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Formative Assessment of Computational Thinking: Cognitive and 
Metacognitive Processes
Sarah Bonner, Peggy Chen, Kristi Jones, and Brandon Milonovich

ABSTRACT
We describe the use of think alouds to examine substantive processes 
involved in performance on a formative assessment of computational think
ing (CT) designed to support self-regulated learning (SRL). Our task design 
model included three phases of work on a computational thinking problem: 
forethought, performance, and reflection. The cognitive processes of seven 
students who reported their thinking during all three phases were analyzed. 
Ratings of artifacts of code indicated the computational thinking problem 
was moderately difficult to solve (M = 15, SD = 5) on a scale of 0 to 21 points. 
Profiles were created to illustrate length and sequence of different types of 
cognitive processes during the think-aloud. Results provide construct validity 
evidence for the tasks as formative assessments of CT, elucidate the way 
learners at different levels of skill use SRL, shed light on the nature of 
computational thinking, and point out areas for improvement in assessment 
design.

The expansion of computer science (CS) education at the PreK-12 level has become a priority in the 
United States of America (USA) due to burgeoning demand for workers trained in computer and 
information technology (Department of Labor Bureau of Labor Statistics, 2020). Multiple PreK-12 
curricula and courses have been developed and disseminated in recent years, several of which stress 
conceptual understanding over coding. Proponents of the conceptually based approach to CS educa
tion assert that a system of thinking underlies computing, and students need to be able to use this way 
of thinking to read and write in the language of computers (Román-González, Perez-González, & 
Jimenez-Fernandez, 2017). The construct computational thinking (CT), coined by Wing (2006), has 
been proposed to refer to mental processes that people use to represent problems as computational 
steps and algorithms (Aho, 2011). While a number of conceptually based curricula that draw on CT 
concepts have been developed and are now being taught in schools in the USA, the assessment of CT is 
still in its infancy. This is especially true for formative assessment (FA). To extend the potential of 
PreK-12 CS education to benefit all students, CS teachers need access to FA materials that are 
supported by evidence of technical quality and have a sound basis in learning theory (Pellegrino, 
Chudowsky, & Glaser, 2001).

This study was part of a larger project of development of FA tasks in computational thinking, and 
research on their use to advance the assessment for learning purpose of FA: activation of students’ 
learning through assessment of concepts and skills (Wiliam & Thompson, 2008). We developed the 
tasks according to a cognitive model of self-regulated learning (SRL). SRL is a goal-directed process 
that consists of analyzing tasks; deploying strategies; monitoring progress; seeking resources when 
needed; and adjusting tactics, if necessary, to generate a solution. SRL was an appropriate model for 
FA design because of emerging theory linking SRL to FA (Andrade & Brookhart, 2016; Chen & 
Bonner, 2020). With SRL as a design framework, we sought to leverage learning benefits demonstrated 
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both for FA (Kingston & Nash, 2011) and SRL (Chen & Cleary, 2009; DiGiacomo & Chen, 2016), to 
the end of boosting their combined potential to help students learn.

Because the design model for FA tasks in this study involved two complex concepts, SRL and CT, 
evaluation of task quality in terms of constructs was paramount. We therefore used think alouds as our 
primary approach to validation. Since the mid-twentieth century, cognitive psychologists and theorists 
of educational measurement have recommended that test design and interpretation be informed by 
study of the substantive processes at work in test taking as they relate to the constructs to be measured, 
using methods such as think alouds (Cronbach, 1971; Leighton, 2004; Messick, 1989).

In the present paper, we review essential components of FA, the CT construct, and theory of SRL. 
We briefly recount our design process for FA tasks, then describe our methods and present results of 
a study that used think alouds to examine student cognitive processes during performance on the FA 
tasks. This work presents information gleaned about the nature of the thinking processes demon
strated by students as they worked through FA tasks, and the alignment of those processes with the 
theoretical constructs of computational thinking and self-regulated learning theory. It holds implica
tions for intentional FA task design that leverages overlapping processes among FA, SRL, and CT to 
achieve synergistic impacts on learning.

1. Literature Review

Multiple initiatives have been put forth to address the workforce need for computer scientists in the 
USA. In 2016 former President Obama promoted the expansion of CS PreK-12 education in the USA 
by releasing massive federal funding to states and school districts for CS education, and earmarking 
National Science Foundation funding for CS education. A consortium of organizations including the 
Computer Science Teachers Association (CSTA), Code.org, and the Association for Computing 
Machinery followed suit by producing a K-12 Computer Science Framework as a foundation for states, 
districts, and organizations in the USA to generate CS K-12 standards. Shortly thereafter, the CSTA 
published CSTA K-12 Computer Science Standards, which drew from concepts in the computational 
thinking (CT) literature to articulate learning objectives for CS curriculum and instruction at the K–12 
level (Computer Science Teacher Association (CSTA), 2017). Along with these initiatives, PreK-12 CS 
course packages, applications, and modules were created, and disseminated rapidly. In secondary 
schools, several entirely new curricula for upper middle and secondary school stand-alone CS courses 
that emphasize CT were developed. School systems rose to the call for CS education by providing 
professional development for teachers. In New York City (NYC) alone, 1,900 teachers across 800 
schools were trained in CS between 2016 and 2019 (New York City Department of Education, 2019).

Accompanying the spread of secondary school curricula, new summative assessments for CS 
courses were developed. Prior to the last decade, the only nationally distributed secondary school 
examination in CS in the USA was the Advanced Placement: CS Application (AP:CSA) examination, 
which primarily covers coding in Java script and has been in existence in some form since 1984. In the 
last decades, additional summative assessment linked to curricula that emphasize CT have been 
developed. Beginning in 2012, SRI International developed and has since disseminated four end-of- 
unit tests and a final examination for the early high school course Exploring Computer Science. In 
2017, the College Board also began to offer an examination for the conceptually grounded approach to 
CS, the Advanced Placement Computer Science Principles test (AP:CSP). However, the development 
of formative assessment (FA) in CS has lagged behind the development of standards, curriculum, and 
tests.

1.1. Formative Assessment and Computer Science Education

Classroom-based FA, or assessment for learning, is assessment that generates information for the 
purpose of feedback and modifications to teaching and learning (Black & Wiliam, 1998). According to 
Bennett (2011), any task designed specifically to provide information to guide learning can be considered 
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FA. Other researchers take a process view: FA is a series of decisions and interactions between teachers 
and learners that motivate and direct learning (e.g., Shepard, Penuel, & Pellegrino, 2018). Some 
conceptualizations of FA include the premise that students should be active participants in the assess
ment process (Broadfoot et al., 2002; Wiliam & Thompson, 2008). Students can use FA information to 
activate and self-direct their own learning, thereby promoting the purpose of assessment for learning.

Resources for FA in CS at the secondary school level are scarce. There are a few published 
instruments, but these have largely been developed for specific programming environments and are 
targeted at elementary or middle-school students (e.g., Moreno-León & Robles, 2015; Werner, 
Denner, Campe, & Kawamoto, 2012). Few of these published sources provide information about 
how these instruments can be used for instructional decision-making within classrooms, and infor
mation on their technical quality is incomplete. Only recently has quality in classroom assessment 
become an active area of research in CS education (Grover et al., 2017; Román-González, Moreno- 
León, & Robles, 2017). Curricula associated with courses such as AP:CSP (e.g., University of California 
at Berkeley’s Beauty and Joy of Computing, Code.org’s CS Principles) contain tools like self-checking 
quizzes, scoring rubrics for projects, and questions embedded in the programming environment. 
However, these curriculum-based materials lack documentation about task quality. In practice, 
teachers’ FA methods in CS classrooms in the USA range broadly, from questioning individual 
students, to observation, to classroom polling (Yadav et al., 2015). It is evident that CS education in 
the USA lacks practical tools for high-quality FA at the secondary school level, particularly for 
assessment of the complex cognitive construct of computational thinking (CT).

