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Highlights:
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Abstract: Understanding the patterns and drivers of primary productivity is a major goal of
ecology, but little is known about whether the primary productivities of different types of
ecosystems—here, lakes and the landscapes in which they are embedded—fluctuate in related
ways through time. Due to shared climatic variation and well-known connections between lake
and terrestrial ecosystems, such as nutrient and resource subsidies, we hypothesized that
interannual fluctuations in aquatic and terrestrial primary productivity indices could be coherent.
We also expected that lake and watershed characteristics could modify the strength and nature of
primary productivity relationships. We applied wavelet coherence analyses to time series of lake
chlorophyll-a and satellite-derived NDVI to examine coherence between lakes and land, and
used random forest regression and generalized additive models to evaluate why coherence varies
among lakes. There can be substantial coherence between lake and terrestrial primary
productivity, but the strength and phase (direction and time lag) of this relationship varies
widely, and there were marked differences between short (2-4 year periods of oscillation) and
long (>4 year periods of oscillation) timescales. Across all timescales, variables associated with
the connectedness of lakes to their watersheds were consistently the important explanatory
variables of the strength and phase of coherence. The patterns observed in this study suggest the
importance of cross-ecosystem flows, as opposed to shared climatic variation, in determining

temporal coherence between lakes and the landscape.
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Introduction

Quantifying the primary productivity of ecosystems, and how and by what mechanisms
this process varies spatiotemporally, is a fundamental goal of ecology, especially in light of
global climate change (Schlesinger and Bernhardt 2013). There are rich, but separate, literatures
on the rates and patterns of primary productivity in lakes (Carpenter and others 1985; Dodson
and others 2000; Downing 2009; Seekell and others 2018) and in terrestrial landscapes (Melillo
and others 1993; Running and others 2000; Schimel and others 2001; Anav and others 2015).
Less is known about the relatedness of temporal fluctuations in primary productivity between
lakes and the landscape. Aquatic and terrestrial ecosystems are linked through substantial and
temporally variable fluxes of matter and energy (Cole and others 2007; Harrison and others
2009; Butman and others 2016), which plays an important role in regional and global carbon
cycles (Tranvik and others 2009; Buffam and others 2011). Given these factors, whether there
are persistent relationships in temporal fluctuations (i.e., coherence) in primary productivity
between lakes and the landscape has substantial implications for understanding the dynamic
linkages between these systems. Coupling of temporal patterns in primary productivity across
different ecosystem types has received little attention with the exception of studies focused on
synchronization of terrestrial and coastal marine ecosystems (Ong and others 2016; Black and
others 2018; Lara and others 2019).

Temporally coherent fluctuations in terrestrial and aquatic primary productivity might
plausibly arise from two general mechanisms. The systems might both be influenced, directly
and independently, by the same exogenous environmental drivers (e.g., climate and weather),
bringing them into coherence. This mechanism is analogous to the Moran effect, in which a

shared environmental driver synchronizes spatially disjunct populations (Moran 1953). While
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spatial synchrony among lakes has been observed for variables like surface water temperature
(Magnuson and others 1990), it is unclear if exogenous environmental drivers also result in
coherence between different ecosystem types. Coherence could also arise from flows of carbon
and nutrients across ecosystem boundaries. One possible scenario is that terrestrially-fixed
carbon enters a lake as dissolved organic matter, reducing light availability and therefore
photosynthesis (Karlsson and others 2009; Solomon and others 2015). Alternatively, nutrients
entering a lake along with organic matter can stimulate primary productivity (Thrane and others
2014; Corman and others 2018; Kelly and others 2018), or terrestrially-fixed carbon could affect
aquatic primary productivity by providing subsidies to consumers (Tanentzap and others 2017).
These two mechanisms (Moran-like effects and cross-ecosystem flows) may not be
mutually exclusive, as climate and weather may be important drivers of temporal variability in
the magnitude of cross-ecosystem flows. For example, anthropogenic nutrient enrichment of
terrestrial ecosystems enhances terrestrial primary production and could also drive variability in
aquatic primary production through episodic nutrient loading from the watershed, for example in
runoff from precipitation events (Kelly and others 2019; Stockwell and others 2020). Although
nutrient loading is an exogenous forcing that may be shaped by weather (e.g., precipitation), we
distinguish between this and the pure Moran-like effect because of the likelihood of vegetation
and watershed processes determining the magnitude and timing of inputs to the lake, and
creating time lags between nutrients’ stimulating effects on primary productivity on the
landscape and in lakes. While the Moran-like independent effects of weather could be positive in
one system and negative in the other, we do not expect them to be time-lagged given the short

