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Abstract. People learn throughout life. However, incrementally updat-
ing conventional neural networks leads to catastrophic forgetting. A com-
mon remedy is replay, which is inspired by how the brain consolidates
wemory. Replay involves fine-tuning a network on a mixture of new
and old instances. While there is neuroscientific evidence that the brain
replays compressed memories, existing methods for convolutional net-
works replay raw images. Here, we propose REMIND, a brain-inspired
approach that enables efficient replay with compressed representations.
REMIND is trained in an online manner, meaning it learns one exam-
ple at a time, which is closer to how humans learn. Under the same
constraints, REMIND outperformus other methods for incremental class
learning on the ImageNet ILSVRC-2012 dataset. We probe REMIND’s
robustness to data ordering schemes known to induce catastrophic forget-
ting. We demonstrate REMIND’s generality by pioneering online learn-
ing for Visual Question Answering (VQA) (https://github.com/tyler-
hayes /REMIND).

Keywords: Ouline learning « Brain-iuspired + Deep learning

1 Introduction

I'he mammalian brain engages in continuous online learning of new skills,
objects, threats, and environments. 'l'he world provides the brain a tempo-
rally structured stream of inputs, which is not independent and identically dis-
tributed (iid). Enabling online learning in artificial neural networks from non-
iid data is known as lifelong learning. While conventional networks suffer from
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catastrophic forgetting [1,57], with new learning overwriting existing represen-
tations, a wide variety of methods have recently been explored for overcoming
this problem [13,15,27,47,53,58,64,77]. Some of the most successful methods
for mitigating catastrophic forgetting use variants of replay [13,22,27 45 64,77),
which involves mixing new instances with old ones and fine-tuning the network
with this mixture. Replay is motivated by how the brain works: new experi-
ences are encoded in the hippocampus and then these compressed memories
are re-activated along with other memories so that the neocortex can learn
them [51,60,72]. Without the hippocampus, people lose the ability to learn
new semantic categories [48]. Replay occurs both during sleep [31] and when
awake [41,74].

For lifelong learning in convolutional neural networks (CNNs), there are two
major gaps between existing methods and how animals learn. 'I'he first is that
replay is implemented by storing and replaying raw pixels, which is not biolog-
ically plausible. Based on hippocampal indexing theory [75], the hippocampus
stores compressed representations of neocortical activity patterns while awake.
'l'o consolidate memories, these patterns are replayed and then the correspond-
ing neocortical neurons are re-activated via reciprocal connectivity [51,60,72].
The representations stored in the hippocampus for replay are not veridical (e.g.,
raw pixels) [31,56], and its visual inputs are high in the visual processing hier-
archy [29] rather than from primary visual cortex or retina.

The second major gap with existing
approaches is that animals engage in stream-
ing learning [20,21], or resource constrained
online learning from non-iid (temporally cor-
related) experiences throughout life. In con-
trast, the most common paradigm for incre-
mental training of CNNs is to break the train-
ing dataset into M distinct batches, where
for ImageNet each batch typically has about
100000 instances from 100 classes that are
not seen in later batches, and then the algo-
rithm sequentially loops over each batch many
tll]lCS This paradigm is not biolo-gically pla.u— results for streaming and incre-
sible. 'I'here are many applications requir- | .+ batch versions of state-of-
ing online learning of non-iid data streams, the-art models on TmageNet.
where batched learning will not suffice, such
as immediate on-device learning. Batched sys-
tems also take longer to train, further limiting their utility on resource con-
strained devices, such as smart appliances, robots, and toys. For example, BiC,
a state-of-the-art incremental batch method, requires 65 hours to train in that
paradigm whereas our proposed streaming model trains in under 12 hours. The
incremental batch setting can be transformed into the streaming learning sce-
nario by using very small batches and performing only a single pass through the
dataset; however, this results in a large decrease in performance. As shown in
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Fig. 1, state-of-the-art methods perform poorly on ImageNet in the streaming
setting, with the best method suffering an over 19% drop in performance. In
contrast, our model outperforms the best streaming model by 21.9% and is only
1.9% below the best batch model.

Here, we propose REMIND, or replay using memory indexing, a novel
method that is heavily influenced by biological replay and hippocampal indexing
theory. Our main contributions are:

1. We introduce REMIND), a streaming learning model that implements hip-
pocampal indexing theory using tensor quantization to efficiently store hidden
representations (e.g., CNN feature maps) for later replay. REMIND imple-
ments this compression using Product Quantization (PQ) [30]. We are the
first to test if forgetting in CNNs can be mitigated by replaying hidden rep-
resentations rather than raw pixels.

