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Abstract
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1 Introduction

In this paper, we develop a class of adaptive multiresolution ultra-weak discontinuous
Galerkin (DG) method to solve the nonlinear Schrodinger (NLS) equations in a d-dimen-
sional space

i, + Au+ f(lul*)u = 0, (1)

where u is a complex function, and fis a smooth nonlinear real function. The Schrodinger
equation is of fundamental importance in quantum mechanics, reaching out to many impor-
tant applications describing the physical phenomena including nonlinear optics, semicon-
ductor electronics, quantum fluids and plasma physics [10, 32, 43]. Numerical methods for
solving the NLS equations have been investigated extensively, including finite difference
[5, 24, 36, 38, 40], finite element [8, 16, 25, 45], and spectral methods [14, 34, 39], to name
a few. In this paper, we consider the DG method [12, 13, 35], which is a class of finite
element methods using piecewise polynomial spaces for the numerical solutions and the
test functions. The last several decades have seen tremendous developments of DG meth-
ods in approximating partial differential equations (PDEs) in large part due to their distin-
guished advantages in handling geometry, boundary conditions and accommodating adap-
tivity. Various types of DG methods have been proposed to compute the NLS equations.
In [45], an LDG method using alternating fluxes was developed with L? stability and the
sub-optimal error estimates. An LDG method with various numerical fluxes was analyzed
in [27]. An analysis of the LDG method for the NLS equation with the wave operator was
carried out in [17]. The direct DG (DDG) method was applied to the Schrodinger equa-
tion in [29], and the optimal accuracy was further established in [28]. In [44], a hybridized
DG (HDG) method was applied to a linear Schrodinger equation. In this paper, we use
the ultra-weak DG method [9], which is a class of DG methods use repeated integration
by parts for calculating higher order derivatives. The ultra-weak DG schemes include the
DDG and interior penalty DG methods, and have been investigated in [7, 8] for conver-
gence and superconvergence.

The solutions to NLS equations present solitary waves, blow-up and other localized
structures. Therefore, benefits of adaptivity in simulations are self-evident [6, 26, 37]. In
this paper, we consider the adaptive multiresolution approach [15, 19, 21]. By exploring
the inherent mesh hierarchy and the associated nestedness of the polynomial approxima-
tion spaces, multiresolution analysis (MRA) [30] is able to accelerate the computation and
avoid the need for a posteriori error indicators. MRA is closely related to popular sparse
grid methods [3] for solving high-dimensional problems. It is also related to the adaptive
mesh refinement (AMR) technique [2, 4], which adjusts the computational grid adaptively
to track small scale features of the underlying problems and improves computational effi-
ciency. As a continuation of our previous research on adaptive multiresolution (also called
adaptive sparse grid) DG methods [19-22], this paper develops an adaptive multiresolu-
tion ultra-weak DG solver for NLS equation (1) and the coupled NLS equations. First, the
Alpert’s multiwavelets are employed as the DG bases in the weak formulation, and then
the interpolatory multiwavelets are introduced for efficiently computing nonlinear source
which has been successfully applied to nonlinear hyperbolic conservation laws [21] and
Hamilton-Jacobi equations [20]. We refer the readers to [19, 21] for more details on the
background of adaptive multiresolution DG methods. Numerical experiments verify the
accuracy of the methods. In particular, the adaptive scheme is demonstrated to capture the
moving solitons and also the blow-up phenomenon very well.
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The rest of the paper is organized as follows. In Sect. 2, we review Alpert’s multiwavelets.
Section 3 describes the numerical schemes. Section 4 contains numerical examples. We make
conclusions in Sect. 5.

2 MRA and Multiwavelets

In this section, we briefly review the fundamentals of MRA of DG approximation spaces
and the associated multiwavelets. Two classes of multiwavelets, namely the L? orthonormal
Alpert’s multiwavelets [1] and the interpolatory multiwavelets [41], are used to construct our
ultra-weak DG scheme. We also introduce a set of key notations used throughout the paper by
following [42].

Alpert’s multiwavelets [1] have been employed to develop a class of sparse grid DG meth-
ods for solving high dimensional PDEs [18, 42]. Considering a unit sized interval Q = [0, 1]
for simplicity, we define a set of nested grids €, Q,, ---, for which the n-th level grid Q, con-
sists of 2" uniform cells

F=027,27"G+ 1], j=0,-,2"-1.

Denote I_, = [0, 1]. The piecewise polynomial space of degree at most k > 1 on grid Q, for
n = 0 is denoted by

VEi={vivePI), Vj=0,-,2"—1}. )
Observing the nested structure
k k k k
VoCcVicVycVvycC,

we can define the multiwavelet subspace W”:, n=1,2,-- as the orthogonal complement of
Vf_l in V¥ with respect to the L? inner product on [0, 1], i.e.,

k k _ yk k k
v.,ew =v., W LV .

