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Abstract

A rigid vertex is a vertex with a prescribed cyclic order of its
incident edges. An embedding of a rigid vertex graph preserves such
a cyclic order in the surface at every vertex. A cellular embedding of
a graph has the complementary regions homeomorphic to open disks.
The genus range of a 4-regular rigid vertex graph I is the set of genera
of closed surfaces that I" can be cellularly embedded into. Inspired
by models of DNA rearrangements, we study the change in the genus
range of a graph I' after the insertion of subgraph structures that
correspond to intertwining two edges. We show that such insertions
can increase the genus at most by 2, and decrease by at most by 1,
regardless of the number of new vertices inserted.

1 Introduction

A rigid vertex is a vertex with a prescribed cyclic order of its incident
edges [2]. An embedding of a rigid vertex graph in a surface preserves such
a cyclic order in the surface at every vertex. If a general graph I' seen as a
1-complex is embedded into a closed surface F', then the complement of I'
forms a family of regions. If each region is homeomorphic to an open disk,
we say that T' is cellularly embedded into this closed surface F' [6]. The
genus range of a 4-regular rigid vertex graph I is the set of genera of closed
surfaces that I' can be cellularly embedded into [2]. It was shown in [2]
that the genus range of a 4-regular graph differs from the genus range of
the same graph when the vertices are considered rigid.

To each closed surface embedding of a graph one can consider a neigh-
borhood of the graph within the surface. This neighborhood forms a ribbon
graph (see next section for details). Conversely, from any ribbon graph
associated to a graph I' a cellular embedding of I" in a closed surface can
be obtained. The genus of an embedding is therefore computed from the



number of boundary components of a ribbon graph using the Euler charac-
teristic formula. Each 4-valent rigid vertex in a ribbon graph may achieve
one of two different connectivity of the boundary components at that vertex.
Hence, for a graph of n rigid 4-valent vertices, there are up to 2" construc-
tions of ribbon graphs. The genus range, i.e., the set of all possible surface
genera where a graph can be embedded, is obtained through the number of
boundary components of all possible ribbon graphs.

A word w over an alphabet ¥ is a double occurrence word (DOW) if
each symbol in 3 appears in w precisely 0 or 2 times. Such words are also
known as unsigned Gauss codes. Each DOW has a corresponding 4-regular
rigid vertex graph I" where V(I") consists of the symbols within the DOW
w and E(T') are determined by the adjacent symbols in w [5, 2].

Let u be a word with distinct symbols, a single occurrence word (SOW),
such that a DOW w and u share no symbol. We consider the situations when
u is inserted in two different locations of w, or, when u and its reverse u®
are inserted in w thereby constructing another DOW. The former case is
called a repeat insertion, while the latter case is called return insertion [5)].

The DOWs and the particular repeat/return insertions are motivated
from models of DNA recombination [1]. Scrambled genes in certain ciliate
species can be represented with DOWSs and the gene rearrangement pro-
cess can be modeled through removal of subwords in these DOWs [1, 3]. In
this case, the 4-valent rigid vertex graphs associated with the corresponding
DOWs can be seen as the spatial arrangement of the DNA during the re-
combinant processes. It has been observed that most prevalent scrambling
(over 90% of the scrambled genes) in the genome of some species can be de-
scribed through repeat/return insertions in DOWs [4]. Therefore, changes
of properties of graphs associated with DOWs through repeat/return inser-
tions have been studied [5, 7].

In this paper, we study changes in the genus ranges of 4-valent rigid
vertex graphs that correspond to repeat/return insertions in their corre-
sponding DOWSs. We observe that such insertions (regardless of the num-
ber of symbols) change the genus of an associated ribbon graph by p where
p € {—1,0,1,2}. If the inserted word has even number of symbols, then
p # —1. Since removal of repeat/return subwords in a DOWSs can corre-
spond to a DNA rearrangement step, we consider the relationship between
the genus range of a DOW minimum number of steps (called the nesting
index) needed to reduce a given DOW to the empty word by a sequence
of deletions of repeat and return subwords. Although the maximum genus
range is bounded by twice the nesting index, we conjecture that this bound
is not achieved.



2 Preliminaries

2.1 Graphs and Words

A graph T'= (V, E,n) is a 3-tuple where V = V(T') is the set of vertices,
E = E(T) is the set of edges and n : E — {{u,v}|u,v € V(I')} such that
for e € E, n(e) = {u, v} is the set of endpoints of E. In this paper all graphs
are finite. A directed graph T' = (V, E, s,t) has a source function s : E =V
and target function t : E — V where for e € E, s(e) = u indicates the
source (start) of e and t(e) = v is the target (end) of e. If there are no
ambiguities we write e = (u,v) = wv. A walk, W, in an undirected graph T'
is a sequence of vertices and edges

W = (v1,€e1,v2,...,Un—1,€n—1,Vn)

where n(e;) = {v;,vi41} for all i < n — 1. In the case of a directed graph,
the walk satisfies s(e;) = t(e;—1) = v; for 2 < i < n. A graph is connected
if for all u,v € V, there exists a walk from u to v. We say that a directed
graph is strongly connected if for any pair of vertices u,v € V, there exists a
walk from u to v and a walk from v to uw. For a graph I', an Eulerian circuit
is a walk W = (v1,e1,v9,...,0n-1,€n—_1,v,) where each e € E(I") appears
exactly once in W and vy = v,.

A closed surface S is a compact surface without boundary. A closed
orientable surface S is either the sphere S? or the connected sum, S = #,7,
of g copies of the torus T where g is called the genus of S (the genus of S?
is 0). For the remainder of the paper all surfaces are orientable.

A graph T" can be embedded into a closed surface S as a 1-complex. The
set S — I' forms a family of regions. We call the embedding of T" into S a
cellular embedding if each region in S —I' is homeomorphic to an open disk.

