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Abstract
This paper develops a high-order adaptive scheme for solving nonlinear Schrödinger equa-
tions. The solutions to such equations often exhibit solitary wave and local structures, 
which make adaptivity essential in improving the simulation efficiency. Our scheme uses 
the ultra-weak discontinuous Galerkin (DG) formulation and belongs to the framework of 
adaptive multiresolution schemes. Various numerical experiments are presented to demon-
strate the excellent capability of capturing the soliton waves and the blow-up phenomenon.
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1  Introduction

In this paper, we develop a class of adaptive multiresolution ultra-weak discontinuous 
Galerkin (DG) method to solve the nonlinear Schrödinger (NLS) equations in a d-dimen-
sional space

where u is a complex function, and f is a smooth nonlinear real function. The Schrödinger 
equation is of fundamental importance in quantum mechanics, reaching out to many impor-
tant applications describing the physical phenomena including nonlinear optics, semicon-
ductor electronics, quantum fluids and plasma physics [10, 32, 43]. Numerical methods for 
solving the NLS equations have been investigated extensively, including finite difference 
[5, 24, 36, 38, 40], finite element [8, 16, 25, 45], and spectral methods [14, 34, 39], to name 
a few. In this paper, we consider the DG method [12, 13, 35], which is a class of finite 
element methods using piecewise polynomial spaces for the numerical solutions and the 
test functions. The last several decades have seen tremendous developments of DG meth-
ods in approximating partial differential equations (PDEs) in large part due to their distin-
guished advantages in handling geometry, boundary conditions and accommodating adap-
tivity. Various types of DG methods have been proposed to compute the NLS equations. 
In [45], an LDG method using alternating fluxes was developed with L2 stability and the 
sub-optimal error estimates. An LDG method with various numerical fluxes was analyzed 
in [27]. An analysis of the LDG method for the NLS equation with the wave operator was 
carried out in [17]. The direct DG (DDG) method was applied to the Schrödinger equa-
tion in [29], and the optimal accuracy was further established in [28]. In [44], a hybridized 
DG (HDG) method was applied to a linear Schrödinger equation. In this paper, we use 
the ultra-weak DG method [9], which is a class of DG methods use repeated integration 
by parts for calculating higher order derivatives. The ultra-weak DG schemes include the 
DDG and interior penalty DG methods, and have been investigated in [7, 8] for conver-
gence and superconvergence.

The solutions to NLS equations present solitary waves, blow-up and other localized 
structures. Therefore, benefits of adaptivity in simulations are self-evident [6, 26, 37]. In 
this paper, we consider the adaptive multiresolution approach [15, 19, 21]. By exploring 
the inherent mesh hierarchy and the associated nestedness of the polynomial approxima-
tion spaces, multiresolution analysis (MRA) [30] is able to accelerate the computation and 
avoid the need for a posteriori error indicators. MRA is closely related to popular sparse 
grid methods [3] for solving high-dimensional problems. It is also related to the adaptive 
mesh refinement (AMR) technique [2, 4], which adjusts the computational grid adaptively 
to track small scale features of the underlying problems and improves computational effi-
ciency. As a continuation of our previous research on adaptive multiresolution (also called 
adaptive sparse grid) DG methods [19–22], this paper develops an adaptive multiresolu-
tion ultra-weak DG solver for NLS equation (1) and the coupled NLS equations. First, the 
Alpert’s multiwavelets are employed as the DG bases in the weak formulation, and then 
the interpolatory multiwavelets are introduced for efficiently computing nonlinear source 
which has been successfully applied to nonlinear hyperbolic conservation laws [21] and 
Hamilton-Jacobi equations [20]. We refer the readers to [19, 21] for more details on the 
background of adaptive multiresolution DG methods. Numerical experiments verify the 
accuracy of the methods. In particular, the adaptive scheme is demonstrated to capture the 
moving solitons and also the blow-up phenomenon very well.

(1)iut + Δu + f (|u|2)u = 0,
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The rest of the paper is organized as follows. In Sect. 2, we review Alpert’s multiwavelets. 
Section 3 describes the numerical schemes. Section 4 contains numerical examples. We make 
conclusions in Sect. 5.

