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Abstract

Nuclear quantum effects such as zero-point energy are important for describing a wide range of
chemical properties. The nuclear-electronic orbital (NEO) approach incorporates such effects into
quantum chemistry calculations by treating specified nuclei, typically protons, quantum
mechanically on the same level as electrons. Herein both the traditional and #-transformed NEO
coupled cluster with singles and doubles (NEO-CCSD) methods are implemented with a density
fitting (DF) scheme for approximating the four-center two-particle integrals. The enhanced
computational efficiency enables calculations on larger molecules with multiple quantum protons.
The NEO-DF-CCSD method predicts proton affinities within chemical accuracy. Its application
to protonated water tetramers with all nine protons treated quantum mechanically produces the
qualitatively correct ordering of the isomer energies, which are strongly influenced by the zero-
point energy contributions inherently included in NEO energy calculations. This work showcases
the capabilities of the NEO-DF-CCSD method and provides the foundation for future
developments and applications.
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Nuclear quantum effects play an important role in many chemical processes, such as
hydrogen-bonding interactions, proton transfer reactions, and hydrogen tunneling. The nuclear-
electronic orbital (NEO) approach!~ provides a computationally efficient framework for inclusion
of the most significant nuclear quantum effects. In this approach, select nuclei, typically protons,
are treated quantum mechanically at the same level as electrons with molecular orbital techniques,
thereby avoiding the Born-Oppenheimer approximation between the different types of quantum
particles (i.e., the electrons and protons). An advantage of the NEO methods over their purely
electronic counterparts is that nuclear quantum effects such as zero-point energy and nuclear
delocalization are included during the energy calculations, geometry optimizations, and reaction
path calculations.?

The NEO Hartree-Fock (NEO-HF) method, in which the nuclear-electronic wave function
is represented as a product of a nuclear and an electronic Slater determinant, is the simplest method
within the NEO framework.! However, due to lack of correlation effects between the quantum
particles, the calculated proton densities and resulting properties are highly inaccurate.>* In order
to incorporate the missing correlation effects, both wave function! > and density functional theory
(DFT)®8 methods within the NEO framework have been developed. Among the various NEO wave
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function methods developed, the multicomponent coupled cluster methods,
parameter free and systematically improvable, have been the most successful.’**> Previously, we
showed that the NEO coupled cluster with singles and doubles (NEO-CCSD) method predicts
accurate proton densities, energies, and optimized geometries.>* Its success is ascribed to the
ability to relax orbitals in the presence of correlation effects through the exponential ansatz of the

singles excitation operator.’ For this reason, the NEO-CCSD method outperforms the NEO-CCD

method, in which such orbital relaxation effects are missing.>* This realization spawned different



research directions in which orbitals are explicitly optimized either by the projective technique or
variationally, leading to the NEO-BCCD method,* which uses Brueckner orbitals, and the orbital-
optimized NEO-OOCCD method,? respectively. The results obtained with these methods
confirmed our hypothesis about the importance of orbital optimization,*> as also subsequently
confirmed by other work.!!!?

Our initial NEO-CCSD implementation was limited to systems composed of no more than
a few atoms with only one proton treated quantum mechanically.’* Because that implementation
utilized a four-center integral code to store the two-particle integrals, the high memory requirement
was the major bottleneck for studying larger systems. In this Letter, we present a computationally
efficient implementation that relies on density fitting (DF) for approximating the four-center two-
particle integrals,'>"' thereby significantly reducing the memory requirements. Previous work!
implemented DF in conjunction with NEO-DFT, but it is even more critical for coupled cluster
methods. We used this DF implementation of the NEO-CCSD method to compute the proton
affinities for a set of 23 molecules and to calculate the relative stabilities of four different
protonated water tetramer isomers, treating all nine protons quantum mechanically. These

applications highlight the capabilities of the NEO-CCSD method for computing accurate energies

that inherently incorporate the zero-point energies of the quantum protons.

