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Abstract 

Nuclear quantum effects such as zero-point energy are important for describing a wide range of 

chemical properties.  The nuclear-electronic orbital (NEO) approach incorporates such effects into 

quantum chemistry calculations by treating specified nuclei, typically protons, quantum 

mechanically on the same level as electrons. Herein both the traditional and t1-transformed NEO 

coupled cluster with singles and doubles (NEO-CCSD) methods are implemented with a density 

fitting (DF) scheme for approximating the four-center two-particle integrals. The enhanced 

computational efficiency enables calculations on larger molecules with multiple quantum protons. 

The NEO-DF-CCSD method predicts proton affinities within chemical accuracy. Its application 

to protonated water tetramers with all nine protons treated quantum mechanically produces the 

qualitatively correct ordering of the isomer energies, which are strongly influenced by the zero-

point energy contributions inherently included in NEO energy calculations. This work showcases 

the capabilities of the NEO-DF-CCSD method and provides the foundation for future 

developments and applications. 
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 Nuclear quantum effects play an important role in many chemical processes, such as 

hydrogen-bonding interactions, proton transfer reactions, and hydrogen tunneling. The nuclear-

electronic orbital (NEO) approach1-2 provides a computationally efficient framework for inclusion 

of the most significant nuclear quantum effects. In this approach, select nuclei, typically protons, 

are treated quantum mechanically at the same level as electrons with molecular orbital techniques, 

thereby avoiding the Born-Oppenheimer approximation between the different types of quantum 

particles (i.e., the electrons and protons). An advantage of the NEO methods over their purely 

electronic counterparts is that nuclear quantum effects such as zero-point energy and nuclear 

delocalization are included during the energy calculations, geometry optimizations, and reaction 

path calculations.2 

 The NEO Hartree-Fock (NEO-HF) method, in which the nuclear-electronic wave function 

is represented as a product of a nuclear and an electronic Slater determinant, is the simplest method 

within the NEO framework.1 However, due to lack of correlation effects between the quantum 

particles, the calculated proton densities and resulting properties are highly inaccurate.3-4 In order 

to incorporate the missing correlation effects, both wave function1, 3-5 and density functional theory 

(DFT)6-8 methods within the NEO framework have been developed. Among the various NEO wave 

function methods developed, the multicomponent coupled cluster methods,9-10 which are 

parameter free and systematically improvable, have been the most successful.3-5 Previously, we 

showed that the NEO coupled cluster with singles and doubles (NEO-CCSD) method predicts 

accurate proton densities, energies, and optimized geometries.3-4 Its success is ascribed to the 

ability to relax orbitals in the presence of correlation effects through the exponential ansatz of the 

singles excitation operator.3 For this reason, the NEO-CCSD method outperforms the NEO-CCD 

method, in which such orbital relaxation effects are missing.3-4 This realization spawned different 
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research directions in which orbitals are explicitly optimized either by the projective technique or 

variationally, leading to the NEO-BCCD method,4 which uses Brueckner orbitals, and the orbital-

optimized NEO-OOCCD method,5 respectively. The results obtained with these methods 

confirmed our hypothesis about the importance of orbital optimization,3-5 as also subsequently 

confirmed by other work.11-12 

 Our initial NEO-CCSD implementation was limited to systems composed of no more than 

a few atoms with only one proton treated quantum mechanically.3-4 Because that implementation 

utilized a four-center integral code to store the two-particle integrals, the high memory requirement 

was the major bottleneck for studying larger systems. In this Letter, we present a computationally 

efficient implementation that relies on density fitting (DF) for approximating the four-center two-

particle integrals,13-14 thereby significantly reducing the memory requirements. Previous work15 

implemented DF in conjunction with NEO-DFT, but it is even more critical for coupled cluster 

methods. We used this DF implementation of the NEO-CCSD method to compute the proton 

affinities for a set of 23 molecules and to calculate the relative stabilities of four different 

protonated water tetramer isomers, treating all nine protons quantum mechanically. These 

applications highlight the capabilities of the NEO-CCSD method for computing accurate energies 

that inherently incorporate the zero-point energies of the quantum protons. 

 In the NEO-CC approach,2-3 the wave function is represented by 
ˆ e p

NEO-CC 0 0Te  , 

where e p0 0  is the NEO-HF reference wave function and T̂  is the excitation cluster operator that 

incorporates correlation effects between quantum particles through single, double, and higher 

excitations from the reference determinant. In the NEO-CCSD method, the cluster operator is  

 1 2

1 1ˆ ˆ ˆ
4 4

i a I A ij ab IJ AB iI aA

a i A I ab ij AB IJ aA iIT T T t a t a t a t a t a t a




          (1) 
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where  † , , , ,a A ab AB aA

i I ij IJ iIa a a a a a a

   are excitation operators, the general electronic excitation 

operator 1 2

1 2 1 2 2 1

... † † †

... ... ...n

n n n

q q q

p p p q q q p p pa a a a a a a is defined as a string of fermionic creation and annihilation 

(
†

pa  and 
pa ) operators, and    represents the excitation manifold. The remaining excitation 

operators are defined analogously. Throughout this work, we utilize the Einstein summation 

convention for repeated indices. Furthermore, the , , , ,...p q r s  indices denote general electronic 

spin orbitals, , , , ,...i j k l  denote occupied electronic spin orbitals, and , , , ,...a b c d  denote 

unoccupied electronic spin orbitals. The protonic spin orbitals are denoted analogously using the 

corresponding upper-case indices.  