2 � MRA and Multiwavelets

In this section, we briefly review the fundamentals of MRA of DG approximation spaces 
and the associated multiwavelets. Two classes of multiwavelets, namely the L2 orthonormal 
Alpert’s multiwavelets [1] and the interpolatory multiwavelets [41], are used to construct our 
ultra-weak DG scheme. We also introduce a set of key notations used throughout the paper by 
following [42].

Alpert’s multiwavelets [1] have been employed to develop a class of sparse grid DG meth-
ods for solving high dimensional PDEs [18, 42]. Considering a unit sized interval Ω = [0, 1] 
for simplicity, we define a set of nested grids Ω0, Ω1,⋯ , for which the n-th level grid Ωn con-
sists of 2n uniform cells

Denote I−1 = [0, 1]. The piecewise polynomial space of degree at most k ⩾ 1 on grid Ωn for 
n ⩾ 0 is denoted by

Observing the nested structure

we can define the multiwavelet subspace Wk
n
 , n = 1, 2,⋯ as the orthogonal complement of 

Vk
n−1

 in Vk
n
 with respect to the L2 inner product on [0, 1], i.e.,

By letting Wk
0
∶= Vk

0
 , we obtain a hierarchical decomposition Vk

n
=

⨁
0⩽l⩽n

Wk
l
 , i.e., an MRA 

of space Vk
n
 . A set of orthonormal basis can be defined on Wk

l
 as follows. When l = 0 , the 

basis v0
i,0
(x) , i = 0,⋯ , k are the normalized shifted Legendre polynomials in [0, 1]. When 

l > 0 , the Alpert’s orthonormal multiwavelets [1] are employed as the bases and denoted by

We then follow a tensor-product approach to construct the hierarchical finite element space 
in multi-dimensional space. Denote � = (l1,⋯ , ld) ∈ ℕd

0
 as the mesh level in a multivariate 

sense, where ℕ0 denotes the set of nonnegative integers, we can define the tensor-prod-
uct mesh grid as Ω� = Ωl1

⊗⋯⊗Ωld
 and the corresponding mesh size h� = (hl1 ,⋯ , hld ). 

Based on the grid Ω� , we denote I�
�
= {� ∶ xm ∈ (hmjm, hm(jm + 1)),m = 1,⋯ , d} as an ele-

mentary cell, and

Ij
n
= (2−nj, 2−n(j + 1)], j = 0,⋯ , 2n − 1.

(2)Vk
n
∶= {v ∶ v ∈ Pk(Ij

n
), ∀ j = 0,⋯ , 2n − 1}.

Vk
0
⊂ Vk

1
⊂ Vk

2
⊂ Vk

3
⊂ ⋯ ,

Vk
n−1

⊕Wk
n
= Vk

n
, Wk

n
⟂ Vk

n−1
.

v
j

i,l
(x), i = 0,⋯ , k, j = 0,⋯ , 2l−1 − 1.

�k
�
∶= {� ∶ � ∈ Qk(I

�

�
), � ⩽ � ⩽ 2� − �} = Vk

l1,x1
×⋯ × Vk

ld ,xd



	 Communications on Applied Mathematics and Computation

1 3

as the tensor-product piecewise polynomial space, where Qk(I
�

�
) represents the collec-

tion of polynomials with a degree of up to k in each dimension on cell I�
�
 . If we use equal 

mesh refinement of size hN = 2−N in each coordinate direction, the grid and space will be 
denoted by ΩN and �k

N
 , respectively. Based on a tensor-product construction, the multi-

dimensional increment space can be defined as

The basis functions in case of multi-dimensions are defined as

for � ∈ ℕd
0
 , � ∈ B� ∶= {� ∈ ℕd

0
∶ � ⩽ � ⩽ max(2�−� − �, �)} and � ⩽ � ⩽ � + �.

By introducing the standard norms for the multi-index

together with the same component-wise arithmetic operations and relations as defined in 
[42], we achieve the decomposition

Further, by a standard truncation of �k
N

 [18, 42], we obtain the sparse grid space

We skip the details about the property of the space, but refer the readers to [18, 42]. In 
Sect. 3, we will describe the adaptive scheme that adapts a subspace of �k

N
 according to the 

numerical solution, hence offering more flexibility and efficiency.
Alpert’s multiwavelets described above are associated with the L2 projection operator. 