1.2. Computational Thinking

Computational thinking (CT), described as a “universally applicable attitude and skill set” (Wing, 
2006, p. 33), is the key construct associated with most contemporary conceptually-based approaches to 
PreK-12 CS education. Experts have suggested many definitions and ways of operationalizing CT. 
Variability in their definitions suggests that the CT construct may be called emergent; the boundaries 
that demarcate what is and is not computational thinking are not fully agreed upon. Aho (2011) 
provides a useful general definition that articulates the distinctly computational nature of the con
struct: “the thought processes involved in formulating problems so their solutions can be represented 
as computational steps and algorithms” (p. 832).

Shute, Sun, and Asbell-Clarke (2017) synthesized the CT literature and identified core facets of 
computational thinking: abstraction, decomposition, algorithms, debugging, iteration, and generalization. 
Computational thinkers demonstrate abstraction when they identify structural patterns beneath the 
surface features of a problem that can be used or combined to form a solution. Computational thinkers 
use decomposition when they break a complex problem into manageable steps, modularize its elements, 
or use top-down design. Computational thinkers use algorithms when they apply logical statements such 
as loops, conditionals, and functions to solve problems. Computational thinkers use debugging proce
dures such as testing to detect and resolve errors. They use iteration when they repeat the same or similar 
elements over multiple trials, with or without variations and modifications, to reach a solution. They 
practice generalization when they reuse or remix elements of successful strategies to solve problems of 
similar underlying structures (Brennan & Resnick, 2012; Grover & Pea, 2013; Shute et al., 2017). Brennan 
and Resnick (2012) usefully organize the CT construct into two areas: concepts and practices. CT concepts 
consist mainly of the algorithmic aspects of CT that are learned in different programming environments. 
CT practices are those facets of CT that thinkers use across environments, and include abstraction 
(combined with decomposition); testing and debugging; iteration; and generalization. Brennan and 
Resnick (2012) also discuss CT perspectives, which are outside the scope of the present study.
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1.3. Self-Regulated Learning: A Theoretical Framework Compatible with FA and CT

The model for FA task design and validation of CT assessment in the present study was based on 
a social-cognitive approach to self-regulated learning (SRL) theory. This study drew on Zimmerman’s 
(2000) three-phase model of SRL. According to Zimmerman (2002), SRL can be understood as “the 
self-directive process by which learners transform their mental abilities into academic skills” (p. 65). 
Zimmerman’s model highlights the importance of task analysis, goal setting, control, monitoring, and 
self-evaluation as prominent self-regulatory processes for successful academic learning. The model 
involves cyclical and dynamic feedback processes that occur during three cyclical phases of self- 
regulation: forethought, performance, and self-reflection. Metacognitive monitoring and control are 
critical components of SRL. Learners exhibit metacognitive monitoring when they internalize infor
mation obtained through self-feedback and external sources to iteratively modify their strategies and 
actions (Zimmerman, 2013). They exhibit control when they initiate SRL processes, for instance, by 
critically analyzing a task, explicitly setting goals, or reflecting on teacher feedback to direct their 
behaviors toward achieving their goals (Zimmerman & Schunk, 2011).

The first phase of Zimmerman’s model, forethought, focuses on goal setting and task analyses, 
when self-regulated students analyze the task at hand, plan learning strategies, and think about how 
they can break down a complicated task into manageable sub-tasks. In the second phase of SRL, 
performance, learners actively engage with a task or problem to be solved. During this phase, learners 
monitor their progress and use various strategies. Students may generate self-feedback during this 
phase of the SRL cycle to check their understanding and modify strategies. Monitoring one’s learning 
process is considered desirable metacognitive functioning on the part of learners, and is exhibited with 
higher-performing students (Callan & Cleary, 2019). Monitoring learning progress may lead to help- 
seeking behavior or use of resources such as peers, teachers, and/or technology. The third phase of the 
model, reflection, centers on self-evaluation and adjustment to improve learning in the future. During 
this phase, students engage in evaluating their performance based on goals and standards. They may 
engage in attribution, which refers to what people believe to be the causes of their successes or failures, 
such as their ability, the amount of their effort, the difficulty of the task, and luck (Weiner, 2010). 
Students regularly make attributions to explain to themselves or others why they did poorly or well on 
tests, projects, and papers. Their perceived causes for the results influence their emotions and choices 
of subsequent actions.

Some learners purposefully initiate SRL processes to direct their behaviors, thinking, emotions, and 
environment to achieve desired goals (Zimmerman & Schunk, 2011). Empirical research has shown 
that self-regulated math students attain high performance (Chen & Cleary, 2009; DiGiacomo & Chen, 
2016). Sophisticated learners exhibit heightened metacognitive awareness and engage in iterative 
modification of their learning, incorporating information obtained both through self-feedback and 
external sources (Zimmerman, 2013). This continuous personal feedback mechanism is vital to any 
successful SRL process, as it signals to learners the potential usefulness of information acquired from 
one phase, so they can adjust their plans and behavior during the next phases in the learning sequence. 
Research has also shown that SRL can be learned (DiBenedetto & Zimmerman, 2010; Mason, 2004).

SRL theory is particularly relevant to the present study because of conceptual arguments that SRL 
substantially overlaps with FA processes and practices (Andrade & Brookhart, 2016; Chen & Bonner, 
2020), and that it can be a particularly useful approach for learning CT (Peters-Burton, Cleary, & 
Kitsantas, 2015). Paris and Paris (2001) perhaps first presented the connection between SRL processes 
and classroom assessment practices by examining trends and areas of research in SRL (e.g., literacy 
instruction, cognitive engagement, and self-assessment) that have direct applications for classroom 
instruction. Paris and Paris (2001) articulated the importance of student internalization of learning 
through active monitoring and controlling mechanisms, and through self-assessment that reinforces 
self-awareness of how and what was learned. Andrade and Brookhart (2016) pointed out that FA and 
SRL are both cyclical, and take a student-centered and process-oriented approach that affords learners 
opportunities to make multiple attempts to adjust their learning strategies to close gaps between what 
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they can do and what they want to achieve. FA and SRL also share the propelling mechanism of 
feedback during monitoring and reflection (Andrade and Brookhart, 2016). Peters-Burton et al. (2015) 
used the Zimmerman (2000) three-phase model to illustrate how students might learn and develop CT 
skills such as abstraction and pattern generalization with self-regulation. Conceptual overlaps among 
SRL, FA, and CT frameworks point to the possibility that formative tasks can be designed a) to 
combine assessment of CT with SRL prompts without interfering with CT-aligned thinking processes 
for test-takers, and b) take advantage of the synergies between SRL and FA to activate student 
thinking, to boost the impacts of learning associated with either SRL or FA alone (Cleary & Chen, 
2009; DiGiacomo & Chen, 2016; Kingston & Nash, 2011).

1.4. Construct-Based Arguments Using the Think-Aloud Approach

The issue of construct validity is central to any argument about the technical quality of an assessment 
task (Messick, 1989). Before consideration of whether formative task-based information can be used to 
achieve intended impacts on teacher or student decision-making, it is essential to establish that 
interpretations derived from the tasks elicit thinking processes aligned with their intended constructs, 
in this case, CT and SRL. Therefore, construct validation of interpretations about student CT and SRL 
is the focus of the present study. To deduce whether students’ cognitive processes in response to 
assessment tasks are consistent with constructs targeted for assessment, researchers often use think- 
aloud methods. Analysis of think alouds also “feeds back to knowledge of what it means to be an expert 
within the content domain” (Leighton, 2004, p. 8). The benefits of the think-aloud approach are at 
least twofold: think alouds can provide evidence of construct validity of test-based interpretations, and 
can lead to increased understanding of the psychological constructs underlying performance in 
a domain. Think alouds are appropriate for examining problem-solving processes at work in test 
performance, and confirming cognitive models (Leighton, 2017). Despite calls for new studies that 
incorporate response process evidence (Leighton, 2017; Zumbo & Hubley, 2017), relatively few 
validation studies devote substantial attention to the use of think alouds.