2. REMIND outperforms existing models on the ImageNet ILSVRC-2012 [68]
and CORe50 [52] datasets, while using the same amount of memory.

3. We demonstrate REMIND’s robustness by pioneering streaming Visual Ques-
tion Answering (VQA), in which an agent must answer questions about
images and cannot be readily done with existing models. We establish new
experimental paradigms, baselines, and metrics and subsequently achieve

strong results on the CLEVR [33] and TDIUC [35] datasets.

2 Problem Formulation

There are multiple paradigms in which incremental learning has been stud-
ied [61]. In incremental batch learning, at each time step ¢ an agent learns a
data batch B; containing /N; instances and their corresponding labels, where
N; is often 1000 to 100000. While much recent work has focused on incremen-
tal batch learning [13,14,18,27,44,45,64,77,81], streaming learning, or online
learning from non-iid data streams with memory and/or compute constraints,
more closely resembles animal learning and has many applications [20,21,49]. In
streaming learning, a model learns online in a single pass, i.e., N; = 1 for all
t. It cannot loop over any portion of the (possibly infinite) dataset, and it can
be evaluated at any point rather than only between large batches. Streaming
learning can be approximated by having a system queue up small, temporally
contiguous, mini-batches for learning, but as shown in Fig. 1, batch methods
cannot easily adapt to this setting.

3 Related Work

Parisi et al. [61] identify three main mechanisms for mitigating forgetting in neu-
ral networks, namely 1) replay of previous knowledge, 2) regularization mecha-
nisms to constrain parameter updates, and 3) expanding the network as more
data becomes available. Replay has been shown to be one of the most effective
methods for mitigating catastrophic forgetting [4,5,13,22,27,44,45,50,59,64,
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77]. For ImageNet, all recent state-of-the-art methods for incremental class learn-
ing use replay of raw pixels with distillation loss. The earliest was iCaRL [64],
which stored 20 images per class for replay. iCaRL used a nearest class pro-
totype classifier to mitigate forgetting. 'I'he End-to-End incremental learning
model [13] extended iCaRL to use the outputs of the CNN directly for classifi-
cation, instead of a nearest class mean classifier. Additionally, End-to-End used
more data augmentation and a balanced fine-tuning stage during training to
improve performance. The Unified classifier [27] extended End-to-End by using
a cosine normalization layer, a new loss constraint, and a margin ranking loss.
The Bias Correction (BiC) [77] method extended End-to-End by training two
additional parameters to correct bias in the output layer due to class imbalance.
iCaRL, End-to-End, the Unified classifier, and BiC all: 1) store the same nmumber
of raw replay images per class, 2) use the same herding procedure for prototype
selection, and 3) use distillation loss to prevent forgetting. REMIND, however,
is the first model to demonstrate that storing and replaying quantized mid-level
CNN features is an effective strategy to mitigate forgetting.

Regularization methods vary a weight’s plasticity based on how important
it is to previous tasks. These methods include Elastic Weight Consolidation
(EWC) [47], Memory Aware Synapses (MAS) [3], Synaptic Intelligence (SI) [81],
Riemannian Walk (RWALK) [14], Online Laplace Approximator [66], Hard
Attention to the Task [70], and Learning without Memorizing [16]. The Aver-
aged Gradient Episodic Memory (A-GEM) [15] model extends Gradient Episodic
Memory [53], which uses replay with regularization. Variational Continual Learn-
ing [58] combines Bayesian inference with replay, while the Meta-Experience
Replay model [65] combines replay with meta-learning. All of these regulariza-
tion methods are typically used for incremental task learning, where batches of
data are labeled as different tasks and the model must be told which task (batch)
a sample came from during inference. When task labels are not available at test
time, which is often true for agents operating in real-time, many methods cannot
be used or they will fail [14,17,45]. While our main experiments focus on compar-
isons against state-of-the-art ImageNet models, we compare REMIND against
several regularization models in Sect. 7, both with and without task labels. Some
regularization methods also utilize cached data, e.g., GEM and A-GEM.