By letting W(’)< 1= Vg , we obtain a hierarchical decomposition V¥ = @ W¥, i.e., an MRA
0o<i<n
of space Vf' A set of orthonormal basis can be defined on Wlk as follows. When [/ = 0, the

basis v?o(x), i =0,--,k are the normalized shifted Legendre polynomials in [0, 1]. When

[ > 0, the Alpert’s orthonormal multiwavelets [1] are employed as the bases and denoted by
V00, i=0, 0k =027 - 1

We then follow a tensor-product approach to construct the hierarchical finite element space

in multi-dimensional space. Denote 1 = (I, -+, [;) € Ng as the mesh level in a multivariate

sense, where N, denotes the set of nonnegative integers, we can define the tensor-prod-

uct mesh grid as €, =£; ® --- ® & and the corresponding mesh size iy = (h;, -+, k).

Based on the grid €, we denote If ={x:x, €, h,G,+1).m=1,--,d}as an ele-
mentary cell, and

Vii=(vive 0l 0<j<2' - 1) = Vi X x VE

Lx)
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as the tensor-product piecewise polynomial space, where Qk(If) represents the collec-
tion of polynomials with a degree of up to k in each dimension on cell If. If we use equal
mesh refinement of size hy = 27" in each coordinate direction, the grid and space will be
denoted by Q, and V¥, respectively. Based on a tensor-product construction, the multi-
dimensional increment space can be defined as

WE=WF x ..o x WF

lx, laXa"

The basis functions in case of multi-dimensions are defined as

V() HWI @) 3)

m=1

forl € Ng,j €B ={je Ng t0<j<max(@1 - 1,0)}and1 <i<k+1
By introducing the standard norms for the multi-index

n, := sz, Mo = max L,
m=1

together with the same component-wise arithmetic operations and relations as defined in
[42], we achieve the decomposition

_ k

- @

<N €]

d
1eN]

Further, by a standard truncation of Vzkv [18, 42], we obtain the sparse grid space

= @ Wi Vi,
1, <N )
leNg

We skip the details about the property of the space, but refer the readers to [18, 42]. In
Sect. 3, we will describe the adaptive scheme that adapts a subspace of va according to the
numerical solution, hence offering more flexibility and efficiency.

Alpert’s multiwavelets described above are associated with the L? projection operator.
For nonlinear source terms, we use the interpolatory multiwavelets based on Lagrange
interpolations introduced in [41]. For details, we refer readers to [21, 41].

3 Adaptive Multiresolution DG Scheme

In this section, we present the adaptive multiresolution ultra-weak DG scheme for solving
the NLS equation (1). We consider periodic boundary conditions for simplicity, while the
method can be adapted to other non-periodic boundary conditions.

For illustrative purposes, we first introduce some basis notations about jumps and aver-
ages for piecewise functions defined on a grid . Denote by I' the union of the bound-
aries for all the elements in the partition Q,. The jump and average of g € L*(I') and
q € [L*>(D)]¢ are defined as follows. Suppose ¢ is an edge shared by elements 7+ and 7~, we
define the unit normal vectors n* and n~ on e pointing exterior to 7+ and 7~. Then,
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o 1, _
lgl=¢™n"+¢"n",  {qg} =3¢ +4")
R 1, _
lal=q"-n"+q" -0 {q}) =@ +q").
For any subspace V of V¥ _ define the corresponding complex-valued finite element space

Vi={v=v +iv, 1 v,v, €V} (6)

The semi-discrete ultra-weak DG scheme [8] for (1) is defined below. We are searching for
u;, € V such that for any test function ¢, € V,

i/(uh),¢hdx+/uhvz¢hdx— D a,l[v¢h]ds+2/%}[¢h]ds+/f(|uh|2)uh¢hdx=o.
Q Q e Q

ecl' /¢ ecl

@)

We take the following numerical fluxes:
Vi, = (Vi) + ay[Vuyle + B[], @y, = {u,} + aolu,] - e + o[ Vg ]. (8)
Here, a,, a,, f,, and f, are prescribed complex numbers that may depend on the mesh size
hande = (1,--,1) € RY In this work, we numerically test two types of numerical fluxes.
The first one is the alternating flux corresponding to a; = %, a, = —% and g, = f, =0. The
second one is a dissipative numerical flux [8] witha, = 2,0y = =2, 8, =1 =i, f, = 1 +i.

To efficiently calculate the nonlinear term fg Fu, |Hu,¢,dx in (7), the multiresolution
Lagrange interpolation is applied [21, 41], i.e., we modified the weak formulation of ultra-
weak DG as follows. We are searching for u;, € V such that for any test function ¢, € V,

i / (uy),Ppdx + / u, V2¢p,dx — Z [V 1ds + Z Vi, - [¢,1ds
Q Q

ecl’ /e ecl /¢

©))

+ LIh(f(luhlz)uh)¢hdx =0.
To preserve the accuracy of the original DG scheme (7), Lagrange interpolation of the
same order must be applied in (9). For details, see the argument in [11, 21, 23]. By apply-
ing interpolation, the unidirectional principle and fast algorithm described in [21] can be
employed to further improve efficiency. In numerical experiments, we also consider the
coupled nonlinear Schrodinger equations in a one-dimensional space

iu, + i, + u, + Pu+ kv +f(|ul’, v*u =0, (10a)

ivt—iavx+vxx—ﬁu+Kv+g(|u|2,|v|2)v=0, (10b)

where u and v are complex functions, f and g are smooth nonlinear real functions, and a,
B, k are real constants. We use the same DG scheme for solving the coupled NLS equation
(10) except that the first order derivatives u, and v, are treated by the standard DG scheme
with upwind numerical fluxes. The details are omitted here for brevity.