response times of plant photosynthetic rates and high turnover rates of phytoplankton.
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Properties of lakes and watersheds likely shape the strength and direction of relationships
between aquatic and terrestrial primary productivity, and time-lags between these variables.
Lakes are differentially affected by catchment processes based on their position in the watershed,
with lower lakes tending to be more strongly influenced (Kratz and others 1997; Martin and
Soranno 2006). Lake morphology could also play an important role, with shallower lakes (Qin
and others 2020) or those with greater shoreline development indices (Scheuerell and Schindler
2004) potentially experiencing stronger influences of the adjacent terrestrial ecosystem. What
dominates cross-ecosystem flows could also help determine whether lakes and the landscape
tend to be positively or negatively related. If the dominant mechanism is nutrient inputs from
land to lake, then the two systems may be positively related; whereas if inputs of dissolved
organic carbon (DOC) from land to lake dominate, then reductions in water clarity could inhibit
lake primary productivity (Karlsson and others 2009; Solomon and others 2015), resulting in a
negative relationship. Time lags between lake and landscape primary productivity could reflect
time differences between carbon fixation and release (Kuzyakov and Gavrichkova 2010), and
lags associated with processing and transport through the watershed (Harman 2015). Thus,
temporal relationships in primary productivity between the lake and the landscape provide
insight into the drivers of those dynamics and the strength of the linkages among these
ecosystems.

Temporal relationships have often been studied using correlation, but approaches based
on the wavelet transform (Torrence and Compo 1998) have grown in popularity because of their
ability to resolve common patterns that confound standard correlation (Vasseur and Gaedke
2007; Downing and others 2008; Sheppard and others 2016; Walter and others 2017). Ecology is

multi-causal and mechanisms often have specific timescales of variation, so timescale-specific
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relationships can reflect specific drivers (Defriez and Reuman 2017; Sheppard and others 2019;
Wilkinson and others 2020). Standard correlation can fail to resolve timescale-specific and
temporally-lagged effects (Sheppard and others 2016; Walter and others 2019). Time lags result
from common processes including transport times between observation points, intervals between
generations, and certain predator-prey relationships. Wavelet coherence overcomes both
problems by indicating the strength of relatedness between two variables, and the time lag (phase
difference) between them, as a function of timescale (Grinsted and others 2004; Sheppard and
others 2017). Figure 1 illustrates a timescale-specific relationship and examples of phase
differences between two variables.

To investigate patterns of temporal coherence in primary productivity between lakes and
the landscapes in which they are embedded, we analyzed 135 long term (>20 year) paired lake
and land time series in the northeastern USA. We focus specifically on the following questions.
Q1) To what extent are multi-annual [sensu Wilkinson et al. (2020)] patterns of lake primary
productivity coherent with primary productivity in the surrounding landscape? Q2) What are the
phase differences between them, and what does this imply about the predominant mechanisms
coupling primary productivity in lakes and the landscape? Q3) What factors explain variability in
the magnitude and phase of coherence between lake and landscape primary productivity? Q4) Do
the answers to questions Q1 through Q3 depend on timescale? We found that on multi-annual
timescales, landscape and lake productivity vary widely in their coherence and the phase
differences between landscape and lake. The coupling relationships appear to mainly reflect

flows of carbon and nutrients between the ecosystem types.
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Methods
Data acquisition and processing

We obtained time series data on chlorophyll-a, an indicator of primary production, from
the LAGOS-NE LIMNO database, version 1.087.3 (Soranno and others 2017; Soranno and
Cheruvelil 2019). The LAGOS-NE database contains time series of physical, chemical, and
biological parameters from lakes located in seventeen states of the northeastern and mid-western
portions of the conterminous United States. Data were aggregated to annual intervals by
averaging measurements from May-September, the period of most active growth. If a lake had
fewer than three observations during a growing season, data for that year were discarded. Lake
time series selected for analysis spanned a minimum of 20 years, could have a maximum of two
years with missing data, and years with missing data were non-consecutive. Because our
analyses require complete time series, missing data were filled with the median of the time
series. A number of lakes in LAGOS-NE narrowly missed satisfying these criteria, but because
this version of LAGOS-NE contains data through the year 2013, we augmented the dataset by
obtaining additional, freely available data on a total of 38 lakes from the Wisconsin Department
of Natural Resources (14 lakes) and Minnesota Pollution Control Agency lake monitoring
programs (24 lakes). These data were processed to match the format of the LAGOS-NE data. In
total, 135 lake time series were analyzed. A map of lakes and selected examples of coherent and
non-coherent time series is provided in Figure S1.