The unknown amplitudes t  (i.e., the wave function parameters)  in Eq. (1) are determined 

using the projective technique for each   as 

 1 2 1 2
ˆ ˆ ˆ ˆe p e p

NEO
ˆ0 0 0 0 0T T T Ta e H e 

       (2) 

Here NEO

1 1ˆ
4 4

p q pq rs P Q PQ RS pP qQ

q p rs pq Q P RS PQ qQ pPH h a g a h a g a g a      is the NEO Hamiltonian expressed 

using the second-quantization formalism, eˆp

qh q h p  is an electronic core Hamiltonian matrix 

element, and 
pq pq qp

rs rs rsg g g rs pq rs qp     is an antisymmetrized two-electron repulsion 

tensor element. The corresponding protonic, 
P

Qh  and PQ

RSg , and mixed electronic-protonic, 
pP

qQg , 

counterparts are defined analogously. The total NEO-CCSD energy is calculated from 

1 2 1 2
ˆ ˆ ˆ ˆe p e p

NEO-CCSD NEO
ˆ0 0 0 0T T T TE e H e   . In the remainder of this Letter, this approach is denoted 

the traditional NEO-CCSD method. 

In addition to the traditional NEO-CCSD method, herein we also introduce the t1-

transformed NEO-CCSD method, which is an extension of the analogous implementation in 
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conventional electronic structure theory.16-20 The details of this method are provided in the SI. The 

t1-transformed NEO-CCSD method is appealing because the t  amplitude equations contain fewer 

terms (i.e., 336 for traditional NEO-CCSD and 110 for t1-transformed NEO-CCSD), leading to a 

more compact and efficient implementation. These two NEO-CCSD methods are mathematically 

equivalent and thus produce identical results. The t1-transformed NEO-CCSD method bears a close 

resemblance to the NEO-BCCD method,4 as discussed further in the SI, and therefore this 

implementation also enables the facile implementation of the NEO-BCCD method.  

We applied the DF approximation to both the traditional and t1-transformed NEO-CCSD 

implementations. The DF approximation is a type of tensor factorization that decomposes the four-

center two-particle integrals as a product of three-center and two-center two-particle integrals.13-14 

This factorization is achieved by approximating the electron density of the four-center two-

electron integrals       as | ) | ) | )N

M

C N   , where | )N  is an auxiliary 

function that is used to fit that density, and 
NC  are the fitting coefficients. In this work, the , ,...   

and ', ',...   indices denote electronic and protonic basis functions, respectively,  and the , ,...M N  

and ', ',...M N  indices denote auxiliary electronic and protonic basis functions, respectively. Note 

that for the discussion of the DF approximation, we use the chemist notation for the two-particle 

integrals for simplicity. By employing the fitted density, the four-center two-electron integrals are 

approximated as 

   (3) 

Minimization of the error in the Coulomb energy        leads to the set of linear 

equations    N

N

M N C M  , and solution of these equations provides the optimal fitting 
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coefficients 
NC . Insertion of these optimal fitting coefficients into Eq. (3) provides the final 

expression for approximating the four-center two-electron integrals: 

       
1

MN

M M N N   


   (4) 

where  M  and  M N  are three-center and two-center two-electron repulsion integrals, 

respectively.  

This DF procedure for electrons can also be used for approximating the four-center two-

proton integrals as15 

       
1

' '

' ' ' ' ' ' ' ' ' ' ' '
M N

M M N N       


    (5) 

Moreover, the four-center electron-proton attraction integrals,  ' ' ' '     , can be 

approximated using three possible approaches as  ,  ' '    , or  . Previous 

multicomponent work15 used only the second approach, but in this Letter, we investigate both the 

second and third approaches. The first approach requires the calculation of the pseudo inverse of 

the two-center electron-proton attraction integrals,  'M N , and therefore will not be considered 

further. The second and third approaches are implemented as 

         
1

' ' ' ' ' '
MN

M M N N        


    (6) 

   (7) 

The DF approximation reduces the memory requirements for storing four-center two-particle 

integrals from 4

bfN  to 2

bf auxN N , where 
bfN  and auxN  are the number of basis and auxiliary 
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functions, respectively (electronic or protonic). Below we analyze the errors introduced by 

approximating each of the four-center two-particle integrals with the DF procedure.  

