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Abstract: Understanding the patterns and drivers of primary productivity is a major goal of 34 

ecology, but little is known about whether the primary productivities of different types of 35 

ecosystems—here, lakes and the landscapes in which they are embedded—fluctuate in related 36 

ways through time. Due to shared climatic variation and well-known connections between lake 37 

and terrestrial ecosystems, such as nutrient and resource subsidies, we hypothesized that 38 

interannual fluctuations in aquatic and terrestrial primary productivity indices could be coherent. 39 

We also expected that lake and watershed characteristics could modify the strength and nature of 40 

primary productivity relationships. We applied wavelet coherence analyses to time series of lake 41 

chlorophyll-a and satellite-derived NDVI to examine coherence between lakes and land, and 42 

used random forest regression and generalized additive models to evaluate why coherence varies 43 

among lakes. There can be substantial coherence between lake and terrestrial primary 44 

productivity, but the strength and phase (direction and time lag) of this relationship varies 45 

widely, and there were marked differences between short (2-4 year periods of oscillation) and 46 

long (>4 year periods of oscillation) timescales. Across all timescales, variables associated with 47 

the connectedness of lakes to their watersheds were consistently the important explanatory 48 

variables of the strength and phase of coherence. The patterns observed in this study suggest the 49 

importance of cross-ecosystem flows, as opposed to shared climatic variation, in determining 50 

temporal coherence between lakes and the landscape.  51 

 52 

Keywords: synchrony, compensation, chlorophyll-a, NDVI, resource subsidies, hydrologic 53 

connectivity  54 
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Introduction 55 

 Quantifying the primary productivity of ecosystems, and how and by what mechanisms 56 

this process varies spatiotemporally, is a fundamental goal of ecology, especially in light of 57 

global climate change (Schlesinger and Bernhardt 2013). There are rich, but separate, literatures 58 

on the rates and patterns of primary productivity in lakes (Carpenter and others 1985; Dodson 59 

and others 2000; Downing 2009; Seekell and others 2018) and in terrestrial landscapes (Melillo 60 

and others 1993; Running and others 2000; Schimel and others 2001; Anav and others 2015). 61 

Less is known about the relatedness of temporal fluctuations in primary productivity between 62 

lakes and the landscape. Aquatic and terrestrial ecosystems are linked through substantial and 63 

temporally variable fluxes of matter and energy (Cole and others 2007; Harrison and others 64 

2009; Butman and others 2016), which plays an important role in regional and global carbon 65 

cycles (Tranvik and others 2009; Buffam and others 2011).  Given these factors, whether there 66 

are persistent relationships in temporal fluctuations (i.e., coherence) in primary productivity 67 

between lakes and the landscape has substantial implications for understanding the dynamic 68 

linkages between these systems. Coupling of temporal patterns in primary productivity across 69 

different ecosystem types has received little attention with the exception of studies focused on 70 

synchronization of terrestrial and coastal marine ecosystems (Ong and others 2016; Black and 71 

others 2018; Lara and others 2019).  72 

Temporally coherent fluctuations in terrestrial and aquatic primary productivity might 73 

plausibly arise from two general mechanisms. The systems might both be influenced, directly 74 

and independently, by the same exogenous environmental drivers (e.g., climate and weather), 75 

bringing them into coherence. This mechanism is analogous to the Moran effect, in which a 76 

shared environmental driver synchronizes spatially disjunct populations (Moran 1953). While 77 
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spatial synchrony among lakes has been observed for variables like surface water temperature 78 

(Magnuson and others 1990), it is unclear if exogenous environmental drivers also result in 79 

coherence between different ecosystem types. Coherence could also arise from flows of carbon 80 

and nutrients across ecosystem boundaries. One possible scenario is that terrestrially-fixed 81 

carbon enters a lake as dissolved organic matter, reducing light availability and therefore 82 

photosynthesis (Karlsson and others 2009; Solomon and others 2015). Alternatively, nutrients 83 

entering a lake along with organic matter can stimulate primary productivity (Thrane and others 84 

2014; Corman and others 2018; Kelly and others 2018), or terrestrially-fixed carbon could affect 85 

aquatic primary productivity by providing subsidies to consumers (Tanentzap and others 2017). 86 

These two mechanisms (Moran-like effects and cross-ecosystem flows) may not be 87 

mutually exclusive, as climate and weather may be important drivers of temporal variability in 88 

the magnitude of cross-ecosystem flows. For example, anthropogenic nutrient enrichment of 89 

terrestrial ecosystems enhances terrestrial primary production and could also drive variability in 90 

aquatic primary production through episodic nutrient loading from the watershed, for example in 91 

runoff from precipitation events (Kelly and others 2019; Stockwell and others 2020). Although 92 

nutrient loading is an exogenous forcing that may be shaped by weather (e.g., precipitation), we 93 

distinguish between this and the pure Moran-like effect because of the likelihood of vegetation 94 

and watershed processes determining the magnitude and timing of inputs to the lake, and 95 

creating time lags between nutrients’ stimulating effects on primary productivity on the 96 

landscape and in lakes. While the Moran-like independent effects of weather could be positive in 97 

one system and negative in the other, we do not expect them to be time-lagged given the short 98 

response times of plant photosynthetic rates and high turnover rates of phytoplankton.  99 
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Properties of lakes and watersheds likely shape the strength and direction of relationships 100 

between aquatic and terrestrial primary productivity, and time-lags between these variables. 101 