We also obtained from LAGOS-NE, or derived from data contained therein, a suite of 53
variables describing lake morphometry, watershed land cover, hydrologic connections, landscape
position, atmospheric deposition, glaciation history, and climate for each lake (Soranno and

Cheruvelil 2017). Surficial geology was also considered but could not be adequately addressed
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due to the lack of data for most variables in this category. A complete list and a criterion for
culling the list of potential variables are given in Supplementary Material S1. These variables
reflect conditions either of the lake itself, in the watershed as delineated in LAGOS-NE (Soranno
and others 2017), or within the Hydrologic Unit Code (HUC) Level-12 unit. Hydrologic Unit
Codes are a hierarchical system for identifying watersheds, of which level-12 (i.e., a 12-digit
identifying code) is the finest. In our dataset, there was only one lake in 101 of 114 HUC-12
units, and at most 5 lakes. LAGOS-NE was accessed through the LAGOSNE R package
(Stachelek and Oliver 2019).

We used growing season accumulated normalized difference vegetation index (NDVI)
data as a proxy for annual primary productivity in the terrestrial landscape surrounding each
lake. To develop this dataset, start-of-season (SOS) and end-of-season (EOS) dates were
estimated annually using the 30-year (1989-2018) Advanced Very High Resolution Radiometer
(AVHRR) NDVI time series dataset available for the conterminous U.S. (United States Geologic
Survey). These raster image data, which have 1-km spatial resolution, consist of weekly issued,
biweekly maximum value composite NDVI scores (Eidenshink 1992, 2006). Source imagery
was collected almost daily, so that the biweekly maximum value composite NDVI scenes are
largely cloud-free (clouds, ice, and snow tend to suppress NDVI values). AVHRR sensors on
multiple satellite platforms have been utilized over the years to provide a gapless time series.

For each pixel and each year, SOS was determined using the midpoint of the methods
described in Zhang and others (2003) and Yu and others (2004). Considering the temporal
uncertainties associated with the NDVI time series (e.g. the precise date of acquisition for each
pixel’s value in a composite image is not known), time steps were assigned to integers in [1:52]

representing calendar week of issue. Both SOS approaches are somewhat sensitive to high
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frequency noise, so to facilitate consistent SOS estimation, NDVI time series were initially
smoothed using time series tail and minima treatment methods adapted from Wardlow and others
(2006). To obtain EOS, NDVI time series were reversed prior to processing, with the result
subtracted from 53 to obtain the correct temporal position. Growing season accumulated NDVI
was then determined by summing NDVI values from SOS to EOS. Some years for some pixels
representing water or barren lands did not satisfy NDVI threshold-based criteria for vegetation
presence, and in those cases no growing season accumulated NDVI was assigned.

Using only AVHRR pixels consisting of <5% water based on the National Land Cover
Database (NLCD 2011; Homer and others 2015), we averaged annual terrestrial NDVI within a
radius dependent on the surface area of the lake. Prior research established that there is a power-
law relationship between lake surface area and watershed area, and that the intercept (but not the
scaling parameter) differs between lakes and reservoirs (Walter and others 2020). We set a
minimum radius of 2.5 km to ensure an adequate sample of terrestrial pixels. Otherwise, we used
the simplifying assumption that lakes are circular to derive the following equation to scale the

search radius to the surface area of the lake:

10Bo+B1log104;
T = R EEE———
T

Here, By and f; are empirically estimated regression coefficients that differed between lakes and

reservoirs, and 4; is the surface area of the lake. For reservoirs, fo= 1.8 and f; = 1.05, and for
lakes o= 1.4 and f; = 1.05 (Walter and others 2020). We also considered using watershed
boundaries as spatial units for NDVI time series; however, a number of small lakes had too few
suitable AVHRR pixels within their watersheds and so were discarded. For the remaining lake-

landscape pairs, wavelet coherence test results (see Analyses) were entirely consistent whether
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NDVI time series were determined from circular buffers or from watershed boundaries, and so

we present results using circular buffers.

