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Abstract
In this paper, we propose a class of adaptive multiresolution (also called adaptive sparse
grid) discontinuous Galerkin (DG) methods for simulating scalar wave equations in second
order form in space. The two key ingredients of the schemes include an interior penalty DG
formulation in the adaptive function space and two classes of multiwavelets for achieving
multiresolution. In particular, the orthonormal Alpert’s multiwavelets are used to express
the DG solution in terms of a hierarchical structure, and the interpolatory multiwavelets
are further introduced to enhance computational efficiency in the presence of variable wave
speed or nonlinear source. Some theoretical results on stability and accuracy of the proposed
method are presented. Benchmark numerical tests in 2D and 3D are provided to validate the
performance of the method.

Keywords Sparse grid · Multiresolution · Interior penalty discontinuous Galerkin method ·
Wave equation · Adaptivity

1 Introduction

Wave propagation, governed by the wave equation, is ubiquitous in science and engineering,
such as soundwaves, lightwaves, andwaterwaves propagating in acoustics, electromagnetics
and geoscience. Designing efficient and robust numerical methods to solve the wave equation
is of fundamental and practical importance in those applications. The goal of this work
is to design a class of numerical solvers that are adaptive, high order accurate, and more
importantly, work efficiently in high dimensions. In particular, we develop a class of adaptive
multiresolution (also called adaptive sparse grid) discontinuous Galerkin (DG) method for
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the following model second-order wave equation

utt = ∇ · (c2(x)∇u) + f (1.1)

on the bounded domain � = [0, 1]d in arbitrary d dimensions, subject to initial conditions

u(x, 0) = u0(x), ut (x, 0) = v0(x). (1.2)

We assume that the wave speed c(x) is piecewise smooth and bounded below and above
uniformly, i.e., 0 < C∗ ≤ c2(x) ≤ C∗ < ∞ . For simplicity, we only consider periodic,
Dirichlet and Neumann boundary conditions in this paper. Extensions to more complicated
domains and other types of boundary conditions will be considered in the future work.

Avast amount of numericalmethods have been developed in the literature on the numerical
approximations of the wave equation, including finite difference discretization [16,23,24,36],
spectral and spectral element discretization [18,33,38] and finite element discretization [1,
29], to name a few. As a special class of finite element discretization, the DG methods
[15,32] have become very popular recently in approximating partial differential equations
(PDEs) due to their distinguished advantages in handling geometry, boundary conditions
and accommodating adaptivity. In the context of the wave simulations, DG methods have
been successfully developed for simulating wave equations in first-order form [25,30,40],
second-order form [3,13,20,41], and with hp-adaptivity [17]. In this paper, we utilize the
symmetric interior penalty DG (IPDG) method [4] for wave equation in second order form
[20], though our framework can work with other types of DG schemes.

Adaptivity is crucial for efficient simulations of the wave equation due to the multiscale
nature of the solution structures. The well-known adaptive mesh refinement (AMR) [6,7]
adjusts the computational grid adaptively to track small scale features of the underlying
problems, improving computational efficiency significantly. AMR has been incorporated in
various software framework and packages to simulate wave propagation with great success
[9,11]. In contrast, this paper considers adaptive simulations in the multiresolution sense.
The main idea of multiresolution analysis (MRA) [31] is to explore mesh hierarchy, which
induces nested polynomial approximation spaces to accelerate the computation and in the
mean time circumvents the need for a posteriori error indicators. MRA is also the foundation
of sparse grid methods [10], which is known as a popular dimension reduction technique for
solving high dimensional problems. As a continuation of our previous research for adaptive
multiresolution (also called adaptive sparse grid) DG methods [22,27] for first order equa-
tions, this paper develops an adaptive multiresolution IPDG solver for 2D and 3D scalar
wave equations (1.1). In particular, we employ the Alpert’s multiwavelets as the DG bases in
the IPDG formulation, following the approach proposed in [21,22,39] for linear equations,
together with the interpolatory multiwavelets for efficiently computing variable wave speed
problems as done in [27] for nonlinear hyperbolic conservation laws. We refer the readers
to [27] for more details on the background of adaptive multiresolution DG methods [12,26].
It is worth noting that a fast matrix-vector multiplication algorithm [34,42] is essential for
efficient implementation of the method with varying wave speed. We conducts error analysis
for the semi-discrete formulation for the scheme with and without interpolations. First, when
the sparse grid piecewise polynomial space of degree k is employed in the IPDG formulation
as in [39], the newly proposed method converges with order k and a polylogarithmic factor
in the energy norm for sufficiently smooth problems with constant coefficients. Second, in
the case of smooth problems with variable coefficients, the proposed interpolatory technique
ensures a high order local truncation error and hence preserve the original accuracy of the
scheme given sufficient high order accuracy of interpolation. Numerical experiments in 2D
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and 3D verify the accuracy of the methods. In particular, the adaptive scheme is demonstrated
to capture the fine scale structure presented in inhomogeneous media.

The rest of the paper is organized as follows. In Sect. 2, we review Alpert’s and inter-
polatory multiwavelets. Section 3 describes the numerical schemes with details on some
theoretical results and implementations. Section 4 contains numerical examples. In Sect. 5,
we make conclusions and discuss future work. Appendix collects detailed formulas of inter-
polatory multiwavelets used in this paper.

2 MRA andMultiwavelets

In this section, we first review the L2 orthonormal Alpert’s multiwavelets [2] and the sparse
grid DG finite element space [21,39]. Next, we review the interpolatory multiwavelets pro-
posed in [37], which has been used for the calculation of nonlinear conservation laws in
[27].

2.1 Alpert’s Multiwavelets

In this subsection, we review the construction of sparse grid DG finite element space based
on Alpert’s multiwavelets [2]. For a unit domain � = [0, 1] in 1D, we define a set of nested
grids, where the n-th level grid �n consists of 2n uniform cells

I jn = (2−n j, 2−n( j + 1)], j = 0, . . . , 2n − 1

for n ≥ 0. For notational convenience, we also denote I−1 = [0, 1]. The piecewise poly-
nomial space of degree at most k ≥ 1 on the n-th level grid �n for n ≥ 0 is denoted
by

V k
n := {v : v ∈ Pk(I jn ), ∀ j = 0, . . . , 2n − 1}. (2.1)

Because of the nested structure

V k
0 ⊂ V k

1 ⊂ V k
2 ⊂ V k

3 ⊂ · · · ,

we define the multiwavelet subspace Wk
n , n = 1, 2, . . . as the orthogonal complement of

V k
n−1 in V k

n with respect to the L2 inner product on [0, 1], i.e.,

V k
n−1 ⊕ Wk

n = V k
n , Wk

n ⊥ V k
n−1.

Denote Wk
0 := V k

0 , we have V
k
n = ⊕

0≤l≤n W
k
l . A set of orthonormal basis can be defined

on Wk
l as follows. When l = 0, the basis v0i,0(x), i = 0, . . . , k are the normalized shifted

Legendre polynomials in [0, 1]. When l > 0, the Alpert’s orthonormal multiwavelets are
employed [2] as the bases and denoted by

v
j
i,l(x), i = 0, . . . , k, j = 0, . . . , 2l−1 − 1.

We then follow a tensor-product approach to construct the hierarchical finite element space
in multi-dimensional space. Denote l = (l1, · · · , ld) ∈ N

d
0 as the mesh level in a multivariate

sense, where N0 denotes the set of nonnegative integers, we can define the tensor-product
mesh grid �l = �l1 ⊗ · · · ⊗ �ld and the corresponding mesh size hl = (hl1 , · · · , hld ).
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Based on the grid �l, we denote I jl = {x : xm ∈ (hm jm, hm( jm + 1)),m = 1, · · · , d} as an
elementary cell, and

Vk
l := {v : v ∈ Qk(I jl ), 0 ≤ j ≤ 2l − 1} = V k

l1,x1 × · · · × V k
ld ,xd

as the tensor-product piecewise polynomial space, where Qk(I jl ) represents the collection of

polynomials of degree up to k in each dimension on cell I jl . If we use equal mesh refinement
of size hN = 2−N in each coordinate direction, the grid and space will be denoted by�N and
Vk

N , respectively. Based on a tensor-product construction, the multi-dimensional increment
space can be defined as

Wk
l = Wk

l1,x1 × · · · × Wk
ld ,xd .

The basis functions in multi-dimensions are defined as

v
j
i,l(x) :=

d∏

m=1

v
jm
im ,lm

(xm), (2.2)

for l ∈ N
d
0 , j ∈ Bl := {j ∈ N

d
0 : 0 ≤ j ≤ max(2l−1 − 1, 0)} and 1 ≤ i ≤ k + 1. The

orthonormality of the bases can be easily verified.
Using the notation of

|l|1 :=
d∑

m=1

lm, |l|∞ := max
1≤m≤d

lm .

and the same component-wise arithmetic operations and relations as defined in [39], we reach
the decomposition

Vk
N =

⊕

|l|∞≤N
l∈Nd

0

Wk
l . (2.3)

On the other hand, a standard choice of sparse grid space [21,39] is

V̂k
N =

⊕

|l|1≤N
l∈Nd

0

Wk
l ⊂ Vk

N . (2.4)

We skip the discussions on the details with regard to the property of the space, but refer the
readers to [21,39]. In Sect. 3, we will describe the adaptive scheme which adapts a subspace
of Vk

N according to the numerical solution, hence offering more flexibility and efficiency.