 We implemented both the traditional NEO-CCSD and the t1-transformed NEO-CCSD 

methods in a developmental version of the Q-Chem quantum chemistry software.21 We confirmed 

that these two methods provide the same NEO-CCSD correlation energies, thereby validating both 

implementations. Furthermore, we implemented both the traditional NEO-CCSD and the t1-

transformed NEO-CCSD methods using the four-center (without DF) and the three-center (with 

DF) approaches. We will refer to these methods as the NEO-CCSD and NEO-DF-CCSD methods, 

respectively. Note that the error in the Coulomb energy associated with the DF approximation is 

always positive, and therefore the DF coefficients are determined variationally. However, the 

CCSD method is not variational because of the projective technique for determining the unknown 

coupled cluster amplitudes. All of the numerical results given in this Letter were obtained with the 

t1-transformed NEO-CCSD implementation because it is slightly more computationally efficient. 

Prior to chemical applications of this approach, we analyzed the numerical errors 

introduced by the DF approximation for the four-center two-particle integrals, namely    , 

 ' ' ' '    , and  ' '   . These tests were performed using the NEO-(DF)-CCSD method 

on the protonated water dimer optimized at the CCSD/aug-cc-pVDZ level, where all five protons 

were treated quantum mechanically. The NEO calculations employed the aug-cc-pVDZ22-23 and 

PB4-F2 (4s3p2d2f)24 electronic and protonic basis sets, respectively. The aug-cc-pVDZ-RI (aDZ-

RI), aug-cc-pVTZ-RI (aTZ-RI), and aug-cc-pVQZ-RI (aQZ-RI) auxiliary electronic basis sets,25 

as well as the even-tempered 8s8p8d, 8s8p8d8f, and 8s8p8d8f8g auxiliary protonic basis sets with 

exponents spanning the range from 2 2 to 32,26 were used for these tests. 
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  Table 1. Absolute Errors (kcal/mol) Introduced by the Density Fitting Approximation. 

 mn rs( )  
aux. basis  aDZ-RI aTZ-RI aQZ-RI 

abs. error a 0.135 0.001 0.002 

abs. error 

(conv)b 
0.130 0.001 0.002 

 m 'n ' r 's '( ) 
aux. basis 8s8p8d 8s8p8d8f 8s8p8d8f8g 

abs. error a 0.035 0.007 0.005 

 mn m 'n '( ) 

 
c d 

aux. basis  aDZ-RI aTZ-RI aQZ-RI 8s8p8d 8s8p8d8f 8s8p8d8f8g 

abs. error a 0.825 0.720 0.229 0.142 0.025 0.025 
a 

Absolute errors correspond to energy difference between NEO-CCSD and NEO-DF-CCSD when only the 

specified type of four-center two-particle integral is approximated with DF. 
b 

Absolute errors correspond to energy difference between conventional electronic CCSD and DF-CCSD. 
c Approximation given in Eq. (6). 
d Approximation given in Eq. (7). 

 

The absolute errors introduced by the DF approximation with respect to our four-center 

integral code are provided in Table 1. The DF approximation of the four-center two-electron 

integrals in the NEO-DF-CCSD method produces nearly identical absolute errors as those 

produced by the conventional electronic DF-CCSD method. The DF approximation of the four-

center two-proton integrals introduces errors of similar magnitude (i.e., less than 0.01 kcal/mol) 

for the largest auxiliary basis sets studied. Approximating the four-center electron-proton integrals, 

 ' '   , via Eq. (6) is controlled by the size of the auxiliary electronic basis set and leads to 

significantly larger absolute errors of ~0.2 kcal/mol even for the largest basis set employed. 

Approximating the four-center electron-proton integrals via Eq. (7) is controlled by the size of the 

auxiliary protonic basis set and leads to much smaller absolute errors of ~0.02 kcal/mol for the 

largest two basis sets employed. Therefore, we will use this approximation as a default. 

Furthermore, the results from Table 1 indicate that the 8s8p8d8f basis set is an adequate auxiliary 

protonic basis set for approximating the four-center proton-proton and electron-proton integrals. 
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Finally, the total absolute error introduced by the DF approximation with all types of four-center 

two-particle integrals approximated is 0.167 kcal/mol using the aDZ-RI and 8s8p8d8f auxiliary 

basis sets and 0.031 kcal/mol using the aTZ-RI and 8s8p8d8f auxiliary basis sets. Given this level 

of accuracy for the energies, the DF approximation presumably also produces accurate proton 

densities, as shown previously for the NEO-CCSD method.4 

 We used the NEO variants of HF theory, second-order Møller-Plesset perturbation theory 