Analyses

We tested for wavelet coherence (Grinsted and others 2004; Sheppard and others 2017)
between time series of lake chlorophyll and terrestrial NDVI to determine the strength and phase
of temporally persistent relationships between lake and land primary productivity. Wavelet
coherence quantifies the degree to which two time series have correlated magnitudes of
oscillation and consistent phase differences through time, as a function of timescale. Its
magnitude ranges from 0 (no relationship) to 1 (perfect coherence). As we focus on consistent, as
opposed to transient or episodic, relationships, we considered coherence over the full time series.
Significance testing was performed by comparing the empirical coherence to a distribution of
surrogate coherences generated under a null hypothesis of no coherence that retained the spectral
(i.e., temporal autocorrelation) properties of the empirical time series (Sheppard and others
2017). This test is conservative because in the procedure by which surrogates are generated only
the phase of oscillations varies, while the power spectrum of each time series is entirely
preserved. In reality, if one variable drives fluctuations in a second variable, the power spectrum
of the second variable is influenced by the first. However, incorporating such effects is difficult,
and failure to do so appropriately would result in potentially identifying false relationships.

To determine to what extent interannual patterns of lake and terrestrial primary
productivity are coherent (Q1), we examined the distribution of coherence magnitudes at short (2
to 4-year periods of oscillation) and long (>4-year periods of oscillation) timescale bands, and

compared the number of statistically significant coherences to the number expected under a
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false-positive error rate of a = 0.05, assuming independent tests. The period length of 4 years
was chosen to demarcate short from long timescales because it separates anti-persistent patterns
(i.e., successive observations tend to be negatively correlated) from persistent patterns (i.e.,
successive observations tend to be positively correlated) (Sheppard and others 2016). Choosing
focal timescale bands a priori facilitates significance testing (Sheppard and others 2016).

To assess the prevalence of different phase relationships between lake and terrestrial
primary productivity (Q2), we examined the distribution of coherence phases for coherence
relationships exceeding the 70" percentile of a distribution of surrogate coherences generated
under a null hypothesis of no coherence but preserving the spectral properties of each time series.
Only relatively strong coherences were used because for incoherent variables the phase
difference is essentially a random variable uniformly distributed between - and 7, and hence is
not meaningful. Short and long timescales were again considered separately.

To assess what factors explain variability in the magnitude and phase of coherence
between lake and landscape primary productivity (Q3), we combined “feature selection” using
conditional random forest regression (Hothorn and others 2006) with generalized additive
models (Wood 2006). Because phases are angular measurements, we performed analyses on the
sine- or cosine-transformed phase difference between lake and landscape primary productivity
indices. Taking the cosine assigns in-phase relationships (¢ = 0) to a value of 1, anti-phase
relationships (¢ = = ) to a value of -1, and quarter-phase relationships (¢ = + /2) to a value of
0. Consequently, analysis of cos(¢) focuses on how close the relationship is to being in-phase.
Taking the sine transforms to a value of 0 for both in-phase and anti-phase relationships; to -1 for
a relationship in which peaks in chlorophyll-a lag NDVI by 'z a cycle length, or in other words a

time-lagged positive relationship; and to 1 for a relationship in which peaks in chlorophyll-a lead
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NDVI by 2 a cycle length, or in other words a time-lagged negative relationship, assuming that
the dominant direction of flows is from land to lake. Consequently, analysis of sin(¢) focuses on
whether the time-lagged relationship between NDVI and chlorophyll-a tends to be positive or
negative. Whether to apply the sine or cosine transformation depended on the dominant mode of
variability in ¢ for a timescale band.

Conditional random forests were used to select the most important predictors from the
suite of 53 predictor variables described above and in Supplementary Material S1. Conditional
random forests are an ensemble machine learning technique based on classification and
regression trees (Hothorn and others 2006). We fit conditional random forests consisting of
50,000 trees for each predictor variable, and quantified variable importance values for each
predictor. Variable importance values and the Pearson correlation between empirical values and
model predictions were stable at this forest size.

We used generalized additive models (GAMs) to investigate statistical effects and overall
explanatory power of selected predictors on the timescale-specific coherence and phase between
chlorophyll-a and NDVI. GAMs replace regression coefficients with penalized regression
splines, thereby identifying nonlinear relationships while balancing parsimony and model
complexity (Wood 2006). We built GAMs with 3 predictors for the response variables short
timescale coherence magnitude (n =135), long timescale coherence magnitude (n = 135), short
timescale phase (n = 39) and long timescale phase (n = 45). Predictors were chosen for inclusion
in rank order of variable importance, skipping variables with strong concurvity with a higher-
ranked predictor. Concurvity is a generalization of collinearity used with GAMs. We deemed
estimated concurvity values <0.6 to be acceptable; GAMs are highly robust to concurvity (Wood

2008). Observations were weighted by time series length to give greater weight to longer time
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series, for which we have greater certainty in the nature of lake-landscape coherence. Since
coherence magnitudes are bounded between 0 and 1, we used a beta distribution with the GAM
models for these variables. Some predictors were logio or square-root transformed to reduce the
influence of extreme values. Because our goal for this analysis was to explore relationships
explaining variability in temporal coherence between lake and land primary productivity indices,
as opposed to testing a priori hypotheses about these potential drivers, we did not apply
significance testing or further model selection/model parsimony methods to our GAMs.

