the proposed framework, we vary

the proposed model in different ways and then evaluate the

accuracy under each circumstance. The results are pre-

sented in Table 5.

The ℓ denotes the times of JCA that are recursively per-

formed whereas da and dv denote the dimension of au-

dio feature and visual feature, respectively. We observe
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Figure 4. Two qualitative results on audio-visual localization task. The first example is helicopter hovering, i.e, ‘heli.’ is the abbreviation

for helicopter for better layout; while second example is playing guitar, i.e., ‘guitar’ for short, ‘bg’ denotes ‘background’. The green arrow

represents the correct prediction whereas the red arrow denotes the wrong prediction. To visualize where they attend to, we generate images

with their corresponding attention map. Best viewed in color.

that reducing the dimensions of the input features (da and

dv) hurts the model’s performance, which suggests high-

dimensional features may be suitable for the fusion. How-

ever, features with extremely high dimension would bring

a lot of computation. In practice, one should make a trade-

off here. If we only look at row (B) or row (C), it is easy

to find that as the recursive times of JCA increase, the per-

formance improves. This also validates our motivation that

repeating the fusion process helps our model to learn more

robust representations.

4.4. Qualitative Evaluation

In this section, we show some qualitative results of our

proposed framework in Fig. 4. For each row in Fig. 4, the

left is the category of this audio-visual event; the top content

is the waveform of input audio sequence; the middles are

raw frames and frames with attention map of the input video

sequence; the bottom is the audio-visual event prediction.

Among the two instances in Fig. 4, the second instance

is much harder as the scene is more complicated where dif-

ferent people are playing different instruments. In the be-

ginning, the proposed network predicts well. However, as

the singer changing his posture, the guitar can hardly be

seen even with our eyes. Therefore, the network fails to

predict it as playing guitar. Surprisingly, as the singer turns

back to the front, our network works again, and it marks

two guitars in the picture even the other guitar is indis-

tinct. More results are shown in Fig. 3. We can see that

the proposed co-attention model adaptively captures differ-

ent sound sources in different semantic regions, such as ac-

cordion, crying boy/girl/babies, barking dog, horning bus,

ukulele, etc.

5. Conclusion

In this paper, we investigate an interesting problem on

deep audio-visual learning for the AVE task. To better cope

with this multimodal learning task, we propose a novel joint

co-attention mechanism with double fusion. To the best of

our knowledge, this is the first time of applying the co-

attention mechanism into the audio-visual event localiza-

tion task. The integration with double fusion leading to

better representations for the AVE task by co-attending to

both audio and visual modalities. Moreover, experimental

results on the AVE dataset have confirmed the superiority

of the proposed framework.
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[2] Tadas Baltrušaitis, Chaitanya Ahuja, and Louis-Philippe

Morency. Multimodal machine learning: A survey and tax-

onomy. TPAMI, 2018.

[3] Xinya Chen, Yanrui Bin, Changxin Gao, Nong Sang, and

Hao Tang. Relevant region prediction for crowd counting.

Elsevier Neurocomputing, 2020.

[4] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre,
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