Another approach to mitigating forgetting is to expand the network as new
tasks are observed, e.g., Progressive Neural Networks [69], Dynamically Expand-
able Networks [79], Adaptation by Distillation [26], and Dynamic Generative
Memory [59]. However, these approaches also use task labels at test time, have
growing memory requirements, and may not scale to thousand-category datasets.

4 REMIND: Replay Using Memory Indexing

REMIND is a novel brain-inspired method for training the parameters of a CNN
in the streaming setting using replay. Learning involves two steps: 1) compress-
ing the current input and 2) reconstructing a subset of previously compressed
representations, mixing them with the current input, and updating the plastic
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Fig. 2. REMIND takes in an input image and passes it through frozen layers of the
network (G) to obtain tensor representations (feature maps). It then quantizes the
tensors via product quantization and stores the indices in memory for future replay.
The decoder reconstructs tensors from the stored indices to train the plastic layers (F)
of the network before a final prediction is made.

weights of the network with this mixture (see Fig. 2). While earlier work for incre-
mental batch learning with CNNs stored raw images for replay [13,27,64,77], by
storing compressed mid-level CNN features, REMIND is able to store far more
instances with a smaller memory budget. For example, iCaRL [64] uses a default
memory budget of 20 K examples for ImageNet, but REMIND can store over 1M
compressed instances using the same budget. 'I'his more closely resembles how
replay occurs in the brain, with high-level visual representations being sent to
the hippocampus for storage and re-activation, rather than early visual repre-
sentations [29]. REMIND does not have an explicit sleep phase, with replay more
closely resembling that during waking hours [41,74].

Formally, our CNN y; = F' (G (X)) is trained in a streaming paradigm, where
X; is the input image and w; is the predicted output category. The network is
composed of two nested functions: G (-), parameterized by 6, consists of the
first J layers of the CNN and F'(-), parameterized by 60, consists of the last L
layers. REMIND keeps ¢ fixed since early layers of CNNs have been shown to
be highly transferable [80]. The later layers, F'(-), are trained in the streaming
paradigm using REMIND. We discuss how G (+) is initialized in Sect.4.2.

'The output of G (X;) is a tensor Z; € R™*™*4 where m is the dimension
of the feature map and d is the number of channels. Using the outputs of G (-),
we train a vector quantization model for the Z; tensors. As training examples
are observed, the quantization model is used to store the Z; features and their
labels in a replay buffer as an m x m x s array of integers using as few bits as
necessary, where s is the number of indices that will be stored. For replay, we
uniformly select r instances from the replay buffer, which was shown to work
well in [14], and reconstruct them. Each of the reconstructed instances, Z;, are
mixed with the current input, and then 6 is updated using backpropagation
on this set of  + 1 instances. Other selection strategies are discussed in Sect. 8.
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During inference, we pass an image through G (-), and then the output, Z;, is
quantized and reconstructed before being passed to F (-).

Our main version of REMIND uses PQ [30] to compress and store Z;. For
high-dimensional data, PQ tends to have much lower reconstruction error than
models that use only k-means. 'I'he tensor Z; consists of m x m d-dimensional
tensor elements, and PQ partitions each d-dimensional tensor element into s sub-
vectors, each of size d/s. PQ) then creates a separate codebook for each partition
by using k-means, where the codes within each codebook correspond to the
centroids learned for that partition. Since the quantization is done independently
for each partition, each sub-vector of the d-dimensional tensor element is assigned
a separate integer, so the element is represented with s integers. If s is equal to
one, then this approach is identical to using k-means for vector quantization,
which we compare against. For our experiments, we set s = 32 and ¢ = 256, so
that each integer can be stored with 1 byte. We explore alternative values of s and
¢ in supplemental materials (Fig. S4) and use the Faiss PQ implementation [32].

Since lifelong learning systems must be capable of learning from infinitely
long data streams, we subject REMIND’s replay buffer to a maximum memory
restriction. That is, REMIND stores quantization indices in its buffer until this
maximum capacity has been reached. Once the buffer is full and a new example
comes in, we insert the new sample and randomly remove an example from the
class with the most examples, which was shown to work well in [14,77]. We
discuss other strategies for maintaining the replay buffer in Sect. 8.