Cognitive process studies typically rely on examinees’ verbal reports of their thinking concurrently 
with task performance. Tasks appropriate for think-aloud studies usually involve moderately complex 
problem solving, rather than simple knowledge or basic application or known problem-solving rules, 
such as remembering learned content. The latter types of thinking may be automatic for learners and 
therefore not accessible during thinking aloud (Leighton, 2017). Contemporary studies using the 
think-aloud method in assessment validation have focused both on problem-solving tasks and 
metacognitive assessment, and include research on the PISA assessment of self-efficacy (Pepper, 
Hodgen, Lamesoo, Kõiv, & Tolboom, 2018), science design tasks for elementary school students 
(Kelley, Capobianco, & Kaluf, 2015), and collaborative problem solving in computing (Siddiq & 
Scherer, 2017).

Questions have been raised about the quality of information obtained from think-aloud research, 
due to participant reactivity (Russo, Johnson, & Stephens, 1989; Wilson, 1994). A validation method is 
reactive if the use of the method systematically changes the way in which examinees perform. 
Reactivity can affect performance level, speed, or type of mental process. After reviewing multiple 
experimental and quasi-experimental studies, Ericsson and Simon (1993) concluded that performance 
level was not affected for verbal reports of mental processes when subjects verbalized concurrently 
with task performance without introspection. Concurrent verbalization tends to take more time, but 
time is only a concern with speeded assessments.

Questions remain about the relationship between the types of mental processes derived from think- 
aloud studies, compared to the types of mental processes that would be at play in test performance 
without thinking aloud. Subjects may find it difficult to retrieve their thinking accurately while 
speaking because of competition for space in working memory, or because their attention is divided 
between verbalizing and problem solving (Leighton, 2017). However, Nisbett and Wilson (1977) 
recognized that verbal reports are accurate in some contexts, particularly when they are elicited 
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close in time to the application of the stimulus. They stated, “reports will be accurate when influential 
stimuli are (a) available and (b) plausible causes of the response, and when (c) few or no plausible but 
noninfluential factors are available” (p. 253). Recent research (Fox, Ericsson, & Best, 2011; Leighton, 
2017) tends to be less concerned with reactivity due to concurrent thinking aloud, in comparison to 
reactivity of other methods that are intended to reveal similar qualities of cognition. Leighton draws 
a distinction between cognitive labs, where the interview takes place after task completion, and 
concurrent think alouds. According to Leighton (2017), cognitive labs are more reactive than think 
alouds because participants respond to the prompts of the interviewer, rather than to the task itself.

The purpose of this study was to develop quality FA tasks that are theory-driven, and yield 
information that can be interpreted in terms of the targeted constructs. We elected to use the think- 
aloud approach to validation because think alouds probe into the cognitive processing of examinees 
during testing. This was highly appropriate for the type of task we developed, which involved CT 
problem solving and opportunities for students to plan, monitor, and reflect. The following research 
questions guided our study: 1) Do student think alouds provide evidence that computing problems in 
the FA task elicit cognitive processes consistent with conceptual definitions of CT? 2) Do student think 
alouds provide evidence that SRL prompts embedded in the FA task elicit cognitive processes 
consistent with SRL theory? 3) How do students at different levels of mastery vary in use of CT and 
SRL? 4) Do think alouds provide evidence that elucidates definitions of the CT construct or SRL 
processes?

2. Methods

2.1. Preliminary Work: Development and Content Validation

Prior to validating the FA tasks in terms of the cognitive processes they elicited, we used content 
validation approaches iteratively, throughout the design process. Formal think alouds were conducted 
and analyzed only when there was evidence that our task prototype appropriately represented our 
ideas about CT and SRL, while maintaining desirable qualities for classroom assessment such as 
reading levels suitable for diverse learners and feasibility of administration. Following Downing’s 
(2006) steps for test development, the first and second authors set the overall plan for the work, 
including the constructs to be measured, purpose and desired interpretations of assessment, a model 
of task format, and approaches to validation. We then formed a design team that included a computer 
scientist, professional developer in CS education, two educational psychologists with specializations in 
SRL and assessment, and nine experienced CS teachers. These individuals, along with the theoretical 
and empirical literature, were our essential sources of content validity evidence. Together, the design 
team constructed the operational definitions of CT and SRL presented above, using not only the 
scholarly literature, but with reference to professional knowledge and CS curricula.

We proceeded to the development of stimuli or tasks. This was an iterative process as the team tried 
out various ways to concretize the operational definitions into actual tasks, and analyzed how well 
those tasks represented the constructs. During task development, the team members debated the 
alignment between the operational definitions of CT and SRL, and their representation in task content. 
After each task draft, one or more CS teachers would perform an informal trial, which typically 
included asking one or more students to provide feedback on their perceptions of task alignment to 
instruction, difficulty, and clarity. Following such a trial, the team debriefed using student work 
samples and feedback provided by students. This approach of using feedback from students as part 
of validation is appropriate for classroom assessment in that it helps assessment developers bear 
instructional validity in mind as well as content (Bonner, 2013). We then proceeded to use think 
alouds to understand the substantive cognitive and metacognitive processes that students used in 
response to the FA tasks, and compare those processes to the theoretical processes in CT and SRL 
which we intended to elicit for assessment (Cronbach, 1971; Leighton, 2004; Messick, 1989).
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2.2. Study Context and Participants

Data collection for this study took place in three nonselective public schools and one charter school in 
NYC. The schools served primarily low-income students. All participants were enrolled in a CS: 
Principles course that was taught by an experienced CS teacher. The teachers ranged in teaching 
experience between 6–10 years, with three or more years of teaching CS. The CS: Principles course is 
an Advanced Placement (AP) course focused on computing in relation to societal needs, and the 
development of computational thinking skills. Teachers select the specific programming languages 
their students will use. The curricular framework for AP:CSP courses emphasizes abstraction, crea
tivity in computing, problem analysis, communication, and collaboration. The framework explicitly 
addresses the following CT practices: abstraction, sequencing, iteration, testing and debugging. The 
course culminates in an AP test.

Eleven students participated in think alouds. All students responded to the same SRL prompts for 
forethought and reflection (described below), but not all students responded to the same CT problem 
in the performance phase, due to differences in teacher pacing through the CSP curricular framework. 
The four students at the charter school responded to a task henceforth referred to as the Fish Game; 
the other seven students responded to a task henceforth referred to as the Clicker Game. The two tasks 
were exactly alike in the SRL forethought and reflection prompts. They were alike in calling for the 
same CT algorithmic concepts, but differed in difficulty; for instance, where the Clicker Game required 
students to define and call only one function, the Fish Game required two functions. The Fish Game 
task work was treated as pilot material for performance scoring and coding of think alouds; only 
Clicker Game data, which were analyzed after protocols had been developed, are reported here.

2.3. Instruments

The FA task consists of three parts: a series of forethought questions, a CT problem to solve, and 
a series of reflection questions. These parts align with the phases of SRL. The forethought and 
reflection questions are adapted from Cleary, Callan, Malatesta, and Adams (2015), Cleary and 
Chen (2009), and Cleary and Zimmerman (2004) studies.

2.3.1. Forethought Questions
The task begins when students preview the CT problem they will attempt to solve and respond to 10 
items intended to elicit forethought processes such as self-efficacy, task analysis, and pre-planning 
strategies. The self-efficacy question asks, “How confident are you that you can complete this task?” on 
a scale ranging from 1 (completely unconfident) to 6 (completely confident). The remaining items 
elicit students’ task analysis processes and strategic planning through open-ended questions.

2.3.2. Computational Thinking Performance Problem
Students next proceed to the computer interface to attempt to solve the CT problem: the Fish Game or 
the Clicker Game. Both problems were adapted from learning units in the AP:CSP curriculum CS 
Principles (Code.org). The problems draw on the following CT algorithmic concepts: operators, 
events, sequencing, data, functions and conditionals. These concepts align with those listed by 
Brennan and Resnick (2012), except in omitting loops and adding functions.