(MP2), and CCSD to compute the proton affinities for a set of 23 molecules8, 27 and compared the 

predicted proton affinities to the experimentally determined values.28-31 The proton affinity of a 

molecule A within the NEO framework was computed via the expression 

A HA
PA(A) 5/2 E E RT   ,8, 27 where AE  is the energy of molecule A calculated using the 

conventional electronic approach and 
AH

E   is the energy of molecule AH+ calculated with the 

NEO method treating the relevant hydrogen nucleus quantum mechanically. In this expression, 

5/2 RT accounts for the change in translational energy and the conversion from energy to enthalpy, 

where R is the universal gas constant and T is the temperature. Note that this approach does not 

require the calculation of a Hessian or zero-point energies because the NEO method inherently 

includes the zero-point energy contributions from the quantum proton. This procedure assumes 

that the zero-point energies associated with the other nuclei are approximately unchanged upon 

protonation, as validated by us previously.3  

All of the proton affinity calculations were performed on the geometries optimized at the 

conventional electronic MP2/aug-cc-pVTZ level of theory. Tests on several of the smaller systems 

confirmed that the changes in geometry upon optimization at the conventional CCSD level do not 

significantly impact the calculated proton affinities (see Table S1). In our NEO calculations, the 

aug-cc-pVQZ electronic basis set22-23, 32 and the PB4-F2 protonic basis set24 were used for the 
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quantum mechanical hydrogen, and these basis functions were centered at the hydrogen position 

in the MP2/aug-cc-pVTZ optimized geometries. We used the aug-cc-pVQZ-RI auxiliary basis set 

to approximate the four-center two-electron integrals.25 Because only one proton was treated 

quantum mechanically, there was no need to approximate the other types of four-center two-

particle integrals.  

The mean unsigned errors (MUEs) and absolute deviations of each of these NEO methods 

relative to the experimental data are given in Table 2. The NEO-HF method has the largest overall 

MUE of 0.51 eV, followed by the NEO-DF-MP2 method, which has an overall MUE of 0.32 eV. 

The NEO-DF-CCSD has an overall MUE of 0.05 eV, which is within both the experimental (~0.09 

eV)31 and chemical (~0.05 eV)20 accuracy. For comparison, the NEO-DFT method with the epc17-

2 or epc19 electron-proton correlation functional produced an overall MUE of 0.06 eV for the 

same set of molecules.8, 33 However, the advantages of the wave function methods studied herein 

over the NEO-DFT methods are the avoidance of parameterization and the potential for systematic 

improvement. 

Table 2. Mean Unsigned Errors (MUEs) and Absolute Deviations of the Proton Affinities 

Relative to Experimentally Determined Proton Affinities.a  

Molecule Experiment NEO-HF NEO-DF-MP2 NEO-DF-CCSD 

Amines     

NH3 8.85 0.52 0.28 0.03 

CH3NH2 9.32 0.49 0.26 <0.01 

CH3CH2NH2 9.45 0.48 0.26 0.01 

CH3CH2CH2NH2 9.51 0.47 0.26 0.01 

(CH3)2NH 9.63 0.47 0.24 0.03 

(CH3)3N 9.84 0.46 0.25 0.05 

MUE  0.48 0.26 0.02 

Inorganics     

CN–
 15.31 0.93 0.37 0.10 

HS– 15.31 0.84 0.41 0.08 

NO2
– 14.75 0.54 0.38 0.03 

MUE  0.77 0.39 0.07 

Carboxylates     

HCOO– 14.97 0.48 0.35 0.01 

CH3COO– 15.11 0.44 0.32 0.04 

CH3CH2COO– 15.07 0.40 0.30 0.06 
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CH3CH2CH2COO– 15.03 0.37 0.28 0.08 

CH3CH2CH2CH2COO– 15.01 0.35 0.27 0.10 

CH3COCOO– 14.46 0.48 0.30 0.05 

CH2FCOO– 14.71 0.48 0.37 0.01 

CHF2COO– 14.32 0.40 0.28 0.08 

CF3COO– 13.99 0.38 0.22 0.14 

CH2ClCOO– 14.58 0.48 0.32 0.04 

CH2ClCH2COO– 14.78 0.56 0.43 0.07 

MUE  0.44 0.31 0.06 

Aromatics     

C6H5O– 15.24 0.45 0.39 <0.01 

C6H5COO– 14.75 0.73 0.56 0.19 

C6H5NH2 9.15 0.54 0.31 0.01 

MUE  0.57 0.42 0.07 

overall MUE  0.51 0.32 0.05 
a
All values are given in units of eV. Experimental data obtained from Ref. (

28-31). 