For nonlinear source terms, we use the interpolatory multiwavelets based on Lagrange 
interpolations introduced in [41]. For details, we refer readers to [21, 41].

3 � Adaptive Multiresolution DG Scheme

In this section, we present the adaptive multiresolution ultra-weak DG scheme for solving 
the NLS equation (1). We consider periodic boundary conditions for simplicity, while the 
method can be adapted to other non-periodic boundary conditions.

For illustrative purposes, we first introduce some basis notations about jumps and aver-
ages for piecewise functions defined on a grid ΩN . Denote by Γ the union of the bound-
aries for all the elements in the partition ΩN . The jump and average of q ∈ L2(Γ) and 
� ∈ [L2(Γ)]d are defined as follows. Suppose e is an edge shared by elements T+ and T− , we 
define the unit normal vectors �+ and �− on e pointing exterior to T+ and T− . Then,

�k
�
= Wk

l1,x1
×⋯ ×Wk

ld ,xd
.

(3)v
�

�,�
(�) ∶=

d∏
m=1

v
jm
im,lm

(xm)

|�|1 ∶=
d∑

m=1

lm, |�|∞ ∶= max
1⩽m⩽d

lm,

(4)
�k

N
=

⨁
|�|∞⩽N

�∈ℕd
0

�k
�
.

(5)
�̂k

N
=

⨁
|�|1⩽N
�∈ℕd

0

�k
�
⊂ �k

N
.
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For any subspace � of �k
N

 , define the corresponding complex-valued finite element space

The semi-discrete ultra-weak DG scheme [8] for (1) is defined below. We are searching for 
uh ∈ �  such that for any test function �h ∈ � ,

We take the following numerical fluxes:

Here, �1 , �2 , �1, and �2 are prescribed complex numbers that may depend on the mesh size 
h and � = (1,⋯ , 1) ∈ ℝd . In this work, we numerically test two types of numerical fluxes. 
The first one is the alternating flux corresponding to �1 =

1

2
 , �2 = −

1

2
 and �1 = �2 = 0 . The 

second one is a dissipative numerical flux [8] with �1 =
1

2
 , �2 = −

1

2
 , �1 = 1 − i , �2 = 1 + i.

To efficiently calculate the nonlinear term ∫
Ω
f (|uh|2)uh�hd� in (7), the multiresolution 

Lagrange interpolation is applied [21, 41], i.e., we modified the weak formulation of ultra-
weak DG as follows. We are searching for uh ∈ �  such that for any test function �h ∈ � ,

To preserve the accuracy of the original DG scheme (7), Lagrange interpolation of the 
same order must be applied in (9). For details, see the argument in [11, 21, 23]. By apply-
ing interpolation, the unidirectional principle and fast algorithm described in [21] can be 
employed to further improve efficiency. In numerical experiments, we also consider the 
coupled nonlinear Schrödinger equations in a one-dimensional space 

where u and v are complex functions, f and g are smooth nonlinear real functions, and � , 
� , � are real constants. We use the same DG scheme for solving the coupled NLS equation 
(10) except that the first order derivatives ux and vx are treated by the standard DG scheme 
with upwind numerical fluxes. The details are omitted here for brevity.

For time discretization, we employ the third-order implicit-explicit (IMEX) Runge-
Kutta (RK) scheme [33] to advance the semi-discrete scheme (9). Specifically, the second 
derivative term uxx is treated implicitly to avoid the severe CFL time constraint, while the 
nonlinear source f (|u|2)u is treated explicitly for efficiency. The adaptive procedure fol-
lows the technique developed in [20, 21] to determine the space � that evolves dynamically 

[q] = q−�− + q+�+, {q} =
1

2
(q− + q+),

[�] = �− ⋅ �− + �+ ⋅ �+, {�} =
1

2
(�− + �+).

(6)� ∶= {v = v1 + iv2 ∶ v1, v2 ∈ �}.

(7)

i∫Ω

(uh)t𝜙hd� + ∫Ω

uh∇
2𝜙hd� −

∑
e∈Γ

∫e

ûh[∇𝜙h]ds +
∑
e∈Γ

∫e

�∇uh ⋅ [𝜙h]ds + ∫Ω

f (|uh|2)uh𝜙hd� = 0.