2.2 Interpolatory Multiwavelets

Alpert’s multiwavelets described in Sect. 2.1 are associated with the L2 projection operator.
The idea of interpolatory multiwavelet bases [37] is based on interpolation operators and is
essential for the computation of variable coefficient problems. In this work, only Lagrange
interpolation is considered, while we note that Hermite interpolation can be used. The details
are provided below.

We define the set of interpolation points on the interval I = [0, 1] at mesh level 0 by
X0 = {xi }Mi=0 ⊂ I . Here, the number of points in X0 is (M + 1). We defer the discussion of
the relations between M and k to Sect. 3.2.
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The interpolation points at mesh level n ≥ 1, Xn can be obtained correspondingly as

Xn = {x j
i,n := 2−n(xi + j), i = 0, . . . , M, j = 0, . . . , 2n − 1}.

We require the points to be nested, i.e.

X0 ⊂ X1 ⊂ X2 ⊂ X3 ⊂ · · · . (2.5)

This can be achieved by requiring X0 ⊂ X1.
Given the nodes, we define the basis functions on the zeroth level grid as Lagrange

interpolation polynomials of degree ≤ M which satisfy the property:

φi (xi ′) = δi i ′ ,

for i, i ′ = 0, . . . , M . It is easy to see that span{φi , i = 0, . . . , M} = V M
0 . With the basis

function at mesh level zero, we can define the basis functions at mesh level n ≥ 1:

φ
j
i,n := φi (2

nx − j), i = 0, . . . , M, j = 0, . . . , 2n − 1

which form a complete basis set for V M
n .

We now introduce the hierarchical representations and the interpolatory multiwavelets.
Define X̃0 := X0 and X̃n := Xn\Xn−1 for n ≥ 1, then we have the decomposition

Xn = X̃0 ∪ X̃1 ∪ · · · ∪ X̃n .

Denote the points in X̃1 by X̃1 = {x̃i }Mi=0. Then the points in X̃n for n ≥ 1 can be represented
by

X̃n = {x̃ j
i,n := 2−(n−1)(x̃i + j), i = 0, . . . , M, j = 0, . . . , 2n−1 − 1}.

For notational convenience, we let W̃ M
0 := V M

0 . The increment function space W̃ M
n for

n ≥ 1 is introduced as a function space that satisfies

V M
n = V M

n−1 ⊕ W̃ M
n , (2.6)

and is defined through the multiwavelets ψi ∈ V M
1 that satisfies

ψi (xi ′) = 0, ψi (x̃i ′) = δi,i ′ ,

for i, i ′ = 0, . . . , M . Then W̃ M
n is given by

W̃ M
n = span{ψ j

i,n, i = 0, . . . , M, j = 0, . . . , 2n−1 − 1}
where ψ

j
i,n(x) := ψi (2n−1x − j).

The multi-dimensional construction follows similar lines as in Sect. 2.1. We let

W̃M
l = W̃ M

l1,x1 × · · · × W̃ M
ld ,xd ,

then

VM
N =

⊕

|l|∞≤N
l∈Nd

0

W̃M
l ,

while the sparse grid approximation space is

V̂M
N =

⊕

|l|1≤N
l∈Nd

0

W̃M
l .
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Note that the construction by Alpert’s multiwavelet and the interpolatory multiwavelet gives
the same sparse grid space because of the same nested structure. Finally, the interpolation
operator in multidimension is defined as IM

N : C(�) → VM
N :

IM
N [ f ](x) =

∑

|n|∞≤N
0≤j≤max(2n−1−1,0)

0≤i≤M

bji,nψ
j
i,n(x),

where the multi-dimensional basis functions ψ
j
i,n(x) are defined in the same approach as

(2.2) by tensor products:

ψ
j
i,n(x) :=

d∏

m=1

ψ
jm
im ,nm

(xm). (2.7)

For the sparse grid space V̂M
N or any adaptively chosen subspace of VM

N , the interpolation
operator, which is denoted by Ih in later sections, can be defined accordingly, by taking
only multiwavelet basis functions that belong to that space. For completeness, we collect the
detailed formulas of the interpolation points and the associated interpolatory multiwavelets
used in this work in the Appendix.

3 Adaptive Multiresolution DG Scheme

In this section, we construct our numerical schemes for d-dimensional wave equation (1.1).
We start by reviewing the semi-discrete IPDG formulation and its properties in Sect. 3.1. For
variable wave speed, schemes with multiresolution interpolation are described in Sect. 3.2.
Time stepping, adaptivity and fast implementations are discussed in Sects. 3.3 and 3.4.

3.1 Semi-Discrete Scheme

We use the IPDG formulation [20] for solving (1.1). Namely, we look for uh ∈ V, such that
for any test function v ∈ V,

∫

�

(uh)t tv dx + B(uh, v) = L(v). (3.1)

where the bilinear form is defined as

B(uh, v) =
∫

�

c2∇uh · ∇v dx −
∑

e∈�

∫

e
{c2∇uh} · [v] ds −

∑

e∈�

∫

e
{c2∇v} · [uh] ds

+
∑

e∈�

σ

hN

∫

e
[uh] · [v] ds (3.2)

and

L(v) =
∫

�

f v dx (3.3)

for periodic or homogeneous Dirichlet boundary condition, and

L(v) =
∫

�

f vdx +
∑

e∈�D

∫

e
(−c2∇v · n + σ

hN
v)gDds +

∑

e∈�N

∫

e
gNvds (3.4)
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for Dirichlet and Neumann boundary conditions u(x, t)|x∈�D = gD and ∇u(x, t) ·n|x∈�N =
gN . � is the union of the boundaries for all the elements in the partition �N , and σ is the
penalty parameter depending on the dimension d. The average and jump are defined as,

[q] = q−n− + q+n+, {q} = 1

2
(q− + q+),

[q] = q− · n− + q+ · n+, {q} = 1

2
(q− + q+). (3.5)

where n is the unit normal. ‘-’ and ‘+’ represent that the directions of the vector point to
interior and exterior at e respectively. If e is part of the boundary, then we let [q] = qn (n is
the outward unit normal) and {q} = q.

Depending on the choice of space V, various IPDG methods with distinct properties are
obtained. If V = Vk

N , we recover the IPDG scheme in [20] on tensor-product meshes.

If V = V̂k
N , then we obtain the sparse grid IPDG method. If V is chosen adaptively as

described in Sect. 3.3, we have the adaptive multiresolution scheme. Note that besides the
IPDG formulation, other DG formulations can be used as well, such as the local DG method
[13] and the energy-based DG method [3]. The main novelty of this work is the choice of
the multiresolution polynomial space which is not tied specifically to the weak formulation
in use.

For completeness, we now review some properties of the semi-discrete IPDG scheme
(3.1). Define the discrete energy of wave propagation by

Eh(t) := 1

2

∥
∥
∥
∥
∂uh
∂t

∥
∥
∥
∥

2

+ 1

2
B(uh, uh), (3.6)

Then the stability inherently holds true since the bilinear form B(·, ·) is symmetric and
coercive:

Theorem 3.1 (Energy stability [20]) The discrete energy (3.6) is conserved by semi-discrete
DG scheme (3.1)–(3.3) when f = 0 with periodic boundary condition for arbitrary choice
of space including V = Vk

N and V = V̂k
N .

We then review some results in the error estimates [20], and extend it to the sparse grid
method with V = V̂k

N based on the approximation properties of the space V̂k
N in [21]. We

use ‖ · ‖ to represent the standard L2 norm on � or �N , ‖ · ‖L2(�) to represent the L
2 norm

on the collection of the cell interfaces of the mesh �N : �, and define the energy norm of a
function v ∈ H2(�N ) as

|||v|||2 :=
∫

�

|∇v|2 dx +
∑

e∈�

hN

∫

e

{
∂v

∂n

}2

ds +
∑

e∈�

1

hN

∫

e
[v]2 ds. (3.7)

Some basic properties of the bilinear operator B(·, ·) are listed below.

Lemma 3.2 (Boundedness [4,5]) There exists a positive constant Cb, depending only on
C∗, σ , such that

|B(w, v)| ≤ Cb|||w||| · |||v|||, ∀ w, v ∈ H2(�N ).

Lemma 3.3 (Coercivity [4,5]) When σ is taken large enough, there exists a positive constant
Cs depending only on C∗, such that

B(v, v) ≥ Cs |||v|||2, ∀ v ∈ V̂k
N .
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Then we arrive at the following error estimate.