A (finite) set ¥ is called an alphabet where elements of ¥ are called
symbols. If ag,...,a, € ¥ then the concatenation w = ag---a, forms a
word over ¥ and we say that the symbols a; (i =1,...,n) appear in w. We
denote the set of symbols in a word w as ¥,; = {a € ¥ |a appears in w}.
We denote the set of all non-empty words over ¥ as ¥7. The empty word
¢ is a word that contains no symbols. Then ¥* = ¥ U {e}. If w = ujvus
so that uy,v,us € X*, we say that v is a subword of w which we denote
as v C w. If w = aq---a, then the reverse of w is wf = a, ---ag. Two
words u = ay - --a, and v = by - - - b, are equivalent, or u ~ v, if there exists
a bijection f : ¥p,) — X, such that f(ay)--- f(a,) = by ---by.

2.2 Double Occurrence Words and Assembly Graphs

In this subsection we recall definitions and set notations for double oc-
currence words and assembly graphs [3].



Definition 1 (Double occurrence words). We say that w € £* is a double
occurrence word (DOW) if for every a € X, a appears in w 0 or 2 times.

The set of DOWs is denoted as X pow. For example, the word 121323
is in Xpow. For the remainder of the paper, we set ¥ = N.

For a rigid vertex v with deg(v) = 4, we label its incident vertices
e1,€e2,e3,6e4. We consider the equivalence relation among orders of these
edges generated by

(67‘,+3, €i+2,€i+1, ei) ~ (€i7 €i+1,€i+2, €i+3) ~ (6i+1, €i+2,€i+3, ei)
where the subscript addition is mod 4.

Definition 2 (Rigid vertex). A rigid vertez is a vertex with a prescribed
cyclic order of its incident edges up to this equivalence relation.

A visual representation for a rigid
vertex is shown in Figure 1. Consecu-
tive edges within the cyclic orientation
are called neighbors. As depicted in Fig-
ure 1, neighbors are separated by an an-
gle of “90 degrees” while non-neighbors
are separated by an angle of “180 de- Figure 1: 4-valent rigid vertex
grees”. In particular, in Figure 1, e
and ey are neighbors of e; and e3 is a
non-neighbor of e; [3]. An embedding of a rigid vertex graph in a surface
is required to preserve a given cyclic order of adjacent edges at every ver-
tex, so that a neighborhood of every vertex on the surface is as depicted in
Figure 1.

Definition 3 (Transverse Eulerian circuit). A transverse Eulerian circuit
in a 4-valent rigid vertex graph is an Eulerian circuit where every two con-
secutive edges in the circuit are non-neighbors.

Example 1. The graph in Figure 2 has no transverse Eulerian circuit while
the graph in Figure 3 does.

Figure 2: A 4-valent rigid vertex Figure 3: A 4-valent rigid vertex
graph with no transverse graph with a transverse Eulerian
Eulerian circuit circuit



Definition 4 (Assembly graph). An assembly graph is a 4-regular rigid
vertex graph with a transverse Eulerian circuit.

Each double occurrence word w = ag---a, has a corresponding as-
sembly graph I' = (¥, ££). The 4-valent rigid vertices of the assembly
graph are a; € X, and the Eulerian circuit is determined by w such
that the ith edge in the circuit has end-points n(e;) = {a;,a;41} (i + 1
is taken mod n). Because each vertex appears twice in the circuit, ev-
ery vertex has four incident edges, and the consecutive edges in the circuit
indicate the non-neighboring
edges. The transverse Eulerian
circuit also gives an orientation
of T such that for e € E(T),
s(e) = a; and t(e) = a;41 for
some i € {0,...,n}. More pre-
cisely, given a vertex v € Xy
there exists a;,a; € ¥, such
that ¢ # j and a; = a; = v.
Then the prescribed cyclic or-
der of the edges incident to v
is (@i—1a4,a-1a;,G;0;41,a5a41), so that I' has a transverse Eulerian cir-
cuit [3]. Conversely, if a 4-regular rigid vertex graph has an Eulerian circuit,
then listing the order in which the vertices appear in the circuit forms a dou-
ble occurrence word.

Figure 4: An assembly graph correspond-
ing to 121323

Example 2. The corresponding assembly graph for the DOW 121323 is
I' = ({121323}, E) where E = {12,21,13,32,23,31}. A representation for
the assembly graph of 121323 is shown in Figure 4.

2.3 Ribbon Graphs and Genus Ranges

Let I be an assembly graph. For each rigid vertex v in I', construct a
square with v at its center. For each edge incident to v and w, we thicken
the edge to construct a ribbon connecting the squares such that the edge
is a centerline of the ribbon as shown in Figure 5. Ribbons are connected
to squares in such a way that the resulting surface is orientable. We call
this compact surface with boundary a ribbon graph of I'. The set of all
ribbon graphs of T' is denoted Rr. By attaching 2-cells (disks) along all
boundary circles, we obtain a closed surface S in which the assembly graph
I is cellularly embedded. Conversely, any cellular embedding of I in a closed
surface S can be constructed in this way, and a regular (thin) neighborhood
of I in S can be regarded as a ribbon graph of T.