In the NEO-CC approach,>® the wave function is represented by |¥ o cc) =€’ O"Op>,

where

O"Op> is the NEO-HF reference wave function and 7' is the excitation cluster operator that

incorporates correlation effects between quantum particles through single, double, and higher

excitations from the reference determinant. In the NEO-CCSD method, the cluster operator is
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where a” =a/ = {al ,a; ,ay ,a ,al‘}A} are excitation operators, the general electronic excitation

operator @, = aT aT a; a, ..a, a,is defined as a string of fermionic creation and annihilation

(az and a,) operators, and a represents the excitation manifold. The remaining excitation
operators are defined analogously. Throughout this work, we utilize the Einstein summation
convention for repeated indices. Furthermore, the p,q,r,s,... indices denote general electronic
spin orbitals, i, /,k,/,... denote occupied electronic spin orbitals, and a,b,c,d,... denote

unoccupied electronic spin orbitals. The protonic spin orbitals are denoted analogously using the
corresponding upper-case indices.

The unknown amplitudes ¢, (i.e., the wave function parameters) in Eq. (1) are determined
using the projective technique for each a as
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Here Hy ., =h’ ap+4g”"a” +hPaP +4gRS Ap) — qu o 18 the NEO Hamiltonian expressed

using the second-quantization formalism, 4, = <q e

p> is an electronic core Hamiltonian matrix

element, and g’ =g" —g? :<rs| pq>—<rs|qp> 1s an antisymmetrized two-electron repulsion

tensor element. The corresponding protonic, hg and g,?, and mixed electronic-protonic, g(fg ,
counterparts are defined analogously. The total NEO-CCSD energy is calculated from

ey | -7 i+,
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0°0p> In the remainder of this Letter, this approach is denoted

the traditional NEO-CCSD method.
In addition to the traditional NEO-CCSD method, herein we also introduce the ¢i-

transformed NEO-CCSD method, which is an extension of the analogous implementation in



conventional electronic structure theory.'®2° The details of this method are provided in the SI. The
ti-transformed NEO-CCSD method is appealing because the ¢, amplitude equations contain fewer
terms (i.e., 336 for traditional NEO-CCSD and 110 for #1-transformed NEO-CCSD), leading to a
more compact and efficient implementation. These two NEO-CCSD methods are mathematically
equivalent and thus produce identical results. The #1-transformed NEO-CCSD method bears a close
resemblance to the NEO-BCCD method,* as discussed further in the SI, and therefore this
implementation also enables the facile implementation of the NEO-BCCD method.

We applied the DF approximation to both the traditional and #-transformed NEO-CCSD

implementations. The DF approximation is a type of tensor factorization that decomposes the four-

center two-particle integrals as a product of three-center and two-center two-particle integrals.!>!4
This factorization is achieved by approximating the electron density of the four-center two-

electron integrals (uv|po)=(up|vo) as | po) | pa)=D Ci | N), where | N) is an auxiliary
M

function that is used to fit that density, and C/IJVG are the fitting coefficients. In this work, the z,v,...
and u',v',... indices denote electronic and protonic basis functions, respectively, and the M, N, ...
and M',N',... indices denote auxiliary electronic and protonic basis functions, respectively. Note

that for the discussion of the DF approximation, we use the chemist notation for the two-particle
integrals for simplicity. By employing the fitted density, the four-center two-electron integrals are

approximated as

(wv]p0)=(wlpo)=S.cii(m]N)c), ®

MN

Minimization of the error in the Coulomb energy ( MV — ,uv‘ PO — pa) leads to the set of linear

equations Y (M|N)CJ, =(M|pc), and solution of these equations provides the optimal fitting
N
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coefficients C/ivg. Insertion of these optimal fitting coefficients into Eq. (3) provides the final

expression for approximating the four-center two-electron integrals:

(uvlpo)~ X (uviM)(M|N) " (N|po) )

MN
where ( ,uv|M ) and (M |N ) are three-center and two-center two-electron repulsion integrals,
respectively.