Theorem 3.4 (Error estimate in energy norm for sparse grid IPDG method) Let u be the
solution of (1.1)–(1.2) satisfying u ∈ L∞(0, T ;Hp+1(�)), ut ∈ L∞(0, T ;Hp+1(�)), utt ∈
L1(0, T ;Hp(�)). uh is the semi-discrete DG solution obtained by (3.1)–(3.3) withV = V̂k

N
and the initial condition uh(0) = Pu0 and (uh)t (0) = Pv0, whereP denotes the L2 projection
of a function onto the space V̂k

N . Then for k ≥ 1 and any 1 ≤ q ≤ min{p, k}, the error
e = uh − u satisfies the estimation

||et ||L∞(0,T ;L2(�)) + sup
t∈[0,T ]

|||e||| ≤ C(||et (0)|| + |||e(0)|||)

+ C
∣
∣log2 hN

∣
∣d hqN

(|u|L∞(0,T ;Hq+1(�)) + T |ut |L∞(0,T ;Hq+1(�)) + |utt |L∞(0,T ;Hq (�))

)

(3.8)

where the dimension d ≥ 2. | · |Hq+1(�) denotes mixed derivative norm of a function and was
defined in [21]. Here and below, C denotes a generic constant that does not depend on hN

or the solution u.

Proof Following [20], we let V(h) = H1(�) + V̂k
N , and for any v ∈ V(h), we define the

lifted function Lc(v) ∈ (V̂k
N )d by requiring

∫

�

Lc(v) · wdx =
∑

e∈�

∫

e
[v] · {c2w}ds, w ∈ (V̂k

N )d . (3.9)

Using similar arguments as in Lemma 4.3 in [20], we conclude the lifting operator Lc exists
and is stable in the DG norm. Then the auxiliary bilinear form can be introduced as

B̂(u, v) =
∫

�

c2∇u · ∇v dx −
∫

�

Lc(u) · ∇v ds −
∫

�

Lc(v) · ∇u ds

+
∑

e∈�

σ

hN

∫

e
[u] · [v] ds. (3.10)

B̂(u, v) can be viewed as an extension of the wave operator and bilinear form B(u, v) to the
space V(h) × V(h), since

B̂(u, v) = B(u, v) on V̂k
N × V̂k

N , (3.11)

B̂(u, v) =
∫

�

c2∇u · ∇vdx −
∫

∂�

(c2∇u)v · nds on H1(�) × H1(�). (3.12)

Moreover, it can be verified that

B̂(u, v) ≤ Cb|||u||| · |||v|||,
B̂(u, u) ≥ Cs |||u|||2. (3.13)

Similar to Lemma 4.5 in [20], e satisfies the equation

(ett , v) + B̂(e, v) = rh(u, v), ∀v ∈ V̂k
N (3.14)

where

rh(u, v) =
∑

e∈�

∫

e
[v] · {c2∇u − c2P(∇u)}ds. (3.15)
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Therefore, we will have

1

2

d

dt
[||et ||2 + B̂(e, e)] = (ett , et ) + B̂(e, et )

= (ett , (u − Pu)t ) + B̂(e, (u − Pu)t ) + rh(u, (Pu − uh)t ).
(3.16)

Integrating (3.16) over [0, s] for any s ∈ [0, T ] yields
1

2
||et (s)||2 + 1

2
B̂(e(s), e(s)) = 1

2
||et (0)||2 + 1

2
B̂(e(0), e(0)) +

∫ s

0
(ett , (u − Pu)t )dt

+
∫ s

0
B̂(e, (u − Pu)t )dt +

∫ s

0
rh(u, (Pu − uh)t )dt . (3.17)

Because
∫ s

0
(ett , (u − Pu)t )dt = −

∫ s

0
(et , (u − Pu)t t )dt + [(et , (u − Pu)t )]t=s

t=0, (3.18)

and the inequalities (3.13) hold, together with Holder’s inequalities, we will have

1

2
||et (s)||2 + 1

2
Cs |||e(s)|||2 ≤ 1

2
||et (0)||2 + 1

2
Cb|||e(0)|||2

+ ||et ||L∞(0,T ;L2(�))(||(u − Pu)t t ||L1(0,T ;L2(�))

+ 2||(u − Pu)t ||L∞(0,T ;L2(�)))

+ CbT |||e||| · |||(u − Pu)t |||

+
∣
∣
∣
∣

∫ T

0
rh(u, (Pu − uh)t )dt

∣
∣
∣
∣ . (3.19)

Since the inequality (3.19) holds for any s ∈ [0, T ], taking the maximum on [0, T ]will result
in

||et ||2L∞(0,T ;L2(�))
+ Cs ||e||2L∞(0,T ;V(h)) ≤ ||et (0)||2 + Cb|||e(0)|||2 + T1 + T2 + T3

(3.20)

where the short-hand notation ||e||L∞(0,T ;V(h)) := supt∈[0,T ] |||e||| is introduced, and
T1 = 2||et ||L∞(0,T ;L2(�))(||(u − Pu)t t ||L1(0,T ;L2(�)) + 2||(u − Pu)t ||L∞(0,T ;L2(�)))

(3.21)

T2 = 2CbT |||e||| · |||(u − Pu)t |||

T3 = 2

∣
∣
∣
∣

∫ T

0
rh(u, (Pu − uh)t )dt

∣
∣
∣
∣ .

Using the geometric-arithmetic mean inequality, and Lemma 3.2 in [21], we conclude

T1 ≤ 1

2
||et ||2L∞(0,T ;L2(�))

+ 2(||(u − Pu)t t ||L1(0,T ;L2(�)) + 2||(u − Pu)t ||L∞(0,T ;L2(�)))
2

(3.22)

≤ 1

2
||et ||2L∞(0,T ;L2(�))

+ 4||(u − Pu)t t ||2L1(0,T ;L2(�))
+ 16||(u − Pu)t ||2L∞(0,T ;L2(�))

≤ 1

2
||et ||2L∞(0,T ;L2(�))

+ C
∣
∣log2 hN

∣
∣2d h2qN (|utt |2L∞(0,T ;Hq (�)) + h2N |ut |2L2(0,T ;Hq+1(�))

).
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Similarly

T2 ≤ 1

4
Cs |||e|||2 + 4

C2
b

Cs
T 2|||(u − Pu)t |||2 (3.23)

≤ 1

4
Cs ||e||2L∞(0,T ;V(h)) + CT 2| log2 hN |2dh2q+2

N |ut |2L2(0,T ;Hq+1(�))
.

We then start to bound the term T3. From (3.15), we can derive

|rh(u, v)| = |
∑

e∈�

∫

e
[v] · {c2∇u − c2P(∇u)}ds| (3.24)

≤ (
∑

e∈�

∫

e

σ

hN
[v]2ds) 1

2 (
∑

e∈�

∫

e

hN

σ
|c2∇u − c2P(∇u)|2ds) 1

2

≤ C |||v|||(
∑

K∈�N

hN ||∇u − P(∇u)||2∂K )
1
2 ,

with hN = 1
2N

, using trace inequality and Lemma 3.2 in [21], we have

|rh(u, v)| ≤ C ||v||L∞(0,T ;V(h)) · ∣
∣log2 hN

∣
∣d hqN |u|L∞(0,T ;Hq+1(�)). (3.25)

Therefore,
∣
∣
∣
∣

∫ T

0
rh(u, vt )

∣
∣
∣
∣ =

∣
∣
∣
∣−

∫ T

0
rh(ut , v)dt + rh(u, v)|t=T

t=0

∣
∣
∣
∣ (3.26)

≤ CT ||v||L∞(0,T ;V(h))

∣
∣log2 hN

∣
∣d hqN |ut |L∞(0,T ;Hq+1(�))

+ 2C ||v||L∞(0,T ;V(h))

∣
∣log2 hN

∣
∣d hqN |u|L∞(0,T ;Hq+1(�)).

Denote R = T |ut |L∞(0,T ;Hq+1(�)) + 2|u|L∞(0,T ;Hq+1(�)), we will have

T3 ≤ 2CR
∣
∣log2 hN

∣
∣d hqN ||Pu − uh ||L∞(0,T ;V(h)) (3.27)

≤ 2CR
∣
∣log2 hN

∣
∣d hqN

[||e||L∞(0,T ;V(h)) + ||u − Pu||L∞(0,T ;V(h))

]

≤ 1

4
Cs ||e||2L∞(0,T ;V(h)) + C

∣
∣log2 hN

∣
∣2d h2qN

[
|u|2L∞(0,T ;Hq+1(�))

+ R2
]
.

Together with (3.20) and the estimates for T1, T2 and T3, we arrive at the estimate

1

2
||et ||2∞ + 1

2
Cs sup

t∈[0,T ]
|||e|||2 ≤ ||et (0)||2 + C |||e(0)|||2

+ C
∣
∣log2 hN

∣
∣2d h2qN (|utt |2L∞(0,T ;Hq (�)) + T 2|ut |2L∞(0,T ;Hq+1(�))

+ |u|2L∞(0,T ;Hq+1(�))
), (3.28)

and this completes the proof.