4.1 Augmentation During Replay

'lTo augment data during replay, REMIND uses random resized crops and a
variant of manifold mixup [76] on the quantized tensors directly. For random
crop augmentation, the tensors are randomly resized, then cropped and bilinearly
interpolated to match the original tensor dimensions. To produce more robust
representations, REMIND mixes features from multiple classes using manifold
mixup. That is, REMIND uses its replay buffer to reconstruct two randomly
chosen sets, A and B, of r instances each (|A| = |B| = r), which are linearly
combined to obtain a set C of r mixed instances (|C| = r), i.e., a newly mixed
instance, (Zmix, Ymix) € C, is formed as:

(Zmix, Ymix) = (AZa + (1 = A) Zp, Adya + (1 = X)) ws) , (1)

where (Z4,ya) and (Zp, yp) denote instances from A and B respectively and A ~
B(e, @) is the mixing coefficient drawn from a B-distribution parameterized by
hyperparameter . We use o« = 0.1, which we found to work best in preliminary
experiments. 'I'he current input is then combined with the set C of r mixed
samples, and @5 is updated using this new set of r + 1 instances.

4.2 Initializing REMIND

During learning, REMIND only updates F(-), i.e., the top of the CNN. It
assumes that G (-), the lower level features of the CNN, are fixed. This implies
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that the low-level visual representations must be highly transferable across image
datasets, which is supported empirically [80]. There are multiple methods for
training G (-), including supervised pre-training on a portion of the dataset,
supervised pre-training on a different dataset, or unsupervised self-taught learn-
ing using a convolutional auto-encoder. Here, we follow the common practice of
doing a ‘base initialization’ of the CNN [13,27,64,77]. 'T'his is done by training
both # and 6 jointly on an initial subset of data offline, e.g., for class incremen-
tal learning on ImageNet we use the first 100 classes. After base initialization, 0
is no longer plastic. All of the examples X; in the base initialization are pushed
through the model to obtain Z; = G (X;), and all of these Z; instances are used
to learn the quantization model for G (X;), which is kept fixed once acquired.
Following [13,27,64,77], we use ResNet-18 [25] for image classification, where
we set G () to be the first 15 convolutional and 3 downsampling layers, which
have 6,455,872 parameters, and F () to be the remaining 3 layers (2 convolu-
tional and 1 fully connected), which have 5,233,640 parameters. 'I'hese layers
were chosen for memory efficiency in the quantization model with ResNet-18,
and we show the memory efficiency trade-off in supplemental materials (Fig. S1).

5 Experiments: Image Classification

5.1 Comparison Models

While REMIND learns on a per sample basis, most methods for incremental
learning in CNNs do multiple loops through a batch. For fair comparison, we
train these methods in the streaming setting to fairly compare against REMIND.
Results for the incremental batch setting for these models are included in Fig. 1
and supplemental materials ('l'able S2 and Fig. S2-S3). We evaluate the following:

— REMIND — Our main REMIND version uses PQ) and replay augmentation.
We also explore a version that omits data augmentation and a version that
uses k-means rather than PQ.

— Fine-Tuning (No Buffer) — Fine-'lTuning is a baseline that fine-tunes 0 of
a CNN one sample at a time with a single epoch through the dataset. This
approach does not use a buffer and suffers from catastrophic forgetting [45].

— ExStream — Like REMIND, ExStream is a streaming learning method, how-
ever, it can only train fully connected layers of the network [22]. ExStream
uses rehearsal by maintaining buffers of prototypes. It stores the input vec-
tor and combines the two nearest vectors in the buffer. After the buffer gets
updated, all samples from its buffer are used to train the fully connected
layers of a network. We use ExStream to train the final layer of the network,
which is the only fully connected layer in ResNet-18.

— SLDA - Streaming Linear Discriminant Analysis (SLDA) is a well-known
streaming method that was shown to work well on deep CNN features [23]. It
maintains running means for each class and a running tied covariance matrix.
Given a new input, it assigns the label of the closest Gaussian in feature space.
It can be used to compute the output layer of a CNN.
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— iCaRL - iCaRL is an incremental batch learning algorithm for CNNs [64].
iCaRL stores images from earlier classes for replay, uses a distillation loss to
preserve weights, and uses a nearest class mean classifier in feature space.

— Unified — T'he Unified Classifier builds on iCaR L by using the outputs from
the network for classification and introducing a cosine normalization layer, a
constraint to preserve class geometry, and a margin ranking loss to maximize
inter-class separation [27]. Unified also uses replay and distillation.

— BiC — The Bias Correction (BiC) method builds on iCaRL by using the
output layer of the network for classification and correcting the bias from class
imbalance during training, i.e., more new samples than replay samples [77].
The method trains two additional bias correction parameters on the output
layer, resulting in improved performance over distillation and replay alone.