Lakes are differentially affected by catchment processes based on their position in the watershed, 102 

with lower lakes tending to be more strongly influenced (Kratz and others 1997; Martin and 103 

Soranno 2006). Lake morphology could also play an important role, with shallower lakes (Qin 104 

and others 2020) or those with greater shoreline development indices (Scheuerell and Schindler 105 

2004) potentially experiencing stronger influences of the adjacent terrestrial ecosystem. What 106 

dominates cross-ecosystem flows could also help determine whether lakes and the landscape 107 

tend to be positively or negatively related. If the dominant mechanism is nutrient inputs from 108 

land to lake, then the two systems may be positively related; whereas if inputs of dissolved 109 

organic carbon (DOC) from land to lake dominate, then reductions in water clarity could inhibit 110 

lake primary productivity (Karlsson and others 2009; Solomon and others 2015), resulting in a 111 

negative relationship. Time lags between lake and landscape primary productivity could reflect 112 

time differences between carbon fixation and release (Kuzyakov and Gavrichkova 2010), and 113 

lags associated with processing and transport through the watershed (Harman 2015). Thus, 114 

temporal relationships in primary productivity between the lake and the landscape provide 115 

insight into the drivers of those dynamics and the strength of the linkages among these 116 

ecosystems. 117 

 Temporal relationships have often been studied using correlation, but approaches based 118 

on the wavelet transform (Torrence and Compo 1998) have grown in popularity because of their 119 

ability to resolve common patterns that confound standard correlation (Vasseur and Gaedke 120 

2007; Downing and others 2008; Sheppard and others 2016; Walter and others 2017). Ecology is 121 

multi-causal and mechanisms often have specific timescales of variation, so timescale-specific 122 
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relationships can reflect specific drivers (Defriez and Reuman 2017; Sheppard and others 2019; 123 

Wilkinson and others 2020). Standard correlation can fail to resolve timescale-specific and 124 

temporally-lagged effects (Sheppard and others 2016; Walter and others 2019). Time lags result 125 

from common processes including transport times between observation points, intervals between 126 

generations, and certain predator-prey relationships. Wavelet coherence overcomes both 127 

problems by indicating the strength of relatedness between two variables, and the time lag (phase 128 

difference) between them, as a function of timescale (Grinsted and others 2004; Sheppard and 129 

others 2017). Figure 1 illustrates a timescale-specific relationship and examples of phase 130 

differences between two variables. 131 

 To investigate patterns of temporal coherence in primary productivity between lakes and 132 

the landscapes in which they are embedded, we analyzed 135 long term (≥20 year) paired lake 133 

and land time series in the northeastern USA. We focus specifically on the following questions. 134 

Q1) To what extent are multi-annual [sensu Wilkinson et al. (2020)] patterns of lake primary 135 

productivity coherent with primary productivity in the surrounding landscape? Q2) What are the 136 

phase differences between them, and what does this imply about the predominant mechanisms 137 

coupling primary productivity in lakes and the landscape? Q3) What factors explain variability in 138 

the magnitude and phase of coherence between lake and landscape primary productivity? Q4) Do 139 

the answers to questions Q1 through Q3 depend on timescale? We found that on multi-annual 140 

timescales, landscape and lake productivity vary widely in their coherence and the phase 141 

differences between landscape and lake. The coupling relationships appear to mainly reflect 142 

flows of carbon and nutrients between the ecosystem types. 143 

 144 
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Methods 145 

Data acquisition and processing 146 

We obtained time series data on chlorophyll-a, an indicator of primary production, from 147 

the LAGOS-NE LIMNO database, version 1.087.3 (Soranno and others 2017; Soranno and 148 

Cheruvelil 2019). The LAGOS-NE database contains time series of physical, chemical, and 149 

biological parameters from lakes located in seventeen states of the northeastern and mid-western 150 

portions of the conterminous United States. Data were aggregated to annual intervals by 151 

averaging measurements from May-September, the period of most active growth. If a lake had 152 

fewer than three observations during a growing season, data for that year were discarded. Lake 153 

time series selected for analysis spanned a minimum of 20 years, could have a maximum of two 154 

years with missing data, and years with missing data were non-consecutive. Because our 155 

analyses require complete time series, missing data were filled with the median of the time 156 

series. A number of lakes in LAGOS-NE narrowly missed satisfying these criteria, but because 157 

this version of LAGOS-NE contains data through the year 2013, we augmented the dataset by 158 

obtaining additional, freely available data on a total of 38 lakes from the Wisconsin Department 159 

of Natural Resources (14 lakes) and Minnesota Pollution Control Agency lake monitoring 160 

programs (24 lakes). These data were processed to match the format of the LAGOS-NE data. In 161 

total, 135 lake time series were analyzed. A map of lakes and selected examples of coherent and 162 

non-coherent time series is provided in Figure S1. 163 

We also obtained from LAGOS-NE, or derived from data contained therein, a suite of 53 164 

variables describing lake morphometry, watershed land cover, hydrologic connections, landscape 165 

position, atmospheric deposition, glaciation history, and climate for each lake (Soranno and 166 