3.2 Semi-Discrete SchemewithMultiresolution Interpolation

To treat variable coefficient case, we follow the idea in [27,34] and interpolate the functions
c2uh and c2∇uh (or (c2)−∇uh and (c2)+∇uh in the case when c2(x) contains discontinuity
on the cell interfaces of �N ) by using the multiresolution Lagrange interpolation discussed
in Sect. 2.2. For simplicity of discussion, we only focus on the homogeneous Dirichlet
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boundary condition with no source term. However, similar results can be established for
mixed boundary conditions and also with source terms.

We first assume c = c(x) is continuous. In this case, we can reformulate (3.1) into an
equivalent form

B(uh, v) =
∫

�

c2∇uh · ∇v dx −
∑

e∈�

∫

e
{c2∇uh} · [v] ds −

∑

e∈�

∫

e
{∇v} · [c2uh] ds

+
∑

e∈�

σ

hN

∫

e
[uh] · [v] ds (3.29)

then the scheme is implemented by the modified operator with interpolation

B̃(uh, v) =
∫

�

Ih(c2∇uh) · ∇v dx −
∑

e∈�

∫

e
{Ih(c2∇uh)} · [v] ds −

∑

e∈�

∫

e
{∇v} · [Ih(c2uh)] ds

+
∑

e∈�

σ

hN

∫

e
[uh] · [v] ds (3.30)

Here, Ih(·) denote the interpolation operator defined in Sect. 2.2 with interpolation parameter
M to be specified later.

If c = c(x) is discontinuous along the cell interface, then some special care has to be
taken for the third term

∑
e∈�

∫
e{c2∇v} · [uh] ds. We first reformulate it into another form:

{c2∇v} · [uh]
= 1

2

(
(c2∇v)− + (c2∇v)+

) · (u−
h n

− + u+
h n

+)

= 1

2

(
(c2∇v)− · u−

h n
− + (c2∇v)− · u+

h n
+ + (c2∇v)+ · u−

h n
− + (c2∇v)+ · u+

h n
+)

= 1

2

(
(c2)−u−

h n
− · (∇v)− + (c2)−u+

h n
+ · (∇v)− + (c2)+u−

h n
− · (∇v)+ + (c2)+u+

h n
+ · (∇v)+

)

= 1

2
((c2)−u−

h n
− + (c2)−u+

h n
+) · (∇v)− + 1

2
((c2)+u−

h n
− + (c2)+u+

h n
+) · (∇v)+

= 1

2
[(c2)−uh] · (∇v)− + 1

2
[(c2)+uh] · (∇v)+.

Here [(c2)−uh] := ((c2)−u−
h n

− + (c2)−u+
h n

+) and [(c2)+uh] := ((c2)+u−
h n

− +
(c2)+u+

h n
+). Now the bilinear form (3.1) is rewriten into

B(uh, v) =
∫

�

c2∇uh · ∇v dx −
∑

e∈�

∫

e
{c2∇uh} · [v] ds

−
∑

e∈�

∫

e

(
1

2
[(c2)−uh] · (∇v)− + 1

2
[(c2)+uh] · (∇v)+

)

ds +
∑

e∈�

σ

hN

∫

e
[uh] · [v] ds

and then the interpolation operator is performed on c2∇uh , (c2)−uh and also (c2)+uh,which
gives:

B̃(uh , v) =
∫

�

Ih(c2∇uh) · ∇v dx −
∑

e∈�

∫

e
{Ih(c2∇uh)} · [v] ds (3.31)

−
∑

e∈�

∫

e

(
1

2
[Ih((c2)−uh)] · (∇v)− + 1

2
[Ih((c2)+uh)] · (∇v)+

)

ds +
∑

e∈�

σ

hN

∫

e
[uh ] · [v] ds.

Remark 3.5 One can also try to perform the interpolation on the coefficient c2. Actually, in
most applications, c2 only depends on x and does not change with time t . In this case, we only
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need to interpolate c2 once and thus save much computational cost. However, the evaluation
of the residual will be much more complicated, since there are two vectors of coefficients
here (the coefficients of c2 with the interpolation basis and ∇uh with the gradient of Alpert’s
basis) in the residual. The fast matrix-vector multiplication in Sect. 3.4 cannot be directly
applied here and some new fast algorithm needs to be used.

Following [14], we can now write the DG scheme with interpolation (3.31) into the semi-
discrete form as

d2uh
dt2

= Lh(uh), (3.32)

where Lh(u) is an operator onto V which is a discrete approximation of −∇ · (c2(x)∇u) and
satisfies

∑

K∈�N

∫

K
Lh(uh)vh dx = −

∫

�

Ih(c2∇uh) · ∇vh dx +
∑

e∈�

∫

e
{Ih(c2∇uh)} · [vh] ds

+
∑

e∈�

∫

e

(
1

2
[Ih((c2)−uh)] · (∇vh)

− + 1

2
[Ih((c2)+uh)] · (∇vh)

+
)

ds

−
∑

e∈�

σ

hN

∫

e
[uh] · [vh] ds (3.33)

for any vh ∈ V.
To preserve the accuracy of the original DG scheme, interpolation operator Ih(·) needs

to reach certain accuracy. Using similar techniques as in [14,28], we have the following
proposition on local truncation error of the sparse grid method with V = V̂k

N . We only
discuss the case when c(x) is discontinuous, since the similar approach can be applied when
c(x) is continuous.

Proposition 3.6 (Local truncation error analysis) If the interpolation operator Ih in (3.31)
has the accuracy of order

∣
∣log2 hN

∣
∣d hk+3

N for sufficiently smooth functions, then the local
truncation error of the semi-discrete DG scheme with interpolation (3.31) is of order
∣
∣log2 hN

∣
∣d hk+1

N . To be more precise, for sufficiently smooth function u, the sparse grid DG
method with interpolation (3.31) has the truncation error:

∥
∥Lh(u) + ∇ · (c2(x)∇u)

∥
∥
L2(�)

≤ C
∣
∣log2 hN

∣
∣d hk+1

N . (3.34)

Here, we use C to denote any generic constant that may depend on the solution u and c(x),
but does not depend on N .

Proof We denote the standard L2 projection operator onto the sparse grid DG finite element
space by P, then

∥
∥Lh(u) + ∇ · (c2(x)∇u)

∥
∥ ≤ e1 + e2, (3.35)

where

e1 := ∥
∥Lh(u) + P(∇ · (c2(x)∇u))

∥
∥ ,

and

e2 := ∥
∥P(∇ · (c2(x)∇u) − ∇ · (c2(x)∇u)

∥
∥
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The estimate for e2 can be obtained by projection properties [21]:

e2 ≤ C
∣
∣log2 hN

∣
∣d hk+1

N . (3.36)

To estimate e1, we consider any test function vh in DG space, and obtain
∑

K∈�N

∫

K
(Lh(u) + P(∇ · (c2(x)∇u))vh dx =

∑

K∈�N

∫

K
(Lh(u) + ∇ · (c2(x)∇u))vh dx

= −
∫

�

Ih(c2∇u) · ∇vh dx +
∑

e∈�

∫

e
{Ih(c2∇u)} · [vh] ds

+
∑

e∈�

∫

e

(
1

2
[Ih((c2)−u)] · (∇vh)

− + 1

2
[Ih((c2)+u)] · (∇vh)

+
)

ds −
∑

e∈�

σ

hN

∫

e
[u] · [vh] ds

+
∫

�

c2∇u · ∇vh dx −
∑

e∈�

∫

e
{c2∇u} · [vh] ds

−
∑

e∈�

∫

e

(
1

2
[(c2)−u] · (∇vh)

− + 1

2
[(c2)+u] · (∇vh)

+
)

ds +
∑

e∈�

σ

hN

∫

e
[u] · [vh] ds

= −
∫

�

(
Ih(c2∇u) − c2∇u

)
· ∇vh dx +

∑

e∈�

∫

e
{Ih(c2∇u) − c2∇u} · [vh] ds

+
∑

e∈�

∫

e

(
1

2
[Ih((c2)−u) − (c2)−u] · (∇vh)

− + 1

2
[Ih((c2)+u) − (c2)+u] · (∇vh)

+
)

ds

≤
∥
∥
∥Ih[c2∇u] − c2∇u

∥
∥
∥ ‖∇vh‖ +

∥
∥
∥Ih[c2∇u] − c2∇u

∥
∥
∥
L2(�h )

‖vh‖L2(�h )

+
∥
∥
∥Ih[c2∇u] − c2∇u

∥
∥
∥
L2(�h )

‖∇vh‖L2(�h )

≤ C
∣
∣log2 hN

∣
∣d hk+3

N h−1
N ‖vh‖ + Ch

− 1
2

N

∣
∣log2 hN

∣
∣d hk+3

N h
− 1

2
N ‖vh‖ + Ch

− 1
2

N

∣
∣log2 hN

∣
∣d hk+3

N h
− 3

2
N ‖vh‖

= C
∣
∣log2 hN

∣
∣d hk+1

N ‖vh‖ .