Figure 5: Connecting squares
by ribbons [2]

Figure 6: Visiting a square
twice [2]

Each vertex square has two possible ways to connect as demonstrated in
Figure 7. The first is represented in Figure 6 where boundary connections
are depicted as in Figure 7(A). We note that the ribbon graph is orientable
and the boundary components are oppositely oriented along the ribbons
and without loss of generality we choose the orientations as depicted in Fig-
ure 7(A). The second way of attaching the ribbon is touching the band from
bottom to top (cf. Figure 7(A) vs. Figure 7(B)). The boundary connections
of Figure 7(B) is represented by Figure 7(C). For an assembly graph I' of
n vertices we have up to 2™ possible ribbon graphs and thus 2™ possible
embeddings. Due to symmetry we can consider only 2"~ ! cases. The ways
that the embeddings of I" change correspond to the way a ribbon connects
to a vertex square in the corresponding ribbon graph, and the change of
the boundary components of the ribbon graph R can be represented as in
Figure 7. The boundary connection as represented in Figure 7(A) is called
type 1 vertex configuration and the boundary connection in Figure 7(C) is
type 2 vertex configuration.

e Lo o

(A)

©

Figure 7: Boundary connection change at a vertex [2]. (A) type I vertex
configuration and (C) type 2 vertex configuration



For an assembly graph I" embedded in a closed surface S, with neigh-
borhood ribbon graph R € Rr, the number of boundary components of R
is denoted by b(R). Using the Euler characteristic for the closed surface
x(S) = |V|—|E|+b(R), we calculate the genus g(R) = g(S) = 2(2—x(S5)).
For an assembly graph with n vertices (and 2n edges) we have

1

= 22— (V] ~ [B|+ B(R))] = 512~ (n — 20+ B(R))] = 5[2+n — b(R)]

(1)

The set of integers that represent the genera of the closed surfaces where an
assembly graph I' is embedded is the genus range of T, denoted GR(T") [2].

For each boundary connection change at a vertex of I, the total number
of boundary components in I" can either increase by 2, decrease by 2, or
remain the same as represented in Figure 8.

9(S)

(b) (©) (d) (e) ® (® (h) @)

1—1 2—2 1—3 2—2 3—1 4—2 2—2 3—3 1—1

Figure 8: All possible boundary connection changes [2]

It is known that the genus range of an assembly graph consists of con-
secutive integers so that the genus range GR(I') can be represented as a
closed interval of integers [a,b] where a = min GR(T') and b = max GR(T)

[2].

3 Genus Ranges of Assembly Graphs and Re-
peat/Return Insertions

In this section we consider assembly graphs and their genus ranges, in
particular, how genus ranges change with insertion of repeat or return words.
The assembly graph corresponding to the DOW w is denoted with I';,. We
use the notation R,, instead of Rr,,.

Example 3. Consider the assembly graph I'i123123 and the following two
ribbon graphs R, R’ € Ri23123 as depicted in Figure 9a and Figure 9b.
The genus of each ribbon graph may not necessarily be the same. As we



can see in Figures 9a and 9b, b(R) = 5 while b(R’) = 3. Thus we have
g(R) = 0 # 1 = g(R). Changing the types of vertex configurations at
every vertex, one can show that GR(T'123123) = [0, 1].

(a) R (b) R

Figure 9: T'123123 and two of its ribbon graphs R, R’

Properties of repeat and return insertions on DOWSs have been stud-
ied to determine relationships between DOWs [5, 7]. We observe how re-
peat/return insertions of DOWSs affect the genus ranges of the assembly
graphs that correspond to these DOWs.

Definition 5 (Repeat and return insertions). Suppose w,v,w € ¥* such
that uvw € X pow For the word where z € 3% such that uzvzw € Xpow,
we say that uzvzw is a repeat insertion of uvvw and for uzvefw we say it
is a return insertion of uvw.

Example 4. Let vow = 121323 = wv'w’ with v = 1213, v = 23, v/ = 2,
w=¢, and w’ = 3. Let v = 45. Then 1213452345 = uzrvrw is a repeat
insertion of x and 1213452543 = uxv’'zw’ is a return insertion of z in
121323. The corresponding graphs are depicted in Figures 10a, 10b, and
10c.

The repeat/return insertions definition is adapted from the definition in
[5]. Now we look at how the properties of repeat and return insertions on
DOWs affect their corresponding assembly graphs and genus ranges.

(a) T'121323 (b) I"1213452345, 2-interlace (C) T'1213452543, 2-interlace
of ez and e3 of e; and es

Figure 10: Crossing edges and adding vertices 4 and 5 to construct 10b
and 10c



Let I' = (V,E) be an assembly graph. A k-interlace between edges
e,e/ € E is the process of “intertwining” e and €’ so that they cross k
times, and adding vertices to these k crossings. A visual interpretation of a
k-interlace of e and ¢’ is represented in Figure 11.

(a) T

Figure 11: k-interlace of e, ¢’ € E(T")

A k-interlace between two edges represents the changes of the assem-
bly graph by insertion of either a repeat and or a return insertions of the
corresponding DOW. Let uvw € YXpow, let y = y1...yr be a SOW and
v € {y,y} be SOWs so that uyvy'w € Lpow. We can represent the
assembly graph of the word wvw as in Figure 11a and the assembly graph
of the word uyvy’'w as Figure 11b where y1,...,y, are the newly added
vertices to the k-interlace of e and e¢’. The graph I'121323 is depicted in
Figures 10a, and consider three of its edges e1, es and e3. The 2-interlace
of e5 and ez corresponds to the repeat insertion of 45 as shown in 10b; and
2-interlace of ey and ey corresponds to the return insertion of 45 as shown
in 10c.

We consider the changes of the genus of an arbitrary assembly graph I'
obtained by the k-interlace of two edges e, e’ € E(T) for k > 1.

Definition 6. Let I be obtained from I' by a k-interlace of edges e, ¢’ €
E(T'). For R' € Ry, we say that it is an extension of R € Ry if for every
vertex of T', the vertex type configuration is the same at both R and R’'.

Consider R € Rr and let X = {x1,29,...,25} be eight points on the
boundary components of R such that pairs of points in X belong to the
same boundary component. Suppose the bijection 7 : {z1, 3, z¢, 25} —
{z2, 24,25, 27} is such that Y; = {(x;, 7(x;))|i = 1,3,6,8} indicates the
ordered pairs of points belonging to the same components (indicating the
orientation of the boundaries), two examples of Y, are presented in Fig-
ures 12a and 12b. Let o : {x2, x4, 25,27} — {21,273, 26,28} be a bijection
such that Y, = {(x;,0(z;))|i = 2,4,5,7} indicates the pairs of points that
belong to the same boundary component in the remaining portion of the
boundary curves. The directed graph G(; ) = (X,Y = Y; UYj) is called



the X -connection graph, or X-CG of R € Rp. This graph is comprised of
one, two, three or four disjoint cycles.

