
632 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

Structured Alternating Minimization for Union of
Nested Low-Rank Subspaces Data Completion

Morteza Ashraphijuo and Xiaodong Wang , Fellow, IEEE

Abstract—In this article, we consider a particular data struc-
ture consisting of a union of several nested low-rank subspaces
with missing data entries. Given the rank of each subspace, we
treat the data completion problem, i.e., to estimate the miss-
ing entries. Starting from the case of two-dimensional data, i.e.,
matrices, we show that the union of nested subspaces data struc-
ture leads to a structured decomposition U = XY where the
factor Y has blocks of zeros that are determined by the rank
values. Moreover, for high-dimensional data, i.e., tensors, we
show that a similar structured CP decomposition also exists,
U = ∑r

l=1 al
1 ⊗ al

2 ⊗ · · · ⊗ al
d, where Ad = [a1

d · · · ar
d] con-

tains blocks of zeros determined by the rank values. Based on
such structured decompositions, we develop efficient alternating
minimization algorithms for both matrix and tensor completions,
by enforcing the above structures in each iteration including
the initialization. Compared with naive approaches where either
the additional rank constraints are ignored, or data completion
is performed part by part, the proposed structured alternating
minimization approaches exhibit faster convergence and higher
recovery accuracy.

Index Terms—Low-rank, matrix completion, tensor com-
pletion, union of nested subspaces, structured decomposition,
alternating minimization.

I. INTRODUCTION

G IVEN the ubiquitousness of multi-perspective, multi-
dimensional big data in our day-to-day lives, a common

feature shared by such datasets is the inherent sparsity or low-
rank property. On the other hand, missing and faulty data
are the norm rather than the exception. Hence a fundamen-
tal task in many big data applications is data completion, i.e.,
to recover the missing data points by exploiting the underlying
sparsity structure. In particular, the low-rank matrix comple-
tion problem [1] is a classical problem that finds applications
in various areas including compressed sensing [2]–[4], image
inpainting [5], network coding [6], image processing [7],
[8], data mining [9], etc. The low-rank tensor completion
problem has received more attention in the past decade and
plays a vital role in multilinear data analysis [10], [11],
3D image reconstruction [12], state estimation [13], color

Manuscript received May 13, 2020; revised October 26, 2020; accepted
November 14, 2020. Date of publication November 18, 2020; date of cur-
rent version January 7, 2021. This work was supported in part by the U.S.
National Science Foundation under Grant CCF-1814803, and in part by the
U.S. Office of Naval Research under Grant N000141712827. (Corresponding
author: Xiaodong Wang.)

The authors are with the Department of Electrical Engineering,
Columbia University, New York, NY 10027 USA (e-mail:
ashraphijuo@ee.columbia.edu; wangx@ee.columbia.edu).

Digital Object Identifier 10.1109/JSAIT.2020.3039170

image inpainting [14], video inpainting [15], hyperspectral
data recovery [16], higher-order Web link analysis [17], etc.

In general, low-rank data completion techniques can be clas-
sified into convex and non-convex approaches, and a recent
survey can be found in [18]. Specifically, convex approaches
to matrix completion are typically based on nuclear norm
minimization with theoretical optimality [19], [20]. Moreover,
non-convex approaches such as alternating minimization are
much faster than convex methods and empirically observed
to always converge to the optimum, which has also been
shown theoretically [21], [22]. Similarly, for the low-rank ten-
sor completion, various nuclear norm minimization methods
with theoretical performance guarantees have been intro-
duced [23]–[26], as well as the non-convex approaches such
as alternating minimization [27]–[29], that make use of var-
ious tensor decompositions and are much faster than convex
methods. For many non-convex approaches knowing the exact
or estimated rank of sampled matrices and tensors is a
requirement and this problem is studied in [30].

Related to data completion is the problem of data clustering
in a union of subspaces with missing data. For example, let Sk

be a subspace of RN with rank rk, k = 1, . . . , K. Given a data
matrix U ∈ R

N×T possibly with missing entries, the problem is
to assign each column ut of U to a particular subspace Sk. For
example, in face recognition, the K subspaces represent K per-
sons and each vector ut corresponds to the photo of a person.
The clustering problem is then to assign each photo to one of
the K persons [31]. Other applications of clustering a union
of low-rank data structures include motion recognition [32],
texture analysis [33], MIMO channel estimation [34], image
analysis [35], etc. Classical approaches to subspace cluster-
ing include maximum likelihood methods [36], [37], algebraic
algorithms [38]–[40] and their iterative implementations [41],
and spectral clustering of high-dimensional data based on
low-rank representation [42]. Moreover, most of these tech-
niques can be extended to handle missing data. For example,
nuclear norm minimization is employed in dictionary learning
for spectral clustering in [31]; and in algebraic methods, sub-
spaces where the sampled columns belong to are identified by
analyzing a set of homogeneous polynomials [43].