— Offline — 'I'he offline model is trained in a traditional, non-streaming setting
and serves as an upper-bound on performance. We train two variants: one
with only 05 plastic and one with both 5 and 6 plastic.

Our main experiments focus on comparing state-of-the-art methods on ImageNet
and we provide additional comparisons in Sect. 7. Although iCaRL, Unified, and
BiC are traditionally trained in the incremental batch paradigm, we conduct
experiments with these models in the streaming paradigm for fair comparison
against REMIND. 'lo train these streaming variants, we set the number of epochs
to 1 and the batch size to r + 1 instances to match REMIND.

5.2 Model Configurations

In our setup, all models are trained instance-by-instance and have no batch
requirements, unless otherwise noted. Because methods can be sensitive to the
order in which new data are encountered, all models receive examples in the
same order. The same base CNN initialization procedure is used by all models.
For ExStream and SLDA, after base initialization, the streaming learning phase
is re-started from the beginning of the data stream. All of the parameters except
the output layer are kept frozen for ExStream and SLDA, whereas only G (-) is
kept frozen for REMIND. All other comparison models do not freeze any layers
and incremental training commences with the first new data sample. All mod-
els, except SLDA, are trained using cross-entropy loss with stochastic gradient
descent and momentum. More parameter settings are in supplemental materials.

5.3 Datasets, Data Orderings, and Metrics

We conduct experiments with ImageNet and CORe50 by dividing both datasets
into batches. The first batch is used for base initialization. Subsequently, all
models use the same batch orderings, but they are sequentially fed individual
samples and they cannot revisit any instances in a batch, unless otherwise noted.
For ImageNet, the models are evaluated after each batch on all trained classes.
For COReb50, models are evaluated on all test data after each batch.
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ImageNet ILSVRC-2012 [68] has 1000 categories each with 732-1300 train-
ing samples and 50 validation samples, which we use for testing. During the
base initialization phase, the model is trained offline on a set of 100 randomly
selected classes. Following [13,27,64,77], each incremental batch then contains
100 random classes, which are not contained within any other batch. We study
class incremental (class iid) learning with ImageNet.

CORe50 [52] contains sequences of video frames, with one object in each
frame. It has 10 classes, and each sequence is acquired with varied environmental
conditions. CORe50 is ideal for evaluating streaming learners since it is naturally
non-iid and requires agents to learn from temporally correlated video streams.
For CORe50, we follow [22] and sample at 1 frame per second, obtaining 600
training images and 225 test images per class. We use the bounding box crops
and splits from [52]. Following [22], we use four training orderings to test the
robustness of each algorithm under different conditions: 1) iid, where each batch
has a random subset of training images, 2) class iid, where each batch has all of
the images from two classes, which are randomly shuffled, 3) instance, where each
batch has temporally ordered images from 80 unique object instances, and 4)
class instance, where each batch has all of the temporally ordered instances from
two classes. All batches have 1200 images across all orderings. Since CORe50 is
small, CNNs are first initialized with pre-trained ImageNet weights and then
fine-tuned on a subset of 1200 samples for base initialization.

We use the (2, metric [22,24,45] for evaluation, which normalizes incremen-
tal learning performance by offline performance: (2,;, = % ZT:I rgl‘-n: , Where
1" is the total number of testing events, «y is the accuracy of the model for test ¢,
and afiiine,r is the accuracy of the optimized offline learner for test £. If £2,; =1,
then the incremental learner’s performance matched the offline model. We use
top-5 and top-1 accuracies for ImageNet and CORe50, respectively. Average
accuracy results are in supplemental materials (Table S2-S3).

5.4 Results: ImageNet

For ImageNet, we use the pre-trained PyTorch
offline model with 89.08% top-5 accuracy to
normalize (2,;. We allow the iCaRL, Unified, 7 fratne <+ aov e oo o
and BiC models to store 10,000 (224x224 4,
uint8) raw pixel image prototypes in a replay
buffer, which is equivalent to 1.51 GB in mem-
ory. This allows REMIND to store indices for
959665 examples in its replay buffer. We set
r = 50 samples. We study additional buffer
sizes in Sect. 7. Results for incremental class
learning on ImageNet are shown in Tablel e e R T
and a learning curve for all models is shown Wumber of Classes Tralned

in Fig. 3. REMIND outperforms all other com-

parison models, with SLDA achieving the sec-
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ond best performance. This is remarkable since REMIND only updates 6,
whereas iCaR L, Unified, and BiC all update 05 and 0.