Let T be obtained from T by a k-interlace of edges e, e’ € E(T') and let
R’ € Ry be an extension of R. Then the X-CG of R’ can be defined as
G(r,0) as the boundary connections for each vertex v € I' are unchanged in
R’. An example of these X-CG graphs are depicted in Figures 13a and 13b
which are based on the ribbon graphs in Figures 12a and 12b. The edges
defined with Y, remain the same in R’ as they are in R.

Theorem 1. Let T' = (V, E) be the assembly graph, e,e¢’ € E, and let T be
obtained from T’ by a 1-interlace of e and €'. Fix a ribbon graph R € Rr
and let R € Rr/ be an extension of R. Then g(R') = g(R) + p where
pe{-1,0,1,2}.

Proof. Let y be the newly added vertex in the 1-interlace I'. There are two
possible types of configurations of boundary components at y in R’.

Figure 12: Extension of R’ from R with type 1 configuruation at y

Case 1: Type 1 configuration at y in R'.

Because R is orientable, the boundary components on a ribbon graph
have opposite orientation, and without loss of generality, we choose X =
{z1,...,zs} and assume orientation as depicted in Figure 13a. This defines
Y, with 7(x1) = x5, 7(x6) = x2, 7(23) = 7 and 7(xg) = z4.

We let G (7 5) be the X-CG of R. If the configuration at the new vertex y is of
type 1, the X-CG graphs of R’ changes to G,/ ») where 7/(x1, 23, x5, 28) =
(z7,22,24,x5) as shown in Figures 13a and 13b. The rest of the connections
of the boundary components are indicated with the same Y, for both R and
R’ and there are twenty-four possible cases for o.

10
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(a) X-CG for R

(b) X-CG for R’

Figure 13: X-CGs for R and R’

The change in the number of disjoint cycles that comprise G, 5 versus
G(+,0) gives the change in the number of boundary components between R
and R'. Let C(G(;,4)) be the total number of disjoint cycles of G, ;). Then
we have C(G(r,4)) — C(G(r,)) = D(R') — b(R).

Figure 14: R and R’ with fixed Y, = {zox1, 2723, T526, x42s }

The Table 1 contains all changes in the number of boundary components
for the 24 choices of o. The highlighted row for Y} is illustrated in Figure 14.
This computation was performed on Mathematica 11.0. The table indicates
that the difference in boundary changes increases by 1 or 3 or decreases by

11



Y, C(
{@omw1, x4, T526, T8}
{@om1, 43, T726, 578}
{@omw1, 523, T4T6, 708}
{@om1, w523, X726, a8}
{$2I1,$7$37$4$67$5I8}
{1‘2371, T7x3,T5T6, x4$g}
{z4w1, T223, 526, T7T8}
{@4w1, 223, T726, 578}
{@41, w503, T2T6, 78}
{I4$17 53, 76, 562:58}
{x41, 703, X276, X578}
{$4I17 T7x3,T5T6, IQIg}
{@sw1, vow3, T4T6, T8}
{1‘51’1, T2X3,T7T6, I4‘T8}
{@sw1, v43, T2T6, 78}
{IC5I1, T4T3,T7T6, 33218}
{@sw1, x7003, T2T6, 48}
{€E5$1, L7T3,T4Teg, 552%8}
{@7w1, xow3, T476, 578}
{$7$1, T2X3,T5T6, 5541‘8}
{@7w1, v43, ToT6, X578}
{$7$1, T4T3,T5T6, 552338}
{@7w1, 523, ToT6, 48}
{71, 523, X476, 28}
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Table 1: Highlighted example in Figure 14

1 or 3, hence for I with n vertices we have

9(R) = 52~ B(R) + [n+1]) = 32~ [o(R) + ] + [n + 1)

=L@ bR) )+ T =g+ =Rt (2
where § € {—1,-3,1, 3} implying p € {-1,0,1, 2}.
Case 2: Type 2 configuration at y in R'.

The ribbon graph R’ and the X-CG of R’ in this case are as depicted in
Figures 15 and 16. We perform the same computations for the 24 cases of
Y, in this case (see Appendix Table 2). These computations show that the
difference in the number of boundary components in R and R’ also increase
by 1 or 3 or decrease by 1 or 3, hence for a graph I" with n vertices we
obtain the same result as in Case 1. O
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Figure 16: Exterior connection

Figure 15: R/ graph of R, G(;/ )

Let I' =T, where w = uv € Xpow and let IV = '35 be obtained by a
l-interlace of T'. If u,v € ¥pow then we have a special case of Theorem 1.
The assembly graph I'yp.p is called the cross sum of I';, and I, which is
discussed in [2]. The cross sum of I', and T',, as shown in Figure 17. It has
been shown in [2] that in this case that GR(Tyupub) = {91+ 92|91 € T, g2 €
T, } holds.

Figure 17: T',,[, Figure 18: Cross sum of I';,,T’,

Theorem 2. Let T' be the assembly graph, e, e’ € E(T'), and I” be obtained
by a 2-interlace of e and ¢'. Let R € Rr and R’ € Rr+ so that R’ is an
extension of R. Then g(R') = g(R) + p where p € {0,1,2}.

Proof. Let y; and ys be the newly added vertices in I obtained by the
2-interlace. Let R} be an extension of R for i € {1,2,3} where R has a
type 1 configuration at both y; and yo, R has a type 2 configuration at
precisely one of the vertices y1,¥y2, and R4 has a type 2 configuration at
both y; and ys. The X-CGs for each of these ribbon graphs are shown in
Figure 20 where the edges in Y, are the same in all three cases and are not
depicted.