This DF procedure for electrons can also be used for approximating the four-center two-

proton integrals as!®

(uvlo'a) 3 (uv ) (V) (Vo) ®

M'N'
Moreover, the four-center electron-proton attraction integrals, ( ,uv| y'v')=< ,u,u'|vv '> , can be
approximated using three possible approaches as (,LF/‘,L/LT;') , ( ,uv| ,u'v') , or ( ,uv‘,L/tT\j') . Previous

multicomponent work'® used only the second approach, but in this Letter, we investigate both the

second and third approaches. The first approach requires the calculation of the pseudo inverse of

the two-center electron-proton attraction integrals, (M |N ') , and therefore will not be considered

further. The second and third approaches are implemented as

(vl = (uvluv') = 3 (v M) (MIN) (W] (6)
()=} 3 (far el () g

The DF approximation reduces the memory requirements for storing four-center two-particle

integrals from Ng. to N_.N,

aux ?

where N,. and N, are the number of basis and auxiliary
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functions, respectively (electronic or protonic). Below we analyze the errors introduced by
approximating each of the four-center two-particle integrals with the DF procedure.

We implemented both the traditional NEO-CCSD and the ¢-transformed NEO-CCSD
methods in a developmental version of the Q-Chem quantum chemistry software.?! We confirmed
that these two methods provide the same NEO-CCSD correlation energies, thereby validating both
implementations. Furthermore, we implemented both the traditional NEO-CCSD and the #-
transformed NEO-CCSD methods using the four-center (without DF) and the three-center (with
DF) approaches. We will refer to these methods as the NEO-CCSD and NEO-DF-CCSD methods,
respectively. Note that the error in the Coulomb energy associated with the DF approximation is
always positive, and therefore the DF coefficients are determined variationally. However, the
CCSD method is not variational because of the projective technique for determining the unknown
coupled cluster amplitudes. All of the numerical results given in this Letter were obtained with the
ti-transformed NEO-CCSD implementation because it is slightly more computationally efficient.

Prior to chemical applications of this approach, we analyzed the numerical errors

introduced by the DF approximation for the four-center two-particle integrals, namely ( yv| pa),

(u'v'|p'c'), and (uv|u'v'). These tests were performed using the NEO-(DF)-CCSD method

on the protonated water dimer optimized at the CCSD/aug-cc-pVDZ level, where all five protons
were treated quantum mechanically. The NEO calculations employed the aug-cc-pVDZ**** and
PB4-F2 (4s3p2d2f)** electronic and protonic basis sets, respectively. The aug-cc-pVDZ-RI (aDZ-
RI), aug-cc-pVTZ-RI (aTZ-RI), and aug-cc-pVQZ-RI (aQZ-RI) auxiliary electronic basis sets,?

as well as the even-tempered 8s8p8d, 8s8p8d8&f, and 8s8p8d8f8g auxiliary protonic basis sets with

exponents spanning the range from 22 to 32,%% were used for these tests.



Table 1. Absolute Errors (kcal/mol) Introduced by the Density Fitting Approximation.

(]
aux. basis aDZ-RI aTZ-RI aQZ-RI
abs. error‘ 0.135 0.001 0.002
abs. error 0.130 0.001 0.002

(conv)
(ﬂlVV pldl)

aux. basis 8s8p8&d 8s8p8d8f 8s8p8d8f8g
abs. error “ 0.035 0.007 0.005

(1)

(v} (#V‘W)d

aux. basis aDZ-RI aTZ-RI aQZ-RI 8s8p8&d 8s8p8d8f | 8s8p8d8f8g
abs. error ¢ 0.825 0.720 0.229 0.142 0.025 0.025

¢ Absolute errors correspond to energy difference between NEO-CCSD and NEO-DF-CCSD when only the
specified type of four-center two-particle integral is approximated with DF.

b Absolute errors correspond to energy difference between conventional electronic CCSD and DF-CCSD.

