
‘Under-reported’ Security Defects in Kubernetes
Manifests

Dibyendu Brinto Bose∗ Akond Rahman† Shazibul Islam Shamim ‡
∗Reve Systems, Dhaka, Bangladesh

†Department of Computer Science, Tennessee Technological University, Cookeville, TN, USA
Email: ∗brintodibyendu@gmail.com †arahman@tntech.edu ‡mshamim42@tntech.edu

Abstract—With the advent of the fourth industrial revolution,
industry practitioners are moving towards container-based in-
frastructure for managing their digital workloads. Kubernetes,
a container orchestration tool, is reported to help industry
practitioners in automated management of cloud infrastructure
and rapid deployment of software services. Despite reported
benefits, Kubernetes installations are susceptible to security
defects, as it occurred for Tesla in 2018. Understanding how
frequently security defects appear in Kubernetes installations
can help cybersecurity researchers to investigate security-related
vulnerabilities for Kubernetes and generate security best prac-
tices to avoid them. In this position paper, we first quantify
how frequently security defects appear in Kubernetes manifests,
i.e., configuration files that are use to install and manage
Kubernetes. Next, we lay out a list of future research directions
that researchers can pursue.

We apply qualitative analysis on 5,193 commits collected from
38 open source repositories and observe that 0.79% of the 5,193
commits are security-related. Based on our findings, we posit
that security-related defects are under-reported and advocate for
rigorous research that can systematically identify undiscovered
security defects that exist in Kubernetes manifests. We predict
that the increasing use of Kubernetes with unresolved security
defects can lead to large-scale security breaches.

Index Terms—dataset, devops, devsecops, kubernetes, security

I. INTRODUCTION

The fourth industrial revolution advocates for moderniza-
tion of manufacturing using computing resources. Hermann
et al. [1] identifies four design principles integral to the
fourth industrial revolution namely, interconnection, infor-
mation transparency, technical assistance, and decentralized
decisions. Integration of software-based services into the in-
dustrial manufacturing process is pivotal to achieve these
design principles [2].

With the advent of the fourth industrial revolution, com-
panies from multiple sectors are adopting container-based
infrastructures to manage their digital workloads. Container is
a software that packages up code and all its dependencies so
the application runs reliably from one computing environment
to another 1. Because of perceived benefits, such as separation
of production and test environments, and rapid deployment of
software applications, containers have become a viable option
for companies to manage their software workloads 2. The

1https://www.docker.com/resources/what-container
2https://www.arcweb.com/blog/end-industrial-automation-we-know-it

increasing use of containers necessitates an automated tool,
such as Kubernetes for orchestration.

Kubernetes is an open-source software for automating man-
agement of computerized services, such as containers [3].
Practitioners use Kubernetes because it reduces repetitive
manual processes involved in container deployment and man-
agement. Kubernetes is considered one of the most popular
open-source container orchestration tools and it is used in
organizations, such as Adidas, Booz Allen Hamilton, and Sling
TV [4]. Benefits of Kubernetes usage have been documented:
for example using Kubernetes, Booz Allen Hamilton was
able to reduce costs by 50% for maintaining a government
website 3. For Adidas, the load time for an e-commerce
website was reduced by half, and release frequency increased
from once every 4∼6 weeks to 3∼4 times a day [4]. Despite
reported benefits, Kubernetes installations are susceptible to
security defects. For example, in 2018, malicious users gained
access to Tesla’s Amazon Web Services (AWS) resources
using an insecure Kubernetes console that was not password
protected [5].

The presence of security defects in Kubernetes installations
motivate us to gain an understanding of how frequently
security defects appear in Kubernetes manifests. Such under-
standing can inform researchers about the state of security in
Kubernetes and outline a list of future action items in which
cybersecurity researchers can participate.

One approach to study defects in Kubernetes installations is
to investigate security defects that appear in Kubernetes man-
ifests [3], i.e., configuration files used to maintain Kubernetes
installations. Our hypothesis is that by quantifying security
defects in Kubernetes manifests, we can gain an understanding
of how frequently security defects appear in Kubernetes instal-
lations. We evaluate our hypothesis by answering the following
research question: How frequently do security defects occur
in Kubernetes manifests?