2.3.3. Reflection Questions
The final part of the task consists of 12 items to elicit participants’ self-reflection processes such as 
satisfaction of their own performance, reflection on CT understanding and strategy use, and adjust
ment. The satisfaction question asks, “How satisfied are you with the final product of your work on the 
computing task?” on a scale ranging from 1 (very unsatisfied) to 6 (very satisfied). The remaining items 
elicit students’ reflection on problem-solving strategies, and adaptive inferences.
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2.4. Think-Aloud Procedures

The think alouds were conducted concurrently with task completion under conditions that mini
mized extraneous factors to the extent possible within the school setting (i.e., in a secluded space). 
Each think-aloud participant sat with one of the authors or a trained research assistant. The think 
alouds started with standardized instructions, describing the nature and purpose of the interview. 
When a student previewed the task in the forethought phase, the researcher encouraged the 
students to begin to verbalize. This provided a warm-up opportunity, and allowed researchers to 
assess, for instance, whether the student’s level of vocalization was appropriate, and whether it was 
necessary to explain again the nature of the research. Participants were audio-recorded as they 
responded to the CS task. Researchers only spoke in order to remind students to continue 
verbalization, if they lapsed into silence. Screen captures and artifacts of code were collected at 
the end of task completion. Such methods align with research-based recommendations, and have 
been shown to be useful to maximize validity of verbal reports in problems of moderate cognitive 
complexity (Ericsson & Simon, 1993; Russo et al., 1989; Someren, Barnard, & Sandberg, 1994; 
Taylor & Dionne, 2000).

2.5. Analytic Methods

The team developed separate methods for scoring artifacts of student code and for coding think-aloud 
data. Four members of the design team (the first author, third, and fourth authors, and another CS 
teacher) began the data analysis by constructing a scoring rubric for quantification of the artifacts of 
code. Prior to looking at any data, we drafted a rubric with three points (0 through 2) per dimension 
and the six types of CT algorithmic concepts: conditional use, data, operators, user-defined functions, 
events, and sequencing. The team members independently piloted scoring of students’ coding artifacts 
from Fish Game work. After piloting the rubric, the group discussed adding an extra level of quality to 
resolve rater disagreement at the high end of the scale. We consulted a computer scientist, who 
supported the 4-point scale, and additionally suggested a seventh dimension for holistic appraisal of 
overall performance. We independently re-scored the same sample of Fish Game performance 
artifacts using the modified rubric, with the result of improved agreement among raters. The final 
rubric assessed seven areas of CT concepts with four levels of quality each, scored 0–3, resulting in 21 
available points.

Our next step was to score the seven Clicker Game artifacts of computing code, and assess interrater 
reliability. Three raters independently scored each artifact. Over the seven criteria on which the 
artifacts were rated, each on a scale of 0 to 3 points, the percent of agreement within one point for 
any two pairs of raters ranged from 90.5% to 100%. The percent of absolute agreement ranged from 
62% to 76%. The correlation between total scores (summed scores on all seven dimensions) awarded 
by any two pairs of raters ranged from .89 to .96.

To analyze the think-aloud data, we drafted a protocol with a priori codes and definitions based on 
the literature on SRL and CT. The a priori code list included four CT practices (testing and debugging, 
iteration, abstraction, generalization). It included multiple subprocesses in each phase of the SRL 
model. In the forethought phase, we coded for six subprocesses; in the performance phase, five 
subprocesses; in the reflection phase, four subprocesses. We tried out the coding protocol using 
multiple Fish Game think-aloud transcripts. The team began with each individual member high
lighting what they conceived to be evidence of self-regulation or a computational thinking practice on 
the physical transcripts, with reference to the a priori definitions. A discussion of the highlighted areas 
began the norming process. To address any confusion among the raters about definitions of CT or 
SRL, we consulted experts in CS and SRL. Table 1 lists the targeted CT practices and SRL subprocesses, 
with coding guidelines. During norming, the team also added exemplary quotes to the coding 
protocol.
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After development of and practice with the think-aloud coding protocol, we proceeded to code the 
seven Clicker Game tasks. The first author assigned transcripts to two raters per transcript, who 
worked independently to code the think alouds according to the annotated code definitions. After two 
raters had coded each transcript, the team met to reach consensus on the analysis in areas one might 
have missed or other discrepancies in coding.

3. Results

Scores on the artifacts of computer code from the Clicker Game task (n = 7) were calculated by 
summing scores over the seven CT concepts, averaging across raters, and rounding to the nearest 
whole number. The observed scores ranged from 4 to 21, out of 21 possible points. The average score 
was 15 (SD = 5), or 72%. The average length of processing time was 41 minutes (SD = 12), which is 
a long time for a classroom assessment. Thinking aloud tends to lengthen performance time (Russo 
et al., 1989). Under regular classroom conditions, the FA task could likely be completed within a single 
class session. The average length of written lines in a transcript was 134 (SD = 51).

To communicate the evidence from the think alouds, we report the results of our analysis 
graphically for four students (Figures 1 and 2). We select only four students for simplicity of 
presentation. Of the nonselected three, one performed very poorly and their cognitive processes 
consisted largely of seeking help by using resources indiscriminately, i.e., scrolling through all lessons 
offered during the school year rather than ones directed at concepts relevant to the Clicker Game. This 
student also engaged in negative self-attributions frequently during performance and reflection. 

Figure 1. Relative proportions of verbalizing by students in three phases of FA task.

Figure 2. Detail of cognitive and metacognitive processes at performance phase on FA task.
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Another student’s results are not displayed because of strong similarities with other profiles (Profiles 
A and C), both in performance score and use of CT and SRL. The last student’s results are not 
displayed due to general lack of SRL; the student scored 90% and either did not use or lacked cognitive 
access to their self-regulative processes.

To construct the profiles, we used lines of transcript as a pseudo-measure for amount of cognitive 
processing (rather than processing speed). We then created linear profiles of student thinking during 
task completion. The lengths of the bars were standardized to help the reader avoid focusing on time 
and verbosity, which are not the main interest of this study; these are, however, displayed next to each 
score. For each individual profile, the width of a segment on the bar represents the relative amount of 
processing of a given type process, in the context of the amount of other types of processes used by the 
same student.

3.1. Research Question 1: Do Student Think-alouds Provide Evidence that Computing Problems 
in the FA Task Elicit Cognitive Processes Consistent with Conceptual Definitions of CT?

Figure 2 depicts the same illustrative cases as previously shown. We found that in the performance 
phase of the FA task, student cognitive processes were related to some aspects of CT, but not all were 
represented equally extensively. Students used testing and debugging and iterations frequently. They 
were found to use abstraction only on three occasions, two of which were found in Profile B, the 
highest-performing student. The following statement gives an example of this student’s ability to 
recognize patterns underlying the problem’s surface features: “Because with almost every game that 
I’ve made on Code Studio [the programming environment] pretty much always have a variable that 
increased and decreased accordingly, depending on an action.” A different type of abstraction was 
identified when a student, not depicted here, said, “I already see the code in my head.” Both these 
statements occurred during forethought. CT generalization (reusing and remixing) was observed with 
the lowest frequency, only twice, both times during the performance phase. The student in Profile 
C showed reusing and remixing by stating, “Where I can find something similar to see what I code. . . . 
Oh actually, I can use my app that I created.” Another student, not depicted here, also had the idea of 
reusing and remixing: “What did I name this before? And how I could compare it to be like a replica of 
what I’m trying to do right now.”

3.2. Research Question 2: Do Student Think-alouds Provide Evidence that SRL Prompts 
Embedded in the FA Task Elicit Cognitive Processes Consistent with SRL Theory?

Analysis of the bars in Figure 1, read from left to right, shows that students engaged in substantial 
amounts of forethought and reflection. They also engaged in processes associated with forethought 
during the performance phase, pointed out in the figure with arrows. Looking within the fore
thought phase at specific codes, we found that most of the SRL prompts elicited thinking that 
corresponded with theoretical descriptions of forethought subprocesses, including task analysis, 
estimation of task self-efficacy, and strategic planning. We found, however, that several students 
had difficulty responding to items intended to call upon task analysis, and did not use the 
forethought phase to focus on specific concepts on which they were being formatively assessment 
(e.g., loops, conditionals). For instance, in response to a forethought item prompt intended to 
prompt thinking about CT concepts, one student stated they would “try to see every aspect of it, be 
open minded.” However, this was the lowest-scoring student; it is possible that they understood the 
question but had at their mental disposal few or no CT concepts with which to respond. While 
students spent different amounts of processing time in forethought, no students avoided fore
thought or were miscued by the directions to begin problem solving when expected to be analyzing 
or planning. One student engaged in abstraction (a CT practice) before completing the forethought 
items. Very few task-irrelevant mental processes were found in the transcripts; in a few cases 
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students uttered phrases indicating distraction by noise, or needed to do something like find 
a pencil.