The timescale specificity of the magnitude, phase, and predictors of coherence (Q4) was
determined by comparing results from short timescales (2 to 4-year periods of oscillation) versus
from long timescales (>4-year periods). Analyses were carried out in R version 3.5.1 (R Core
Team 2018) using the “wsyn” (Reuman and others 2019), “party” (Hothorn and others 2019),

and “mgcv” (Wood 2006) packages.

Results

Coherences between lakes and landscape primary productivity varied widely, spanning
nearly O to 1, the entire range of the statistic (Q1). Example time series from a particularly
coherent lake-landscape pair and a particularly non-coherent lake-landscape pair are shown in
Fig. S1. At short timescales, coherence ranged 0.06 to 0.92 with a median of 0.37 (Fig. 2a). Nine
lake-landscape pairs were significantly coherent at short timescales using o = 0.05 significance
level. At long timescales, coherence magnitudes ranged 0.08 to 0.95, with a median of 0.53, and
fifteen lake-landscape pairs were significantly coherent using a = 0.05 significance level (Fig.
2b). In each case, the number of significant coherences is greater than the number expected by

chance given the selected type-1 error rate (i.e., 135*%0.05 = 6.75) assuming independent tests.
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This result highlights that there is robust evidence that some lake-landscape pairs are strongly
coherent, but we emphasize that it is also meaningful that there is a wide range of observed
coherences. The spatial distribution of coherences at short (Figure 3) and long (Figure S2)
timescales indicates no apparent regional patterns in lake-landscape coherence. Lake-landscape
coherences were substantially timescale-specific (Q4). Although coherence magnitudes were
somewhat greater at long timescales than short, wavelet coherence suffers from a bias wherein
greater values tend to be returned at long timescales, so care should be taken in comparing
coherence magnitudes across timescales. Our significance tests do not suffer the same bias,
however. There was no correlation between coherence magnitudes at short timescales and
coherence at long timescales (Pearson correlation = 0.03), and only three lakes were significantly
coherent at both short and long timescales.

Phase relationships between lakes and the landscape also spanned the range of possible
values (0 to £m), but certain phase relationships were more common than others (Q2). At short
timescales, most coherence relationships were approximately in-phase (Fig. 2¢). At long
timescales, coherence relationships were bimodally distributed with most coherent lakes
exhibiting either phase-lagged positive (-n/4 < ¢ < -3n/4) or negative (3n/4 < ¢ < -m/4)
relationships with terrestrial NDVI (Figure 2d).

The coefficient of variation in NDVI and variables associated with modulation of flows
between lake and the landscape (herein termed “hydrologic connectedness”) tended to be the
best predictors of lake-landscape coherence and phase relationships (Q3). Such variables
included wetland cover and shoreline, precipitation and runoff, and groundwater recharge.
Variation in the magnitude of coherence at short timescales was best explained by total nitrogen

deposition, the temporal coefficient of variation in terrestrial NDVI [cv(NDVI)], and several
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variables related to wetland cover in the watershed and adjacent to the lake (Fig. 4a). A GAM
model including the top 3 predictors explained 14.6% of deviance in short timescale coherence,
and featured a negative effect of total N deposition, and positive effects of cv(NDVI) and
herbaceous wetland cover (Fig. 5a-c). Among lakes exhibiting substantial coherence with the
landscape, for which computed phase relationships are reliable, lakes with more open water
wetlands on their shoreline and with higher average chlorophyll-a concentrations (i.e., more
eutrophic lakes) were more likely to be in-phase with the landscape, but those with a high
percentage of shrub/scrub landcover were less likely to be in-phase with the landscape (Fig. 5d-
f). A GAM model with these predictors explained 20.9% of deviance in cos (¢).