Our contribution is listed as follows:

• A curated dataset of security defects in Kubernetes mani-
fests; and

• An empirical analysis of how frequently security defects
occur in Kubernetes manifests.

3https://kubernetes.io/case-studies/booz-allen/



II. BACKGROUND AND RELATED WORK

We provide background and related work related to Kuber-
netes in this section.

A. Background

Kubernetes is an open-source software for automating man-
agement of computerized services such as containers [3].
A Kubernetes installation is colloquially referred to as a
Kubernetes cluster [3]. Each Kubernetes cluster contains a set
of worker machines defined as nodes. As shown in Figure 1,
two types of nodes exist for Kubernetes: master nodes and
worker nodes.

Each master node includes the following components: ‘API
server’, ‘scheduler’, ‘controller’, and ‘etcd’ [3]. The ‘API
server’ is responsible for orchestrating all the operations within
the cluster. Kubernetes serves its functionality through an
application program interface from the ‘API server’. The
‘controller’ is a component on the master that watches the
state of the cluster through the ‘API server’ and changes the
current state towards the desired state. The ‘scheduler’ is the
component in the control plane responsible for scheduling
pods across multiple nodes. The ‘etcd’ is a key-value based
database that stores all configuration information for the
Kubernetes cluster. Users use a command-line tool ‘Kubectl’
to communicate with the ‘API server’ in the master node.

While provisioning Kubernetes, practitioners can provide
configuration-related information in forms of configurations
files, such as YAML files and JSON files. These files hold
crucial information on what kind of network, CPU, and mem-
ory settings will be used by the Kubernetes installation. For
example, using the cpu:1 tag in a YAML file, a practitioner
can specify that the Kubernetes installation will use 1 CPU.
Listing 1 shows an example Kubernetes manifest.

kind: Pod
metadata:
name: cpu-demo
namespace: cpu-example

spec:
containers:
- name: cpu-demo-ctr

image: vish/stress
resources:

limits:
cpu:1

Listing 1: An example Kubernetes manifest

B. Related Work

Our paper is related to prior research that has investigated
usage and maintenance of Kubernetes. Burns et al. [6] de-
scribed the evolution of container management systems at
Google, and described how two initial internal systems called
Borg and Omega was evolved into Kubernetes. Brewer [7]
conducted a case study on Kubernetes and discussed how key
concepts of Kubernetes can be used to simplify scaling of con-
tainers. Medel et al. [8] used real data collected from Kuber-
netes and applied formal modeling to characterize performance
and resource management in Kubernetes. Chang et al. [9]

constructed a monitoring platform to dynamically provision
cloud resources using Kubernetes. Vayghan et al. [10] investi-
gated availability of Kubernetes using a set of experiments, and
reported that service outages can occur frequently. Shah and
Dubaria [11] compared orchestration management features of
Docker Swarm, Kubernetes, and Google Cloud Platform, and
observed Kubernetes to provide features, such as deployment,
monitoring, and easy scalability. Shamim et al. [12] identified
11 practices to secure Kubernetes installations.

The above-mentioned discussion highlights Kubernetes re-
search in two areas: (i) use of Kubernetes in creating systems,
such as monitoring systems and (ii) case studies on Kubernetes
related to performance and resource management. We observe
a lack of research related to datasets that can be used to
conduct security-related research for Kubernetes. We address
this research gap by systematically constructing a security
defect dataset for Kubernetes manifests.

III. METHODOLOGY

Answering our research question involves two steps: repos-
itory curation and qualitative analysis of commits.