For time discretization, we employ the third-order implicit-explicit (IMEX) Runge-
Kutta (RK) scheme [33] to advance the semi-discrete scheme (9). Specifically, the second
derivative term u,, is treated implicitly to avoid the severe CFL time constraint, while the
nonlinear source f(|u|2)u is treated explicitly for efficiency. The adaptive procedure fol-
lows the technique developed in [20, 21] to determine the space V that evolves dynamically
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over time. The only difference is that the first-order Euler forward and Euler backward
schemes are applied for the prediction. The main idea is that based on the distinguished
properties of multiwavelets, we keep track of multiwavelet coefficients, i.e., L? norms of up,,
as an error indicator for refining and coarsening, aiming to efficiently capture the solitons
or singular solutions of (1). We also remark that other types of time discretizations, e.g.,
exponential time differencing (ETD) or Krylov implicit integration factor (IIF) methods,
could also be applied here. The efficiencies of different types of time stepping remain to be
investigated.

4 Numerical Examples

In this section, we perform numerical experiments to validate the performance of our
scheme. We consider the NLS equation (1) in 1D and 2D, and the coupled NLS equation
(10) in 1D, with a computational domain of [0, 1 withd = 1,2. We employ the third order
IMEX RK scheme in [33]. The CFL number is to be 0.1, i.e., At = 0.1Ax, unless otherwise
stated. All adaptive calculations are obtained by k = 3. DoF = dim(V) refers to the number
of Alperts’ multiwavelets basis function with respect to the adaptive grids.

4.1 Accuracy Test for NLS Equation

Example 1 We start with the accuracy test for the NLS equation on the domain [0, 1]%
iu, + Au+ u)u + ul*u=0 (11)

with periodic boundary conditions. The exact solution is
d
u(x, r) = exp <i<27r in —a)t)) (12)
i=1

We first test the accuracy of the sparse grid methods in a 2D space. The results obtained
by considering k = 1,2,3 are presented in Table 1. To ensure time accuracy, we take
At = 0.1Ax*3 for k = 3. As expected, the average convergence order is between k and k + 1.

We then test the accuracy of adaptive method in 2D in Table 2. We observe that it takes
much less DoF with higher-order polynomial degrees than lower-order ones.

We also show the comparison on the error vs. the CPU time for adaptive, sparse and full
grid DG methods with k = 2 in Fig. 1. From the results, it is evident that the adaptive mul-
tiresolution method is the most efficient among the three methods in this 2D example. The
sparse grid method outperforms the full grid method since the solution is smooth in this
example and the sparse grid space Vﬁ ensures comparable accuracy to the full grid space
VK with reduced DoFs.

Next, we compare the performance of our numerical scheme with the alternating
(conservative) and dissipative numerical fluxes. The time history of the L?-error with
different values of polynomial degrees k and error tolerance € is shown in Fig. 2. Note
that the adaptive scheme with dissipative flux and k = 1 does not converge because the

with w = 4dn? - 2.
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Table 1 Example 1, accuracy test

Real Imagi
for NLS equation, d = 2, sparse cal part maginary part
grid, 1 = 0.1 N L2-error Order  [%error Order
k=1 5 2.82x107" - 2.90 x 107! -
6 1.28x 107" 1.15 1.35x 107! 1.11
7 1.90x 1072 274 1.90x 1072 2.83
8 537x107°  1.82 5.27x1073 1.85
9 1.13x 1073 225 1.13x 1073 222
k=2 3 320%x 1072 - 433x 1072 -
4 791x107°  2.02 1.43 x 1072 1.60
5 7.74%x 107 3.35 777%x 107 420
6 1.88x 107 2.04 266x 107 1.55
7 146 x 107> 3.68 147x 107 418
k=3 3 9.82x107% - 267x1072 -
4 1.96 x 107  5.64 229x 107 6.87
5 205x 107 3.26 1.46 x 1073 3.97
6 260x107° 298 9.40 x 1077 3.95
7 599x 1078 544 5.89x 107 4.00