Here, we have used the multiplicative trace inequality and the inverse inequality, see e.g.
Lemma 2.1 and Lemma 2.3 in [28]. By taking vh = (Lh(u) + P(∇ · (c2(x)∇u)) in the
inequality above, we have

e1 = ∥
∥Lh(u) + P(∇ · (c2(x)∇u))

∥
∥ ≤ C

∣
∣log2 hN

∣
∣d hk+1

N . (3.37)

Combining (3.37) and (3.36), we have the estimate for the truncation error (3.34).

Remark 3.7 The proposition above indicates that, to preserve the order of the original scheme,
we should use M ≥ k + 2. For example, if we take piecewise linear polynomials for the DG
space, then it is required to apply cubic interpolation operator to treat the nonlinear terms.
From our numerical tests, however, this seems that it is not a necessary condition. To reach
the desired convergence rate, one only needs to take M ≥ k.

In Proposition 3.6,we only estimate the local truncation error, and this is far froma rigorous
error estimate that takes into account stability. Unlike the schemewith the symmetric bilinear
form B(uh, v) as in Theorem 3.1, the symmetry is lost in the interpolated bilinear form
B̃(uh, v). Hence, energy stability is not automatic. In numerical experiments, we observe
that the sparse grid DG method with Lagrange interpolation with only inner interpolation
points is unstable for polynomials of high degrees (see the numerical results in Table 5 in
Sect. 4). With the interpolation points at the interface, the sparse grid DG scheme is stable
and yields satisfactory convergence rate (see Table 6 in Sect. 4).
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3.3 Time Stepping and Adaptivity

For time discretizations, we first write the second order semi-discrete scheme (3.31)

(uh)t t = Lh(uh) (3.38)

into a first order system

(uh)t = wh,

(wh)t = Lh(uh),

and then appy the standard Runge–Kutta scheme. The reason why we use the one-step RK
method instead of the multistep method is that the maximum allowed time step size from
the CFL restriction may change with the adaptive mesh in different time steps. This would
result in additional computational cost in extrapolation or interpolation between different
time steps for the multistep methods. We remark that other types of one step method can also
be used but is not pursued in this work.

The adaptive scheme uses the procedure developed in [8,22] to determine the spaceV that
dynamically evolves over time. The method is very similar to those in [8,22], and the details
are omitted for brevity. The main difference is that we need to keep track of two sets of basis
functions corresponding to the same adaptive space are involved [27]. Another difference is
that the refinement and the coarsening criteria are determined by the L2 norms of both uh
and wh , which are both important for predicting solution profiles for wave equations. There
are some cases which start with a zero displacement u but a non-zero velocity ut . If we only
take the norms of uh as an indicator, the adaptive procedure will result in poor resolutions.
Only by considering the norms of both uh and wh , one can capture the profiles well.

3.4 Fast Algorithms

We now describe the fast matrix-vector multiplication algorithm, which is essential for
efficient implementation of our schemes. Because the multiwavelet bases are global, the
evaluation of the residual yields denser matrix than those obtained by standard local bases.
Efficient implementations are therefore essential to ensure that the computational cost is
on par with element-wise implementation of traditional DG schemes. This issue has been
also discussed in our work for conservation laws [27], which extends the fast matrix-vector
multiplication in [34,42] to adaptive index set.

Following [27,34], we consider matrix-vector multiplication in multi-dimensions in an
abstract framework.

fn =
∑

H(n′)≤0

f ′
n′ t

(1)
n′
1,n1

t (2)n′
2,n2

· · · t (d)

n′
d ,nd

, H(n) ≤ 0, (3.39)

where n = (n1, n2, . . . , nd) and n′ = (n′
1, n

′
2, . . . , n

′
d) can be thought of as the level of the

mesh, and t (i)n′
1,n1

= T (i)
n′
1,n1

represents the calculations in the i-th dimension. It is assumed that

the constraint function H = H(n′) = H(n′
1, n

′
2, . . . , n

′
d) is non-decreasing with respect to

each variable. This holds true for sparse grid (by taking H(n′) = |n′|1 − N ) and also for
adaptive multiresolution method.
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One can compute the sum (3.39) dimension-by-dimension, i.e. we first perform the trans-
formation in the x1 dimension:

g(1)
(n1,n′

2,...,n
′
d )

=
∑

H(n′
1,n

′
2,...,n

′
d )≤0

f ′
(n′

1,n
′
2,...,n

′
d )
t (1)n′

1,n1
, (3.40)

and then in the x2 dimension:

g(2)
(n1,n2,n′

3...,n
′
d )

=
∑

H(n1,n′
2,...,n

′
d )≤0

g(1)
(n1,n′

2,...,n
′
d )
t (2)n′

2,n2
, (3.41)

and all the way up to xd dimension:

f(n1,n2,n3...,nd ) =
∑

H(n1,n2,...,nd−1,n′
d )≤0

g(d−1)
(n1,n2,...,nd−1,n′

d )
t (d)

n′
d ,nd

. (3.42)

It can be proved that (3.40)-(3.42) is equivalent to the original summation (3.39), if assuming
that, for some integer 1 ≤ k ≤ d , T (i) for i = 1, . . . , k − 1 are strictly lower triangular
and T (i) for i = k + 1, . . . , d are upper triangular (or T (i) for i = 1, . . . , k − 1 are lower
triangular and T (i) for i = k+1, . . . , d are strictly upper triangular) [34]. Here, T (i) denotes
the i-th transformation matrix. When such properties for T (i) matrices are not true, one can
perform L +U split and (3.39) becomes:

fn=
∑

H(n′)≤0

f ′
n′(l

(1)
n′
1,n1

+ u(1)
n′
1,n1

)(l(2)n′
2,n2

+ u(2)
n′
2,n2

) · · · (l(d−1)
n′
d−1,nd−1

+u(d−1)
n′
d−1,nd−1

)t (d)

n′
d ,nd

, (3.43)

where there are in total 2d−1 terms that can be computed dimension-by-dimension. The
overall computational cost isO(2d−1 · DoF · N ) if the cost of one-dimensional transform is
log-linear, i.e.,O(N logN ) whereN denotes the DoF in one-dimension [34]. This assump-
tion holds true for our sparse grid DG scheme.

We apply this fast matrix-vector multiplication in several parts of our algorithm. We will
discuss the details about initialization, which is the procedure to project the initial value onto
the DG finite element space represented by multiwavelet bases. When the given initial value
is separable, i.e.,

u(x) =
d∏

i=1

ui (xi ), (3.44)

one just need to project each 1D function ui = ui (xi ) for i = 1, . . . , d onto 1D multiwavelet
bases and then we can easily get the projection of u(x). This approach naturally extends to
the case when the initial value is a summation of separable functions:

u(x) =
n∑

j=1

(

d∏

i=1

u j,i (xi )). (3.45)

However, if the function is non-separable, direct evaluation of L2 projection would result in
very large computational cost if using numerical quadratures in multi-dimensions. Rather,
we propose to apply the adaptive multiresolution interpolation introduced in [37] with appro-
priate error tolerance and approximate the solution using a collection of interpolation basis
functions:

uh(x) =
∑

(l,j)∈G,
1≤i≤k+1

bji,lψ
j
i,l(x) (3.46)
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with G the index of all active elements. Next we use the fast matrix-vector multiplication
(3.39) to transform coefficients of interpolation basis {bji,l} to coefficients of Alpert’s basis

{cji,l}:

uh(x) =
∑

(l,j)∈G,
1≤i≤k+1

cji,lv
j
i,l(x) (3.47)

In (3.39), fn and f ′
n′ represent {bji,l} and {cji,l}, respectively. The matrix t (i)n′

i ,ni
is the product

of 1D interpolation basis and 1D Alpert’s basis.
We apply similar approach in the multiresolution interpolation and the evaluation of the

right hand side of the weak formulation (3.31). We refer readers to [27] for details.

4 Numerical Examples

In this section, we perform numerical experiments to validate the performance of our scheme.
We consider 2D or 3D problems with computational domain being [0, 1]d with d = 2, 3. The
CFL number is taken to be 0.1 in 2D and 0.05 in 3D. The penalty parameter σ is taken to be 10
in 2D and 30 in 3D, unless otherwise stated. For the accuracy test, we check the convergence
order for Pk DG with k = 1, 2, 3 coupled with RK time discretization. In particular, for
k = 1, 2, we use the second and the third-order strong stability preserving Runge–Kutta
method [19,35], and for k = 3, we use the classical RK4 methods. All adaptive calculations
are obtained by k = 3 and RK4 time stepping. In the adaptive scheme, we take η = ε/10.
DoF=dim(Vk) refers to the number of Alperts’ multiwavelets basis functions in the adaptive
grids. The maximum mesh level N is taken to be 8, unless otherwise stated.