(8)�∇uh = {∇uh} + 𝛼1[∇uh]� + 𝛽1[uh], ûh = {uh} + 𝛼2[uh] ⋅ � + 𝛽2[∇uh].

(9)
i∫Ω

(uh)t𝜙hd� + ∫Ω

uh∇
2𝜙hd� −

∑
e∈Γ

∫e

ûh[∇𝜙h]ds +
∑
e∈Γ

∫e

�∇uh ⋅ [𝜙h]ds

+ ∫Ω

Ih

(
f (|uh|2)uh

)
𝜙hd� = 0.

(10a)iut + i�ux + uxx + �u + �v + f (|u|2, |v|2)u = 0,

(10b)ivt − i�vx + vxx − �u + �v + g(|u|2, |v|2)v = 0,
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over time. The only difference is that the first-order Euler forward and Euler backward 
schemes are applied for the prediction. The main idea is that based on the distinguished 
properties of multiwavelets, we keep track of multiwavelet coefficients, i.e., L2 norms of uh , 
as an error indicator for refining and coarsening, aiming to efficiently capture the solitons 
or singular solutions of (1). We also remark that other types of time discretizations, e.g., 
exponential time differencing (ETD) or Krylov implicit integration factor (IIF) methods, 
could also be applied here. The efficiencies of different types of time stepping remain to be 
investigated.

4 � Numerical Examples

In this section, we perform numerical experiments to validate the performance of our 
scheme. We consider the NLS equation (1) in 1D and 2D, and the coupled NLS equation 
(10) in 1D, with a computational domain of [0, 1]d with d = 1, 2 . We employ the third order 
IMEX RK scheme in [33]. The CFL number is to be 0.1, i.e., Δt = 0.1Δx , unless otherwise 
stated. All adaptive calculations are obtained by k = 3 . DoF = dim(�) refers to the number 
of Alperts’ multiwavelets basis function with respect to the adaptive grids.

4.1 � Accuracy Test for NLS Equation

Example 1  We start with the accuracy test for the NLS equation on the domain [0, 1]d:

with periodic boundary conditions. The exact solution is 

with � = 4d�2 − 2.

We first test the accuracy of the sparse grid methods in a 2D space. The results obtained 
by considering k = 1, 2, 3 are presented in Table  1. To ensure time accuracy, we take 
Δt = 0.1Δx4∕3 for k = 3 . As expected, the average convergence order is between k and k + 1.

We then test the accuracy of adaptive method in 2D in Table 2. We observe that it takes 
much less DoF with higher-order polynomial degrees than lower-order ones.

We also show the comparison on the error vs. the CPU time for adaptive, sparse and full 
grid DG methods with k = 2 in Fig. 1. From the results, it is evident that the adaptive mul-
tiresolution method is the most efficient among the three methods in this 2D example. The 
sparse grid method outperforms the full grid method since the solution is smooth in this 
example and the sparse grid space �̂K

N
 ensures comparable accuracy to the full grid space 

�K
N

 with reduced DoFs.
Next, we compare the performance of our numerical scheme with the alternating 

(conservative) and dissipative numerical fluxes. The time history of the L2-error with 
different values of polynomial degrees k and error tolerance � is shown in Fig. 2. Note 
that the adaptive scheme with dissipative flux and k = 1 does not converge because the 

(11)iut + Δu + |u|2u + |u|4u = 0

(12)u(x, t) = exp

(
i

(
2�

d∑
i=1

xi − �t

))
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corresponding full grid DG is not consistent. In general, the two kind of numerical 
fluxes has the similar magnitude of errors. Since the conservative numerical flux per-
forms better in regular DG [8], we will consider the conservative numerical flux in the 
following examples.

Table 1   Example 1, accuracy test 
for NLS equation, d = 2 , sparse 
grid, t = 0.1