Table 2 Example 1, accuracy test for NLS equation, d = 2. Adaptive. r = 0.1

€ DoF Real part of u Imaginary part of u
L%-error RDoF Re L%-error RDOF Re
k=1 1x107! 192 9.33 x 107! - - 9.59 x 107! - -
1x1072 960 9.39 x 1072 1.43 1.00 9.25x 1072 1.45 1.02
1x1073 1792 233 %1072 223 0.61 229 x 1072 223 0.61
1x107* 7168 4.80 x 1073 1.14 0.69 478 x 1073 1.13 0.68
k=2 1x107! 108 7.93 x 1072 - - 8.68 x 1072 - -
1x1072 432 1.01 x 1072 1.49 0.89 9.60 x 1073 1.59 0.96
1x1073 720 1.10 x 1073 435 0.96 1.11 x 1073 423 0.94
1x107* 1 800 2.06 x 107 1.82 0.73 299 x 1074 1.43 0.57
k=3 1x1072 320 1.43x 1072 - - 2.86 x 1072 - -
1x1073 512 2.81x 1073 3.46 0.71 281 %1073 4.93 1.01
1x10™ 896 3.08x 1074 3.95 0.96 3.07x 1074 3.96 0.96
1x107° 1984 3.63x 1070 2.69 0.93 3.63x 1073 2.69 0.93

corresponding full grid DG is not consistent. In general, the two kind of numerical
fluxes has the similar magnitude of errors. Since the conservative numerical flux per-
forms better in regular DG [8], we will consider the conservative numerical flux in the
following examples.
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Fig. 1 Example 1: L*-error vs. Error vs. CPU time
CPU time for adaptive, sparse 107 :
and full grid ultra-weak DG —e— Adaptive y
methods.d =2,t=0.1, k=2 —+= Sparsg gri
—— Full grid
1072
s
g 10734 .
' ~. ~
% ~ e
~. N
~. ~o
~. ~<
~ ~
1074 4
1073 T T T T
107t 10° 10 10? 103

CPU time

4.2 NLS Equationin 1D

Example 2 In this example, we show the soliton propagation of the NLS equation (1) in the
domain [0, 1]:

ity + st 20l = 0 (13)

with the initial conditions corresponding to the single soliton [45]
u(x,0) = sech (X — x,) exp(2i(X — x;)) (14)

and the double soliton [45]

2
1.
u(x,0) = z sech (X — x;) exp <§zcj (X - xj)) (15)
J=1
with X = M(x — %). Here the parameters are taken as M = 50, x, =0, x; = —10, x, = 10,

¢, =4and ¢, = —4.

The numerical solutions and the active elements for the single soliton (14) are shown
in Fig. 3. We observe that the envelope or the modulus |u| are captured by our adaptive
scheme quite well. The active elements are also moving with the wave peak.

The numerical solutions and the active elements for double solitons (15) are shown in
Fig. 4. The two waves propagate in opposite directions and collide at ¢ = 2.5. After that, the
two waves separate. Such behaviors are accurately captured by our numerical simulations.
Moreover, our numerical solution does not generate symmetric active elements, which is
due to the fact that the ultra-weak DG in full grid does not preserve the symmetry exactly.

Example 3 In this example, we consider the bound state solution of the equation [45]
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L2-error

L2-error

L2-error

Fig.2 Example 1: L2-error vs time.d=1,t=10. N =8 and = €/10. Left: conservative numerical flux;
right: dissipative numerical flux

. 1
zut+Wuxx+ﬂ|u|2u=O (16)

with an initial condition of

u(x,0) = sechX, a7

where X = M(x — 0.5),M = 30.
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0.4

Ju]
Mesh level

0.2

B}
o
~
o
S
o
EY
o
E)
-
o

(a) Numerical solution at t = 0 (b) Active elements at ¢t = 0

0.8

0.6

lul
Mesh level

0.4

0.2

(¢) Numerical solution at t = 2 (d) Active elements at ¢t = 2

Fig. 3 Example 2: 1D NLS equation, single soliton. Left: numerical solutions; right: active elements. r = 0
and2. N =8,e =107,y =103

When g = 2L2, it will produce a bound state of L solitons. The theoretical solution for a
bound state of solitons is known [31]. If L > 3, small narrow structures will develop in the
solution which require high mesh resolution to capture. Clearly, using a uniform mesh is
far from being optimal due to such a highly localized structure. We present the numerical
solutions and active elements of the bound state of solitons with L = 3,4, 5 in Figs. 5, 6 and
7. The multiscale structure of the solutions is accurately captured by our adaptive method.

4.3 Coupled NLS Equationin 1D

Example 4 We show an accuracy test for the coupled NLS equation [45]

i, + i%ux + 2—12uxx + (lu)® + pvPu =0,

+ Plul+ P =0 a®

. L
w, — lﬁvx + mvxx

with the soliton solution
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0 0.2 0.4 Djﬁ 0.8 1.0
X X
(a) Numerical solution at t = 0 (b) Active elements at t =0
10
1.754
1.501
1.251 ol
3
= 1.00 -
= g
0.754 =
0.50 1
0.251
0
0 0.2 0.4 Djﬁ 0.8 1.0
X X
(¢) Numerical solution at t = 2.5 (d) Active elements at t = 2.5
10
1.04
0.89
0.6 E’
— K]
3 <
[
0.4 []
=
0.2
o
0 0.2 0.4 0.6 0.8 1.0
X
(e) Numerical solution at t =5 (f) Active elements at t =5