¢ Approximation given in Eq. (6).

¢ Approximation given in Eq. (7).

The absolute errors introduced by the DF approximation with respect to our four-center
integral code are provided in Table 1. The DF approximation of the four-center two-electron
integrals in the NEO-DF-CCSD method produces nearly identical absolute errors as those
produced by the conventional electronic DF-CCSD method. The DF approximation of the four-
center two-proton integrals introduces errors of similar magnitude (i.e., less than 0.01 kcal/mol)

for the largest auxiliary basis sets studied. Approximating the four-center electron-proton integrals,

( ,uv| ,u'v') , via Eq. (6) is controlled by the size of the auxiliary electronic basis set and leads to

significantly larger absolute errors of ~0.2 kcal/mol even for the largest basis set employed.
Approximating the four-center electron-proton integrals via Eq. (7) is controlled by the size of the
auxiliary protonic basis set and leads to much smaller absolute errors of ~0.02 kcal/mol for the
largest two basis sets employed. Therefore, we will use this approximation as a default.
Furthermore, the results from Table 1 indicate that the 8s8p8d8f basis set is an adequate auxiliary

protonic basis set for approximating the four-center proton-proton and electron-proton integrals.



Finally, the total absolute error introduced by the DF approximation with all types of four-center
two-particle integrals approximated is 0.167 kcal/mol using the aDZ-RI and 8s8p8d8f auxiliary
basis sets and 0.031 kcal/mol using the aTZ-RI and 8s8p8d8f auxiliary basis sets. Given this level
of accuracy for the energies, the DF approximation presumably also produces accurate proton
densities, as shown previously for the NEO-CCSD method.*

We used the NEO variants of HF theory, second-order Moller-Plesset perturbation theory
(MP2), and CCSD to compute the proton affinities for a set of 23 molecules® 2’ and compared the
predicted proton affinities to the experimentally determined values.?®-*! The proton affinity of a
molecule A  within the NEO framework was computed via the expression

PA(A)=E, —E . +52RT,>? where E, is the energy of molecule A calculated using the

is the energy of molecule AH" calculated with the

+

conventional electronic approach and E,

NEO method treating the relevant hydrogen nucleus quantum mechanically. In this expression,
5/2 RT accounts for the change in translational energy and the conversion from energy to enthalpy,
where R is the universal gas constant and 7 is the temperature. Note that this approach does not
require the calculation of a Hessian or zero-point energies because the NEO method inherently
includes the zero-point energy contributions from the quantum proton. This procedure assumes
that the zero-point energies associated with the other nuclei are approximately unchanged upon
protonation, as validated by us previously.

All of the proton affinity calculations were performed on the geometries optimized at the
conventional electronic MP2/aug-cc-pVTZ level of theory. Tests on several of the smaller systems
confirmed that the changes in geometry upon optimization at the conventional CCSD level do not
significantly impact the calculated proton affinities (see Table S1). In our NEO calculations, the

aug-cc-pVQZ electronic basis set??>?* 32 and the PB4-F2 protonic basis set>* were used for the



quantum mechanical hydrogen, and these basis functions were centered at the hydrogen position
in the MP2/aug-cc-pVTZ optimized geometries. We used the aug-cc-pVQZ-RI auxiliary basis set
to approximate the four-center two-electron integrals.?> Because only one proton was treated
quantum mechanically, there was no need to approximate the other types of four-center two-
particle integrals.