At long timescales, coherence was best explained by the percentage of shrub/scrub land
cover in the watershed, cv(NDVI), annual precipitation, and the percentage of watershed area
composed of semi-permanently flooded (regime f) wetlands (Fig. 4c). Regime f wetlands are
semi-permanently flooded where surface water persists throughout the growing season in most
years. Long-timescale coherence decreased with increasing percentages of shrub/scrub landcover
in the watershed and with the percentage of watershed area covered by semi-permanently
flooded wetlands, and increased with increasing cv(NDVI) (Fig. 5g-1). This combination of
predictors explained 13.5% of deviance in coherence. Phase relationships at long timescales were
most strongly influenced by wetland shoreline and area, and other land cover types (Fig. 4d).
Sin(¢) tended to decline with increasing open-wetland shoreline, notwithstanding a few outliers,
indicating a tendency toward time-lagged negative effects of NDVI on chlorophyll-a fluctuations
(Fig. 5j). Increases in the areal percentage of semi-permanently flooded wetlands in the

watershed were also associated with time-lagged negative effects, and the percentage of
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cultivated crops was associated with time-lagged positive effects (Fig. 51, 1). These predictors

explained 31.9% of deviance in sin(¢).

Discussion

There is wide variability in the coherence of indices of primary productivity between
lakes and the surrounding landscape, from complete incoherence to near-perfect coupling across
interannual timescales. Although the presence of links between terrestrial and aquatic systems is
well-known (Wilkinson and others 2013; Tanentzap and others 2017; Tranvik and others 2018),
our findings underscore the importance of temporally dynamic links between aquatic and
terrestrial ecosystems. Although lakes typically make proportionally small contributions to
regional primary productivity, except in particularly lake-rich regions, aquatic ecosystems
process large amounts of terrestrially-derived nutrients and organic matter (Cole and others
2007; Downing 2009). Understanding whether these inputs stimulate or inhibit lake primary
productivity, and the mechanisms that couple these systems, is important especially on
timescales from a few years to decades [i.e., multi-annual timescales sensu Wilkinson and others
(2020)]. For example, episodic nutrient inputs may stimulate algal blooms while precipitation
driven dissolved organic matter inputs may have longer term effects on lake primary producers.

We proposed that coherence between lakes and the landscape could be driven by shared
responses to weather, potentially mediated by flows of carbon and nutrients across ecosystem
boundaries, and by lake characteristics (Figure 6). Our results provide some inference into the
importance of these mechanisms in the lakes we studied, specifically that lake-landscape
coherence largely arises through cross-ecosystem flows of carbon and nutrients, with wetlands

playing a key mediating role. If coherence was driven predominantly by shared, independent
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Moran-like effects of exogenous drivers like weather, we should expect strong coherences to
mainly be in-phase or anti-phase; instead, we see many time-lagged relationships, although at
short timescales coherences were more often in-phase or anti-phase. Further evidence for this
interpretation is that variables associated with hydrologic connections between lakes and the
landscape—for example, wetlands area and shoreline, runoff, groundwater recharge, and
headwater stream density—were among the most important predictors of the magnitude and
phase of lake-landscape coherence. Hydrologic connectivity, via both surface waters and sub-
surface flows, has a fundamental role in the spatiotemporal dynamics of lake ecosystems
(Canham and others 2004; Martin and Soranno 2006; Fergus and others 2017). Wetlands are an
important component of these connections, processing and exporting large amounts of carbon
and nutrients (Detenbeck and others 1993; Gergel and others 1999; Martin and Soranno 2006).
Many of these variables are also correlates of lake landscape position (Kratz and others 1997;
Martin and Soranno 2006). The area of wetlands around the lake tends to increase moving from
high in the watershed to low; these lakes also tend to accumulate inputs from larger areas, and
also are more likely to have inflowing streams. However other correlates of lake landscape
position including stream density, lake connection, and upstream lake area were also candidate
predictor variables but were less influential.

Interestingly, the dominant mode of variability in phase differences among lakes that
were coherent with the landscape on long timescales was between a time-lagged positive and a
time-lagged negative effect. Negative effects of terrestrial primary productivity on aquatic
primary productivity could reflect dissolved organic carbon (DOC) loading; DOC may inhibit
photosynthesis by decreasing water clarity (Karlsson and others 2009; Solomon and others

2015). In our analyses time-lagged negative relationships were associated with increasing
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amounts of wetlands in the watershed and on the shoreline, and time-lagged positive
relationships were associated with the more agricultural watersheds. DOC export to aquatic
systems is associated with forests and wetlands (Gergel and others 1999; Canham and others
2004), while agriculture can be a considerable source of nutrient runoff. The time lags between
terrestrial and aquatic primary productivity may reflect both transport time, e.g., through slow
pathways like groundwater, and the timing of biogeochemical transformations (Cardille and
others 2007). For example, a typical pathway for DOC originating on land is for carbon to be
fixed into leaves during the growing season, fall during autumn senescence, and decompose
before entering the DOC pool.