Example 4.1 (wave equation with constant coefficient) In this example, consider the d-
dimensional wave equation with a constant coefficient

utt =
d∑

i=1

uxi xi (4.1)

on the domain [0, 1]d . We take the exact solution to be

u(x, t) = sin(a
√
dπ t)

d∏

i=1

cos(aπxi )

with a being a constant and various types of boundary conditions.

(a) We take a = 2 and d = 2, 3 with periodic boundary conditions.
(b) We take a = 1 and d = 2, 3 and incorporate Dirichlet boundary condition in the x1-

direction and Neumann boundary in other directions.

Note that in this example, (3.1) is implemented with no interpolation because c is a
constant. To output the L2-error between the numerical solution uh and the exact solution
u(x), we use the fact that

∫

�

(uh − u)2dx =
∫

�

u2hdx − 2
∫

�

uhudx +
∫

�

u2dx .
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Table 1 Example 4.1(a): wave equation with constant coefficients, periodic boundary conditions, sparse grid
DG, k = 1, 2, 3, d = 2, 3, t = 0.1

N k = 1 N k = 2 N k = 3

L2-error Order L2-error Order L2-error Order

d = 2

5 5.90e−03 – 5 1.96e−04 – 3 2.80e−04 –

6 1.69e−03 1.81 6 3.03e−05 2.69 4 1.80e−05 3.96

7 4.66e−04 1.86 7 4.43e−06 2.77 5 1.48e−06 3.61

8 1.23e−04 1.92 8 6.21e−07 2.83 6 1.10e−07 3.76

d = 3

5 1.58e−02 – 5 7.38e−04 – 3 4.50e−04 –

6 8.66e−03 0.87 6 1.68e−04 2.14 4 8.02e−05 2.49

7 2.42e−03 1.84 7 3.03e−05 2.47 5 5.24e−06 3.94

8 8.41e−04 1.53 8 5.30e−06 2.51 6 5.30e-07 3.30

Table 2 Example 4.1(b): wave equation with constant coefficients, Dirichlet and Neumann boundary condi-
tions, sparse grid DG, k = 1, 2, 3, d = 2, 3, t = 0.1

N k = 1 N k = 2 N k = 3

L2-error Order L2-error Order L2-error Order

d = 2

3 3.30e−03 – 3 1.21e−04 – 1 4.51e−04 –

4 1.21e−03 1.44 4 1.79e−05 2.75 2 6.34e−05 2.83

5 2.94e−04 2.04 5 2.43e−06 2.89 3 8.30e−06 2.93

6 8.15e−05 1.85 6 3.41e−07 2.83 4 7.64e−07 3.44

d = 3

3 2.15e−02 – 3 2.14e−04 – 1 4.44e−04 –

4 7.06e−03 1.61 4 3.39e−05 2.66 2 3.66e−05 3.60

5 2.04e−03 1.79 5 5.13e−06 2.73 3 2.39e−06 3.94

6 5.27e−04 1.95 6 1.08e−06 2.24 4 1.23e−07 4.28

The first term
∫
�
u2hdx can be easily computed with the aid of the orthonormality of the

Alpert’s basis functions. The second term
∫
�
uhudx can be computed by the same fast

approach as the initial projection, which has been explained in detail in Sect. 3.4. The third
term

∫
�
u2dx can be computed analytically.

The numerical results obtained by sparse grid DG method are presented in Table 1 for
case (a) and in Table 2 for case (b). For both cases, the convergence order is slightly bigger
than k but smaller than k + 1, which is higher than the predicted rate in Theorem 3.4, but
similar to the results for linear transport equation in [21]. The numerical results with adaptive
method are shown in Tables 3 and 4. Similar to [22], we measure the convergence rates with
respect to DoF: RDoF and ε : Rε . We can clearly observe the effectiveness of the adaptive
algorithm, i.e. Rε is close to 1. The convergence order RDoF is bigger than k+1

d , which is the
rate obtained by an optimally convergent non-adaptive scheme.
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Table 3 Example 4.1(a): wave equation with constant coefficients, periodic boundary conditions, adaptive
sparse grid DG, k = 3

ε DoF L2-error RDoF Rε

d = 2

1e−1 128 1.25e−3 – –

1e−2 320 2.80e−4 1.63 0.65

1e−3 1088 2.61e−5 1.94 1.03

1e−4 1536 4.02e−6 5.43 0.81

d = 3

1e−1 896 2.16e−3 – –

1e−2 2432 4.74e−4 1.52 0.66

1e−3 5888 8.30e−5 1.97 0.76

1e−4 28,160 6.69e−6 1.61 1.09

Table 4 Example 4.1(b): wave equation with constant coefficients, Dirichlet and Neumann boundary condi-
tions, adaptive sparse grid DG, k = 3

ε DoF L2-error RDoF Rε

d = 2

1e−1 32 1.11e−3 – –

1e−2 112 6.35e−5 2.29 1.24

1e−3 208 1.70e−5 2.13 0.57

1e−4 384 2.35e−6 3.22 0.86

d = 3

1e−1 64 1.29e−3 – –

1e−2 640 3.71e−5 1.54 1.54

1e−3 1280 2.41e−5 0.62 0.19

1e−4 2368 3.12e−6 3.32 0.89

Example 4.2 (wave equation with smooth variable coefficient) This example tests wave equa-
tion with smooth variable coefficient

utt − ∇ · (c2(x)∇u) = f , (4.2)

on the computational domain [0, 1]d with d = 2, 3 and periodic boundary conditions.
For 2D case, we take

c2(x1, x2) = (cos(2πx1) cos(2πx2) + 2)/3, (4.3)

and the corresponding source term f = f (x1, x2, t) such that the exact solution is

u = sin(π t) sin(2πx1) cos(2πx2). (4.4)

For 3D case, we take

c2(x1, x2, x3) = (sin(2πx1) sin(2πx2) cos(2πx3) + 2)/3, (4.5)
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Table 5 Example 4.2: wave equation with smooth variable coefficients in 2D, sparse grid DG, Lagrange
interpolation with inner interpolation points, k = 1, 2, 3, t = 0.1

N M = 1 M = 2 M = 3

L2-error Order L2-error Order L2-error Order

k = 1

3 2.52e−02 – 2.55e−02 – 2.52e−02 –

4 1.68e−02 0.59 1.63e−02 0.64 1.63e−02 0.63

5 3.67e−03 2.19 3.37e−03 2.28 3.36e−03 2.28

6 9.43e−04 1.96 9.62e−04 1.81 8.33e−04 2.01

k = 2

3 1.64e−02 – 3.95e−03 – 4.73e−02 –

4 1.03e−02 0.67 7.89e−04 2.32 1.46e−01 -1.63

5 3.57e−03 1.53 7.80e−04 0.02 3.17e+02 -11.08

6 1.13e−02 −1.66 1.60e−01 −7.68 6.27e+10 −27.56

k = 3

3 5.28e−03 – 2.14e+03 – 5.13e+03 –

4 5.55e−02 −3.40 1.11e+10 −22.31 2.23e+09 −18.73

5 1.93e+03 −15.09 1.39e+24 −46.83 4.78e+21 −40.97

6 8.15e+20 −58.55 9.83e+56 −109.12 1.40e+51 −97.88

and the corresponding source term f = f (x1, x2, x3, t) such that the exact solution is

u = sin(π t) sin(2πx1) cos(2πx2) cos(2πx3). (4.6)

This problem needs to invoke the fast interpolation methods to handle the variable coeffi-
cient.Wefirst compare different choices of interpolation points.Weuse the inner interpolation
points in Table 5 for 2D. The interpolation points and the basis functions are listed in the
Appendix. When k = 1, the convergence order seems satisfactory. However, for k = 2, 3,
the scheme is unstable. If we use Lagrange interpolation with the interface points, one will
observe good convergence rate for M ≥ k, as shown in Table 6. We also find that the error is
almost the same for M = k + 1 and M = k + 2, and both much smaller than M = k. There-
fore, in applications, we recommend taking M = k + 1 for accuracy considerations. Notice
that this is a more relaxed condition from what is indicated by the local truncation analysis
Proposition 3.6. We also remark that for nonlinear conservation laws in [27], Lagrange inter-
polation is unstable even with interface points, and Hermite interpolation has to be employed.
However, for all numerical examples in this paper for linear wave equations with variable
coefficients, Lagrange interpolation with interface points yields a stable scheme, and we
choose to use this instead of Hermite interpolation due to its easier implementation.

For 3D cases, to save space, we only show numerical results with interface interpolation
points in Table 7, in which good convergence rate is also observed. The result using adaptive
method with k = 3 and M = 4 are presented in Table 8 for both 2D and 3D, and the
conclusions are similar to the constant coefficient case.