During the performance phase, there was more of a mixture and melding of SRL and CT processes, 
which is discussed below as it relates to the fourth research question. With regard to SRL alone, in the 
performance phase students used self-monitoring extensively, and the majority did some help seeking 
by referring to online lessons and projects completed in their class. Six of the seven students returned 
to the forethought phase in the SRL model for task re-analysis and additional strategizing, as shown 
with arrows in Profiles A, C, and D, Figure 1.

Most students spent about 10% to 15% of their time in the reflection phase (Figure 1), although one 
mid-performing student and the lowest-scoring student had very brief reflections. The reflection phase 
was similar to forethought in that students almost entirely focused on SRL, as task items prompted 
them to do. No trends appeared in ratings of self-satisfaction. Some students expressed positive self- 
satisfaction, and others were self-critical; these judgments seemed to be unrelated to performance.

Some students made plans to adapt their learning during reflection, but others among the seven 
declared they would not change or adapt any of the strategies they used in the future, even though they 
were not fully satisfied with their performance. A student with about average performance said, “in the 
future, I would approach it the same way, just because I would understand it like that, and I wouldn’t 
do anything differently.” Three students made attributions for their performance, all involving 
practice or the lack thereof. The highest-performing student attributed understanding to effort: 
“practice doing them over and over again though, so that I would understand a little bit more and 
see the pattern.” When students attribute their success or failure to internal, controllable, and unstable 
factors such as effort, they are more likely to be motivated to work hard to improve future performance 
(Weiner, 2010). The statement quoted above not only indicates a positively motivating attribution, 
but, apparently, intrinsic motivation to set a goal of CT abstraction (pattern recognition).

3.3. Research Question 3: How Do Students at Different Levels of Mastery Vary in Uses of CT 
and SRL?

We compared the students’ scores for the artifacts of code they had produced during the FA task with 
their cognitive and metacognitive processes shown in the think alouds. The artifacts of code had been 
scored for the algorithmic conceptual component of CT. Profiles B and D varied both in scores (98% 
versus 57%), and the processes displayed in their think alouds. They varied in the relative amount of 
cognitive processing they used in different phases of SRL, particularly in their forethought and 
performance phases (Figure 1). Relative to their total time on the FA task, the student in Profile B, 
who scored 98% on the task, spent the most time in forethought. This student devoted approximately 
half of their cognitive time to task analysis and planning, and took relatively little time for actual 
performance. Profile D, on the other hand, who scored 57%, spent proportionately more time in 
performance than in the other two phases. This student had to stop working on a solution due to time 
constraints in their classroom, as shown with a black bar on the graphic near the right-hand end. Had 
they not been forced to stop, their performance phase would have been longer.

Figure 2 shows each student’s mental processes during the performance phase. When Profile 
B began their solution attempt on the Clicker Game, they set to work employing CT concepts 
immediately, using the CT practices of performing strategies iteratively with minor variations, to 
build in increments toward the solution. They never sought help in any form. Rather than using the 
trial and error approach that required frequent testing and debugging, the student worked iteratively 
toward a partial solution, then performed purposeful testing to monitor their progress. At the end of 
performance, they self-evaluated by comparing their solution to the task goals: “just double checking 
the work.”

Profile D shows a very different approach to problem solving in the performance phase, and one 
that sets them apart from all six other students, including the student with the lowest score. Starting 
from the point where the student entered the performance phase of the task, 20 of 74 lines from their 
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transcript (27%) were coded as help seeking, using resources such as prior lessons or completed work 
of their own. Although five out of seven students used external resources, they did so in briefer bursts. 
Profile D used resources heavily up until nearly the halfway point in their processing time, and had 
returned to seeking help when their time ran out.

The two remaining profiles in Figure 2, A and C, represent the thinking of students who scored in 
the middle range on the FA task. The students differed in some respects. Profile A went to resources 
frequently, while Profile C only referred to resources once, and then on purpose to reuse and remix. 
However, both students, as well as a third student not depicted here, demonstrated a similar cognitive 
pattern during their performance phase. First, they used trial and error often and at length. The raters 
classified such trial and error processes both as monitoring (SRL) and testing and debugging (CT). 
Then, the students at some point returned to task analysis and/or planning, processes characteristic of 
forethought, engaging in a cognitive and metacognitive back-and-forth wherein they re-considered 
task parameters, tried out strategies, obtained feedback from trials, and debugged. In both cases, 
though to different extents, motivation and return to task analysis preceded the students’ ability to 
make incremental gains through CT iteration. Figure 2 highlights such sequences of cognitive and 
metacognitive processes with dashed-line boxes. Reading Profile A from left to right, the student failed 
to make progress through iterative problem solving until nearly three-quarters of the way through 
their performance phase. However, after several returns for re-planning and reexamination of the task, 
the student was eventually able generate solutions to problem features and use them iteratively to task 
completion. Both Profile A and C also used self-motivation, for example: “Every time I come across 
a stopping point, I always find a way to do it.”

Profile A, C, as well as the profile of a third mid-performing student not depicted here used 
unsophisticated trial-and-error approaches to problem solving with frequent monitoring through 
testing and debugging, followed by reapplication of SRL forethought processes to achieve incremental 
gains. As rated on the scoring rubric for their artifact of code, all three of the students met basic 
specifications in their Clicker Game solution. However, none used functions, a targeted CT concept 
which would have made their solutions more efficient. Thus, the performance scores and evidence 
from the think alouds show agreement: both sources suggest that these students had in common 
a working but inefficient approach to computing. This congruence between performance evidence on 
the CT task and evidence of student mental processes supports construct validity; variance in 
performance scores could be clearly associated with variability in cognitive processes.

3.4. Research Question 4: Do Think Alouds Provide Evidence that Elucidates Definitions of the 
CT Construct or SRL Processes?

The analysis of the think alouds showed that some CT practices were highly similar to subprocesses 
articulated in the Zimmerman (2000) SRL model. This was particularly true in the case of testing and 
debugging (CT) and metacognitive monitoring (SRL). In CT, testing and debugging has been defined 
as a practice to “detect and identify errors, and then fix the errors, when a solution does not work as it 
should” (Shute et al., 2017, p. 12). In SRL, Zimmerman (2013) describes metacognitive monitoring as 
“informal mental tracking of one’s performance processes and outcomes” (p. 137); in a computing 
environment, this would occur when a student tracked their outcome by testing and mentally 
reconsidered their process to debug. Testing and debugging was exhibited very frequently in the 
transcripts during the performance phase, and was almost always interpreted by the raters as 
concurrent with metacognitive modeling. Figure 2 therefore uses a single code (Monitoring and 
Testing/Debugging, M/T) to represent this process that was shared by CT and SRL. The very few 
instances when metacognitive monitoring without testing and debugging was identified are repre
sented in Figure 2 by the letters “Meta” over the corresponding segment of transcript. As an instance of 
this type of metacognitive monitoring, the student in Profile A stated, “I’ll come back to this later, 
I don’t want to spend too much time on one thing.”
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In analyzing the transcripts, we also found that the definition we began with for SRL help seeking 
made it hard to differentiate that process from CT generalization (reusing and remixing) – both 
involved accessing an external resource. However, raters were able to clarify the distinction between 
SRL help seeking and CT generalization fairly readily through close examination of the transcripts and 
reference to the CT literature. We added the specification to the coding protocol that accessing 
a resource in generalization involved using the resource to select elements of code that the user 
knew to contain general structural features that would help solve a specific problem (Table 1). Help 
seeking was interpreted as a more exploratory process. Thus, examination of the data provided a more 
refined understanding of contrast between generalization and SRL help seeking, at least as it mani
fested itself in student thinking during performance of this FA task.