A. Repository curation

We use open source software (OSS) repositories hosted
on GitLab 4 to construct our dataset. As advocated by prior
research [13], OSS repositories need to be curated. Soft-
ware developers often use OSS repositories to store personal
projects that are not reflective of the professional software
development. We apply the following criteria to curate our
collected repositories: Criterion-1: The repository is labeled
as ‘kubernetes’ on GitLab. Criterion-2: The repository must
be available for download. Criterion-3: The repository is not
a clone. Criterion-4: The repository must have at least two
commits per month. Munaiah et al. [13] used the threshold of
at least two commits per month to determine which reposito-
ries have enough software development activity. We use this
threshold to filter repositories with little activity. Criterion-
5: The repository has at least 5 contributors. Our assumption
is that the criteria of at least 5 contributors may help us to
filter out irrelevant repositories. Previously, researchers have
used the cutoff of at least nine contributors [14]. Criterion-6:
The repository includes manifest files needed to provision Ku-
bernetes. A repository can be mislabeled of using Kubernetes
due to human error. We mitigate this limitation by manually
inspecting if the repository includes Kubernetes manifest files.

B. Qualitative analysis of commits

We use commits from the collected OSS repositories ob-
tained from Section III-A. We use commits because commits
summarize changes that are made to a source code file and
could identify the types of changes that are being performed
on a source code file. We apply a qualitative analysis tech-
nique called closed coding [15] on the collected commits to
determine which commit is related to a security defect.

4https://about.gitlab.com/



Master

Scheduler

Controlleretcd

API server

Worker

Kube proxy

PodKubelet

Container

Kubectl

Kubernetes 
Dashboard

Users

Fig. 1: A brief overview of Kubernetes. Kubernetes users interact with the installation using the Kubernetes dashboard and
‘kubectl’.

We use two raters who are well-versed on software security
to conduct the closed coding process. The first rater is the first
author of the paper with two years of academic experience in
cybersecurity. The second rater is not an author of the paper
and participated voluntarily. The second rater is a graduate
student in the department with one year of professional ex-
perience in cybersecurity. Both raters individually determine
if each of the collected commits to be security-related by
performing the following activities: Activity-1: The rater ob-
serves if any of the following keywords appear in each of the
collected commit messages: ‘race’, ‘racy’, ‘buffer’, ‘overflow’,
‘stack’, ‘integer’, ‘signedness’, ‘widthness’, ‘underflow’, ‘im-
proper’, ‘unauthenticated’, ‘gain access’, ‘permission’, ‘cross
site’, ‘css’, ‘xss’, ‘htmlspecialchar’, ‘denial service’, ‘dos’,
‘crash’, ‘deadlock’, ‘sql’, ‘sqli’, ‘injection’, ‘format’, ‘string’,
‘printf’, ‘scanf’, ‘request forgery’, ‘csrf’, ‘xsrf’, ‘forged’, ‘se-
curity’, ‘vulnerability’, ‘vulnerable’, ‘hole’, ‘exploit’, ‘attack’,
‘bypass’, ‘backdoor’, ‘threat’, ‘expose’, ‘breach’, ‘violate’, ‘fa-
tal’, ‘blacklist’, ‘overrun’, and ‘insecure’. We collect these key-
words from prior work [16]. Activity-2: The rater determines a
commit to be a security-related defect if the message indicates
that an action was taken to address a security concern for the
software of interest. The rater determines a commit message to
be related to security concern if any of the following security
objects are violated: confidentially, integrity, or availability.
We apply this step because only relying on keyword search
could generate false positives. Activity-3: We calculate rater
agreement using Cohen’s Kappa [17].

Upon completion of the above-mentioned activities we
obtain a dataset where each commit is labeled as a security
defect or not. If the commit is related to a security defect then
the label is ‘INSECURE’. Otherwise the commit is labeled as
‘NEUTRAL’. We answer our research question by reporting
the count and proportion of commits that are labeled as
‘INSECURE’.