Cheruvelil 2017). Surficial geology was also considered but could not be adequately addressed 167 
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due to the lack of data for most variables in this category. A complete list and a criterion for 168 

culling the list of potential variables are given in Supplementary Material S1. These variables 169 

reflect conditions either of the lake itself, in the watershed as delineated in LAGOS-NE (Soranno 170 

and others 2017), or within the Hydrologic Unit Code (HUC) Level-12 unit. Hydrologic Unit 171 

Codes are a hierarchical system for identifying watersheds, of which level-12 (i.e., a 12-digit 172 

identifying code) is the finest. In our dataset, there was only one lake in 101 of 114 HUC-12 173 

units, and at most 5 lakes. LAGOS-NE was accessed through the LAGOSNE R package 174 

(Stachelek and Oliver 2019). 175 

We used growing season accumulated normalized difference vegetation index (NDVI) 176 

data as a proxy for annual primary productivity in the terrestrial landscape surrounding each 177 

lake. To develop this dataset, start-of-season (SOS) and end-of-season (EOS) dates were 178 

estimated annually using the 30-year (1989-2018) Advanced Very High Resolution Radiometer 179 

(AVHRR) NDVI time series dataset available for the conterminous U.S. (United States Geologic 180 

Survey). These raster image data, which have 1-km spatial resolution, consist of weekly issued, 181 

biweekly maximum value composite NDVI scores (Eidenshink 1992, 2006). Source imagery 182 

was collected almost daily, so that the biweekly maximum value composite NDVI scenes are 183 

largely cloud-free (clouds, ice, and snow tend to suppress NDVI values). AVHRR sensors on 184 

multiple satellite platforms have been utilized over the years to provide a gapless time series. 185 

For each pixel and each year, SOS was determined using the midpoint of the methods 186 

described in Zhang and others (2003) and Yu and others (2004). Considering the temporal 187 

uncertainties associated with the NDVI time series (e.g. the precise date of acquisition for each 188 

pixel’s value in a composite image is not known), time steps were assigned to integers in [1:52] 189 

representing calendar week of issue. Both SOS approaches are somewhat sensitive to high 190 
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frequency noise, so to facilitate consistent SOS estimation, NDVI time series were initially 191 

smoothed using time series tail and minima treatment methods adapted from Wardlow and others 192 

(2006). To obtain EOS, NDVI time series were reversed prior to processing, with the result 193 

subtracted from 53 to obtain the correct temporal position. Growing season accumulated NDVI 194 

was then determined by summing NDVI values from SOS to EOS. Some years for some pixels 195 

representing water or barren lands did not satisfy NDVI threshold-based criteria for vegetation 196 

presence, and in those cases no growing season accumulated NDVI was assigned. 197 

Using only AVHRR pixels consisting of <5% water based on the National Land Cover 198 

Database (NLCD 2011; Homer and others 2015), we averaged annual terrestrial NDVI within a 199 

radius dependent on the surface area of the lake. Prior research established that there is a power-200 

law relationship between lake surface area and watershed area, and that the intercept (but not the 201 

scaling parameter) differs between lakes and reservoirs (Walter and others 2020). We set a 202 

minimum radius of 2.5 km to ensure an adequate sample of terrestrial pixels. Otherwise, we used 203 

the simplifying assumption that lakes are circular to derive the following equation to scale the 204 

search radius to the surface area of the lake:  205 

𝑟 = 	$
10!!"!"#$%"!&#

𝜋  206 

Here, β0 and β1 are empirically estimated regression coefficients that differed between lakes and 207 

reservoirs, and Al is the surface area of the lake. For reservoirs, β0 = 1.8 and β1 = 1.05, and for 208 

lakes β0 = 1.4 and β1 = 1.05 (Walter and others 2020). We also considered using watershed 209 

boundaries as spatial units for NDVI time series; however, a number of small lakes had too few 210 

suitable AVHRR pixels within their watersheds and so were discarded. For the remaining lake-211 

landscape pairs, wavelet coherence test results (see Analyses) were entirely consistent whether 212 
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NDVI time series were determined from circular buffers or from watershed boundaries, and so 213 

we present results using circular buffers. 214 

 215 

Analyses 216 

We tested for wavelet coherence (Grinsted and others 2004; Sheppard and others 2017) 217 

between time series of lake chlorophyll and terrestrial NDVI to determine the strength and phase 218 

of temporally persistent relationships between lake and land primary productivity. Wavelet 219 

coherence quantifies the degree to which two time series have correlated magnitudes of 220 

oscillation and consistent phase differences through time, as a function of timescale. Its 221 

magnitude ranges from 0 (no relationship) to 1 (perfect coherence). As we focus on consistent, as 222 

opposed to transient or episodic, relationships, we considered coherence over the full time series. 223 