Example 4.3 (wave equation with discontinuous coefficients) In this example, we consider
wave equation with discontinuous coefficients. The jump of the coefficient aligns with the
cell interface on the fine mesh �N .
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Table 6 Example 4.2: wave equation with smooth variable coefficients in 2D, sparse grid DG, Lagrange
interpolation with interface interpolation points, k = 1, 2, 3, t = 0.1

N M = 2 M = 3 M = 4

L2-error order L2-error order L2-error order

k = 1

3 2.52e−02 – 2.52e−02 – 2.52e−02 –

4 1.65e−02 0.61 1.63e−02 0.63 1.63e−02 0.63

5 3.52e−03 2.23 3.36e−03 2.28 3.36e−03 2.28

6 9.52e−04 1.89 8.30e−04 2.02 8.27e−04 2.02

k = 2

3 2.69e−03 – 2.08e−03 – 2.08e−03 –

4 5.24e−04 2.36 4.38e−04 2.25 4.37e−04 2.25

5 1.25e−04 2.07 7.58e−05 2.53 7.58e−05 2.53

6 1.64e−05 2.93 1.16e−05 2.71 1.16e−05 2.71

k = 3

3 2.92e−04 – 9.28e−05 – 8.75e−05 –

4 2.66e−05 3.46 1.05e−05 3.15 1.03e−05 3.09

5 3.04e−06 3.13 7.80e−07 3.74 7.68e−07 3.74

6 1.83e−07 4.05 5.10e−08 3.94 5.03e−08 3.93

Table 7 Example 4.2: wave equation with smooth variable coefficients in 3D, sparse grid DG, Lagrange
interpolation with interface interpolation points, k = 1, 2, 3, t = 0.1

N M = 1 M = 2 M = 3

L2-error Order L2-error order L2-error Order

k = 1

3 1.17e−01 – 1.17e−01 – 1.17e−01 –

4 2.20e−02 2.41 2.20e−02 2.41 2.20e−02 2.41

5 1.74e−02 0.34 1.71e−02 0.36 1.71e−02 0.36

6 4.65e−03 1.90 4.52e−03 1.92 4.51e−03 1.92

k = 2

4 2.96e−03 – 1.58e−03 – 1.58e−03 –

5 7.78e−04 1.93 3.28e−04 2.27 3.27e−04 2.27

6 2.93e−04 1.41 6.58e−05 2.32 6.58e−05 2.32

7 3.88e−05 2.92 1.15e−05 2.52 1.15e−05 2.52

k = 3

3 8.96e−04 – 3.88e−04 – 3.17e−04 –

4 2.05e−04 2.13 3.58e−05 3.44 2.19e−05 3.85

5 4.87e−05 2.07 3.27e−06 3.45 3.01e−06 2.86

6 5.80e−06 3.07 2.55e−07 3.68 2.31e−07 3.71
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Table 8 Example 4.2, wave equation with smooth variable coefficient, adaptive sparse grid DG, 2D and 3D.
k = 3, M = 4, t = 0.1

ε DoF L2-error RDoF Rε

d = 2

1e−1 96 1.66e−3 – –

1e−2 224 3.03e−4 2.00 0.74

1e−3 672 2.78e−5 2.18 1.04

1e−4 1088 3.17e−6 4.50 0.94

d = 3

1e−1 576 2.11e−3 – –

1e−2 1152 5.26e−4 2.00 0.60

1e−3 3584 8.73e−5 1.58 0.78

1e−4 8704 1.26e−5 2.18 0.84

For 2D case, the domain� = [0, 1]2 is composed of two subdomains�1 = [ 14 , 3
4 ]×[0, 1]

and �2 = �\�1. The coefficient c2 is a constant in each subdomain:

c2 =
{
1, in �1,
5
37 , in �2.

(4.7)

Periodic boundary conditions are imposed in both x1- and x2- directions. With this setup, the
exact solution is a standing wave

u =
{
sin(

√
20π t) cos(4πx1) cos(2πx2), in �1,

sin(
√
20π t) cos(12πx1) cos(2πx2), in �2.

(4.8)

For 3D case, �1 = [ 14 , 3
4 ] × [0, 1] × [0, 1] and �2 = �\�1

c2 =
{
1, in �1,
3
19 , in �2.

(4.9)

Periodic boundary conditions are imposed in all directions.With this setup, the exact solution
is a standing wave

u =
{
sin(

√
24π t) cos(4πx1) cos(2πx2) cos(2πx3), in �1,

sin(
√
24π t) cos(12πx1) cos(2πx2) cos(2πx3), in �2.

(4.10)

Since the solution is only piecewise smooth, the sparse grid DG method is not expected
to have good convergence rate. Therefore, we only show the convergence result obtained by
the adaptive method in Table 9 for both 2D and 3D. In addition, the adaptive result with the
parameter N = 8 and ε = 1 × 10−4 in 2D is shown in Fig. 1. There are fewer DoFs in the
x1 direction since the solution is smooth in that direction, and as expected, there are more
DoFs located in the subdomain �1 than that in �\�1.

Example 4.4 (Expandingwave in homogeneousmedium)Weconsider thewave equationwith
constant wave speed c = 1 on the computational domain � = [0, 1]d . The homogeneous
Neumann boundary conditions are used on all boundaries. The initial condition is taken as

u(x, 0) = 0, ut (x, 0) = 100e−500r2 (4.11)
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Table 9 Example 4.3. discontinuous coefficient, adaptive sparse grid DG, 2D and 3D, t = 0.01

ε DoF L2-error RDoF Rε

d = 2

1e−1 480 2.93e−4 – –

1e−2 1088 8.43e−5 1.52 0.54

1e−3 2240 8.46e−6 3.18 1.00

1e−4 4224 1.05e−6 3.29 0.91

d = 3

1e−1 2304 5.59e−4 – –

1e−2 7040 1.28e−4 1.32 0.64

1e−3 18,176 1.65e−5 2.16 0.89

1e−4 41,472 1.55e−6 2.87 1.03

(a) numerical solution (b) centers of active elements

Fig. 1 Example 4.3: Discontinuous coefficient in 2D at t = 0.1. Adaptive sparse grid DG with N = 8 and
ε = 10−4

with r = (
∑d

i=1 x
2
i )

1/2 being the radius.
For small time t (before the wave front touch the outside boundary), the exact solution in

2D can be represented by an integral which is derived by Hadamard’s method of descent:

u(x1, x2, t) = 1

2π

∫∫

ρ<t

100e−500(y21+y22 )

√
t2 − ρ2

dy1dy2 (4.12)

with ρ := √
(y1 − x1)2 + (y2 − x2)2 and then computed by using numerical integrations

with sufficiently small error tolerance. For d = 3, there exists the analytic solution:

u(x, t) = 1

20r

(
e−500(t−r)2 − e−500(t+r)2

)
. (4.13)

The numerical results for 2D and 3D are presented in Figs. 2 and 3. In both cases, our
numerical solutions coincide with the exact solutions quite well. The L∞ errors between the
numerical and the exact solutions at t = 0.5 are 9.06×10−5 and 6.79×10−4 for 2D and 3D,
which are both in the samemagnitude as the adaptive parameter ε = 1×10−4. This indicates
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(a) numerical solution (b) 1D cut along diagonal x1 = x2

(c) error between exact and numerical solutions (d) centers of active elements

Fig. 2 Example 4.4: Expanding wave in homogeneous medium in 2D at t = 0.5. Adaptive sparse grid DG.
N = 7 and ε = 10−4

that our adaptive algorithm controls the error really well. The DoFs are 14896 and 188672
for 2D and 3D. It can be also observed that the active elements in 3D are more “sparse” than
2D. This is a numerical evidence that the Huyghens principle only holds for wave equations
in odd dimensions.

Example 4.5 (Isotropic wave propagation in heterogeneous media) We consider the wave
equation with discontinuous coefficient on the computational domain � = [0, 1]d for d = 2
and 3 [13].

c2 =
{

1
4 , if 0.35 ≤ x1 ≤ 0.65,

1, otherwise.
(4.14)

Note that the jump in material coefficient is not aligned with the cell interface on �N .
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(a) numerical solution cut in 2D along x3 = 0 (b) 1D cut along x1 = x2 and x3 = 0

(c) centers of active elements in 3D (d) centers of active elements on x3 = 0.5

Fig. 3 Example 4.4: Expanding wave in homogeneous medium in 3D at t = 0.5. Adaptive sparse grid DG.
N = 7 and ε = 10−4

For both 2D and 3D case, the initial conditions are taken as

u(x, 0) = 0, ut (x, 0) = 100e−500r2 . (4.15)

with r =
(∑d

i=1(xi − 1
2 )

2
) 1

2
. The zero Dirichlet boundary conditions are used.