Real part Imaginary part

N L
2-error Order L

2-error Order

k = 1 5 2.82 × 10−1 – 2.90 × 10−1 –
6 1.28 × 10−1 1.15 1.35 × 10−1 1.11
7 1.90 × 10−2 2.74 1.90 × 10−2 2.83
8 5.37 × 10−3 1.82 5.27 × 10−3 1.85
9 1.13 × 10−3 2.25 1.13 × 10−3 2.22

k = 2 3 3.20 × 10−2 – 4.33 × 10−2 –
4 7.91 × 10−3 2.02 1.43 × 10−2 1.60
5 7.74 × 10−4 3.35 7.77 × 10−4 4.20
6 1.88 × 10−4 2.04 2.66 × 10−4 1.55
7 1.46 × 10−5 3.68 1.47 × 10−5 4.18

k = 3 3 9.82 × 10−3 – 2.67 × 10−2 –
4 1.96 × 10−4 5.64 2.29 × 10−4 6.87
5 2.05 × 10−5 3.26 1.46 × 10−5 3.97
6 2.60 × 10−6 2.98 9.40 × 10−7 3.95
7 5.99 × 10−8 5.44 5.89 × 10−8 4.00

Table 2   Example 1, accuracy test for NLS equation, d = 2 . Adaptive. t = 0.1

� DoF Real part of u Imaginary part of u

L2-error R
DoF

R� L2-error R
DoF

R�

k = 1 1 × 10−1 192 9.33 × 10−1 - - 9.59 × 10−1 – –
1 × 10−2 960 9.39 × 10−2 1.43 1.00 9.25 × 10−2 1.45 1.02
1 × 10−3 1 792 2.33 × 10−2 2.23 0.61 2.29 × 10−2 2.23 0.61
1 × 10−4 7 168 4.80 × 10−3 1.14 0.69 4.78 × 10−3 1.13 0.68

k = 2 1 × 10−1 108 7.93 × 10−2 – – 8.68 × 10−2 – –
1 × 10−2 432 1.01 × 10−2 1.49 0.89 9.60 × 10−3 1.59 0.96
1 × 10−3 720 1.10 × 10−3 4.35 0.96 1.11 × 10−3 4.23 0.94
1 × 10−4 1 800 2.06 × 10−4 1.82 0.73 2.99 × 10−4 1.43 0.57

k = 3 1 × 10−2 320 1.43 × 10−2 – – 2.86 × 10−2 – –
1 × 10−3 512 2.81 × 10−3 3.46 0.71 2.81 × 10−3 4.93 1.01
1 × 10−4 896 3.08 × 10−4 3.95 0.96 3.07 × 10−4 3.96 0.96
1 × 10−5 1 984 3.63 × 10−5 2.69 0.93 3.63 × 10−5 2.69 0.93
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4.2 � NLS Equation in 1D

Example 2  In this example, we show the soliton propagation of the NLS equation (1) in the 
domain [0, 1]:

with the initial conditions corresponding to the single soliton [45]

and the double soliton [45]

with X = M(x −
1

2
) . Here the parameters are taken as M = 50 , x0 = 0 , x1 = −10 , x2 = 10 , 

c1 = 4 and c2 = −4.

The numerical solutions and the active elements for the single soliton (14) are shown 
in Fig. 3. We observe that the envelope or the modulus |u| are captured by our adaptive 
scheme quite well. The active elements are also moving with the wave peak.

The numerical solutions and the active elements for double solitons (15) are shown in 
Fig. 4. The two waves propagate in opposite directions and collide at t = 2.5 . After that, the 
two waves separate. Such behaviors are accurately captured by our numerical simulations. 
Moreover, our numerical solution does not generate symmetric active elements, which is 
due to the fact that the ultra-weak DG in full grid does not preserve the symmetry exactly.

Example 3  In this example, we consider the bound state solution of the equation [45]

(13)iut +
1

M2
uxx + 2|u|2u = 0

(14)u(x, 0) = sech (X − x0) exp(2i(X − x0))

(15)u(x, 0) =

2∑
j=1

sech (X − xj) exp
(
1

2
icj
(
X − xj

))

Fig. 1   Example 1: L2-error vs. 
CPU time for adaptive, sparse 
and full grid ultra-weak DG 
methods. d = 2 , t = 0.1 , k = 2
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with an initial condition of

where X = M(x − 0.5),M = 30.

(16)iut +
1

M2
uxx + �|u|2u = 0

(17)u(x, 0) = sechX,

(a) (b)

(c) (d)

(e) (f)

Fig. 2   Example 1: L2-error vs time. d = 1 , t = 10 . N = 8 and � = �∕10 . Left: conservative numerical flux; 
right: dissipative numerical flux
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When � = 2L2 , it will produce a bound state of L solitons. The theoretical solution for a 
bound state of solitons is known [31]. If L ⩾ 3 , small narrow structures will develop in the 
solution which require high mesh resolution to capture. Clearly, using a uniform mesh is 
far from being optimal due to such a highly localized structure. We present the numerical 
solutions and active elements of the bound state of solitons with L = 3, 4, 5 in Figs. 5, 6 and 
7. The multiscale structure of the solutions is accurately captured by our adaptive method.