Significance testing was performed by comparing the empirical coherence to a distribution of 224 

surrogate coherences generated under a null hypothesis of no coherence that retained the spectral 225 

(i.e., temporal autocorrelation) properties of the empirical time series (Sheppard and others 226 

2017). This test is conservative because in the procedure by which surrogates are generated only 227 

the phase of oscillations varies, while the power spectrum of each time series is entirely 228 

preserved. In reality, if one variable drives fluctuations in a second variable, the power spectrum 229 

of the second variable is influenced by the first. However, incorporating such effects is difficult, 230 

and failure to do so appropriately would result in potentially identifying false relationships.  231 

To determine to what extent interannual patterns of lake and terrestrial primary 232 

productivity are coherent (Q1), we examined the distribution of coherence magnitudes at short (2 233 

to 4-year periods of oscillation) and long (>4-year periods of oscillation) timescale bands, and 234 

compared the number of statistically significant coherences to the number expected under a 235 
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false-positive error rate of 𝛼 = 0.05, assuming independent tests. The period length of 4 years 236 

was chosen to demarcate short from long timescales because it separates anti-persistent patterns 237 

(i.e., successive observations tend to be negatively correlated) from persistent patterns (i.e., 238 

successive observations tend to be positively correlated) (Sheppard and others 2016). Choosing 239 

focal timescale bands a priori facilitates significance testing (Sheppard and others 2016). 240 

To assess the prevalence of different phase relationships between lake and terrestrial 241 

primary productivity (Q2), we examined the distribution of coherence phases for coherence 242 

relationships exceeding the 70th percentile of a distribution of surrogate coherences generated 243 

under a null hypothesis of no coherence but preserving the spectral properties of each time series. 244 

Only relatively strong coherences were used because for incoherent variables the phase 245 

difference is essentially a random variable uniformly distributed between -𝜋 and 𝜋, and hence is 246 

not meaningful. Short and long timescales were again considered separately. 247 

To assess what factors explain variability in the magnitude and phase of coherence 248 

between lake and landscape primary productivity (Q3), we combined “feature selection” using 249 

conditional random forest regression (Hothorn and others 2006) with generalized additive 250 

models (Wood 2006). Because phases are angular measurements, we performed analyses on the 251 

sine- or cosine-transformed phase difference between lake and landscape primary productivity 252 

indices. Taking the cosine assigns in-phase relationships (ϕ = 0) to a value of 1, anti-phase 253 

relationships (ϕ = ± 𝜋) to a value of -1, and quarter-phase relationships (ϕ = ± 𝜋/2) to a value of 254 

0. Consequently, analysis of cos(ϕ) focuses on how close the relationship is to being in-phase. 255 

Taking the sine transforms to a value of 0 for both in-phase and anti-phase relationships; to -1 for 256 

a relationship in which peaks in chlorophyll-a lag NDVI by ½ a cycle length, or in other words a 257 

time-lagged positive relationship; and to 1 for a relationship in which peaks in chlorophyll-a lead 258 
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NDVI by ½ a cycle length, or in other words a time-lagged negative relationship, assuming that 259 

the dominant direction of flows is from land to lake. Consequently, analysis of sin(ϕ) focuses on 260 

whether the time-lagged relationship between NDVI and chlorophyll-a tends to be positive or 261 

negative. Whether to apply the sine or cosine transformation depended on the dominant mode of 262 

variability in ϕ for a timescale band. 263 

Conditional random forests were used to select the most important predictors from the 264 

suite of 53 predictor variables described above and in Supplementary Material S1. Conditional 265 

random forests are an ensemble machine learning technique based on classification and 266 

regression trees (Hothorn and others 2006). We fit conditional random forests consisting of 267 

50,000 trees for each predictor variable, and quantified variable importance values for each 268 

predictor. Variable importance values and the Pearson correlation between empirical values and 269 

model predictions were stable at this forest size.  270 

We used generalized additive models (GAMs) to investigate statistical effects and overall 271 

explanatory power of selected predictors on the timescale-specific coherence and phase between 272 

chlorophyll-a and NDVI. GAMs replace regression coefficients with penalized regression 273 

splines, thereby identifying nonlinear relationships while balancing parsimony and model 274 

complexity (Wood 2006). We built GAMs with 3 predictors for the response variables short 275 

timescale coherence magnitude (n =135), long timescale coherence magnitude (n = 135), short 276 

timescale phase (n = 39) and long timescale phase (n = 45). Predictors were chosen for inclusion 277 

in rank order of variable importance, skipping variables with strong concurvity with a higher-278 

ranked predictor. Concurvity is a generalization of collinearity used with GAMs. We deemed 279 

estimated concurvity values <0.6 to be acceptable; GAMs are highly robust to concurvity (Wood 280 