For the ribbon graphs R} and Rj there exists precisely one boundary
component that does not traverse the edges incident to vertices within T'.
Thus, in order to find b(R}) — b(R) for j € {1,3}, we must add 1 to the
total number of strongly connected components for R; and Rj’s X-CGs
so that C(G(Té,g)) +1—C(G(r,0)) = b(R;) — b(R). The 24 differences in
the total number of boundary components between R and its extension R’
is computed by Mathematica 11.0, see Appendix Table 3. Thus the total

13



Figure 19: R’

(a) )(—C(}7 G(T{J)’ (b) X—CG, G(Té,o)7 of R’Q (C) )(—CGr7 G(Té‘O')7 of
of R} Rj

Figure 20: X-CGs

number of boundary components changes by ¢ € {—2,0,2}.

9(R) = 52~ B(R) + [n+2]) = 22~ [p(R) + 3] + [n +2)
bRt I =g L2 =gt (3)
where ¢ € {—1,0,1} implying p € {0,1,2}. O

Theorem 3. Let T' be the assembly graph, e, e’ € E(T'), and I” be obtained
by a 3-interlace of e and ¢'. Let R € Rr and R’ € Rr+ so that R’ is an
extension of R. Then g(R') = g(R) + p where p € {—1,0,1,2}.

Proof. Let y1,y2 and ys be the newly added vertices to R’. Let R for
i € {1,2,3} be extensions of R where R] has a type 1 configuration at
vertices y1,y2 and y3, R5 has a type 2 configuration at precisely 0 < £ < 3
vertices in {y1,y2,y3}, and R} has a type 2 configuration at vertices yi,

14



y2, and ys. Just as in the other two theorems, we observe the exterior
connection graphs for each R and count the difference in the number of
boundary components. The exterior connection graphs for R; are shown in
Figure 22.

Figure 21: R’

The 24 differences in the total number of boundary components between
R and its extension R’ is computed by Mathematica 11.0, see Appendix
Table 4. The difference in the number of boundary components between R
and its extension R’ is § € {—1,1,3,5}. Letting n be the number of vertices
in T,

G(R) = 52~ b(R) +[n+3]) = 32~ [b(R) + 8] + [0 + 3]
= 2@ bR) )+ 2 = g(R) g (1
where § € {—1,1,3,5}. Hence we obtain p € {—1,0,1,2}. O

Theorem 4. Let T' be an assembly graph and let Ty be obtained by a k-
interlace of two edges e,e’ € E(T'). Let R € Rr and Ry € Rr, be an
extension of R. Then for k > 3

_Jg(Ra2) ifk is even
9(Ry) = {g(Rg) if k is odd .

Proof. We consider the case k is even, as the case k is odd follows from a
similar argument. Let R be fixed and consider the ribbon graphs for R,
and Rg. Let y1,...,y; be the newly added vertices for Ry and z1, 25 be the
newly added vertices for R,. Consider the X-CGs for R.

If there are no type 2 configurations at 1, ...,y then the X-CG for Ry
is the same as the X-CG for Ry when there are no type 2 configurations at

15



(a) X-CG, G (ry.0), for R} (b) X-CG,G sy, of
Ry

(C) )(—CG7 G(Té,()‘)? of Ré

Figure 22: X-CGs for R’

z1 or zg. If there are 1 < n < k—1 type 2 configurations at y1,...,yx, then
the X-CG for Ry, is the same as the X-CG for Ry when there is precisely
one type 2 configuration at either z; or zo. If every vertex {y1,...,yx} is a
type 2 configuration, then the X-CG for Ry is the same as the X-CG for
Ry for when there is a type 2 configuration at z; and z,. Now we consider
b(Rk) — b(R2).

(a) No type 2 configurations (b) Type 2 configuration at
a vertex y;

CFH

(c) Type 2 configuration at
vertices y; and Y41

Figure 23: Section of k-interlace with/without type 2 configuration
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From Figure 23a, we can see that each consecutive pair of vertices tra-
verses a shared boundary component that does not exist in Rp. Thus, if
there are no type 2 configurations at any of the vertices y1,...,yx, then
b(Rk) = b(R2) + k — 2. Letting n be the number of vertices in I" we have
that

9(Re) = 5(2—b(Ri) Hintk]) = 3 (2~ [b(Ra)+h—2]4[n+H]) = 3 (2-b(Ra)4n+2) = g(Ra)

Let Ry have a type 2 configuration at some vertex y;. Choosing some y;
in the k-interlace, allow y; to undergo a boundary connection change. Fig-
ures 23b and 23c shows that the outer portion of the boundary components
traversing y; will split, while the inner portion of the boundary components
will connect together. Ultimately, the total number of boundary compo-
nents do not change. Letting Rs have precisely one type 2 configuration
and Ry to have 1 < m < k — 1 type 2 connections or letting Ry have two
type 2 configurations and Ry have a type 2 configuration at every vertex
Y1,---, Yk leads to the same computation as shown in (3). Thus, for all
possible cases, g(Rr) = g(Rz2). O

Corollary 1. Let I' be an assembly graph and let Ty be obtained by a k-
interlace of two edges e1,es € E(T'). Then for k >3

GR(T2) Ifk is even

GR(Tk) = {GR(F;;) If k is odd .

Proof. The corollary follows immediately from Theorem 4. O

We note that in the above corollary we cannot set k£ > 1 for k£ odd. For
an assembly graph T, if we let T be obtained by a 1-interlace of e, e’ € E(T)
and I be a 3-interlace of the same two edges, it is not necessarly true that
GR(I") = GR(I"). Consider the DOW 123312 and the assembly graph
T'123312. ['12343124 is obtained by a l-interlace of the edges 33 and 21 and
I'123456312456 is obtained by a 3-interlace of the edges 33 and 21. One can
compute that GR(F12343124) = []., 2] and GR(F123456312456) = [1, 3} so that
GR(T12343124) # GR(T'123456312456)-

4 Reductions of DOWs and Genus Range

Using the developed machinery for insertions of DOWs we can determine
an upper bound for the genus range of an assembly graph.