4.3 � Coupled NLS Equation in 1D

Example 4  We show an accuracy test for the coupled NLS equation [45]

with the soliton solution

(18)

{
iut + i

�

M
ux +

1

2M2
uxx + (|u|2 + �|v|2)u = 0,

ivt − i
�

M
vx +

1

2M2
vxx + (�|u|2 + |v|2)v = 0

(a) (b)

(c) (d)

Fig. 3   Example 2: 1D NLS equation, single soliton. Left: numerical solutions; right: active elements. t = 0 
and 2. N = 8 , � = 10

−4 , � = 10
−5
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(a) (b)

(c) (d)

(e) (f)

Fig. 4   Example 2: 1D NLS equation, double soliton. Left: numerical solutions; right: active elements. 
t = 0 , 2.5 and 5. N = 8 , � = 10

−4 , � = 10
−5
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(a) (b)

(c) (d)

(e) (f)

Fig. 5   Example 3: bound state solution of solitons with L = 3 . Left: numerical solutions; right: active ele-
ments. t = 0 , 0.4 and 0.6. N = 9 , k = 3 , � = 10

−4 and � = 10
−5
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(a) (b)

(c) (d)

(e) (f)

Fig. 6   Example 3: bound state solution of solitons with L = 4 . Left: numerical solutions; right: active ele-
ments. t = 0 , 0.4 and 0.6. N = 9, k = 3 , � = 10

−4 and � = 10
−5
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(a) (b)

(c) (d)

(e) (f)

Fig. 7   Example 3: bound state solution of solitons with L = 5 . Left: numerical solutions; right: active ele-
ments. t = 0 , 0.4 and 0.6. N = 10, k = 3 , � = 10

−4 and � = 10
−5
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where c = 1, a = 1, � =
1

2
, � =

2

3
 and X = M(x − 0.5),M = 50 . The periodic boundary con-

dition is applied in [0, 1]. The solutions are computed up to t = 1 . We take Δt = 0.1MΔx

�
 , the 

maximum mesh level N = 10 , and � = �∕10 . The accuracy results are shown in Table 3. 
We can observe that the approximation with a higher polynomial degree outperforms that 
with a lower polynomial degree. Note that the method has saturated when � = 10−4 for 
k = 1 ; therefore, the error does not decay too much.

(19)

⎧⎪⎨⎪⎩

u(x, t) =
�

2a

1+�
sech

�√
2a(X − ct)

�
exp

�
i
�
(c − �)X −

�
c2−�2

2
− a

�
t
��

,

v(x, t) =
�

2a

1+�
sech

�√
2a(X − ct)

�
exp

�
i
�
(c + �)X −

�
c2−�2

2
− a

�
t
��

,

Table 3   Example 4, accuracy test for the coupled NLS equation, d = 1 . Adaptive. t = 1

� DoF Real part of u Imaginary part of u

L2-error R
DoF

R� L2-error R
DoF

R�

k = 1 1 × 10−1 28 4.42 × 10−2 – – 5.49 × 10−2 – –
1 × 10−2 74 9.25 × 10−3 1.61 0.68 1.43 × 10−2 1.39 0.59
1 × 10−3 152 1.30 × 10−3 2.72 0.85 2.04 × 10−3 2.70 0.85
1 × 10−4 304 6.22 × 10−4 1.07 0.32 1.05 × 10−3 0.96 0.29

k = 2 1 × 10−1 36 9.02 × 10−3 – – 1.12 × 10−2 – –
1 × 10−2 54 1.38 × 10−3 4.62 0.81 1.59 × 10−3 4.82 0.85
1 × 10−3 105 1.39 × 10−4 3.45 1.00 1.68 × 10−4 3.38 0.98
1 × 10−4 186 2.05 × 10−5 3.35 0.83 1.99 × 10−5 3.73 0.93

k = 3 1 × 10−1 44 1.26 × 10−2 – – 1.69 × 10−2 – –
1 × 10−2 60 6.82 × 10−4 9.40 1.27 1.21 × 10−3 8.50 1.15
1 × 10−3 84 8.22 × 10−5 6.29 0.92 1.28 × 10−4 6.68 0.98
1 × 10−4 136 1.16 × 10−5 4.06 0.85 1.75 × 10−5 4.13 0.86