4. Discussion

This study revealed that tasks designed to assess computational thinking with embedded self-regulated 
learning prompts elicited cognitive processes aligned with theoretical definitions of CT and SRL. 
Among CT practices, testing and debugging and iteration predominated. More limited abstraction 
and generalization were found. Among the SRL subprocesses, students engaged most extensively in 
task analysis (or re-analysis), monitoring, and help seeking. Some students made attributions and 
adaptive inferences. Neither self-recording nor self-instruction was found. The few observed processes 
not directly related to CT or SRL were primarily motivational or otherwise metacognitive, and not 
distracting or irrelevant to performance. These findings provided evidence of the construct validity of 
interpretations derived from the tasks.

Methodologically, we found little evidence of reactivity, although the task took longer to complete 
than anticipated. The combination of think-alouds with artifacts of code yielded sufficient information 
for analysis of the relationship between processes and performance. The graphical display of results 
proved useful for depicting and interpreting not only type of cognitive process, but duration and 
sequence. Stacking graphics across different profiles provided a holistic comparison of how different 
students engaged in different processes when solving the task.

We compared cognitive and metacognitive processes from the think alouds with rubric-based 
scores for the artifacts of code the students produced during the FA task. Cognitive and metacognitive 
processes were used quite differently by students at different levels of mastery. The cognitive processes 
associated most clearly with high performance were iteration (CT), and task analysis and planning 
(SRL). When the highest-performing student entered the performance phase of the FA task, they used 
SRL practices very little, except for a few strategic instances of testing and debugging (also coded as 
monitoring). Instead, the student engaged mostly in the cognitive process of iterating CT algorithmic 
concepts in ways that built incrementally to a successful solution. This result converged with empirical 
findings of Zimmerman and Kitsantas (1999), who found that when students approached mastery in 
performance, their attention shifted from processes to outcome goals. Only the higher-performing 
students showed CT generalization or abstraction.

Quantity, placement in sequence, and quality of task analysis all appeared to differentiate 
students at different levels of mastery. The highest-performing student spent a much greater 
proportion of their cognitive processing time in task analysis than did their lower-performing 
peers. All of their task analysis time occurred in the forethought phase. In terms of quality, we 
found that the lowest-performing students had difficulty even listing CT algorithmic concepts they 
had learned, which they might use in their solution. Students at moderate performance levels were 
able to list several concepts they might use. At the upper end of the performance spectrum, we 
found students whose task analysis included recognition of structural patterns associated with CT 
abstraction.

The think-aloud data shed light on definitional questions about the CT construct. CT testing and 
debugging was often indistinguishable to our raters from SRL monitoring. Students exhibited both as 
repeated goal-directed thinking to check a solution or steps in a solution during performance. This 

40 S. BONNER ET AL.



suggests that testing and debugging may be little different from self-monitoring during problem 
solving, applied to computing environments. The specifically computational nature of testing and 
debugging requires elaboration. There is continued debate in the CS-education field as to whether CT 
is a construct in its own right, or a part of algorithmic thinking that is common to multiple domains, 
such as mathematics (Shute et al., 2017). The argument against CT as “universally applicable” (Wing, 
2006) would be supported if further research indicates that testing and debugging are not CT-specific 
ways of thinking, but domain-specific applications of monitoring.

Regarding other SRL processes, we found that the extent, type, and placement of help seeking were 
indicative of student learning needs. The students who resorted to external resources early and for the 
longest time (Student D and another student, not displayed) both scored at the low end on the 
performance rubric. These students spent time consulting resources they selected apparently at 
random. Students who were more proficient used monitoring to identify their task-specific needs; 
they resorted to external resources only if multiple repetitions of trial and error had not helped them 
find a solution. When they sought help, they purposefully searched for relevant online lessons or their 
own prior coding. This empirical observation is consistent with prior research on differentiated use of 
help and resources among students with varying competence and sophistication in SRL (Karabenick & 
Gonida, 2018).

We confirmed other empirical findings that students could compensate for a “weak start” by 
returning to the SRL forethought processes of repeated task analysis and strategic planning 
(Karabenick & Gonida, 2018). The return to task analysis and planning after entry into the perfor
mance phase provides a cautionary reminder that Zimmerman’s (2000) phase model of SRL should 
not be oversimplified to the idea that SRL is simply a series of processes. As Usher and Schunk (2018) 
state, SRL subprocesses can occur at any phase, given the complexity of human functioning. This may 
have been particularly true with problems such those in the FA task we studied, which was moderately 
challenging.

4.1. Limitations

We recognize several limitations to our work. The first is the sample size, which prohibits quantitative 
analyses and limits generalizability. The amount of time required to analyze think aloud protocols 
makes it challenging to conduct large-scale research. We are therefore seeking ways to automate at 
least some aspects of coding through natural-language processing (Magliano & Graesser, 2012). We 
also bear in mind that there are multiple operational definitions of CT and multiple theories of SRL. In 
our analyses we applied particular models of CT (Brennan & Resnick, 2012; Shute et al., 2017) and SRL 
(Zimmerman, 2000) that informed our design and analyses. Application of different models of either 
CT or SRL to our task design and analysis likely would have yielded different results. A third limitation 
is that, like other research-based instruments to measure CT (Grover et al., 2015; Moreno-León & 
Robles, 2015; Werner et al., 2012), our task was embedded in a specific programming environment 
(Code Studio). Our continuing work on task development involves offline performance measures that 
are appropriate to multiple courses addressing the same CT concepts and practices.

4.2. Implications for Further Research and Development

Further research is needed to investigate cognitive processes of more expert CT learners, to determine 
whether the limited use of CT practices such as abstraction and generalization found in this study is 
associated primarily with students at a novice level. Further research is also warranted to micro- 
analyze the subprocess of help seeking in SRL. The types of resources and the way students used them 
varied greatly, and in one case use of resources was, in our estimation, an instance of CT reusing and 
remixing, rather than SRL help seeking. Future research should therefore examine help seeking in 
depth.
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Regarding implications for further development of these tasks and SRL-based FA tasks that involve 
similar types of problem solving, we recommend work on feasible ways for teachers to collect physical 
traces of problem-solving practices and SRL cognitive and metacognitive processes. In this study, 
frequent CT testing and debugging and SRL help seeking seemed to be associated with relatively poor 
CT performance. Therefore, we have been working to develop ways for students to self-record CT 
practices such as testing and debugging through using comment features in code. This would allow 
teachers to better monitor the use of help seeking and make instructional adjustments accordingly. 
Also, assessment developers should design classroom-friendly ways to measure subprocesses such as 
task analysis, so that teachers and students can track progress in SRL over time. Incorporation of 
directions that allow students to select the resources they wish to use, as suggested by Karabenick and 
Gonida (2018), might also help students and teachers track changes in need for academic scaffolding 
among their students.

5. Conclusion

The overall design approach for the formative assessment tasks examined in this study rested on three 
assumptions, for each of which we needed to provide warrants through validation. First, we needed to 
provide evidence for the claim that teachers could interpret student performance on the formative 
assessment task in terms of computational thinking. Second, we needed to provide evidence that task 
prompts designed to elicit self-regulated learning did so. Without engagement and practice in self- 
regulated learning, students are unlikely to reap its learning benefits. The results of this study 
demonstrated warrants for these two assumptions. Evidence from think alouds showed that perfor
mance on the task involved computational and self-regulated learning cognitive and metacognitive 
processes, with no significant irrelevant sources of variance.

A third assumption underlies this entire design approach to formative assessment of computational 
thinking: overlapping mechanisms between formative assessment and self-regulated learning can be 
leveraged to boost the potential of either one, taken separately, to support learning in computational 
thinking. Whether classroom use of a formative assessment task such as the one described in this study 
can result in student learning gains can only be revealed through experimental or quasi-experimental 
methods. Researchers in assessment who support the idea that formative assessment activates and 
thereby promotes student learning should be prepared to use such rigorous methods to argue their 
claims.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Sarah M. Bonner, Educational Foundations and Counseling Programs, Hunter College, City University of New York, 
New York, USA.