2008). Observations were weighted by time series length to give greater weight to longer time 281 



 13 

series, for which we have greater certainty in the nature of lake-landscape coherence. Since 282 

coherence magnitudes are bounded between 0 and 1, we used a beta distribution with the GAM 283 

models for these variables. Some predictors were log10 or square-root transformed to reduce the 284 

influence of extreme values. Because our goal for this analysis was to explore relationships 285 

explaining variability in temporal coherence between lake and land primary productivity indices, 286 

as opposed to testing a priori hypotheses about these potential drivers, we did not apply 287 

significance testing or further model selection/model parsimony methods to our GAMs. 288 

The timescale specificity of the magnitude, phase, and predictors of coherence (Q4) was 289 

determined by comparing results from short timescales (2 to 4-year periods of oscillation) versus 290 

from long timescales (>4-year periods). Analyses were carried out in R version 3.5.1 (R Core 291 

Team 2018) using the “wsyn” (Reuman and others 2019), “party” (Hothorn and others 2019), 292 

and “mgcv” (Wood 2006) packages.  293 

 294 

Results 295 

Coherences between lakes and landscape primary productivity varied widely, spanning 296 

nearly 0 to 1, the entire range of the statistic (Q1). Example time series from a particularly 297 

coherent lake-landscape pair and a particularly non-coherent lake-landscape pair are shown in 298 

Fig. S1. At short timescales, coherence ranged 0.06 to 0.92 with a median of 0.37 (Fig. 2a). Nine 299 

lake-landscape pairs were significantly coherent at short timescales using α = 0.05 significance 300 

level. At long timescales, coherence magnitudes ranged 0.08 to 0.95, with a median of 0.53, and 301 

fifteen lake-landscape pairs were significantly coherent using  α = 0.05 significance level (Fig. 302 

2b). In each case, the number of significant coherences is greater than the number expected by 303 

chance given the selected type-1 error rate (i.e., 135*0.05 = 6.75)  assuming independent tests. 304 
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This result highlights that there is robust evidence that some lake-landscape pairs are strongly 305 

coherent, but we emphasize that it is also meaningful that there is a wide range of observed 306 

coherences. The spatial distribution of coherences at short (Figure 3) and long (Figure S2) 307 

timescales indicates no apparent regional patterns in lake-landscape coherence. Lake-landscape 308 

coherences were substantially timescale-specific (Q4). Although coherence magnitudes were 309 

somewhat greater at long timescales than short, wavelet coherence suffers from a bias wherein 310 

greater values tend to be returned at long timescales, so care should be taken in comparing 311 

coherence magnitudes across timescales. Our significance tests do not suffer the same bias, 312 

however. There was no correlation between coherence magnitudes at short timescales and 313 

coherence at long timescales (Pearson correlation = 0.03), and only three lakes were significantly 314 

coherent at both short and long timescales.  315 

Phase relationships between lakes and the landscape also spanned the range of possible 316 

values (0 to ±p), but certain phase relationships were more common than others (Q2). At short 317 

timescales, most coherence relationships were approximately in-phase (Fig. 2c). At long 318 

timescales, coherence relationships were bimodally distributed with most coherent lakes 319 

exhibiting either phase-lagged positive (-π/4 < ϕ < -3π/4) or negative (3π/4 < ϕ < -π/4) 320 

relationships with terrestrial NDVI (Figure 2d). 321 

The coefficient of variation in NDVI and variables associated with modulation of flows 322 

between lake and the landscape (herein termed “hydrologic connectedness”) tended to be the 323 

best predictors of lake-landscape coherence and phase relationships (Q3). Such variables 324 

included wetland cover and shoreline, precipitation and runoff, and groundwater recharge. 325 

Variation in the magnitude of coherence at short timescales was best explained by total nitrogen 326 

deposition, the temporal coefficient of variation in terrestrial NDVI [cv(NDVI)], and several 327 
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variables related to wetland cover in the watershed and adjacent to the lake (Fig. 4a). A GAM 328 

model including the top 3 predictors explained 14.6% of deviance in short timescale coherence, 329 

and featured a negative effect of total N deposition, and positive effects of cv(NDVI) and 330 

herbaceous wetland cover (Fig. 5a-c). Among lakes exhibiting substantial coherence with the 331 

landscape, for which computed phase relationships are reliable, lakes with more open water 332 

wetlands on their shoreline and with higher average chlorophyll-a concentrations (i.e., more 333 

eutrophic lakes) were more likely to be in-phase with the landscape, but those with a high 334 

percentage of shrub/scrub landcover were less likely to be in-phase with the landscape (Fig. 5d-335 

f). A GAM model with these predictors explained 20.9% of deviance in cos (ϕ).  336 