� DoF Real part of v Imaginary part of v

L2-error R
DoF

R� L2-error R
DoF

R�

k = 1 1 × 10−1 28 1.13 × 10−1 – – 8.66 × 10−2 – –
1 × 10−2 74 2.75 × 10−2 1.46 0.62 2.57 × 10−2 1.25 0.53
1 × 10−3 152 4.60 × 10−3 2.49 0.78 4.34 × 10−3 2.47 0.77
1 × 10−4 304 1.97 × 10−3 1.22 0.37 1.79 × 10−3 1.28 0.38

k = 2 1 × 10−1 36 2.07 × 10−2 – – 2.12 × 10−2 – –
1 × 10−2 54 3.56 × 10−3 4.34 0.76 3.39 × 10−3 4.52 0.80
1 × 10−3 105 3.27 × 10−4 3.59 1.04 3.76 × 10−4 3.31 0.95
1 × 10−4 186 4.82 × 10−5 3.35 0.83 5.81 × 10−5 3.27 0.81

k = 3 1 × 10−1 44 2.81 × 10−2 – – 2.50 × 10−2 – –
1 × 10−2 60 1.44 × 10−3 9.58 1.29 1.43 × 10−3 9.24 1.24
1 × 10−3 84 1.49 × 10−4 6.75 0.99 1.68 × 10−4 6.36 0.93
1 × 10−4 136 2.16 × 10−5 4.01 0.84 3.43 × 10−5 3.30 0.69
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Example 5  In this example, we consider the solitary wave propagation and soliton interac-
tion for the coupled NLS equation (18) following [45]. In this example, Δt = 0.1MΔx

�
.

We first take the initial condition for soliton propagation

with the same parameters in Example 4 except X = M(x − 0.2),M = 100 . The periodic 
boundary condition is used in [0,  1]. The numerical solutions and active elements at 
t = 0, 20 and 50 are presented in Fig. 8. The plots of |u| and |v| are similar; thus, we only 
show the results of |u| here.

For interaction of two solitons, we use the following initial condition:

where c1 = 1, c2 = 0.1, a1 = 1, a2 = 0.5, � =
1

2
, � =

2

3
 and Xj = M(x − 0.2 − xj),M = 100,

x
1
= 0, x

2
= 0.25 . The periodic boundary condition is used in [0, 1]. The numerical solu-

tions of |u| and active elements at t = 0, 20 and 50 are presented in Fig. 9. The interaction is 
elastic and the solitons restore their original shapes.

Next, we consider interaction of three solitons with initial condition

where c1 = 1, c2 = 0.1, c3 = −1, a1 = 1.2, a2 = 0.72, a3 = 0.36, � =
1

2
, � =

2

3
 and 

Xj = M(x − 0.2 − xj),M = 100, x1 = 0, x2 = 0.25, x3 = 0.5 . The periodic boundary condi-
tion is used in [0, 1]. The numerical solutions of |u| and active elements at t = 0, 20 and 50 
are presented in Fig. 10. Notice that the three solitons restore their original shapes after the 
interaction.

4.4 � NLS Equation in 2D

Example 6  In this example, we consider the singular solutions for the 2D NLS equation

with the initial condition [45]

(20)

⎧
⎪⎨⎪⎩

u(x, 0) =
�

2a

1+�
sech

�√
2aX

�
exp (i(c − �)X),

v(x, 0) =
�

2a

1+�
sech

�√
2aX

�
exp (i(c + �)X)

(21)

⎧⎪⎪⎨⎪⎪⎩

u(x, 0) =
2∑
j=1

�
2aj

1+�
sech

�√
2ajXj

�
exp

�
i(cj − �)Xj

�
,

v(x, 0) =
2∑
j=1

�
2aj

1+�
sech

�√
2ajXj

�
exp

�
i(cj + �)Xj

�
,

(22)