 To further showcase the power of the NEO-DF-CCSD method, we calculated the relative 

stabilities of four protonated water tetramer isomers,34-37 treating all nine protons quantum 

mechanically. This application is particularly challenging because inclusion of zero-point energy 

contributions is known to change the relative stabilities of these isomers at the coupled cluster 

level.35-36 According to the electronic energies without zero-point energy contributions at the 

CCSD(T) level of theory, the relative stabilities of these isomers are eigen < ring < cis-Zundel < 

trans-Zundel (black line in Figure 1A).36 When zero-point energy contributions are included 

within the harmonic approximation by diagonalizing the Hessian at this same level of theory, the 

ordering changes to be eigen < trans-Zundel < cis-Zundel < ring (red dashed line in Figure 1A). 

The inclusion of anharmonic corrections to the zero-point energy contributions does not alter this 

ordering (blue dashed line in Figure 1). The anharmonic corrections were calculated as the 

differences between anharmonic zero-point energies obtained with the vibrational second-order 

perturbative (VPT2) approach38 and harmonic zero-point energies at the MP2/aug-cc-pVTZ level 

of theory using Q-Chem.21 Moreover, when the oxygen atoms are assigned infinite mass so that 

only the zero-point energy contributions from the hydrogen nuclei are included, these trends do 
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not change for either the harmonic or anharmonic zero-point energy calculations (red and blue 

dotted lines in Figure 1A).  These results indicate that the zero-point energy contributions from the 

hydrogen nuclei alter the ordering of the relative stabilities of these isomers. Thus, this system 

serves as an excellent test of the NEO-DF-CCSD approach, where the nine hydrogen nuclei are 

treated quantum mechanically, and the associated zero-point energies are inherently included in a 

single-point energy calculation. 

 

 
Figure 1. Relative energies of the protonated water tetramer isomers calculated with the 

conventional electronic CCSD(T) method without any zero-point energy (ZPE) contributions 

(solid black curve), the conventional CCSD(T) method with harmonic ZPE contributions 

(CCSD(T)+HZPE, dashed and dotted red curves), the conventional CCSD(T) method with 

anharmonic ZPE contributions (CCSD(T)+AZPE, dashed and dotted blue curves), and the NEO-

DF-CCSD method (solid purple curve). The notations (full) and (H) indicate ZPE contributions 

from all nuclei and from only the hydrogen nuclei (i.e., with infinitely heavy oxygen nuclei), 

respectively. For visualization purposes, all energies are plotted relative to the ring isomer energy 

at each level of theory, and lines are drawn between data points to depict the trends. 

 

We performed NEO-DF-CCSD calculations for the geometries optimized at the 

conventional CCSD(T)/aug-cc-pVTZ level of theory, as obtained from Ref. (36). For our NEO-
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DF-CCSD calculations at these geometries, we used the aug-cc-pVTZ electronic basis set22-23, 32 

and the PB4-F2 protonic basis set,24 in conjunction with the aug-cc-pVTZ-RI25 and 8s8p8d8f26 

auxiliary electronic and protonic basis sets, respectively. As discussed above, the NEO energy 

includes the zero-point energy contributions from the quantum protons, and the contributions from 

the oxygen nuclei to the relative zero-point energies among the four isomers is negligible (Figure 

1A). Thus, although the NEO energy can be viewed as the sum of the electronic energy and the 

anharmonic zero-point energy contributions from the quantum hydrogen nuclei with infinitely 

heavy oxygen nuclei, the target reference can be viewed as the sum of the electronic energies and 

the anharmonic zero-point energy contributions from all nuclei. A comparison of the energies 

computed with the NEO-DF-CCSD approach to these reference energies, as well as the electronic 

energies computed at the conventional CCSD(T) level without any zero-point energy 

contributions, is provided in Figure 1B.  Moreover, Table 3 provides all of the energies relative to 

the energy of the Eigen isomer at each level of theory discussed.  

Table 3. Energies of the Protonated Water Tetramer Isomers Relative to the Eigen Isomer 

Energy Computed with Different Methods.a 

Method Ring cis-Zundel trans-Zundel 

CCSD(T) 3.5 3.8 3.9 

CCSD(T)+HZPE(full) 4.3 2.8 2.3 

CCSD(T)+HZPE(H) 4.3 2.6 2.2 

CCSD(T)+AZPE(full) 3.9 3.0 2.9 

CCSD(T)+AZPE(H) 4.1 3.1 2.9 

NEO-DF-CCSD 3.1 2.4 2.4 
a
 Relative energies are given in kcal/mol. HZPE and AZPE indicate harmonic and anharmonic zero-point energy 

contributions, respectively; (full) and (H) indicate zero-point energy contributions from all nuclei and from only the 

hydrogen nuclei (i.e., with infinitely heavy oxygen nuclei), respectively. 
 