Definition 7. Let w = ujvusv’'uz € Ypow where v/ € {v,v%}. Then
w — v = ujugug is called the repeat/return removal of v from w. We say
that v is a maximal repeat/return word of w if for any v € ¥ pow such that
v C v C w then v = u.

17



Example 5. For w = 12341243 we have w — 12 = 3443 and w — 34 = 1212.
Definition 8. A reduction of w is a sequence of words (vg, . .., v,) in which

(i) vo = w.

(ii) wg41 is obtained from vy by applying maximal repeat/return removal.
(iii) vy, =e.
Definition 9 ([7]). The nesting index NI(w) of a DOW w is the smallest
integer n for which (vg, ..., v,) is a reduction.

Example 6. Consider the DOW w = 1213243545. Then the sequence
(w,12124545,1212,¢) is a reduction of w.

Theorem 5. Let T’ be an assembly graph and let (To =T,T,..., T, =TY)
be a sequence of assembly graphs where I';11 is obtained from I'; by an
interlace. Then

max GR(I") — max GR(T")
min GR(T') — min GR(T")

> 2m,
< m.

Proof. Let I' be an assembly graph, IV be obtained from a k-interlace of
e,¢/ € E(I'), and R’ € R be an extension of R € Rr. From Theorems 1,
2, 3, and 4, we have g(R) — 1 < g(R’) < g(R) + 2.

Let R; € Rr,. Because R; is an extension of R;_1 for i € {1,...,n}, it
must be the case that g(R;—1)—1 < g(R;) < g(Ri—1)+2. Thus, g(Rg)—m <
9(Rm) < g(Rp) + 2m. Hence we obtain the inequalities. O

Corollary 2. Let w € Ypow and I'y, be its corresponding assembly graph.
Then max GR(T,) < 2NI(w).

Proof. Let (ug,...,u,) be a minimal reduction of w. From this reduction,
form the sequence of assemly graphs (I'y,,, T, 1,---,Tu,). We can see
that I',,,_, is obtained from T, by a w—interlace. Let Ry, € Rr,,, sO
that for each i € {1,...,n}, Ry, , is an extension of R,,. From Theorem 5,
max GR(Ty,) —max GR(T,,, ) < 2m. Because GR(T',,, ) = GR(T';) = [0,0],

m

we have that max GR(T',,) = max GR(T,,) < 2m = 2NI(w). O

We note that for any k, there is w such that NI(w) — max GR(T'y,) = k.
For let
w = 12213443 - - - (2k — 1)(2k)(2k)(2k — 1).

then NI(w) = k and max GR(T',,) = 0.

We conjecture that the equality in Corollary 2 does not hold for any non-
empty word. It is of interest to know, for given n and m, the minimum of
[2NI(T",,) —max GR(T',,)] over all DOW w with m symbols and NI(T',,) = n.

18



Acknowledgement

This work is partially supported by NIH RO1GM109459, and by NSF’s CCF-
1526485 and DMS-1800443. This research was also partially supported by
the Southeast Center for Mathematics and Biology, an NSF-Simons Re-
search Center for Mathematics of Complex Biological Systems, under Na-
tional Science Foundation Grant No. DMS-1764406 and Simons Foundation
Grant No. 594594.

References

[1]

2]

A. Angeleska, N. Jonoska, M. Saito, L.F. Landweber, RNA-guided DNA
assembly. Journal of Theoretical Biology, 248:4 (2007) 706—-720.

D. Buck, E. Dolzhenko, N. Jonoska, M. Saito, K. Valencia, Genus
Ranges of 4-Regular Rigid Vertexr Graphs. The Electronic Journal of
Combinatorics, 22(3) (2015) #P3.43.

J. Burns, E. Dolzhenko, N. Jonoska, T. Muche, M. Saito, Four-regular
graphs with rigid vertices associated to DNA recombination. Depart-
ment of Mathematics and Statistics, Discrete Applied Mathematics,
161 (2013) 1378-1394.

J. Burns, D. Kukushkin, X. Chen, L.F. Landweber, N. Jonoska,
M. Saito, Recurring patterns among scrambled genes in the encrypted
genome of the ciliate Oxytricha trifallax. Journal of Theoretical Biol-
ogy, 410 (2016) 171-180.

D.A. Cruz, M. Ferrari, N. Jonoska, L. Nabergall, M. Saito, Insertions
Yielding Equivalent Double Occurrence Words. arXiv:1811.11739, to
appear in Fundamenta Informaticae.

J.L. Gross, T.W. Tucker, Topological Graph Theory. Dover Publica-
tions, Inc., Mineola, NY, (2001)

N. Jonoska, L. Nabergall, M. Saito, Patterns and Distances in Words
Related to DNA Rearrangement. Fundamenta Informaticae, 154 (2017)
225-238.

B. Mohar, C. Thomassen, Graphs on Surfaces. The John Hopkins Uni-
versity Press, Baltimore, (2001).

19



5 Appendix

Given an assembly graph I', The appendix contains all tables that show
the difference in the number of boundary components of R € Rr and R’ €
Rr: where T is a k-interlace of T" and R’ is an extension of R. Every table
contains all 24 possible connections for an X-CG graph of a given ribbon
graph.