 At long timescales, coherence was best explained by the percentage of shrub/scrub land 337 

cover in the watershed, cv(NDVI), annual precipitation, and the percentage of watershed area 338 

composed of semi-permanently flooded (regime f) wetlands (Fig. 4c). Regime f wetlands are 339 

semi-permanently flooded where surface water persists throughout the growing season in most 340 

years. Long-timescale coherence decreased with increasing percentages of shrub/scrub landcover 341 

in the watershed and with the percentage of watershed area covered by semi-permanently 342 

flooded wetlands, and increased with increasing cv(NDVI) (Fig. 5g-i). This combination of 343 

predictors explained 13.5% of deviance in coherence. Phase relationships at long timescales were 344 

most strongly influenced by wetland shoreline and area, and other land cover types (Fig. 4d). 345 

Sin(ϕ) tended to decline with increasing open-wetland shoreline, notwithstanding a few outliers, 346 

indicating a tendency toward time-lagged negative effects of NDVI on chlorophyll-a fluctuations 347 

(Fig. 5j). Increases in the areal percentage of semi-permanently flooded wetlands in the 348 

watershed were also associated with time-lagged negative effects, and the percentage of 349 



 16 

cultivated crops was associated with time-lagged positive effects (Fig. 5i, l). These predictors 350 

explained 31.9% of deviance in sin(ϕ). 351 

 352 

Discussion 353 

 There is wide variability in the coherence of indices of primary productivity between 354 

lakes and the surrounding landscape, from complete incoherence to near-perfect coupling across 355 

interannual timescales. Although the presence of links between terrestrial and aquatic systems is 356 

well-known (Wilkinson and others 2013; Tanentzap and others 2017; Tranvik and others 2018), 357 

our findings underscore the importance of temporally dynamic links between aquatic and 358 

terrestrial ecosystems. Although lakes typically make proportionally small contributions to 359 

regional primary productivity, except in particularly lake-rich regions, aquatic ecosystems 360 

process large amounts of terrestrially-derived nutrients and organic matter (Cole and others 361 

2007; Downing 2009). Understanding whether these inputs stimulate or inhibit lake primary 362 

productivity, and the mechanisms that couple these systems, is important especially on 363 

timescales from a few years to decades [i.e., multi-annual timescales sensu Wilkinson and others 364 

(2020)]. For example, episodic nutrient inputs may stimulate algal blooms while precipitation 365 

driven dissolved organic matter inputs may have longer term effects on lake primary producers.  366 

 We proposed that coherence between lakes and the landscape could be driven by shared 367 

responses to weather, potentially mediated by flows of carbon and nutrients across ecosystem 368 

boundaries, and by lake characteristics (Figure 6). Our results provide some inference into the 369 

importance of these mechanisms in the lakes we studied, specifically that lake-landscape 370 

coherence largely arises through cross-ecosystem flows of carbon and nutrients, with wetlands 371 

playing a key mediating role. If coherence was driven predominantly by shared, independent 372 
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Moran-like effects of exogenous drivers like weather, we should expect strong coherences to 373 

mainly be in-phase or anti-phase; instead, we see many time-lagged relationships, although at 374 

short timescales coherences were more often in-phase or anti-phase. Further evidence for this 375 

interpretation is that variables associated with hydrologic connections between lakes and the 376 

landscape—for example, wetlands area and shoreline, runoff, groundwater recharge, and 377 

headwater stream density—were among the most important predictors of the magnitude and 378 

phase of lake-landscape coherence. Hydrologic connectivity, via both surface waters and sub-379 

surface flows, has a fundamental role in the spatiotemporal dynamics of lake ecosystems 380 

(Canham and others 2004; Martin and Soranno 2006; Fergus and others 2017). Wetlands are an 381 

important component of these connections, processing and exporting large amounts of carbon 382 

and nutrients (Detenbeck and others 1993; Gergel and others 1999; Martin and Soranno 2006). 383 

Many of these variables are also correlates of lake landscape position (Kratz and others 1997; 384 

Martin and Soranno 2006). The area of wetlands around the lake tends to increase moving from 385 

high in the watershed to low; these lakes also tend to accumulate inputs from larger areas, and 386 

also are more likely to have inflowing streams. However other correlates of lake landscape 387 

position including stream density, lake connection, and upstream lake area were also candidate 388 

predictor variables but were less influential.  389 

Interestingly, the dominant mode of variability in phase differences among lakes that 390 

were coherent with the landscape on long timescales was between a time-lagged positive and a 391 

time-lagged negative effect. Negative effects of terrestrial primary productivity on aquatic 392 

primary productivity could reflect dissolved organic carbon (DOC) loading; DOC may inhibit 393 

photosynthesis by decreasing water clarity (Karlsson and others 2009; Solomon and others 394 

2015). In our analyses time-lagged negative relationships were associated with increasing 395 
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amounts of wetlands in the watershed and on the shoreline, and time-lagged positive 396 

relationships were associated with the more agricultural watersheds. DOC export to aquatic 397 

systems is associated with forests and wetlands (Gergel and others 1999; Canham and others 398 