REMIND is intended to be used for online streaming learning; however, we
also created a variant suitable for incremental batch learning which is described
in supplemental materials. Incremental batch results for REMIND and recent
methods are given in Fig. 1 and supplemental materials ('l'able S2 and Fig. S2).
While incremental batch methods train much more slowly, REMIND achieves
comparable performance to the best methods.

Table 1. ResNet-18 streaming classification results on ImageNet and CORe50 using
£2,1. For CORebU, we explore performance across four ordering schemes and report the
average of 10 permutations. Upper bounds are at the bottoi.

Model LinageNet | CORe50
CLS 11D 11D CLS IID | INST [ CLS INST

Fine-Tune (6r) | 0.288 0.961 [0.334 |0.851 0.334
ExStream 0.569 0.953 10.873 10.933 0.854
SLDA 0.752 0.976 10.958 0.963 0.959
iCaRL 0.306 0.690 0.644
Unified 0.614 — 0.510 |~ 0.527
BiC 0.440 0.410 0.415
REMIND 0.855 0.985 0.978 0.980 0.979
Offline (6r) 0.929 0.980 |0.984 | 0.985 | 0.985
Offline 1.000 1.000 | 1.000 |1.000 | 1.000

5.5 Results: CORe50

We use the CoRe50 dataset to study models under more realistic data orderings.
Existing methods including iCaRL, Unified, and BiC assume that classes from
one batch do not appear in other batches, making it difficult for them to learn
the iid and instance orderings without modifications. To compute 24, we use an
offline model that obtains 93.11% top-1 accuracy. The iCaRL, Unified, and BiC
models use replay budgets of 50 images, which is equivalent to 7.3 MB. 'I'his
allows REMIND to store replay indices for 4465 examples. Results for other
buffer sizes are in supplemental materials (Fig. S3). REMIND replays r = 20
samples. 2, results for CORe50 are provided in 'l'able 1. For CORe50, REMIND
outperforms all models for all orderings. In fact, REMIND is only 2.2% below
the full offline model in the worst case, in terms of (2,;. Methods that only
trained the output layer performed well on CORe50 and poorly on ImageNet.
This is likely because the CNNs used for CORe50 experiments are initialized
with ImageNet weights, resulting in more robust representations. REMIND’s
remarkable performance on these various orderings demonstrate its versatility.
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6 Experiments: Incremental VQA

In VQA, a system must produce an answer to a natural language question about
an image [8,36,54], which requires capabilities such as object detection, scene
understanding, and logical reasoning. Here, we use REMIND to pioneer stream-
ing VQA. During training, a streaming VQA model receives a sequence of tem-
porally ordered triplets D = {(X,, Q, At)};rzl, where X, is an image, Q; is the
question (string), and A, is the answer. If an answer is not provided at time
t, then the agent must use knowledge from time 1 to t — 1 to predict A;. To
use REMIND for streaming VQA, we store each quantized feature along with
a question string and answer, which can later be used for replay. REMIND can
be used with almost any existing VQA system (e.g., attention-based [6,46, 78],
compositional [7,28], bi-modal fusion [10,19,71]) and it can be applied to similar
tasks like image captioning [12] and referring expression recognition [43,63,67].

6.1 Experimental Setup
For our experiments, we use the 'I'DIUC [35] and CLEVR [33] VQA datasets.

I'DIUC is composed of natural images and has over 1.7 million QA pairs orga-
nized into 12 question types including simple object recognition, complex count-
ing, positional reasoning, and attribute classification. TDIUC tests for general-
ization across different underlying tasks required for VQA. CLEVR consists of
over 700000 QA pairs for 70000 synthetically generated images and is organized
into 5 question types. CLEVR specifically tests for multi-step compositional
reasoning that is very rarely encountered in natural image VQA datasets. We
combine REMIND with two popular VQA algorithms, using a modified version
of the stacked attention network (SAN) [42,78] for I'DIUC, and a simplified ver-
sion of the Memory Attention and Control (MAC) [28,55] network for CLEVR.
A ResNet-101 model pre-trained on ImageNet is used to extract features for
both TDIUC and CLEVR. REMIND’s PQ model is trained with 32 codebooks
each of size 256. The final offline mean per-type accuracy with SAN on TDIUC
is 67.59% and the final offline accuracy with MAC on CLEVR is 94.00%. Our
main results with REMIND use a buffer consisting of 50% of the dataset and
r = 50. Results for other buffer sizes are in supplemental materials (Table S4).