Y, C(G(T,0)> C(G(T’,U)) b(R/) — b(R)
{1’21’1,1’41‘371’5566,33718} 2 1 -1
{1‘23?1,.%‘4333,%‘71}6,.1?5.’11‘8} 1 2 1
{zox1, X503, T4T6, T7T8 } 1 2 1
{$2$1,$5$3,.’L‘7$6,$4$8} 2 3 1
{$2$1,$7$3,$4$6,$5$8} 2 1 -1
{$2$1,$7$3,$5$6,$4l‘8} 3 2 -1
{z4x1, X273, X526, T7T8} 1 2 1
{J)4l‘1,$2$3,l‘7$6,$5l‘8} 2 3 1
{z4m1, 523, ToT6, T7T3} 2 3 1
{Z‘45€1,J)5$3,$7$6,.’E21‘8} 1 4 3
{z4w1, T723, 2T6, T5X3 } 3 2 -1
{$4x1,x7x3,x5x6,x2x8} 2 3 1
{zs521, L2235, 426, T7T8} 2 1 -1
{I5$1,1‘2$37I7I6,CE4I8} 3 2 -1
{xs521, L4235, x2T6, T7X8} 3 2 -1
{I5I1,I4CE3,I’7I6,$2$8} 2 3 1
{,@533‘1,{1)71'3,372.%'671‘41’8} 4 1 -3
{1‘51’1,1’7$37I’4I6,I2I8} 3 2 -1
{m7x1,x2x37x4x6,x5mg} 1 2 1
{1’71’1,1’21‘371’5566,33418} 2 1 -1
{3373?1,.%‘4333,%‘21}6,335.’11‘8} 2 1 -1
{z721, X423, 526, TaTg } 1 2 1
{$7$1,l‘5$3,$2$6,$4$8} 3 2 -1
{z721, x503, T4T6, T2Tg } 2 3 1

Table 2: X-CG for R’ with type 2 configuration
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Yo C(G(T,o')) C(G(‘r{,o'))) +1 b(Rll) - b(R)
{zox1, 2423, T5T6, T7T } 2 2 0
{zox1, 2423, T7T6, T5T8 } 1 3 2
{zgzl,z5z3,z4z6,z7zg} 1 3 2
{1‘2381,1‘5383,1‘7306,1‘4308} 2 4 2
{mow1, x723, T4T6, T5T8 } 2 2 0
{zaz1,x723, T5T6, 4T} 3 3 0
{zaz1, 2223, T5T6, T7T8} 1 3 2
{zaz1, 2223, T7T6, T5T8 } 2 4 2
{zaz1, 2523, T2T6, T7T } 2 2 0
{z4ax1, 2523, T7T6, T2T } 1 3 2
{zax1, 2723, T2T6, T5T8 } 3 3 0
{z4ax1, 2723, T526, T2T8 } 2 2 0
{z521, 2273, TaT6, T7T8 } 2 4 2
{Z‘5LE1,Z‘2;E3,LI:7;B6,LI:4;B8} 3 5 2
{zs521, TaT3, T2T6, TTTR} 3 3 0
{z521, TaT3, T7TT6, T2TR } 2 4 2
{zs521, 2723, T2T6, T4TR } 4 4 0
{zs521, 2723, TaT6, T2T8 } 3 3 0
{z7z1, 2203, TaT6, T5T8 } 1 3 2
{z7x1, 2203, T5T6, 4TS } 2 4 2
{z7x1, 2423, T2T6, T5T8 } 2 2 0
{z721, 2423, T5T6, T2T8 } 1 3 2
{z7x1, 2523, T2T6, T4T8 } 3 3 0
{z7z1,z5z3,z4z6,zgzg} 2 2 0

(a) Difference in number of boundary components between Rj and R

Yo C(G(‘r,a)) C(G(Té,U))) b(RIQ) - b(R)
{xgxl,x4ac3,1r5$6,x7acg} 2 2 0
{J:gxl,az4x3,a:7x6,a:5x8} 1 3 2
{z2z1, T5%3, TATG, TTTR} 1 1 0
{xox1, x523, T7T6, TATR } 2 2 0
{xox1,x723, Ta26, T5T8 } 2 2 0
{xox1,x723, T526, T4T } 3 1 -2
{z4x1, 2223, T526, 7T} 1 3 2
{z4x1, 2223, T7T6, T5T8 } 2 4 2
{z4x1,T523, T2T6, T7TTS } 2 2 0
{z4x1, 2523, T7T6, T2TS } 1 3 2
{$4$1,$7$3,$2$6,$5$8} 3 3 0
{m4x1,m7x3,a}5x6,m2x8} 2 2 0
{a:sxl,azgxg,a:4x6,m7x8} 2 2 0
{xs521, 223, T7T6, 4TS} 3 3 0
{xs5%1, 423, T2T6, T7TR} 3 1 -2
{xs521, 2423, T7T6, T2T8 } 2 2 0
{zs521, 2723, T2T6, T4T } 4 2 -2
{zs521, 2723, T426, T2T8 } 3 1 -2
{z721, 2223, T4T6, T5T8 } 1 3 2
{z721, 2223, T52T6, TaTs } 2 2 0
{z7x1, 2423, T2T6, T5TS } 2 2 0
{x7x1,x4x3,x5x6,x2x8} 1 1 0
{x7x1,x5x3,x2x6,m4x8} 3 1 -2
{z7rz1, T5%3, TATG, T2TR } 2 2 0

(b) Difference in number of boundary components between R5 and R
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Yo C(G(T,o')) C(G(‘r{?o')) +2 b(Rll) - b(R)
{z221, 2423, T526, 728}
{221, Z423, T726, 528}
{221, x523, T46, X728}
{zoz1, 523, T7T6, TATR}
{z2x1, 2723, T4T6, T528}
{221, T723, T5%6, L4238}
{r4w1, 273, T5T6, TTTR}
{r4w1, T273, T7T6, T5TR }
{r4w1,T523, T2T6, TTTR}
{421, 2523, L7206, 228}
{421, 2723, L2706, X528}
{421, T723, T5%6, 228}
{521, T223, T46, TTTR}
{zs21, 2073, T7T6, TATR}
{zs21, T473, T2T6, TTTR}
{z521, 423, T7 26, T228}
{521, T723, T2%6, 428}
{521, T723, T4T6, 228}
{z721, T273, T4T6, T5TR }
{z721, T273, T5T6, T4TR}
{721, 24223, T276, Z528}
{721, 24223, T5 6, 228}
{721, 2523, T26, 428}
{z7x1, 523, TATE, T2TR}