Peggy P. Chen, Educational Foundations and Counseling Programs, Hunter College, City University of New York, New 
York, USA.

Kristi E. Jones, New York City Department of Education, New York, USA.

Brandon A. Milonovich, Ardley Union Free School District, Ardsley, USA.

References

Aho, A. V. (2011). Computation and computational thinking. Computer Journal, 55(7), 832–835. doi:10.1093/comjnl/ 
bxs074

42 S. BONNER ET AL.

https://doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1093/comjnl/bxs074


Andrade, H., & Brookhart, S. M. (2016). The role of classroom assessment in supporting self-regulated learning. In 
D. Laveault & L. Allal (Eds.), Assessment for learning: Meeting the challenge of implementation (pp. 293–309). 
Springer, Cham: Springer International Publishing.

Bennett, R. E. (2011). Formative assessment: A critical review. Assessment in Education: Principles, Policy & Practice, 18 
(1), 5–25.

Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education: Principles, Policy & 
Practice, 5(1), 7–74.

Bonner, S. M. (2013). Validity in classroom assessment: Purposes, properties, and principles. In Sage Handbook of 
Research on Classroom Assessment (ed., J. H. McMillan, pp. 87–106). Sage Publications: Thousand Oaks, CA 
doi:10.4135/9781452218649

Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the development of computational 
thinking. Paper presented at the annual meeting of the American Educational Research Association, Vancouver, 
Canada. Retrieved from http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf

Broadfoot, P. M., Daugherty, R., Gardner, J., Harlen, W., James, M., & Stobart, G. (2002). Assessment for learning: 10 
principles. Cambridge, UK: University of Cambridge School of Education.

Callan, G. L., & Cleary, T. J. (2019). Examining cyclical phase relations and predictive influences of self-regulated 
learning processes on mathematics task performance. Metacognition and Learning, 14(1), 43–63. doi:10.1007/s11409- 
019-09191-x

Chen, P. P., & Bonner, S. M. (2020). A framework for classroom assessment, learning, and self-regulation. Assessment in 
Education: Principles, Policy & Practice, 27(4), 373–393 doi:10.1080/0969594X.2019.1619515

Cleary, T. J. & Chen, P. P. (2009). Self-regulation, motivation, and math achievement in middle school: Variations across 
grade level and math context. Journal of School Psychology, 47, 291–314. doi:10.1016/j.jsp.2009.04.002

Cleary, T. J., Callan, G. L., Malatesta, J., & Adams, T. (2015). Examining the level of convergence among self-regulated 
learning microanalytic processes, achievement and a self-report questionnaire. Journal of Psychoeducational 
Assessment, 33(5), 439–450. doi:10.1177/0734282915594739

Cleary, T. J., & Zimmerman, B. J. (2004). Self-regulation empowerment program: A school-based program to enhance 
self-regulated and self-motivated cycles of student learning. Psychology in the Schools, 41(5), 537–550. doi:10.1002/ 
pits.10177

Computer Science Teacher Association. (2017). CS standards. CSTA K-12 Computer Science Standards. Retrieved from 
https://www.csteachers.org/page/standards

Cronbach, L. J. (1971). Test validation. In R. L. Thorndike (Ed.), Educational measurement (2nd ed., pp. 443–507). 
Washington, DC: American Council on Education.

Department of Labor Bureau of Labor Statistics. (2020). Occupational outlook handbook. https://www.bls.gov/ooh/ 
home.htm

DiBenedetto, M. K., & Zimmerman, B. J. (2010). Differences in self-regulatory processes among students studying 
science: A microanalytic investigation. International Journal of Educational and Psychological Assessment, 5(1), 2–24.

DiGiacomo, G. & Chen, P. P (2016). Enhancing self-regulatory skills through an intervention embedded in a middle 
school mathematics curriculum. Psychology in the Schools, 53(6), 601–616. doi:10.1002/pits.2016.53.issue-6 6

Downing, S. M. (2006). Twelve steps for effective test development. In S. M. Downing & T. M. Haladyna (Eds.), 
Handbook of test development (pp. 3–26). Mahwah, NJ: Lawrence Erlbaum Associates.

Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis: Verbal reports as data (rev. ed.). Cambridge, MA: MIT Press.
Fox, M. C., Ericsson, K. A., & Best, R. (2011). Do procedures for verbal reporting of thinking have to be reactive? A 

meta-analysis and recommendations for best reporting methods. Psychological Bulletin, 137(2), 316–344. doi:10.1037/ 
a0021663

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based programming: Examining 
misconceptions of loops, variables, and boolean logic. In Proceedings of the 2017 ACM SIGCSE technical symposium 
on computer science education (pp. 267–272).

Grover, S., & Pea, R. (2013). Computational thinking in K-12: A review of the state of the field. Educational Researcher, 
42(1), 38–43. doi:10.3102/0013189X12463051

Karabenick, S. A., & Gonida, E. N. (2018). Academic help seeking as a self-regulated learning strategy. In D. H. Schunk & 
J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (2nd ed., pp. 421–433). New York, NY: 
Routledge.

Kelley, T. R., Capobianco, B. M., & Kaluf, K. J. (2015). Concurrent think-aloud protocols to assess elementary design 
students. International Journal of Technology and Design Education, 25(4), 521–540. doi:10.1007/s10798-014-9291-y

Kingston, N., & Nash, B. (2011). Formative assessment: A meta-analysis and a call for research. Educational 
Measurement: Issues and Practice, 30(4), 28–37. doi:10.1111/j.1745-3992.2011.00220.x

Leighton, J. P. (2004). Avoiding misconception, misuse, and missed opportunities: The collection of verbal reports in 
educational achievement testing. Educational Measurement: Issues and Practice, 23(4), 6–15. doi:10.1111/j.1745- 
992.2004.tb00164.x

Leighton, J. P. (2017). Using think-aloud interviews and cognitive labs in educational research. New York, NY: Oxford 
University Press.

APPLIED MEASUREMENT IN EDUCATION 43

https://doi.org/10.4135/9781452218649
http://scratched.gse.harvard.edu/ct/files/AERA2012.pdf
https://doi.org/10.1007/s11409-019-09191-x
https://doi.org/10.1007/s11409-019-09191-x
https://doi.org/10.1080/0969594X.2019.1619515
https://doi.org/:10.1016/j.jsp.2009.04.002
https://doi.org/10.1177/0734282915594739
https://doi.org/10.1002/pits.10177
https://doi.org/10.1002/pits.10177
https://www.csteachers.org/page/standards
https://www.bls.gov/ooh/home.htm
https://www.bls.gov/ooh/home.htm
https://doi.org/10.1002/pits.2016.53.issue-6
https://doi.org/10.1037/a0021663
https://doi.org/10.1037/a0021663
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1007/s10798-014-9291-y
https://doi.org/10.1111/j.1745-3992.2011.00220.x
https://doi.org/10.1111/j.1745-992.2004.tb00164.x
https://doi.org/10.1111/j.1745-992.2004.tb00164.x


Magliano, J. P., & Graesser, A. C. (2012). Computer-based assessment of student-constructed responses. Behavior 
Research Methods, 44(3), 608–621. doi:10.3758/s13428-012-0211-3

Mason, L. H. (2004). Explicit self-regulated strategy development versus reciprocal questioning: Effects on expository 
reading comprehension among struggling readers. Journal of Educational Psychology, 96(2), 283–296. doi:10.1037/ 
0022-0663.96.2.283

Messick, S. (1989). Validity. In R. L. Linn (Ed.), Educational measurement (3rd ed., pp. 13–103). New York, American 
Council on Education: Macmillan.

Moreno-León, J., & Robles, G. (2015). Dr. Scratch: A web tool to automatically evaluate Scratch projects. In Proceedings 
of the workshop in primary and secondary computing education (pp. 132–133). London, UK.