The mean unsigned errors (MUESs) and absolute deviations of each of these NEO methods
relative to the experimental data are given in Table 2. The NEO-HF method has the largest overall
MUE of 0.51 eV, followed by the NEO-DF-MP2 method, which has an overall MUE of 0.32 eV.
The NEO-DF-CCSD has an overall MUE of 0.05 eV, which is within both the experimental (~0.09
eV)’! and chemical (~0.05 eV)?® accuracy. For comparison, the NEO-DFT method with the epc17-
2 or epcl9 electron-proton correlation functional produced an overall MUE of 0.06 eV for the
same set of molecules.® 3> However, the advantages of the wave function methods studied herein
over the NEO-DFT methods are the avoidance of parameterization and the potential for systematic
improvement.

Table 2. Mean Unsigned Errors (MUEs) and Absolute Deviations of the Proton Affinities
Relative to Experimentally Determined Proton Affinities.”

Molecule Experiment NEO-HF NEO-DF-MP2 NEO-DF-CCSD
Amines
NH;3 8.85 0.52 0.28 0.03
CH;NH» 9.32 0.49 0.26 <0.01
CH3;CHoNH, 9.45 0.48 0.26 0.01
CH3;CH2CH2NH2 9.51 0.47 0.26 0.01
(CH;)NH 9.63 0.47 0.24 0.03
(CH;3);N 9.84 0.46 0.25 0.05
MUE 0.48 0.26 0.02
Inorganics
CN- 15.31 0.93 0.37 0.10
HS" 15.31 0.84 0.41 0.08
NO,~ 14.75 0.54 0.38 0.03
MUE 0.77 0.39 0.07
Carboxylates
HCOO 14.97 0.48 0.35 0.01
CH;COO 15.11 0.44 0.32 0.04
CH3;CH.COO™ 15.07 0.40 0.30 0.06
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CH3;CH2CH.COO™ 15.03 0.37 0.28 0.08

CH;CH,CH,CH,COO~ 15.01 0.35 0.27 0.10
CH;COCOO~ 14.46 0.48 0.30 0.05
CH,FCOO~ 14.71 0.48 0.37 0.01
CHF,COO~ 14.32 0.40 0.28 0.08
CF;COO 13.99 0.38 0.22 0.14
CH,CICOO- 14.58 0.48 0.32 0.04
CH,CICH,COO 14.78 0.56 0.43 0.07
MUE 0.44 0.31 0.06
Aromatics
CsHs0O~ 15.24 0.45 0.39 <0.01
C¢HsCOO~ 14.75 0.73 0.56 0.19
CsHsNH» 9.15 0.54 0.31 0.01
MUE 0.57 0.42 0.07
overall MUE 0.51 0.32 0.05

9All values are given in units of eV. Experimental data obtained from Ref. (28'31).

To further showcase the power of the NEO-DF-CCSD method, we calculated the relative
stabilities of four protonated water tetramer isomers,>*>” treating all nine protons quantum
mechanically. This application is particularly challenging because inclusion of zero-point energy
contributions is known to change the relative stabilities of these isomers at the coupled cluster
level.»-3 According to the electronic energies without zero-point energy contributions at the
CCSD(T) level of theory, the relative stabilities of these isomers are eigen < ring < cis-Zundel <
trans-Zundel (black line in Figure 1A).>®* When zero-point energy contributions are included
within the harmonic approximation by diagonalizing the Hessian at this same level of theory, the
ordering changes to be eigen < trans-Zundel < cis-Zundel < ring (red dashed line in Figure 1A).
The inclusion of anharmonic corrections to the zero-point energy contributions does not alter this
ordering (blue dashed line in Figure 1). The anharmonic corrections were calculated as the
differences between anharmonic zero-point energies obtained with the vibrational second-order
perturbative (VPT2) approach®® and harmonic zero-point energies at the MP2/aug-cc-pVTZ level
of theory using Q-Chem.?! Moreover, when the oxygen atoms are assigned infinite mass so that

only the zero-point energy contributions from the hydrogen nuclei are included, these trends do
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not change for either the harmonic or anharmonic zero-point energy calculations (red and blue
dotted lines in Figure 1A). These results indicate that the zero-point energy contributions from the
hydrogen nuclei alter the ordering of the relative stabilities of these isomers. Thus, this system
serves as an excellent test of the NEO-DF-CCSD approach, where the nine hydrogen nuclei are
treated quantum mechanically, and the associated zero-point energies are inherently included in a

single-point energy calculation.