C. Limitations of Our Methodology

The derived dataset is subject to rater bias, which we
mitigate by using two raters. Open source repositories are

TABLE I: OSS Repositories Satisfying Criteria (Sect. III-A)
Initial Repo Count 3,405,303

Criteria-1 (Kubernetes Label) 15,779
Criteria-2 (Available) 13,095
Criteria-3 (Not a clone) 3,173
Criteria-4 (Commits/Month ≥ 2) 173
Criteria-5 (Contributors ≥ 5) 38
Criteria-6 (Manifest Usage) 38

Final Repo Count 38

susceptible to contain noisy data, which we mitigate using a
systematic filtering criteria. Our dataset is collected from the
open source GitLab repositories, which could be limiting. Our
identification process of security defects use a keyword-based
approach that can generate false positives. We mitigate this
limitation through manual inspection.

TABLE II: Repository Attributes

Attribute Count
Repositories 38
Manifests 1,796
Manifest-related Commits 5,193
Duration 10/2015-07/2020

IV. RESULTS AND CONCLUSION

We provide empirical findings with discussion below:

A. Results

Using our filtering criteria mentioned in Section III-A we
obtain 38 repositories. A complete breakdown of how many
repositories are satisfied using each criterion is listed in
Table I. We download these repositories on July 11, 2020.
Attributes of the dataset is available in Table II. As shown
in Table II, we collect 1,796 Kubernetes manifests that are
modified in 5,193 commits.

Both raters, the first author of the paper and the volunteer
performed the qualitative analysis individually as described in
Section III-B to determine what commits are related to security
defects. The process took 117 and 210 hours respectively, for



the first author and the volunteer. The Cohen’s Kappa is 0.7,
which is ‘substantial’, according to Landis and Koch [18]. The
labeled dataset is available online as a CSV file [19], which can
be imported using existing APIs, such as Python Pandas [20].

Upon application of qualitative analysis on 5,193 commits
we identify 41 commits to be labeled as a security dataset.
The proportion of security defects is 0.79%. In our dataset
we observe 39 Kubernetes manifests to be modified while
addressing a security defect. Attributes of our security defect
dataset is available in Table III.

TABLE III: Attributes of the Security Defect Dataset

Attribute Count
Repositories with >= 1 Security Defect 9
Manifests Modified in a Security Defect 39
Security Defects 41

B. ‘Under-reported’ Security Defects in Kubernetes Manifests

Based on our findings we posit that security defects are
under-reported in Kubernetes manifests. Our hypothesis is that
multiple categories of security defects are latent in Kubernetes
manifests. Existence of such latent security defects can facil-
itate attacks from malicious user, which could cause serious
consequences. We advocate researchers to pursue future re-
search directions:
• Identify violations of security best practices in Kubernetes;
• Construct static and dynamic analysis tools to identify

security violations in Kubernetes; and
• Identify root causes of security defects in Kubernetes.

C. Conclusion

The use of Kubernetes is becoming more and more popular
in maintaining critical systems, and could be of relevance to
organizations aiming to join the fourth industrial revolution.
The prevalence in usage of Kubernetes necessitates secure
Kubernetes manifests. A research study that systematically
quantifies security defects can help cybersecurity researchers
in conducting future research related secure Kubernetes man-
agement. We construct a dataset of security defects that occur
in Kubernetes manifests to help cybersecurity researchers. We
have applied a qualitative analysis technique called closed
coding to determine security defects that occur in Kubernetes
manifests. We observe security defects to be rare: 0.79%
of the 5,193 commits in our dataset to be security-related.
Based on our findings we posit that (i) reported security
defects in Kubernetes manifests are rare, and (ii) cybersecurity
researchers should investigate how frequently latent security
defects appear in Kubernetes manifests.

ACKNOWLEDGEMENT

We thank the PASER group at Tennessee Technological
University (TTU) for their valuable feedback. This research
was partially funded by the National Science Foundation
(NSF) award # 2026869.

REFERENCES

[1] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie
4.0 scenarios,” in 2016 49th Hawaii International Conference on System
Sciences (HICSS), 2016, pp. 3928–3937.

[2] G. Erboz, “How to define industry 4.0: The main pillars of industry 4.0.
2017,” URL: https://www. researchgate. net/publication/326557388.