 The NEO-DF-CCSD approach predicts the correct qualitative trends among the isomer 

energies. In particular, the NEO-DF-CCSD results are in agreement with the reference energies in 

that the ring isomer is the least stable among the four isomers.  However, the NEO-DF-CCSD 

method underestimates the energy of the ring isomer relative to the Eigen isomer by ~1 kcal/mol. 
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Moreover, the energies of the cis-Zundel and trans-Zundel isomers are predicted to be the same 

with the NEO-DF-CCSD method, whereas the trans-Zundel isomer is predicted to be ~0.1 

kcal/mol lower in energy with the reference method. These relatively small discrepancies are 

ascribed to several factors: (1) the use of geometries optimized with the conventional electronic 

structure method, (2) the size of the electronic and nuclear basis sets, and (3) the truncation of the 

NEO coupled cluster ansatz.  

We were unable to optimize the geometries at the NEO-DF-CCSD level because of the 

computational expense of numerical gradients and the unavailability of analytic gradients. 

However, we were able to perform full geometry optimizations of the oxygen nuclei and the 

nuclear basis function centers at the NEO-DFT level with the B3LYP electronic exchange-

correlation functional39-41 and the epc17-2 electron-proton correlation functional7-8 using analytic 

gradients available in Q-Chem.21 As shown in Figure 2, the geometry optimizations do not impact 

the relative energies significantly. Further analysis of the NEO-DFT data is provided in Table S2. 

In addition, we investigated the impact of using smaller basis sets and found that the results are 

qualitatively similar (see Table S3), suggesting that the basis sets may be sufficient. Based on these 

analyses, we hypothesize that the minor quantitative discrepancies in the NEO-DF-CCSD results 

arise from the omission of triple excitations, particularly those corresponding to a double electronic 

excitation and a single protonic excitation. Another possibility is that the VPT2 anharmonic 

corrections at the MP2 level are problematic. In any case, the NEO-DF-CCSD relative energies 

are in reasonable agreement with the reference results. 
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Figure 2. Relative energies of the protonated water tetramer isomers calculated with the NEO-

DFT/B3LYP/epc17-2 method at the geometries optimized at the conventional CCSD(T)/aug-cc-

pVTZ level of theory (solid blue curve), and with full geometry optimizations of the oxygen nuclei 

and the nuclear basis function centers (solid red curve). For visualization purposes, all energies are 

plotted relative to the ring isomer energy at each set of geometries, and lines are drawn between 

data points to depict the trends. 

 

 This Letter presents an efficient implementation of the NEO-CCSD method with density 

fitting that allows calculations of molecular systems significantly larger than those previously 

studied, as well as the quantum treatment of multiple protons. In addition to the traditional NEO-

CCSD method, we also implemented the t1-transformed NEO-CCSD method, which is related to 

the NEO orbital-optimized coupled cluster methods. Our calculations show that the NEO-DF-

CCSD method predicts proton affinities within chemical and experimental accuracy. We also show 

that the NEO-DF-CCSD method can predict the relative stabilities of four protonated water 

tetramer isomers, where zero-point energy contributions are known to change the energetic 

ordering at the coupled cluster level. Because the zero-point energies associated with the hydrogen 

nuclei are inherently included in NEO calculations, only single-point NEO-DF-CCSD energy 

calculations are required to reproduce the qualitative trends. The accuracy of the NEO-CCSD 

method can be improved systematically by including higher excitations in the coupled cluster 

ansatz, such as triples, and its computational efficiency can be improved by low-rank tensor 

factorizations for approximating the wave function parameter.42 Moreover, the NEO-CCSD 
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method can serve as a reference in the development of more computationally efficient methods, 

such as NEO-DFT7-8, 33 and NEO scaled-opposite-spin orbital-optimized MP2 (NEO-SOS′-

OOMP2),5 which require parameterization. Thus, this work opens up many research directions in 

terms of methodological development and applications to chemically interesting systems. 

 

Acknowledgement  

The authors thank Dr. Qi Yu, Dr. Saswata Roy, Benjamin Rousseau, Patrick Schneider, and Prof. 

John Tully for useful discussions. F.P. was supported by the U.S. Department of Energy, Office 

of Science, Offices of Basic Energy Sciences and Advanced Scientific Computing Research, 

Scientific Discovery through Advanced Computing (SciDAC) program. Z.T. was supported by the 

National Science Foundation Grant No. CHE-1954348. 

  
Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website: t1-

transformed NEO-CCSD formulation, geometry effect analysis on calculated proton affinities, 

DFT results for relative energies of protonated water tetramers, and basis set analysis for relative 

energies of protonated water tetramers. 

 

References 

(1) Webb, S. P.; Iordanov, T.; Hammes-Schiffer, S., Multiconfigurational Nuclear-Electronic 

Orbital Approach: Incorporation of Nuclear Quantum Effects in Electronic Structure Calculations. 

J. Chem. Phys. 2002, 117, 4106-4118. 

(2) Pavošević, F.; Culpitt, T.; Hammes-Schiffer, S., Multicomponent Quantum Chemistry: 

Integrating Electronic and Nuclear Quantum Effects via the Nuclear–Electronic Orbital Method. 