N

W| | W = Wl w| =

w

CO| CO| | | U1 COf | W | QO| U W | | O QO | | WO

N Qo[ | DN DO | COf | DN QO WO DN DN Q| M N DN | WO DN N[ | —
W] Wl W w| Ul =] W =] = =] = | =

o] i o o o s

(a) Difference in number of boundary components between Rj and R

Yy C(Gr0) | C(G(r5,0))) +1 | b(R3) — b(R)
{1‘2;E1,1‘4;E3,:I:5;B6,:I:7;E8} 2 3 1
{z2z1, TaT3, T7T6, THTR } 1 4 3
{z2z1, T5%3, TATE, TTTR } 1 2 1
{zaz1,x523, T7T6, T4T8} 2 3 1
{z2z1, 2723, TaT6, T5T8 } 2 3 1
{zoz1, 2723, T5T6, T4T } 3 2 -1
{z4ax1, 2223, T526, T7T } 1 4 3
{z4x1, 2223, T7T6, T5T8 } 2 5 3
{z4ax1, 2523, T2T6, T7T } 2 3 1
{zax1, 2523, T7T6, T2T } 1 4 3
{z4z1,z7z3,z2z6,z5zg} 3 4 1
{zaz1, 723, T5T6, T2TR } 2 3 1
{zsw1, 223, Ta6, T7T8 } 2 3 1
{z521,x223, T7T6, T4TR} 3 4 1
{zs521, 2423, T2T6, T7TR} 3 2 -1
{zs521, 2423, T7T6, T2T8 } 2 3 1
{zs521, 2723, T2T6, 4T } 4 3 -1
{zs521, 2723, TaT6, T2T8 } 3 2 -1
{z7x1, 2223, TaT6, T5T8 } 1 4 3
{z7x1, 2223, T5T6, T4T8 } 2 3 1
{z721, 2473, T2T6, T5T8 } 2 3 1
{$7$1,1‘4$3,1‘5$6,1‘2$8} 1 2 1
{zrz1, T523, T2T6, TATR} 3 2 -1
{zrz1, T523, TATE, T2TS } 2 3 1

(b) Difference in number of boundary components between R5 and R
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Y,

aQ
—~
@
hl
)
2
N

b(R3) — b(Ro)

{xox1, Xa3, X576, T7T8}

{xox1, X423, X726, T5T3 }

{xox1, X523, X426, T7T8}

{T/le, T5L3, L7Lg, 1’4508}

{xox1, X723, X426, T5T8 }

{Iﬂﬂl, L7T3,T5Lg, l’4»’88}

{421, X223, T5T6, T7T8}

{2421, X223, X776, T5T8 }

{334961, T5T3,L2T6, 3371‘8}

{2421, X523, X776, T2T8 }

{421, X723, T26, T5T3 }

{xa21, 2723, X526, T2T3 }

{521, X223, T46, T7T8}

{521, 2223, T726, TaTs}

{521, 243, T26, T7T8}

{521, 2a23, T726, T2T8 }

{I5I17 T7X3,T2T6, JC4'18}

{521, X703, T4T6, T2T8 }

{.’1771’1, XT2X3,T4T6, $5I8}

{721, X223, T5T6, TaTs}

{1'71'1, TyT3,T2T6, I5I8}

{721, X423, T5T6, T2T3 }

{T/ﬂl, T5T3, L2Lg, 1’4508}

OINNOINOO OO O NN NN OO NO

{721, X523, X426, T2T8 }

N(W NN W R NW W NN W RN W NN |~ DN

DO Q| QO DO QO QO | DO QO QO DD | O QO | x| Q| QO [ DN | W N

o

(c) Difference in number of boundary components between R and R

Table 3: Difference in number of boundary components between R’ and R

where R’ € Ry is an extension of R € Rr and I is obtained by a
2-interlace of e, e’ € E(T)
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Yo

aQ
—~

Q
>
)
<

<
4
]

b(13)

|
o>

(R)

{xox1, X423, X526, T7T3}

{xox1, X423, X726, T5T3}

{xox1, X523, Ts6, T7T8}

{2921, X523, X776, T4T8}

{xox1, X723, X426, T5T3}

{fﬂzl'l, L7T3,T5Lg, l‘4$8}

{421, X223, T5T6, T7T8}

{CE4$1, L2T3,L7Lg, 905558}

{5643317 T5T3,L2T6, 337$8}

{2421, X523, X776, T2T8 }

{421, X723, X26, T5T3 }

{$4$1, L7T3, L5Lg, 552&108}

{521, 23, X46, T7T8}

{521, X223, X726, TaTs}

{521, a3, X206, T7T8}

{521, 2423, X726, T2T3 }

=W = O W W W | W W W~

{I’5CC17 T7X3,T2T6, x4.’L‘8}

1
=

{521, X703, T4T6, T2T3 }

{I7IIZ17 T2X3,T4T6, I5IS}

{721, 223, T5T6, TaTs}

{1'7,’]317 Ty4T3,T2T6, SC5£E8}

{721, X423, T5T6, T2T3 }

{179317 T5L3, L2Lg, 334f£8}

= of =] =] o =

{721, X523, X426, T2T3 }

(W NN W RN W W NN WM W NN DN

cn.&»wwg»wmg.&wmg@mmggwm»gwh

w

(c) Difference in number of boundary components between R and R

Table 4: Difference in number of boundary components between R’ and R

where R’ € Ry is an extension of R € Rr and I is obtained by a
2-interlace of e, e’ € E(T)
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