[3] S. Miles, Kubernetes: A Step-By-Step Guide For Beginners To Build,
Manage, Develop, and Intelligently Deploy Applications By Using
Kubernetes (2020 Edition). Independently Published, 2020. [Online].
Available: https://books.google.com/books?id=M4VmzQEACAAJ

[4] Kubernetes User Case Studies, May 2020. [Online]. Available:
https://kubernetes.io/case-studies/

[5] Tesla cloud resources are hacked to run cryptocurrency-
mining malware, February 2018. [Online]. Avail-
able: https://arstechnica.com/information-technology/2018/02/tesla-
cloud-resources-are-hacked-to-run-cryptocurrency-mining-malware/

[6] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg,
omega, and kubernetes,” Queue, vol. 14, no. 1, p. 70–93, Jan. 2016.
[Online]. Available: https://doi.org/10.1145/2898442.2898444

[7] E. A. Brewer, “Kubernetes and the path to cloud native,” in Proceedings
of the Sixth ACM Symposium on Cloud Computing, ser. SoCC ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
167. [Online]. Available: https://doi.org/10.1145/2806777.2809955

[8] V. Medel, O. Rana, J. a. Banares, and U. Arronategui, “Modelling
performance & resource management in kubernetes,” in Proceedings
of the 9th International Conference on Utility and Cloud
Computing, ser. UCC ’16. New York, NY, USA: Association
for Computing Machinery, 2016, p. 257–262. [Online]. Available:
https://doi.org/10.1145/2996890.3007869

[9] C. Chang, S. Yang, E. Yeh, P. Lin, and J. Jeng, “A kubernetes-
based monitoring platform for dynamic cloud resource provisioning,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
2017, pp. 1–6.

[10] L. Abdollahi Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “De-
ploying microservice based applications with kubernetes: Experiments
and lessons learned,” in 2018 IEEE 11th International Conference on
Cloud Computing (CLOUD), 2018, pp. 970–973.

[11] J. Shah and D. Dubaria, “Building modern clouds: Using docker,
kubernetes google cloud platform,” in 2019 IEEE 9th Annual Computing
and Communication Workshop and Conference (CCWC), 2019, pp.
0184–0189.

[12] M. I. Shamim, F. A. Bhuiyan, and A. Rahman, “Xi
commandments of kubernetes security: A systematization of
knowledge related to kubernetes security practices,” in 2020
IEEE Secure Development (SecDev). Los Alamitos, CA, USA:
IEEE Computer Society, sep 2020, pp. 58–64. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/SecDev45635.2020.00025

[13] N. Munaiah, S. Kroh, C. Cabrey, and M. Nagappan, “Curating github
for engineered software projects,” Empirical Software Engineering, pp.
1–35, 2017. [Online]. Available: http://dx.doi.org/10.1007/s10664-017-
9512-6

[14] A. Rahman, A. Agrawal, R. Krishna, and A. Sobran, “Characterizing
the influence of continuous integration: Empirical results from 250+
open source and proprietary projects,” in Proceedings of the 4th
ACM SIGSOFT International Workshop on Software Analytics, ser.
SWAN 2018. New York, NY, USA: ACM, 2018, pp. 8–14. [Online].
Available: http://doi.acm.org/10.1145/3278142.3278149

[15] J. Saldaña, The coding manual for qualitative researchers. Sage, 2015.
[16] A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni, “Identifying

the characteristics of vulnerable code changes: An empirical study,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. New York,
NY, USA: Association for Computing Machinery, 2014, p. 257–268.
[Online]. Available: https://doi.org/10.1145/2635868.2635880

[17] J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.
[Online]. Available: http://dx.doi.org/10.1177/001316446002000104

[18] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, no. 1, pp. 159–174, 1977.
[Online]. Available: http://www.jstor.org/stable/2529310

[19] Anonymous, “Dataset for Paper,” 1 2021. [Online]. Available:
https://figshare.com/s/6faa4db25ee9481c8a81

[20] W. McKinney et al., “pandas: a foundational python library for data
analysis and statistics,” Python for High Performance and Scientific
Computing, vol. 14, no. 9, 2011.