Chem. Rev. 2020, 120, 4222-4253. 

(3) Pavošević, F.; Culpitt, T.; Hammes-Schiffer, S., Multicomponent Coupled Cluster Singles 

and Doubles Theory within the Nuclear-Electronic Orbital Framework. J. Chem. Theory Comput. 

2018, 15, 338-347. 



17 

 

(4) Pavošević, F.; Hammes-Schiffer, S., Multicomponent Coupled Cluster Singles and 

Doubles and Brueckner Doubles Methods: Proton Densities and Energies. J. Chem. Phys. 2019, 

151, 074104. 

(5) Pavošević, F.; Rousseau, B. J. G.; Hammes-Schiffer, S., Multicomponent Orbital-

Optimized Perturbation Theory Methods: Approaching Coupled Cluster Accuracy at Lower Cost. 

J. Phys. Chem. Lett. 2020, 11, 1578-1583. 

(6) Pak, M. V.; Chakraborty, A.; Hammes-Schiffer, S., Density Functional Theory Treatment 

of Electron Correlation in the Nuclear−Electronic Orbital Approach. J. Phys. Chem. A 2007, 111, 

4522-4526. 

(7) Yang, Y.; Brorsen, K. R.; Culpitt, T.; Pak, M. V.; Hammes-Schiffer, S., Development  of 

a Practical Multicomponent Density Functional for Electron-Proton Correlation to Produce 

Accurate Proton Densities. J. Chem. Phys. 2017, 147, 114113. 

(8) Brorsen, K. R.; Yang, Y.; Hammes-Schiffer, S., Multicomponent Density Functional 

Theory: Impact of Nuclear Quantum Effects on Proton Affinities and Geometries. J. Phys. Chem. 

Lett. 2017, 8, 3488-3493. 

(9) Nakai, H.; Sodeyama, K., Many-Body Effects in Nonadiabatic Molecular Theory for 

Simultaneous Determination of Nuclear and Electronic Wave Functions: Ab Initio NOM/MBPT 

and CC Methods. J. Chem. Phys. 2003, 118, 1119-1127. 

(10) Ellis, B. H.; Aggarwal, S.; Chakraborty, A., Development of the Multicomponent Coupled-

Cluster Theory for Investigation of Multiexcitonic Interactions. J. Chem. Theory Comput. 2015, 

12, 188-200. 

(11) Brorsen, K., Quantifying Multireference Character in Multicomponent Systems with Heat-

Bath Configuration Interaction. J. Chem. Theory Comput. 2020, 16, 2379-2388. 

(12) Fajen, O. J.; Brorsen, K. R., Separation of Electron–Electron and Electron–Proton 

Correlation in Multicomponent Orbital-Optimized Perturbation Theory. J. Chem. Phys. 2020, 152, 

194107. 

(13) Whitten, J. L., Coulombic Potential Energy Integrals and Approximations. J. Chem. Phys. 

1973, 58, 4496. 

(14) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R., On Some Approximations in Applications 

of Xα Theory. J. Chem. Phys. 1979, 71, 3396-3402. 

(15) Mejía-Rodríguez, D.; de la Lande, A., Multicomponent Density Functional Theory with 

Density Fitting. J. Chem. Phys. 2019, 150, 174115. 

(16) Koch, H.; Christiansen, O.; Kobayashi, R.; Jørgensen, P.; Helgaker, T., A Direct Atomic 

Orbital Driven Implementation of the Coupled Cluster Singles and Doubles (CCSD) Model. Chem. 

Phys. Lett. 1994, 228, 233-238. 

(17) Crawford, T. D.; Schaefer, H. F., An Introduction to Coupled Cluster Theory for 

Computational Chemists. Rev. Comp. Chem. 2000, 14, 33-136. 

(18) Bartlett, R. J.; Musiał, M., Coupled-Cluster Theory in Quantum Chemistry. Rev. Mod. 

Phys. 2007, 79, 291. 

(19) Shavitt, I.; Bartlett, R. J., Many-Body Methods in Chemistry and Physics: MBPT and 

Coupled-Cluster Theory. Cambridge university press: 2009. 

(20) Helgaker, T.; Jørgensen, P.; Olsen, J., Molecular Electronic-Structure Theory. John Wiley 

& Sons: 2014. 

(21) Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, 

A. W.; Behn, A.; Deng, J.; Feng, X.; et. al., Advances in Molecular Quantum Chemistry Contained 

in the Q-Chem 4 Program Package. Mol. Phys. 2015, 113, 184-215. 



18 

 

(22) Dunning, T. H., Jr., Gaussian Basis Sets for Use in Correlated Molecular Calculations: 1. 

The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007-1023. 

(23) Kendall, R. A.; Dunning Jr, T. H.; Harrison, R. J., Electron Affinities of the First‐Row 

Atoms Revisited. Systematic Basis Sets and Wave Functions. J. Chem. Phys. 1992, 96, 6796-6806. 