2004), while agriculture can be a considerable source of nutrient runoff. The time lags between 399 

terrestrial and aquatic primary productivity may reflect both transport time, e.g., through slow 400 

pathways like groundwater, and the timing of biogeochemical transformations (Cardille and 401 

others 2007). For example, a typical pathway for DOC originating on land is for carbon to be 402 

fixed into leaves during the growing season, fall during autumn senescence, and decompose 403 

before entering the DOC pool.  404 

Surprisingly, we found little evidence that lake-landscape coherence depended on 405 

characteristics of lakes themselves. We considered a number of predictors characterizing lake 406 

morphometry (maximum depth, shoreline development ratio) and biogeochemistry (mean 407 

chlorophyll-a), but only mean chlorophyll-a was a relatively important predictor of any response 408 

variable. Taken together with our results on the importance of hydrologic connectedness and 409 

cv(NDVI) for lake-landscape coherence, it seems that lake-landscape coherence is largely 410 

imposed by the terrestrial landscape and mediated through flows of carbon and nutrients across 411 

the terrestrial-aquatic interface (Carpenter and others 1998; Buffam and others 2011).  412 

Insights from the study of spatial synchrony in population dynamics (Liebhold and others 413 

2004; Walter and others 2017) suggest that weather variation and climate oscillations should be 414 

important in coupling these dynamics, in a sort of cross-ecosystem “Moran effect” (Moran 415 

1953). Indeed, spatially synchronous weather has been inferred to synchronize dynamics across 416 

lakes (Magnuson and others 1990; Baines and others 2000; Pace and Cole 2002; Pham and 417 

others 2008; Rusak and others 2008) and drive spatial synchrony in terrestrial primary 418 
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production (Koenig and Knops 1998; Wettstein and others 2011; Shestakova and others 2016; 419 

Defriez and Reuman 2017). However, weather may not synchronize lakes at the regional spatial 420 

extent of our study (Soranno and others 2019), and weather does not seem commonly to directly 421 

synchronize lakes with the landscape, at least on multi-annual timescales. While we did not 422 

explicitly test for weather drivers of coherence, the relative predominance of phase-lagged 423 

coherences—particularly at long timescales—and the relatedness of hydrologic connectedness to 424 

spatial variation in coherence between lakes and the landscape suggest that the proximal 425 

mechanisms of lake-landscape coherence likely have more to do with nutrient and organic matter 426 

subsidies from the landscape to the lake, than shared environmental forcing operating similarly, 427 

but separately and simultaneously on the lake and the landscape. This is in contrast to spatial 428 

synchrony in population dynamics, where climate can synchronize populations over large areas, 429 

even with little or no dispersal between them (Liebhold and others 2004). Other studies of cross-430 

ecosystem synchrony between terrestrial and marine ecosystems have found climate to be an 431 

important driver (Ong and others 2016; Black and others 2018), but the relative magnitude of 432 

inputs from the land to lakes is likely larger than from the land to the ocean. 433 

The magnitude of lake-landscape coherence was entirely uncorrelated across timescales, 434 

affirming the power of our timescale-specific approach. Standard approaches based on 435 

correlation or regression would not have uncovered this pattern, and would have been 436 

confounded by the strong differences between short and long timescales. Importantly, this also 437 

suggests that different underlying mechanisms are responsible for short- versus long-timescale 438 

coherence between lakes and the landscape. Particular mechanisms have characteristic 439 

timescales of variation and tend manifest on those same timescales, as has been shown in studies 440 

of population spatial synchrony (Sheppard and others 2016; Anderson and others 2019) and 441 
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inferred for some studies of synchrony in lakes (Baines and others 2000; Pace and Cole 2002). 442 

Although variables associated with hydrologic connectedness tended to explain among-lake 443 

variation in lake-landscape coherence, specifically what mechanisms are at play are not yet 444 

known. For example, the role of “flashy” events, such as storms resulting in overland flows and 445 

relatively high flow rates through riverine systems, versus slow-but-consistent processes like 446 

groundwater recharge, is unclear, but could be resolved by studying time series with sub-annual 447 

intervals between observations.  448 

Our conclusions are limited by data drawn from a biased set of lakes (Stanley and others 449 

2019) with relatively short time series of error-prone indicator variables. Despite these 450 

limitations, we believe it would be inappropriate to dismiss evidence for lake-landscape 451 

coherence on these grounds. We chose NDVI and lake chlorophyll-a as indices of primary 452 

productivity because of their relative availability. Other measures, such as from eddy covariance 453 

for terrestrial ecosystems (Vesala and others 2006; Aubinet and others 2012) and in-situ 454 

measurements of oxygen dynamics and carbon fixation for lakes provide more direct 455 

measurements of primary productivity. However, their limited availability made them ill-suited 456 

to the goals of this study. Satellite remote sensing of lake water quality can enable study of 457 

additional lakes, but the need for calibration data (Ross and others 2019) and cloud cover mean 458 

that remotely-sensed time series would have similar limitations to our dataset. Additionally, 459 

while our time series are near the lower length limits where wavelet analyses can be reasonably 460 

applied, our data are among the longest records that currently exist, and requiring longer time 461 

series would have substantially reduced the number of lakes in the study, hindering our goals. 462 