⎧⎪⎪⎨⎪⎪⎩

u(x, 0) =
3∑
j=1

�
2aj

1+�
sech

�√
2ajXj

�
exp

�
i(cj − �)Xj

�
,

v(x, 0) =
3∑
j=1

�
2aj

1+�
sech

�√
2ajXj

�
exp

�
i(cj + �)Xj

�
,

(23)iut +
1

M2
uxx +

1

M2
uyy + |u|2u = 0
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where X = Mx, Y = My,M = 2� . Periodic boundary conditions are applied in [0, 1]2 . 
Strong evidence of a singularity in finite time is obtained. The plots of |u| and active ele-
ments at t = 0 and t = 0.108 are shown in Fig. 11. From the results, we can observe that a 
singular is generated at t = 0.108 and our method can capture the structure adaptively.

(24)u(x, 0) = (1 + sinX)(2 + sinY)

(a) (b)

(c) (d)

(e) (f)

Fig. 8   Example 5: coupled NLS equation, single soliton. Left: numerical solutions; right: active elements. 
t = 0 , 20 and 50. N = 9, k = 3 , � = 10

−4 and � = 5 × 10
−5
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Example 7  In this example, we consider the 2D NLS equation (23) with the initial condi-
tion [46]

(25)u(x, 0) = 2.0 + 0.01 sin
(
X +

�

4

)
sin

(
Y +

�

4

)
,

(a) (b)

(c) (d)

(e) (f)

Fig. 9   Example 5: coupled NLS equation, double solitons. Left: numerical solutions; right: active elements. 
t = 0 , 20 and 50. N = 9, k = 3 , � = 10

−4 and � = 4 × 10
−5
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where X = M(x − 0.5) , Y = M(y − 0.5) , M = 2� . Periodic boundary conditions are applied 
in [0, 1]2 . The plots of |u| and active elements at t = 0 and t = 1.581 3 are shown in Fig. 12. 
We can observe the blow-up phenomenon in |u| at t = 1.581 3.

(a) (b)

(c) (d)

(e) (f)

Fig. 10   Example 5: coupled NLS equation, triple solitons. Left: numerical solutions; right: active elements. 
t = 0 , 20 and 50. N = 9, k = 3 , � = 10

−4 and � = 4 × 10
−5
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Example 8  In this example, we consider the 2D NLS equation (23) with the initial condi-
tion [47]

where X = M(x − 0.5) , Y = M(y − 0.5) and M = 10 . Periodic boundary conditions are 
applied in [0, 1]2 . The plots of |u| and active elements at t = 0 and t = 0.04 are shown 

(26)u(x, 0) = 6
√
2 exp(−X2 − Y2),

(a) (b)

(c) (d)

Fig. 11   Example 6: singular solutions in 2D NLS equation. Left: numerical solutions; right: active ele-
ments. t = 0 and 0.108. N = 7, k = 3 , � = 10

−4 and � = 10
−5
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in Fig. 13. We observe from the results that the solution blows up in the center and our 
method can capture the blow-up phenomenon.

5 � Conclusion

In this paper, we propose an adaptive multiresolution ultra-weak DG method to solve 
nonlinear Schrödinger equations. The adaptive multiwavelets are applied to achieve the 
multiresolution. The Alpert’s multiwavelets are used to express the DG solution and 
the interpolatory multiwavelets are exploited to compute the nonlinear source term. 
Various numerical experiments are presented to demonstrate the excellent capability 

(a) (b)

(c) (d)

Fig. 12   Example 7: blow-up solution in 2D NLS equation. Left: numerical solutions; right: active elements. 
t = 0 and 1.581 3. N = 7, k = 3 , � = 10

−4 and � = 10
−5
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of capturing the soliton waves and the blow-up phenomenon. The code generating the 
results in this paper can be found at the GitHub link: https​://githu​b.com/Junta​oHuan​g/
adapt​ive-multi​resol​ution​-DG.
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(a) (b)

(c) (d)

Fig. 13   Example 8: single blow-up solution in 2D NLS equation. Left: numerical solutions; right: active 
elements. t = 0 and 0.04. N = 9, k = 3 , � = 10

−3 and � = 10
−4

https://github.com/JuntaoHuang/adaptive-multiresolution-DG
https://github.com/JuntaoHuang/adaptive-multiresolution-DG
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