(24) Yu, Q.; Pavošević, F.; Hammes-Schiffer, S., Development of Nuclear Basis Sets for 

Multicomponent Quantum Chemistry Methods. J. Chem. Phys. 2020, 152, 244123. 

(25) Weigend, F.; Köhn, A.; Hättig, C., Efficient Use of the Correlation Consistent Basis Sets 

in Resolution of the Identity MP2 Calculations. J. Chem. Phys. 2002, 116, 3175-3183. 

(26) Culpitt, T.; Yang, Y.; Pavošević, F.; Tao, Z.; Hammes-Schiffer, S., Enhancing the 

Applicability of Multicomponent Time-Dependent Density Functional Theory. J. Chem. Phys. 

2019, 150, 201101. 

(27) Díaz-Tinoco, M.; Romero, J.; Ortiz, J.; Reyes, A.; Flores-Moreno, R., A Generalized Any-

Particle Propagator Theory: Prediction of Proton Affinities and Acidity Properties with the Proton 

Propagator. J. Chem. Phys. 2013, 138, 194108. 

(28) Cumming, J. B.; Kebarle, P., Summary of Gas Phase Acidity Measurements Involving 

Acids Ah. Entropy Changes in Proton Transfer Reactions Involving Negative Ions. Bond 

Dissociation Energies D (A—H) and Electron Affinities EA (A). Can. J. Chem. 1978, 56, 1-9. 

(29) Jolly, W. L., Modern Inorganic Chemistry. McGraw-Hill College: 1984. 

(30) Graul, S. T.; Schnute, M. E.; Squires, R. R., Gas-Phase Acidities of Carboxylic Acids and 

Alcohols from Collision-Induced Dissociation of Dimer Cluster Ions. Int. J. Mass Spectrom. Ion. 

Proc. 1990, 96, 181-198. 

(31) Hunter, E. P. L.; Lias, S. G., Evaluated Gas Phase Basicities and Proton Affinities of 

Molecules: An Update. J. Phys. Chem. Ref. Data 1998, 27, 413-656. 

(32) Woon, D. E.; Dunning Jr, T. H., Gaussian Basis Sets for Use in Correlated Molecular 

Calculations. III. The Atoms Aluminum through Argon. J. Chem. Phys. 1993, 98, 1358-1371. 

(33) Tao, Z.; Yang, Y.; Hammes-Schiffer, S., Multicomponent Density Functional Theory: 

Including the Density Gradient in the Electron-Proton Correlation Functional for Hydrogen and 

Deuterium. J. Chem. Phys. 2019, 151, 124102. 

(34) Fournier, J. A.; Wolke, C. T.; Johnson, M. A.; Odbadrakh, T. T.; Jordan, K. D.; Kathmann, 

S. M.; Xantheas, S. S., Snapshots of Proton Accommodation at a Microscopic Water Surface: 

Understanding the Vibrational Spectral Signatures of the Charge Defect in Cryogenically Cooled 

H+(H2O)N= 2–28 Clusters. J. Phys. Chem. A 2015, 119, 9425-9440. 

(35) Yu, Q.; Bowman, J. M., High-Level Quantum Calculations of the IR Spectra of the Eigen, 

Zundel, and Ring Isomers of H+(H2O)4 Find a Single Match to Experiment. J. Am. Chem. Soc 

2017, 139, 10984-10987. 

(36) Heindel, J. P.; Yu, Q.; Bowman, J. M.; Xantheas, S. S., Benchmark Electronic Structure 

Calculations for H3O
+(H2O)N, N= 0–5, Clusters and Tests of an Existing 1, 2, 3-Body Potential 

Energy Surface with a New 4-Body Correction. J. Chem. Theory Comput. 2018, 14, 4553-4566. 

(37) Finney, J. M.; DiRisio, R. J.; McCoy, A. B., Guided Diffusion Monte Carlo: A Method for 

Studying Molecules and Ions That Display Large Amplitude Vibrational Motions. J. Phys. Chem. 

A 2020, 124, 9567-9577. 

(38) Barone, V., Anharmonic Vibrational Properties by a Fully Automated Second-Order 

Perturbative Approach. J. Chem. Phys. 2005, 122, 014108. 

(39) Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy 

Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785. 



19 

 

(40) Becke, A. D., Density-Functional Exchange-Energy Approximation with Correct 

Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098. 

(41) Becke, A. D., Density‐Functional Thermochemistry. III. The Role of Exact Exchange. J. 

Chem. Phys. 1993, 98, 5648-5652. 

(42) Riplinger, C.; Neese, F., An Efficient and near Linear Scaling Pair Natural Orbital Based 

Local Coupled Cluster Method. J. Chem. Phys. 2013, 138, 034106. 

 