For both datasets, we explore two orderings of the training data: iid and
question type (q-type). For iid, the dataset is randomly shuffled and the model
is evaluated on all test data when multiples of 10% of the total training set are
seen. 'l'he g-type ordering reflects a more interesting scenario where QA pairs
for different VQA ‘skills’ are grouped together. Models are evaluated on all test
data at the end of each g-type. We perform base initialization by training on the
first 10% of the data for the iid ordering and on QA pairs belonging to the first
g-type for the g-type ordering. Then, the remaining data is streamed into the
model one sample at a time. The buffer is then incrementally updated with PQ
encoded features and raw question strings. We use simple accuracy for CLEVR
and mean-per-type accuracy for TDIUC.
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We compare REMIND to ExStream [22], SLDA [23], an offline baseline, and
a simple baseline where models are fine-tuned without a buffer, which causes
catastrophic forgetting. 'l'o adapt KxStream and SLDA for VQA, we use a variant
of the linear VQA model in [34], which concatenates ResNet-101 image features
to question features extracted from a universal sentence encoder [73] and then
trains a linear classifier. Parameter settings are in supplemental materials.

6.2 Results: VQA

Streaming VQA results for REMIND with Taple 2. ., results for streaming
a 50% buffer size are given in Table2. VQA.

Variants of REMIND with other buffer
sizes are in supplemental materials (Table
S4). REMIND outperforms the stream-
ing baselines for both datasets, with
strong performance on both 'I'DIUC using
the SAN model and CLEVR using the SLDA 0.624 10.644 10518 |0.496
MAC model. Interestingly, for CLEVR. REMIND 0.917/0.919 |0.720/0.985
the results are much greater for g-type Offfine  {1.000 {1.000 |1.000 {1.000
than for iid. We hypothesize that the q-type ordering may be acting as a natu-
ral curriculum [11], allowing our streaming model to train more efficiently. Our
results demonstrate that it is possible to train complex, multi-modal agents capa-
ble of attention and compositional reasoning in a streaming manner. Learning
curves and qualitative examples are in supplemental materials (Fig. S5-S6).

Ordering TDIUC CLEVR

1D Q-TYPE 1D Q-TYPE
Fine-Tune 0.716 0.273 0.494 0.260
ExStream 0.676 0.701 0477 0.375

7 Additional Classification Experiments

In this section, we study several of REMIND’s components. In supplemental
materials, we study other factors that influence REMIND’s performance (Fig.
S4), e.g., where to quantize, number of codebooks, codebook size, and replay

samples (7). In supplemental materials, we also explore the performance of
iCaRL, Unified, and BiC when only 0 is updated (Sec. S3.2).

REMIND Components. REMIND is Table 3. REMIND variations on Ima-
impacted by the size of its overall buffer, ge¢Net with their wewory (GB).

using augmentation, and the features used  virgant 2.1 |Memory
to train #'(-). We study these on ImageNet  REviND (Main) |0.855| 1.51
and results are given in 'l'able 3. REMIND 5000 b tfer 0.856| 2.01

(Main) denotes the variant of REMIND Augmentation | 0.818| 1.51
from our main experiments that uses aug- ; \;. 0.778| 0.12
mentation with a buffer size of 959665 and 1 peatures 0.868 |24.08
32 codebooks of size 256. PQ is critical
to performance, with PQ (32 codebooks)
outperforming k-means (1 codebook) by 7.7% in terms of (2,;. Augmentation
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is the next most helpful component and improves performance by 3.7%. Stor-
ing the entire dataset (100% Buffer) does not yield significant improvements.
Using real features yields marginal improvements (1.3%) while requiring nearly
16 times more memory.