= A

o i

g o

£

o

L -1

)

5 2 ‘

c o

o 34 & -+- CCSD(T)+HZPE(full)
3 O -x- CCSD(T)+AZPE(full)
@ -4 ;;" <A CCSD(T)+HZPE(H)
o

- CCSD(T)+AZPE(H)

Relative energy (kcal/mol)
[
]

f ’ —e— CCSD(T)
_4] X -x- CCSD(T)+AZPE(full)
—a— NEO-DF-CCSD

-5
Eigen Ring cis-Zundel trans-Zundel
;’ “£ H &
A\ .o p( < ©

o * “» L‘ p

Figure 1. Relative energies of the protonated water tetramer isomers calculated with the
conventional electronic CCSD(T) method without any zero-point energy (ZPE) contributions
(solid black curve), the conventional CCSD(T) method with harmonic ZPE contributions
(CCSD(T)+HZPE, dashed and dotted red curves), the conventional CCSD(T) method with
anharmonic ZPE contributions (CCSD(T)+AZPE, dashed and dotted blue curves), and the NEO-
DF-CCSD method (solid purple curve). The notations (full) and (H) indicate ZPE contributions
from all nuclei and from only the hydrogen nuclei (i.e., with infinitely heavy oxygen nuclei),
respectively. For visualization purposes, all energies are plotted relative to the ring isomer energy
at each level of theory, and lines are drawn between data points to depict the trends.

We performed NEO-DF-CCSD calculations for the geometries optimized at the

conventional CCSD(T)/aug-cc-pVTZ level of theory, as obtained from Ref. (*®). For our NEO-
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DF-CCSD calculations at these geometries, we used the aug-cc-pVTZ electronic basis set?>-3 32

and the PB4-F2 protonic basis set,”* in conjunction with the aug-cc-pVTZ-RI*® and 8s8p8d8f>¢
auxiliary electronic and protonic basis sets, respectively. As discussed above, the NEO energy
includes the zero-point energy contributions from the quantum protons, and the contributions from
the oxygen nuclei to the relative zero-point energies among the four isomers is negligible (Figure
1A). Thus, although the NEO energy can be viewed as the sum of the electronic energy and the
anharmonic zero-point energy contributions from the quantum hydrogen nuclei with infinitely
heavy oxygen nuclei, the target reference can be viewed as the sum of the electronic energies and
the anharmonic zero-point energy contributions from all nuclei. A comparison of the energies
computed with the NEO-DF-CCSD approach to these reference energies, as well as the electronic
energies computed at the conventional CCSD(T) level without any zero-point energy
contributions, is provided in Figure 1B. Moreover, Table 3 provides all of the energies relative to
the energy of the Eigen isomer at each level of theory discussed.

Table 3. Energies of the Protonated Water Tetramer Isomers Relative to the Eigen Isomer
Energy Computed with Different Methods.”

Method Ring cis-Zundel | trans-Zundel
CCSD(T) 3.5 3.8 3.9
CCSD(T)+HZPE(full) 43 2.8 2.3
CCSD(T)+HZPE(H) 4.3 2.6 2.2
CCSD(T)+AZPE(full) 3.9 3.0 2.9
CCSD(T)+AZPE(H) 4.1 3.1 2.9
NEO-DF-CCSD 3.1 2.4 2.4

¢ Relative energies are given in kcal/mol. HZPE and AZPE indicate harmonic and anharmonic zero-point energy
contributions, respectively; (full) and (H) indicate zero-point energy contributions from all nuclei and from only the
hydrogen nuclei (i.e., with infinitely heavy oxygen nuclei), respectively.