Considering the limited statistical power afforded by our short time series and potential for 463 

observation error, the detection of strong relationships is meaningful.  464 
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This study provides evidence of wide variation in the coupling of temporal ecosystem 465 

dynamics between lakes and the landscapes they are embedded in, and provides a springboard 466 

for future work leveraging temporal pattern to understand causes and consequences of coupling 467 

between lakes and the landscape. Although further research is needed to clarify the specific 468 

mechanisms of temporal coherence between lakes and the landscape, variables associated with 469 

hydrologic connectedness explained substantial spatial variation in lake-landscape coherence, 470 

suggesting that cross-ecosystem flows may commonly be a proximal mechanism. Based on 471 

analogs with synchrony in populations and communities, and observations of coastal systems 472 

(Ong and others 2016; Black and others 2018; Lara and others 2019) we expected that shared 473 

climatic fluctuations could induce synchrony between lakes and the landscapes, but this does not 474 

seem prevalent. Finally, this study affirms that multi-annual dynamics, which particularly in 475 

aquatic ecosystems are less well understood compared to seasonal and short-term trends 476 

(Wilkinson and others 2020), exhibit rich patterns, and that their investigation can lead to new 477 

insights into ecosystem dynamics. 478 
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Figure Captions 718 

Figure 1: Illustration of timescale-specific relationships between two variables (a) and different 719 

phase relationships (b-d). In (a) the blue and green signals are perfectly positively correlated on 720 

short timescales and perfectly negatively correlated at long timescales; this relationship would be 721 

confounded by standard correlation. In (b), fluctuations are in-phase (ϕ = 0), corresponding to 722 

positive correlation; in (c), fluctuations are temporally lagged, with the green signal peaking 723 

ahead of the blue signal (ϕ = π/2); in (d) fluctuations are anti-phase (ϕ = π), corresponding to 724 

negative correlation. 725 

 726 

Figure 2: Distributions of coherence magnitudes (a, b) and phase differences (c, d) at short 727 

timescales (2-4 years; panels a, c) and at long timescales (>4 years; panels b, d). In (c, d), 728 

frequency is proportional to radius length.  729 

 730 

Figure 3: Map of lakes included in this study by short-timescale coherence between chlorophyll-731 

a and NDVI. Black outlines indicate statistically significant coherence. See Figure S2 for long 732 

timescales.  733 

 734 

Figure 4: Variable importance values (in descending order) from conditional random forest 735 

analyses of among lake variability in the coherence magnitude (a, c) and phase difference (b, d) 736 

between primary productivity in lakes and the landscape. Results for short timescales (2-4 years) 737 

are shown in panels a, b; those for long timescales (>4 years) in panels c, d. Wetland variables 738 

are drawn in brown; lake variables are in blue; terrestrial vegetation variables are colored in blue; 739 

climate and atmospheric deposition variables are in white; and variables not fitting these 740 
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categories are in grey.  741 

 742 

Figure 5: GAM partial effect plots depicting effects of top predictors on (a-c) short timescale 743 

coherence; (d-f) cosine-transformed short-timescale phase difference; (g-i) long timescale 744 

coherence; (j-l); sine-transformed long-timescale phase difference. Models explained, 745 

respectively, 14.6%, 20.9%, 13.5%, and 31.9% of deviance in the response variable. Grey 746 

regions indicate ± 2 standard errors. 747 

 748 

Figure 6: Diagram of hypothesized mechanisms underpinning lake-landscape coherence results. 749 

(1) Weather may cause shared, independent effects on terrestrial and aquatic primary production 750 

leading to in-phase or anti-phase coherence. (2) Dissolved organic matter from terrestrial 751 

primary production may carry nutrients that stimulate aquatic primary production or decrease 752 

light availability in lakes. Land cover shapes the quantity and quality of terrestrial dissolved 753 

organic matter delivered to lakes; flow paths and terrestrial decomposition contribute to time 754 

(phase) lagged effects. (3) The form and magnitude of nutrient loading from the watershed in to 755 

lakes is influenced by land use. Nutrients that stimulate production in the watershed can also 756 

stimulate primary production in the lake at a phase lag based on the bioavailability of the 757 

exogenous inputs and the timing of delivery to the receiving aquatic ecosystem. (4) Wetlands 758 

modify the coherence between lakes and the landscape by altering flow paths. Wetlands retain 759 

water that would otherwise be immediately delivered downstream and process nutrients and 760 

dissolved organic matter, altering the quality and quantity of material delivered downstream. (5) 761 

Lake characteristics such as the size, depth, and food web structure potentially modify these 762 

influences. Artwork attribution: graphics from Integration and Application Network, University 763 



 34 

of Maryland Center for Environmental Science (ian.umces.edu/imagelibrary/); pine tree by 764 

Tracey Saxby, corn stalk by Jane Thomas, pondweed by Dieter Tracy, carp by Kate Moore, and 765 

largemouth bass and Daphnia by Kim Kraeer and Lucy Van Essen-Fishman.  766 
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