Fig.4 Example 2: 1D NLS equation, double soliton. Left: numerical solutions; right: active elements.
t=0,25and 5. N=8,e =107 5 =107
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0.4

0.2
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(a) Numerical solution at ¢t = 0

0.2 N
04

0 0.2 0.4 0.6 0.8 1.0
x

(¢) Numerical solution at ¢t = 0.4

154

lul

1.09

0.5 /\ r\

04
0 0.2 0.4 0.6 0.8 1.0
x

(e) Numerical solution at ¢t = 0.6

Mesh level

Mesh level

Mesh level

10

x

(b) Active elements at t = 0

10

o

IS

x

(d) Active elements at t = 0.4

10

o

IS

(f) Active elements at ¢ = 0.6

Fig.5 Example 3: bound state solution of solitons with L = 3. Left: numerical solutions; right: active ele-
ments.=0,0.4and 0.6. N =9,k=3,e = 10"*and y = 107
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(a) Numerical solution at ¢ =0
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175
1.50
1.25
= 1.00
0.75
0.50
0.25
o
[ 0.2 0.4 016 0.8 1.0
X
(¢) Numerical solution at ¢ = 0.4
175
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125
_ 1.00
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o ~ |
0 0?2 0?4 016 0i8 1.0

X

(e) Numerical solution at ¢ = 0.6

Mesh level

Mesh level

Mesh level

X

(b) Active elements at t = 0

x

(d) Active elements at t = 0.4

(f) Active elements at ¢t = 0.6

Fig.6 Example 3: bound state solution of solitons with L = 4. Left: numerical solutions; right: active ele-
ments. =0,0.4and 0.6. N =9,k =3,e=10"*andn = 107>
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0.8
0.6
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0 0.2 0.4 016 0.8 1.0
X
(a) Numerical solution at t = 0
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0.50
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(e) Numerical solution at ¢ = 0.6
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x

(b) Active elements at t = 0
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(d) Active elements at t = 0.4

(f) Active elements at t = 0.6

Fig.7 Example 3: bound state solution of solitons with L = 5. Left: numerical solutions; right: active ele-
ments. t =0,0.4and 0.6. N = 10,k =3,e = 10~*and n = 107
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Table 3 Example 4, accuracy test for the coupled NLS equation, d = 1. Adaptive. 7 =1

€ DoF Real part of u Imaginary part of u
L?-error Rpor R, L?-error Rpor R,
k=1 Ix107" 28 442%x107% - - 549%x 1072 - -
1x1072 74 925x 107  1.61 0.68 143x 107 139 0.59
1x1073 152 130x 107 272 0.85 204x107° 270 0.85
1x107* 304 622x107%  1.07 0.32 1.05x 1073 0.96 0.29
k=2 Ix107" 36 92.02x107° - - 1.12x 1072 - -
1x1072 54 138x 107  4.62 0.81 1.59% 107 4.82 0.85
1x1073 105 139 % 107 345 1.00 1.68x 107 3.38 0.98
1x10™* 186 205%x 107 3.35 0.83 199% 107  3.73 0.93
k=3 1x107" 44 126 x 1072 — - 1.69x 1072 - -
1x1072 60 6.82x 107 9.40 1.27 1.21x 1072 850 1.15
1x1073 84 822x 107  6.29 0.92 1.28x 107 6.68 0.98
1x107* 136 1.16 X 10 4.06 0.85 1.75%x 107 4.13 0.86
€ DoF Real part of v Imaginary part of v
L2-error Rpor R, L2-error Rpor R,
k=1 1x107" 28 L.13x 107" - - 8.66x 1072 - -
1x1072 74 275% 107 146 0.62 257%x 1072 125 0.53
1x1073 152 460x 1073 249 0.78 434% 107 247 0.77
1x10™* 304 197 %107 122 0.37 1.79% 1073 1.28 0.38
k=2 1x107" 36 207x1072 - - 212x1072 - -
1x1072 54 356%x 107 434 0.76 339%x 107 452 0.80
1x1073 105 327x107%  3.59 1.04 376 x 107 3.31 0.95
1x107* 186 482x107  3.35 0.83 5.81x 107 3.27 0.81
k=3 1x107" 44 281x1072 - - 250x 1072 — -
1x1072 60 1.44%x 107 958 1.29 143x 1072 924 1.24
1x107% 84 149% 107 6.75 0.99 1.68x 107 6.36 0.93
I1x107* 136 216%x 107 4.01 0.84 343%x 107 330 0.69

u(x,t) = \/7$ech (\/Z(X - ct)) exp (i((c —a)X — (% _ a)t)),
vx, 1) = Wsech(@(x—ct)) exp <i<(c+a)X— <02;a2 —a)t)), (19)

wherec=l,a=1,a = % = %andX = M(x — 0.5), M = 50. The periodic boundary con-
dition is applied in [0, 1]. The solutions are computed up to = 1. We take Az = OIMBx ' the
maximum mesh level N = 10, and # = €/10. The accuracy results are shown in Table 3.
We can observe that the approximation with a higher polynomial degree outperforms that
with a lower polynomial degree. Note that the method has saturated when e = 10~* for
k = 1; therefore, the error does not decay too much.
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Example 5 In this example, we consider the solitary wave propagation and soliton interac-
tion for the coupled NLS equation (18) following [43]. In this example, A = S22,
We first take the initial condition for soliton propagation

u(x,0) = \/7 sech ( 2aX ) exp (i(c — )X),
v(x,0) = \/:sech (\/ZX) exp (i(c + 0)X) (20)

with the same parameters in Example 4 except X = M(x — 0.2), M = 100. The periodic
boundary condition is used in [0, 1]. The numerical solutions and active elements at
t = 0,20 and 50 are presented in Fig. 8. The plots of lul and vl are similar; thus, we only
show the results of lul here.