Surprisingly, we found little evidence that lake-landscape coherence depended on
characteristics of lakes themselves. We considered a number of predictors characterizing lake
morphometry (maximum depth, shoreline development ratio) and biogeochemistry (mean
chlorophyll-a), but only mean chlorophyll-a was a relatively important predictor of any response
variable. Taken together with our results on the importance of hydrologic connectedness and
cv(NDVI) for lake-landscape coherence, it seems that lake-landscape coherence is largely
imposed by the terrestrial landscape and mediated through flows of carbon and nutrients across
the terrestrial-aquatic interface (Carpenter and others 1998; Buffam and others 2011).

Insights from the study of spatial synchrony in population dynamics (Liebhold and others
2004; Walter and others 2017) suggest that weather variation and climate oscillations should be
important in coupling these dynamics, in a sort of cross-ecosystem “Moran effect” (Moran
1953). Indeed, spatially synchronous weather has been inferred to synchronize dynamics across
lakes (Magnuson and others 1990; Baines and others 2000; Pace and Cole 2002; Pham and

others 2008; Rusak and others 2008) and drive spatial synchrony in terrestrial primary
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production (Koenig and Knops 1998; Wettstein and others 2011; Shestakova and others 2016;
Defriez and Reuman 2017). However, weather may not synchronize lakes at the regional spatial
extent of our study (Soranno and others 2019), and weather does not seem commonly to directly
synchronize lakes with the landscape, at least on multi-annual timescales. While we did not
explicitly test for weather drivers of coherence, the relative predominance of phase-lagged
coherences—particularly at long timescales—and the relatedness of hydrologic connectedness to
spatial variation in coherence between lakes and the landscape suggest that the proximal
mechanisms of lake-landscape coherence likely have more to do with nutrient and organic matter
subsidies from the landscape to the lake, than shared environmental forcing operating similarly,
but separately and simultaneously on the lake and the landscape. This is in contrast to spatial
synchrony in population dynamics, where climate can synchronize populations over large areas,
even with little or no dispersal between them (Liebhold and others 2004). Other studies of cross-
ecosystem synchrony between terrestrial and marine ecosystems have found climate to be an
important driver (Ong and others 2016; Black and others 2018), but the relative magnitude of
inputs from the land to lakes is likely larger than from the land to the ocean.

The magnitude of lake-landscape coherence was entirely uncorrelated across timescales,
affirming the power of our timescale-specific approach. Standard approaches based on
correlation or regression would not have uncovered this pattern, and would have been
confounded by the strong differences between short and long timescales. Importantly, this also
suggests that different underlying mechanisms are responsible for short- versus long-timescale
coherence between lakes and the landscape. Particular mechanisms have characteristic
timescales of variation and tend manifest on those same timescales, as has been shown in studies

of population spatial synchrony (Sheppard and others 2016; Anderson and others 2019) and
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inferred for some studies of synchrony in lakes (Baines and others 2000; Pace and Cole 2002).
Although variables associated with hydrologic connectedness tended to explain among-lake
variation in lake-landscape coherence, specifically what mechanisms are at play are not yet
known. For example, the role of “flashy” events, such as storms resulting in overland flows and
relatively high flow rates through riverine systems, versus slow-but-consistent processes like
groundwater recharge, is unclear, but could be resolved by studying time series with sub-annual
intervals between observations.

Our conclusions are limited by data drawn from a biased set of lakes (Stanley and others
2019) with relatively short time series of error-prone indicator variables. Despite these
limitations, we believe it would be inappropriate to dismiss evidence for lake-landscape
coherence on these grounds. We chose NDVI and lake chlorophyll-a as indices of primary
productivity because of their relative availability. Other measures, such as from eddy covariance
for terrestrial ecosystems (Vesala and others 2006; Aubinet and others 2012) and in-situ
measurements of oxygen dynamics and carbon fixation for lakes provide more direct
measurements of primary productivity. However, their limited availability made them ill-suited
to the goals of this study. Satellite remote sensing of lake water quality can enable study of
additional lakes, but the need for calibration data (Ross and others 2019) and cloud cover mean
that remotely-sensed time series would have similar limitations to our dataset. Additionally,
while our time series are near the lower length limits where wavelet analyses can be reasonably
applied, our data are among the longest records that currently exist, and requiring longer time
series would have substantially reduced the number of lakes in the study, hindering our goals.
Considering the limited statistical power afforded by our short time series and potential for