The profiles and centers of active elements obtained by the adaptive scheme are shown in
Fig. 4 for 2D and Fig. 5 for 3D. We see that the wave fronts propagate at different speeds in
these two media and our adaptive scheme capture this phenomenon and obtain comparable
results to the literature [13].
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(a) solution profile at t = 0.1 (b) centers of active elements at t = 0.1

(c) solution profile at t = 0.3 (d) centers of active elements at t = 0.3

Fig. 4 Example 4.5: Isotropic wave propagation within heterogeneous media in 2D at t = 0.1 and t = 0.3.
Adaptive sparse grid DG. N = 8 and ε = 10−4. Left: solution profile; right: centers of active elements

5 Conclusion

In this paper,we develop an adaptivemultiresolutionDGscheme forwave equations in second
order form in multi-dimensions. Our method can achieve similar computational complexity
as the sparse grid DG method for smooth solutions like those proposed for equations in first
order form [21,22]. Extensive numerical tests in 2D and 3Dverify the accuracy and robustness
of the adaptive schemes for smooth and piecewise smooth wave propagation speed. Though
the formulation is based on IPDG scheme for scalar wave equation, it can be extended to
other DG method and other wave applications. Future work includes extensions to other
boundary conditions and investigation on stability of schemes with interpolation. In an effort
for promoting reproducible research, the code generating the results in this paper can be
found at the github link: https://github.com/JuntaoHuang/adaptive-multiresolution-DG.
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(a) solution profile at t = 0.1
(cut in 2D on z = 0.5)

(b) centers of active elements at t = 0.1

(c) solution profile at t = 0.3
(cut in 2D on z = 0.5)

(d) centers of active elements at t = 0.3

Fig. 5 Example 4.5: Isotropic wave propagation within heterogeneous media in 3D at t = 0.1 and t = 0.3.
Adaptive sparse grid DG. N = 7 and ε = 10−4. Left: solution profile; right: centers of active elements

Acknowledgements We would like to thank Daniel Appelö for discussions on numerical examples of wave
propagation, Qi Tang and Kai Huang for the assistance and discussion in code implementation.

Interpolation Basis Functions

For completeness of the paper, we present details of the multiresolution interpolation basis
functions, which are first introduced in [37]. We will first focus on the case in which the
interpolation points are imposed in the inner domain, as implemented in Table 5. Then we
discuss the case in which the points includes the cell interface points. Here, we only discuss
the case when M = 4 and M = 5. For M = 1, 2, 3, we refer readers to the appendix in [27].

The basis functions in W̃1 are piecewise polynomials on Il := (0, 1
2 ) and Ir := ( 12 , 1).

Note that the functions may be discontinuous at the interface x = 1/2, thus Il and Ir are both
defined to be open intervals. The basis functions in W̃1 in this paper are all supported on one
half interval Il or Ir and vanish on the other half. For simplicity, we will only declare the
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function on its support. For example, ψ0(x)|Ir gives the definition of ψ0 on Ir and indicates
that ψ0 vanishes on Il .

Interpolation Points in the Inner Domain

M = 4

The interpolation points are

X̃0 =
{
1

6
,
7

24
,
1

3
,
7

12
,
2

3

}

, X̃1 =
{

1

12
,
7

48
,
31

48
,
19

24
,
5

6

}

.

The basis functions in W̃ 4
0 and W̃ 4

1 are

φ0(x) = 4
45 (3x − 2)(3x − 1)(12x − 7)(24x − 7),

φ1(x) = − 512
189 (3x − 2)(3x − 1)(6x − 1)(12x − 7),

φ2(x) = 1
3 (3x − 2)(6x − 1)(12x − 7)(24x − 7),

φ3(x) = − 32
105 (3x − 2)(3x − 1)(6x − 1)(24x − 7),

φ4(x) = 1
27 (3x − 1)(6x − 1)(12x − 7)(24x − 7).

and

ψ0(x)|Il = 8
45 (3x − 1)(6x − 1)(24x − 7)(48x − 7),

ψ1(x)|Il = − 1024
189 (3x − 1)(6x − 1)(12x − 1)(24x − 7),

ψ2(x)|Ir = − 1024
189 (3x − 2)(6x − 5)(12x − 7)(24x − 19),

ψ3(x)|Ir = − 64
105 (3x − 2)(6x − 5)(12x − 7)(48x − 31),

ψ4(x)|Ir = 2
27 (3x − 2)(12x − 7)(24x − 19)(48x − 31)

M = 5

The interpolation points are

X̃0 =
{

1

12
,
1

6
,
7

24
,
1

3
,
7

12
,
2

3

}

, X̃1 =
{

7

48
,
1

24
,
31

48
,
19

24
,
5

6
,
13

24

}

.

The basis functions in W̃ 5
0 and W̃ 5

1 are

φ0(x) = 1
315 (−16)(3x − 2)(3x − 1)(6x − 1)(12x − 7)(24x − 7),

φ1(x) = 4
45 (3x − 2)(3x − 1)(12x − 7)(12x − 1)(24x − 7),

φ2(x) = − 1024
945 (3x − 2)(3x − 1)(6x − 1)(12x − 7)(12x − 1),

φ3(x) = 1
9 (3x − 2)(6x − 1)(12x − 7)(12x − 1)(24x − 7),

φ4(x) = − 16
315 (3x − 2)(3x − 1)(6x − 1)(12x − 1)(24x − 7),

φ5(x) = 1
189 (3x − 1)(6x − 1)(12x − 7)(12x − 1)(24x − 7),
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and

ψ0(x)|Il = − 2048
945 (3x − 1)(6x − 1)(12x − 1)(24x − 7)(24x − 1),

ψ1(x)|Il = − 32
315 (3x − 1)(6x − 1)(12x − 1)(24x − 7)(48x − 7),

ψ2(x)|Ir = − 2048
945 (3x − 2)(6x − 5)(12x − 7)(24x − 19)(24x − 13),

ψ3(x)|Ir = − 32
315 (3x − 2)(6x − 5)(12x − 7)(24x − 13)(48x − 31),

ψ4(x)|Ir = 2
189 (3x − 2)(12x − 7)(24x − 19)(24x − 13)(48x − 31),

ψ5(x)|Ir = − 32
315 (3x − 2)(6x − 5)(12x − 7)(24x − 19)(48x − 31)

Interpolation Points with the Interface Points

M = 4

The interpolation points are

X̃0 =
{

0+,

(
1

4

)−
,

(
1

2

)−
,

(
3

4

)−
, 1−

}

, X̃1 =
{(

1

8

)−
,

(
3

8

)−
,

(
1

2

)+
,

(
5

8

)−
,

(
7

8

)−}

.

The basis functions in W̃ 4
0 and W̃ 4

1 are

φ0(x) = 1
3 (x − 1)(2x − 1)(4x − 3)(4x − 1),

φ1(x) = − 16
3 (x − 1)x(2x − 1)(4x − 3),

φ2(x) = 4(x − 1)x(4x − 3)(4x − 1),

φ3(x) = − 16
3 (x − 1)x(2x − 1)(4x − 1),

φ4(x) = 1
3 x(2x − 1)(4x − 3)(4x − 1).

and

ψ0(x)|Il = − 32
3 x(2x − 1)(4x − 1)(8x − 3),

ψ1(x)|Il = − 32
3 x(2x − 1)(4x − 1)(8x − 1),

ψ2(x)|Ir = 2
3 (x − 1)(4x − 3)(8x − 7)(8x − 5),

ψ3(x)|Ir = − 32
3 (x − 1)(2x − 1)(4x − 3)(8x − 7),

ψ4(x)|Ir = − 32
3 (−32)(x − 1)(2x − 1)(4x − 3)(8x − 5)

M = 5

The interpolation points are

X̃0 =
{

0+,
1

5
,
2

5
,
3

5
,
4

5
, 1−

}

, X̃1 =
{

1

10
,
3

10
,

(
1

2

)−
,

(
1

2

)+
,
7

10
,
9

10

}

.
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The basis functions in W̃ 5
0 and W̃ 5

1 are

φ0(x) = − 1
24 (x − 1)(5x − 4)(5x − 3)(5x − 2)(5x − 1),

φ1(x) = 25
24 (x − 1)x(5x − 4)(5x − 3)(5x − 2),

φ2(x) = − 25
12 (x − 1)x(5x − 4)(5x − 3)(5x − 1),

φ3(x) = 25
12 (x − 1)x(5x − 4)(5x − 2)(5x − 1),

φ4(x) = − 25
24 (x − 1)x(5x − 3)(5x − 2)(5x − 1),

φ5(x) = 1
24 x(5x − 4)(5x − 3)(5x − 2)(5x − 1),

and

ψ0(x)|Il = 25
3 x(2x − 1)(5x − 2)(5x − 1)(10x − 3),

ψ1(x)|Il = 50
3 x(2x − 1)(5x − 2)(5x − 1)(10x − 1),

ψ2(x)|Ir = 1
3 x(5x − 2)(5x − 1)(10x − 3)(10x − 1),

ψ3(x)|Ir = − 1
3 (x − 1)(5x − 4)(5x − 3)(10x − 9)(10x − 7),

ψ4(x)|Ir = − 50
3 (x − 1)(2x − 1)(5x − 4)(5x − 3)(10x − 9),

ψ5(x)|Ir = − 25
3 (x − 1)(2x − 1)(5x − 4)(5x − 3)(10x − 7).
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