For interaction of two solitons, we use the following initial condition:

u(x,0) = 2 —sech( 2a,X;) exp (i(c; — a)X;),
o))

v(x,0) = Z zi sech ( Zanj) exp (i(cj + a)Xj),

where ¢, =1,¢,=0.1,a, =1,a, = 0.5, a—i ﬂ——andX M(x—0.2 —x;),M =100,
x; = 0,x, = 0.25. The periodic boundary condition is used in [0, 1]. The numer1ca1 solu-
tions of lul and active elements at ¢ = 0,20 and 50 are presented in Fig. 9. The interaction is
elastic and the solitons restore their original shapes.

Next, we consider interaction of three solitons with initial condition

u(x,0) = Z — sech (1v2a;X;) exp (i(c; — 0)X;),
22)
V(x,0) = Z 155 sech (/24)X;) exp (i(c; + 0)X)),

where c;=1,6,=01,¢c5 = 1a1—12a2—072a3—036a——ﬂ—; and
X; =M@ —-02-x),M=100,x; =0,x, =0.25,x; = 0.5. The periodic boundary condi-
t1on is used in [0, 1] The numerical solutions of |lul and active elements at t = 0, 20 and 50
are presented in Fig. 10. Notice that the three solitons restore their original shapes after the
interaction.

4.4 NLS Equationin 2D
Example 6 In this example, we consider the singular solutions for the 2D NLS equation
. 1 1
iu, + ]l?u” + — JYE Uy, + lul*u = (23)

with the initial condition [45]
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(a) Numerical solution at t = 0
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(¢) Numerical solution at ¢t = 20
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(e) Numerical solution at ¢ = 50
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X

(f) Active elements at ¢t = 50

Fig.8 Example 5: coupled NLS equation, single soliton. Left: numerical solutions; right: active elements.
t=0,20and50.N =9,k =3,e=10"*andn = 5% 10>

u(x,0) = (1 +sinX)(2 +sinY)

24)

where X = Mx,Y = My,M = 2x. Periodic boundary conditions are applied in [0, 1]%.
Strong evidence of a singularity in finite time is obtained. The plots of lul and active ele-
ments at # = 0 and ¢ = 0.108 are shown in Fig. 11. From the results, we can observe that a
singular is generated at t = 0.108 and our method can capture the structure adaptively.
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Fig.9 Example 5: coupled NLS equation, double solitons. Left: numerical solutions; right: active elements.
t=0,20and50. N =9,k=3,e=10"%andy =4 x 107>

Example 7 In this example, we consider the 2D NLS equation (23) with the initial condi-

tion [46]

u(x,0) = 2.0 + 0.01 sin (X+ %) sin (Y+ f),
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X

(f) Active elements at ¢t = 50

Fig. 10 Example 5: coupled NLS equation, triple solitons. Left: numerical solutions; right: active elements.
t=0,20and 50. N =9,k =3,e = 10*andp = 4 x 107>

where X = M(x — 0.5), Y = M(y — 0.5), M = 2. Periodic boundary conditions are applied
in [0, 1]?. The plots of lul and active elements at f = 0 and ¢ = 1.581 3 are shown in Fig. 12.
We can observe the blow-up phenomenon in lul at r = 1.581 3.
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(¢) Surface of |u| at ¢t = 0.108

Fig. 11 Example 6: singular solutions in 2D NLS equation. Left: numerical solutions; right: active ele-
ments.f=0and 0.108. N =7,k =3,e = 10"*and n = 107

Example 8 In this example, we consider the 2D NLS equation (23) with the initial condi-
tion [47]

u(x,0) = 6V 2 exp(—X> — Y?), (26)

where X = M(x—0.5), Y =M(y—0.5) and M = 10. Periodic boundary conditions are
applied in [0, 11%. The plots of lul and active elements at =0 and ¢ = 0.04 are shown
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Fig. 12 Example 7: blow-up solution in 2D NLS equation. Left: numerical solutions; right: active elements.
t=0and 1.5813. N =7,k=3,e =10"*andn = 10

in Fig. 13. We observe from the results that the solution blows up in the center and our
method can capture the blow-up phenomenon.