observation error, the detection of strong relationships is meaningful.
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This study provides evidence of wide variation in the coupling of temporal ecosystem
dynamics between lakes and the landscapes they are embedded in, and provides a springboard
for future work leveraging temporal pattern to understand causes and consequences of coupling
between lakes and the landscape. Although further research is needed to clarify the specific
mechanisms of temporal coherence between lakes and the landscape, variables associated with
hydrologic connectedness explained substantial spatial variation in lake-landscape coherence,
suggesting that cross-ecosystem flows may commonly be a proximal mechanism. Based on
analogs with synchrony in populations and communities, and observations of coastal systems
(Ong and others 2016; Black and others 2018; Lara and others 2019) we expected that shared
climatic fluctuations could induce synchrony between lakes and the landscapes, but this does not
seem prevalent. Finally, this study affirms that multi-annual dynamics, which particularly in
aquatic ecosystems are less well understood compared to seasonal and short-term trends
(Wilkinson and others 2020), exhibit rich patterns, and that their investigation can lead to new

insights into ecosystem dynamics.
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Figure Captions

Figure 1: Illustration of timescale-specific relationships between two variables (a) and different
phase relationships (b-d). In (a) the blue and green signals are perfectly positively correlated on
short timescales and perfectly negatively correlated at long timescales; this relationship would be
confounded by standard correlation. In (b), fluctuations are in-phase (¢ = 0), corresponding to
positive correlation; in (c), fluctuations are temporally lagged, with the green signal peaking
ahead of the blue signal (¢ = n/2); in (d) fluctuations are anti-phase (¢ = 1), corresponding to

negative correlation.

Figure 2: Distributions of coherence magnitudes (a, b) and phase differences (c, d) at short
timescales (2-4 years; panels a, ¢) and at long timescales (>4 years; panels b, d). In (c, d),

frequency is proportional to radius length.

Figure 3: Map of lakes included in this study by short-timescale coherence between chlorophyll-
a and NDVI. Black outlines indicate statistically significant coherence. See Figure S2 for long

timescales.

Figure 4: Variable importance values (in descending order) from conditional random forest
analyses of among lake variability in the coherence magnitude (a, ¢) and phase difference (b, d)
between primary productivity in lakes and the landscape. Results for short timescales (2-4 years)
are shown in panels a, b; those for long timescales (>4 years) in panels c, d. Wetland variables
are drawn in brown; lake variables are in blue; terrestrial vegetation variables are colored in blue;

climate and atmospheric deposition variables are in white; and variables not fitting these
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categories are in grey.

Figure 5: GAM partial effect plots depicting effects of top predictors on (a-c) short timescale
coherence; (d-f) cosine-transformed short-timescale phase difference; (g-1) long timescale
coherence; (j-1); sine-transformed long-timescale phase difference. Models explained,
respectively, 14.6%, 20.9%, 13.5%, and 31.9% of deviance in the response variable. Grey

regions indicate + 2 standard errors.

Figure 6: Diagram of hypothesized mechanisms underpinning lake-landscape coherence results.
(1) Weather may cause shared, independent effects on terrestrial and aquatic primary production
leading to in-phase or anti-phase coherence. (2) Dissolved organic matter from terrestrial
primary production may carry nutrients that stimulate aquatic primary production or decrease
light availability in lakes. Land cover shapes the quantity and quality of terrestrial dissolved
organic matter delivered to lakes; flow paths and terrestrial decomposition contribute to time
(phase) lagged effects. (3) The form and magnitude of nutrient loading from the watershed in to
lakes is influenced by land use. Nutrients that stimulate production in the watershed can also
stimulate primary production in the lake at a phase lag based on the bioavailability of the
exogenous inputs and the timing of delivery to the receiving aquatic ecosystem. (4) Wetlands
modify the coherence between lakes and the landscape by altering flow paths. Wetlands retain
water that would otherwise be immediately delivered downstream and process nutrients and
dissolved organic matter, altering the quality and quantity of material delivered downstream. (5)
Lake characteristics such as the size, depth, and food web structure potentially modify these

influences. Artwork attribution: graphics from Integration and Application Network, University
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Tracey Saxby, corn stalk by Jane Thomas, pondweed by Dieter Tracy, carp by Kate Moore, and

largemouth bass and Daphnia by Kim Kraeer and Lucy Van Essen-Fishman.
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