New York City Department of Education. (2019, December 12). Chancellor Carranza announces 72 percent increase in 
students taking computer science since launch of computer science for all. https://www.schools.nyc.gov/about-us/news

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological 
Review, 84(3), 231–259. doi:10.1037/0033-295X.84.3.231

Paris, S. G., & Paris, A. H. (2001). Classroom applications of research on self-regulated learning. Educational 
Psychologist, 36(2), 89–101. doi:10.1207/S15326985EP3602_4

Pellegrino, J. W., Chudowsky, N., & Glaser, R. (Eds). (2001). Knowing what students know: The science and design of 
educational assessment. Washington, DC: National Academy Press.

Pepper, D., Hodgen, J., Lamesoo, K., Kõiv, P., & Tolboom, J. (2018). Think aloud: Using cognitive interviewing to 
validate the PISA assessment of student self-efficacy in mathematics. International Journal of Research & Method in 
Education, 41(1), 3–16. doi:10.1080/1743727X.2016.1238891

Peters-Burton, E. E., Cleary, T. J., & Kitsantas, A. (2015, October). Computational thinking in the context of science and 
engineering practices: A self-regulated learning approach. Paper presented at the 12th international conference on 
cognition and exploratory learning in digital age, Dublin, Ireland.

Román-González, M., Moreno-León, J., & Robles, G. (2017). Complementary tools for computational thinking assess
ment. In S. C. Kong, J. Sheldon, & K. Y. Li (Eds.), Proceedings of international conference on computational thinking 
education (CTE 2017) (pp. 154–159). Hong Kong, China: The Education University of Hong Kong.

Román-González, M., Perez-González, J. C., & Jimenez-Fernandez, C. (2017). Which cognitive abilities underlie 
computational thinking? Criterion validity of the computational thinking test. Computers in Human Behavior, 72, 
678–691. doi:10.1016/j.chb.2016.08.047

Russo, J. E., Johnson, E. J., & Stephens, D. L. (1989). The validity of verbal protocols. Memory & Cognition, 17(6), 
759–769. doi:10.3758/BF03202637

Shepard, L. A., Penuel, W. R., & Pellegrino, J. W. (2018). Using learning and motivation theories to coherently link 
formative assessment, grading practices, and large-scale assessment. Educational Measurement: Issues and Practice, 37 
(1), 21–34.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational Research Review, 22, 
142–158. doi:10.1016/j.edurev.2017.09.003

Siddiq, F., & Scherer, R. (2017). Revealing the processes of students’ interaction with a novel collaborative problem 
solving task: An in-depth analysis of think-aloud protocols. Computers in Human Behavior, 76, 509–525. doi:10.1016/ 
j.chb.2017.08.007

Someren, M. W. V., Barnard, Y. F., & Sandberg, J. (1994). The think aloud method: A practical guide to modelling 
cognitive processes. London, UK: Academic Press.

Taylor, K. L., & Dionne, J. P. (2000). Accessing problem-solving strategy knowledge: The complementary use of 
concurrent verbal protocols and retrospective debriefing. Journal of Educational Psychology, 92(3), 413. 
doi:10.1037/0022-0663.92.3.413

Usher, E. L., & Schunk, D. H. (2018). Social cognitive theoretical perspective of self-regulation. In D. H. Schunk & 
J. A. Greene (Eds.), Handbook of self-regulation of learning and performance (2nd ed., pp. 19–35). New York, NY: 
Routledge.

Weiner. (2010). The development of an attribution-based theory of motivation: A history of ideas. Educational 
Psychologist, 45(1), 28–36. doi:10.1080/00461520903433596

Werner, L., Denner, J., Campe, S., & Kawamoto, D. C. (2012). The fairy performance assessment: Measuring computa
tional thinking in middle school. In Proceedings of the 43rd ACM technical symposium on computer science education 
(pp. 215–220). New York, NY: ACM.

Wiliam, D., & Thompson, M. (2008). Integrating assessment with learning: What will it take to make it work? In 
C. A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning (pp. 53–82). Mahwah, NJ: Lawrence 
Erlbaum Associates.

Wilson, T. D. (1994). The proper protocol: Validity and completeness of verbal reports. Psychological Science, 5(5), 
249–252. doi:10.1111/j.1467-9280.1994.tb00621.x

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. doi:10.1145/1118178.1118215
Wing, J. M. (2008). Computational thinking and thinking about computing. Philosophical Transactions of the Royal 

Society of London A: Mathematical, Physical and Engineering Sciences, 366(1881), 3717–3725.

44 S. BONNER ET AL.

https://doi.org/10.3758/s13428-012-0211-3
https://doi.org/10.1037/0022-0663.96.2.283
https://doi.org/10.1037/0022-0663.96.2.283
https://www.schools.nyc.gov/about-us/news
https://doi.org/10.1037/0033-295X.84.3.231
https://doi.org/10.1207/S15326985EP3602_4
https://doi.org/10.1080/1743727X.2016.1238891
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.3758/BF03202637
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/j.chb.2017.08.007
https://doi.org/10.1016/j.chb.2017.08.007
https://doi.org/10.1037/0022-0663.92.3.413
https://doi.org/10.1080/00461520903433596
https://doi.org/10.1111/j.1467-9280.1994.tb00621.x
https://doi.org/10.1145/1118178.1118215


Yadav, A., Burkhart, D., Moix, D., Snow, E., Bandaru, P., & Clayborn, L. (2015). Sowing the seeds of assessment literacy in 
secondary computer science education: A landscape study. Computer Science Teachers Association. https://csta.acm. 
org/Research/sub/Projects/AssessmentStudy2015.html

Zimmerman, B. J., & Kitsantas, A. (1999). Acquiring writing revision skill: Shifting from process to outcome self- 
regulatory goals.. Journal of Educational Psychology, 912), 241-250.

Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25(1), 82–91. 
doi:10.1006/ceps.1999.1016

Zimmerman, B. J. (2002). Becoming a self-regulated learner: An overview. Theory into Practice, 41(2), 64–70. 
doi:10.1207/s15430421tip4102_2

Zimmerman, B. J. (2013). From cognitive modeling to self-regulation: A social cognitive career path. Educational 
Psychologist, 48(3), 135–147. doi:10.1080/00461520.2013.794676

Zimmerman, B. J., & Schunk, D. H. (2011). Handbook of self-regulation of learning and performance. New York, NY: 
Routledge.

Zumbo, B. D., & Hubley, A. M. (Eds.). (2017). Understanding and investigating response processes in validation research 
(Vol. 26). Cham, Switzerland: Springer.

APPLIED MEASUREMENT IN EDUCATION 45

https://csta.acm.org/Research/sub/Projects/AssessmentStudy2015.html
https://csta.acm.org/Research/sub/Projects/AssessmentStudy2015.html
https://doi.org/10.1006/ceps.1999.1016
https://doi.org/10.1207/s15430421tip4102_2
https://doi.org/10.1080/00461520.2013.794676

	Abstract
	1. Literature Review
	1.1. Formative Assessment and Computer Science Education
	1.2. Computational Thinking
	1.3. Self-Regulated Learning: A Theoretical Framework Compatible with FA and CT
	1.4. Construct-Based Arguments Using the Think-Aloud Approach

	2. Methods
	2.1. Preliminary Work: Development and Content Validation
	2.2. Study Context and Participants
	2.3. Instruments
	2.3.1. Forethought Questions
	2.3.2. Computational Thinking Performance Problem
	2.3.3. Reflection Questions

	2.4. Think-Aloud Procedures
	2.5. Analytic Methods

	3. Results
	3.1. Research Question 1: Do Student Think-alouds Provide Evidence that Computing Problems in the FA Task Elicit Cognitive Processes Consistent with Conceptual Definitions of CT?
	3.2. Research Question 2: Do Student Think-alouds Provide Evidence that SRL Prompts Embedded in the FA Task Elicit Cognitive Processes Consistent with SRL Theory?
	3.3. Research Question 3: How Do Students at Different Levels of Mastery Vary in Uses of CT and SRL?
	3.4. Research Question 4: Do Think Alouds Provide Evidence that Elucidates Definitions of the CT Construct or SRL Processes?

	4. Discussion
	4.1. Limitations
	4.2. Implications for Further Research and Development

	5. Conclusion
	Disclosure Statement
	Notes on contributors
	References