5 Conclusion

In this paper, we propose an adaptive multiresolution ultra-weak DG method to solve
nonlinear Schroédinger equations. The adaptive multiwavelets are applied to achieve the
multiresolution. The Alpert’s multiwavelets are used to express the DG solution and
the interpolatory multiwavelets are exploited to compute the nonlinear source term.
Various numerical experiments are presented to demonstrate the excellent capability
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DoF = 960
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0 0.2 0.4 0.6 0.8 1.0
X 0.8 10 0 x
(¢) Surface of |u| at ¢t = 0.04 (d) Active elements at t = 0.04

Fig. 13 Example 8: single blow-up solution in 2D NLS equation. Left: numerical solutions; right: active
elements.f = 0and 0.04. N =9,k =3,e =102 andy = 10~*

of capturing the soliton waves and the blow-up phenomenon. The code generating the
results in this paper can be found at the GitHub link: https://github.com/JuntaoHuang/
adaptive-multiresolution-DG.

Acknowledgements We would like to thank Qi Tang and Kai Huang for the assistance and discussion in
code implementation.

Funding Y. Liu: Research supported in part by a grant from the Simons Foundation (426993, Yuan Liu). W.

Guo: Research is supported by NSF grant DMS-1830838. Y. Cheng: Research is supported by NSF grants
DMS-1453661 and DMS-1720023. Z. Tao: Research is supported by NSFC Grant 12001231.

Compliance with ethical standards

Conflicts of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

@ Springer


https://github.com/JuntaoHuang/adaptive-multiresolution-DG
https://github.com/JuntaoHuang/adaptive-multiresolution-DG

Communications on Applied Mathematics and Computation

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Alpert, B.K.: A class of bases in L? for the sparse representation of integral operators. SIAM J. Math.
Anal. 24(1), 246-262 (1993)

Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys.
82(1), 64-84 (1989)

Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numerica 13(1), 147-269 (2004)

Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for parallel adaptive mesh refine-
ment on forests of octrees. SIAM J. Sci. Comput. 33(3), 1103-1133 (2011)

Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrdodinger
equation. J. Comput. Phys. 148(2), 397-415 (1999)

Chang, Q., Wang, G.: Multigrid and adaptive algorithm for solving the nonlinear Schrodinger equa-
tion. J. Comput. Phys. 88(2), 362-380 (1990)

Chen, A., Cheng, Y., Liu, Y., Zhang, M.: Superconvergence of ultra-weak discontinuous Galerkin
methods for the linear Schrodinger equation in one dimension. J. Sci. Comput. 82(1), 1-44 (2020)
Chen, A., Li, F., Cheng, Y.: An ultra-weak discontinuous Galerkin method for Schrodinger equation in
one dimension. J. Sci. Comput. 78(2), 772-815 (2019)

Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial dif-
ferential equations with higher order derivatives. Math. Comput. 77(262), 699-730 (2008)

Chiao, R.Y., Garmire, E., Townes, C.H.: Self-trapping of optical beams. Phys. Rev. Lett. 13(15), 479—
482 (1964)

Cockburn, B., Hou, S., Shu, C.-W.: The Runge-Kutta local projection discontinuous Galerkin finite
element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545-
581 (1990)

Cockburn, B., Karniadakis, G. E., Shu, C.-W.: The development of discontinuous Galerkin meth-
ods. In: Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds). Discontinuous Galerkin Methods. Lec-
ture Notes in Computational Science and Engineering, vol. 11, pp. 3-50. Springer, Berlin, Heidelberg
(2000)

Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated
problems. J. Sci. Comput. 16(3), 173-261 (2001)

De la Hoz, F., Vadillo, F.: An exponential time differencing method for the nonlinear Schrodinger
equation. Comput. Phys. Commun. 179(7), 449-456 (2008)

Gerhard, N., Miiller, S.: Adaptive multiresolution discontinuous Galerkin schemes for conservation
laws: multi-dimensional case. Comput. Appl. Math. 35(2), 321-349 (2016)

Griffiths, D.F., Mitchell, A.R., Morris, J.L.: A numerical study of the nonlinear Schrodinger equation.
Comput. Methods Appl. Mechan. Eng. 45, 177-215 (1984)

Guo, L., Xu, Y.: Energy conserving local discontinuous Galerkin methods for the nonlinear
Schrodinger equation with wave operator. J. Sci. Comput. 65(2), 622—-647 (2015)

Guo, W., Cheng, Y.: A sparse grid discontinuous Galerkin method for high-dimensional transport
equations and its application to kinetic simulations. SIAM J. Sci. Comput. 38(6), A3381-A3409
(2016)

Guo, W., Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method for time-dependent
transport equations in multidimensions. SIAM J. Sci. Comput. 39(6), A2962-A2992 (2017)

Guo, W., Huang, J., Tao, Z., Cheng, Y.: An adaptive sparse grid local discontinuous Galerkin method
for Hamilton-Jacobi equations in high dimensions. arXiv: 2006.05250 (2020)

Huang, J., Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method with artificial vis-
cosity for scalar hyperbolic conservation laws in multidimensions. arXiv: 1906.00829 (2019)