Replay Buffer Size. Since REMIND and ;o == icor = sic h

B unified 0 REMIND [Ours)

several other models rely on a replay buffer to
mitigate forgetting, we studied performance
on IlmageNet as a function of buffer size. We
compared the performance of iCaRL, Uni-
fied, and BiC on lmageNet at three dif-
ferent buffer sizes (5K exemplars =0.75 GB, _
10K exemplars=1.51GB, and 20K exem- 0.75 151 301 Mean
plars =3.01 GB). To make the experiment Replay Buffer (GB)
fair, we coTnparcd REMINP to _thcsc mod- Fig. 4. Q. as a function of buffer
els at equivalent buffer sizes, ie. 479665  ~c streaming ImageNet mod-
compressed samples =0.75 GB, 959665 com- 4

pressed samples=1.51 GB, and 1281167 com-

pressed samples (full dataset)=2.01 GB. In

Fig. 4, we see that more memory generally results in better performance. Over-
all, REMIND has the best performance and is nearly unaffected by buffer size.
A plot with incremental batch models is in supplemental materials (Fig. S2),
and follows the same trend: larger buffers yield better performance.

Regularization Comparisons. In

Table4, we show the results of Table 4. (2, for regularization models
REMIND and regularization meth- averaged over 10 runs on CORe50 with and
ods for combating catastrophic for- without Task Labels (TL).

getting on CORebH0 class orderings. Model  cLs b CLS INST
These regularization methods con- TL No TL|TL NoTL
strain weight updates to remain close g1 0.895 (0.417 |0.905 0.416

to their previous values and are Ewc 0893 0.413 |0.903 0.413
trained on batches of data, where MAS 0897 |0.415 |0.905 | 0.421
each batch resembles a task. At test RWALK 0903 |0.410 10.912 0417
time, these models are provided with A_gEM 0925 |0.417 |0.916 0.421
task labels, denoting which task an  REpMIND 0.995 0.978 |0.995 0.979
unseen sample came from. In our Gmine 1.000 1.000 |1.000  1.000
experiments, a task consists of several
classes, and providing task labels makes classification easier. We analyze perfor-
mance when task labels are provided and when they are withheld. 'l'o evaluate
REMIND and Offline with task labels, we mask off probabilities during test time
for classes not included in the specific task. Consistent with [14,17,45], we find
that regularization methods perform poorly when no task labels are provided.
Regardless, REMIND outperforms all comparisons, both with and without task
labels.
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8 Discussion and Conclusion

We proposed REMIND, a brain-inspired replay-based approach to online learn-
ing in a streaming setting. REMIND achieved state-of-the-art results for object
classification. Unlike iCaR L, Unified, and BiC, REMIND can be applied to iid
and instance ordered data streams without modification. Moreover, we showed
that REMIND is general enough for tasks like VQA with almost no changes.

REMIND replays compressed (lossy) representations that it stores, rather
than veridical (raw pixel) experience, which is more consistent with memory
consolidation in the brain. REMIND’s replay is more consistent with how replay
occurs in the brain during waking hours. Replay also occurs in the brain during
slow wave sleep [9,31], and it would be interesting to explore how to effectively
create a variant that utilizes sleep /wake cycles for replay. 'I'his could be especially
beneficial for a deployed agent that is primarily engaged in online learning during
certain hours, and is engaged in offline consolidation in other hours.

Several algorithmic improvements could be made to REMIND. We initial-
ized REMIND’s quantization model during the base mitialization phase. For
deployed, on-device learning this could instead be done by pre-training the
codebook on a large dataset, or it could be initialized with large amounts of
unlabeled data, potentially leading to improved representations. Another poten-
tial improvement is using selective replay. REMIND randomly chooses replay
instances with uniform probability. In early experiments, we also tried choos-
ing replay samples based on distance from current example, number of times
a sample has been replayed, and the time since it was last replayed. While
none performed better than uniform selection, we believe that selective replay
still holds the potential to lead to better generalization with less computation.
Because several comparison models used ResNet-18, we also used ResNet-18 for
image classification so that we could compare against these models directly. 'I'he
ResNet-18 layer used for quantization was chosen to ensure REMIND’s memory
efficiency, but co-designing the CNN architecture with REMIND could lead to
considerably better results. Using less memory, REMIND stores far more com-
pressed representations than competitors. For updating the replay buffer, we
used random replacement, which worked well in [14,77]. We tried a queue and a
distance-based strategy, but both performed nearly equivalent to random selec-
tion with higher computational costs. Furthermore, future variants of REMIND
could incorporate mechanisms similar to [62] to explicitly account for the tem-
poral nature of incoming data. 'l'o demonstrate REMIND’s versatility, we pio-
neered streaming VQA and established strong baselines. It would be interesting
to extend this to streaming chart question answering [37,38,40], object detection,
visual query detection [2], and other problems in vision and language [39].
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