The NEO-DF-CCSD approach predicts the correct qualitative trends among the isomer
energies. In particular, the NEO-DF-CCSD results are in agreement with the reference energies in
that the ring isomer is the least stable among the four isomers. However, the NEO-DF-CCSD

method underestimates the energy of the ring isomer relative to the Eigen isomer by ~1 kcal/mol.
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Moreover, the energies of the cis-Zundel and trans-Zundel isomers are predicted to be the same
with the NEO-DF-CCSD method, whereas the trans-Zundel isomer is predicted to be ~0.1
kcal/mol lower in energy with the reference method. These relatively small discrepancies are
ascribed to several factors: (1) the use of geometries optimized with the conventional electronic
structure method, (2) the size of the electronic and nuclear basis sets, and (3) the truncation of the
NEO coupled cluster ansatz.

We were unable to optimize the geometries at the NEO-DF-CCSD level because of the
computational expense of numerical gradients and the unavailability of analytic gradients.
However, we were able to perform full geometry optimizations of the oxygen nuclei and the
nuclear basis function centers at the NEO-DFT level with the B3LYP electronic exchange-

139—41

correlation functiona 17-8

and the epc17-2 electron-proton correlation functional ™ using analytic
gradients available in Q-Chem.?' As shown in Figure 2, the geometry optimizations do not impact
the relative energies significantly. Further analysis of the NEO-DFT data is provided in Table S2.
In addition, we investigated the impact of using smaller basis sets and found that the results are
qualitatively similar (see Table S3), suggesting that the basis sets may be sufficient. Based on these
analyses, we hypothesize that the minor quantitative discrepancies in the NEO-DF-CCSD results
arise from the omission of triple excitations, particularly those corresponding to a double electronic
excitation and a single protonic excitation. Another possibility is that the VPT2 anharmonic

corrections at the MP2 level are problematic. In any case, the NEO-DF-CCSD relative energies

are in reasonable agreement with the reference results.
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Figure 2. Relative energies of the protonated water tetramer isomers calculated with the NEO-
DFT/B3LYP/epc17-2 method at the geometries optimized at the conventional CCSD(T)/aug-cc-
pVTZ level of theory (solid blue curve), and with full geometry optimizations of the oxygen nuclei
and the nuclear basis function centers (solid red curve). For visualization purposes, all energies are
plotted relative to the ring isomer energy at each set of geometries, and lines are drawn between
data points to depict the trends.

This Letter presents an efficient implementation of the NEO-CCSD method with density
fitting that allows calculations of molecular systems significantly larger than those previously
studied, as well as the quantum treatment of multiple protons. In addition to the traditional NEO-
CCSD method, we also implemented the #-transformed NEO-CCSD method, which is related to
the NEO orbital-optimized coupled cluster methods. Our calculations show that the NEO-DF-
CCSD method predicts proton affinities within chemical and experimental accuracy. We also show
that the NEO-DF-CCSD method can predict the relative stabilities of four protonated water
tetramer isomers, where zero-point energy contributions are known to change the energetic
ordering at the coupled cluster level. Because the zero-point energies associated with the hydrogen
nuclei are inherently included in NEO calculations, only single-point NEO-DF-CCSD energy
calculations are required to reproduce the qualitative trends. The accuracy of the NEO-CCSD
method can be improved systematically by including higher excitations in the coupled cluster
ansatz, such as triples, and its computational efficiency can be improved by low-rank tensor

factorizations for approximating the wave function parameter.*” Moreover, the NEO-CCSD
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method can serve as a reference in the development of more computationally efficient methods,
such as NEO-DFT”® 3 and NEO scaled-opposite-spin orbital-optimized MP2 (NEO-SOS'-
OOMP2),> which require parameterization. Thus, this work opens up many research directions in

terms of methodological development and applications to chemically interesting systems.
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