Huang, J., Liu, Y., Guo, W., Tao, Z., Cheng, Y.: An adaptive multiresolution interior penalty discon-
tinuous Galerkin method for wave equations in second order form. arXiv: 2004.08525 (2020)

Huang, J., Shu, C.-W.: Error estimates to smooth solutions of semi-discrete discontinuous Galerkin
methods with quadrature rules for scalar conservation laws. Numer. Methods Part. Differ. Equ. 33(2),
467-488 (2017)

Ismail, M., Taha, T.R.: Numerical simulation of coupled nonlinear Schrodinger equation. Math. Com-
put. Simul. 56(6), 547-562 (2001)

Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear Schrodinger
equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479-499 (1998)

Kormann, K.: A time-space adaptive method for the Schrodinger equation. Commun. Comput. Phys.
20(1), 60-85 (2016)

@ Springer


http://arxiv.org/abs/2006.05250
http://arxiv.org/abs/1906.00829
http://arxiv.org/abs/2004.08525

Communications on Applied Mathematics and Computation

217.

28.

29.

30.
31.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

45.

46.

47.

Liang, X., Khaliq, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local
discontinuous Galerkin approximation for coupled nonlinear Schrodinger equations. Commun. Com-
put. Phys. 17(2), 510-541 (2015)

Liu, H., Huang, Y., Lu, W., Yi, N.: On accuracy of the mass-preserving DG method to multi-dimen-
sional Schrodinger equations. IMA J. Numer. Anal. 39(2), 760-791 (2019)

Lu, W.,, Huang, Y., Liu, H.: Mass preserving discontinuous Galerkin methods for Schrédinger equa-
tions. J. Comput. Phys. 282, 210-226 (2015)

Mallat, S.: A Wavelet Tour of Signal Processing. Elsevier, Amsterdam (1999)

Miles, J.W.: An envelope soliton problem. SIAM J. Appl. Math. 41(2), 227-230 (1981)

Newell, A.C.: Solitons in Mathematics and Physics. SIAM, Philadelphia (1985)

Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems
with relaxation. J. Sci. Comput. 25(1), 129-155 (2005)

Pathria, D., Morris, J.L.: Pseudo-spectral solution of nonlinear Schrodinger equations. J. Comput.
Phys. 87(1), 108-125 (1990)

Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Technical report,
Los Alamos: Scientific Lab, USA (1973)

Sanz-Serna, J., Verwer, J.: Conerservative and nonconservative schemes for the solution of the nonlin-
ear Schrodinger equation. IMA J. Nume. Anal. 6(1), 25-42 (1986)

Sanz-Serna, J.M., Christie, I.: A simple adaptive technique for nonlinear wave problems. J. Comput.
Phys. 67(2), 348-360 (1986)

Sheng, Q., Khalig, A., Al-Said, E.: Solving the generalized nonlinear Schrodinger equation via quartic
spline approximation. J. Comput. Phys. 166(2), 400-417 (2001)

Sulem, P., Sulem, C., Patera, A.: Numerical simulation of singular solutions to the two-dimensional
cubic Schrodinger equation. Commun. Pure Appl. Math. 37(6), 755-778 (1984)

Taha, T.R., Ablowitz, M.L.: Analytical and numerical aspects of certain nonlinear evolution equations.
II. Numerical, nonlinear Schrodinger equation. J. Comput. Phys. 55(2), 203-230 (1984)

Tao, Z.J., Jiang Y., Cheng Y.D.: An adaptive high-order piecewise polynomial based sparse grid col-
location method with applications. arXiv: 1912.03982 (2019)

Wang, Z., Tang, Q., Guo, W., Cheng, Y.: Sparse grid discontinuous Galerkin methods for high-dimen-
sional elliptic equations. J. Comput. Phys. 314, 244-263 (2016)

Whitham, G.B.: Linear and Nonlinear Waves. John Wiley and Sons, New York (2011)

Xiong, C., Luo, F., Ma, X.: Uniform in time error analysis of HDG approximation for Schrodinger
equation based on HDG projection. ESAIM Math. Modell. Numer. Anal. 52(2), 751-772 (2018)

Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrodinger equations. J.
Comput. Phys. 205(1), 72-97 (2005)

Zhang, R.: Compact implicit integration factor methods for some complex-valued nonlinear equations.
Chinese Phys. B 21(4), 040205 (2012)

Zhang, R., Yu, X,, Li, M., Li, X.: A conservative local discontinuous Galerkin method for the solution
of nonlinear Schrédinger equation in two dimensions. Sci. China Math. 60(12), 2515-2530 (2017)

@ Springer


http://arxiv.org/abs/1912.03982

	An Adaptive Multiresolution Ultra-weak Discontinuous Galerkin Method for Nonlinear Schrödinger Equations
	Abstract
	1 Introduction
	2 MRA and Multiwavelets
	3 Adaptive Multiresolution DG Scheme
	4 Numerical Examples
	4.1 Accuracy Test for NLS Equation
	4.2 NLS Equation in 1D
	4.3 Coupled NLS Equation in 1D
	4.4 NLS Equation in 2D

	5 Conclusion
	Acknowledgements 
	References