In the union of subspace data structure mentioned above,
the subspaces S1, . . . ,SK are unrelated to each other. In this
article, we consider a union of nested low-rank subspaces,
i.e., we assume that the subspaces are related according to
S1 ⊂ S2 ⊂ · · · ⊂ SK which reflects the hierarchical data struc-
ture. For example, S1 can correspond to pictures of German
Shepherd dogs, S2 to pictures of dogs, and S3 to pictures of

2641-8770 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-9324-620X
https://orcid.org/0000-0002-2945-9240

ASHRAPHIJUO AND WANG: STRUCTURED ALTERNATING MINIMIZATION FOR UNION OF NESTED LOW-RANK SUBSPACES DATA COMPLETION 633

animals. Or consider the scenario where S1 can correspond to
the news about Apple stock, S2 to news about all technology
stocks, and S3 to the news about American stock market. In
such examples, the data of the first set is a subset of the second
set and therefor the spanned space by the basis of the first set
is a subset of the spanned space by the basis of the second set.
Note that in practice, the assumption that we can find an exact
low rank basis for the mentioned datasets may not hold but we
can find low rank approximations for them. Theoretical aspects
of clustering and completion of such union of nested subspaces
data are studied in [44]–[46]. In particular, the fundamental
conditions on the sampling patterns for correctly clustering
are characterized for matrices and tensors in [44] and [45],
respectively. Moreover, conditions on the sampling patterns
for unique completability of the correctly clustered data are
given for matrices and tensors in [46] and [45], respectively.
However, to date there is no algorithmic study on union of
nested subspaces data.

In this article, we develop efficient alternating minimization
based completion algorithms for union of nested subspaces
two-dimensional (matrix) and higher-dimensional (tensor)
data. For both matrix and tensor cases, first, we show that
the union of nested subspaces structure and the corresponding
rank constraints lead to a structured decomposition where cer-
tain factor has blocks of zeros. Then we develop an alternating
minimization algorithm that alternatively updates each factor
in the structured decomposition. Since initialization plays an
important role in non-convex optimization, we also propose
two structured initialization methods, one is based on ran-
dom initialization and the other is based on solving several
smaller least-squares problems. Extensive simulation results
are provided to compare our proposed structured approaches
to several naive methods that are also based on alternat-
ing minimization. Extensive simulation results show that the
proposed structured approaches offer both faster convergence
speed and higher data recovery accuracy, for both matrix and
tensor data, with or without noise.

The remainder of the paper is organized as follows. In
Section II, we formulate the problem of union of nested sub-
spaces data completion for the matrix case, outline three naive
methods for solving it based on alternating minimization, and
then propose our structured alternating minimization algo-
rithm. In Section III, we consider the same problem for the
tensor case and develop the corresponding structured alternat-
ing minimization algorithm. Simulation results are presented
in Section IV. And finally conclusions are drawn in Section V.

II. COMPLETION OF UNION OF NESTED

LOW-RANK MATRICES

A. Problem Statement

Assume that K ≥ 2, n1 < n2 < · · · < nK and m are given
integers. Let U ∈ R

m×nK be a sampled matrix and denote the
matrix consisting of the first nk columns of U by Uk ∈ R

m×nk

and also define Mk ∈ R
m×(nk−nk−1) as the matrix consisting of

the (nk − nk−1) columns of Uk that does not belong to Uk−1,
k = 1, . . . , K. This is shown in Fig. 1 and note that U = UK .

Fig. 1. The union of nested subspaces data structure, rank(Uk) = rk .

Moreover, assume that rank(Uk) = rk, k = 1, . . . , K. Hence,
we have r1 ≤ r2 ≤ · · · ≤ rK .

Let � denote the set of indices corresponding to the sam-
pled entries, i.e., � = {(i, j) : U(i, j) is sampled}. Moreover,
define U� as the matrix obtained from sampling U according
to �, i.e.,

U�(i, j) =
{

U(i, j) if (i, j) ∈ �,

0 if (i, j) /∈ �.
(1)

We are interested in retrieving the missing entries of U
using an efficient alternating minimization-based method. The
challenge is to take advantage of all K rank constraints
simultaneously.

B. Naive Approaches

1) Naive Initialization Methods: Our goal is to find X ∈
R

m×rK and Y ∈ R
rK×n such that U = XY. We con-

sider two simple methods for setting the initial values of
X and Y – SVD-based initialization and random initial-
ization. In the SVD-based method, we first compute the
singular value decomposition (SVD) of U� and pick the
rK largest eigenvalues and their corresponding eigenvectors
to construct the initial matrices X0 and Y0. In particular,
if U� = U0S0V�

0 , where the number of nonzero diago-
nal entries of S0 can be more than rK . Then, we define a
decomposition corresponding to the rK largest singular val-
ues, i.e., U0(:, 1 : rK)S0(1 : rK, 1 : rK)V0(:, 1 : rK)� = X0Y0,
where X0 = U0(:, 1 : rK)S0(1 : rK, 1 : rK) ∈ R

m×rK and
Y0 = V0(:, 1 : rK)� ∈ R

rK×nK .
On the other hand, for random initialization, we simply set

X0 and Y0 as matrices that contain i.i.d. N (0, 1) samples.
Note that the initial matrix satisfies only one rank constraint
rK for both methods.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

634 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

2) Naive Alternating Minimization Methods:
a) Naive Approach 1: In this approach we simply discard

the rank constraints r1, . . . , rK−1 and complete U using only
the constraint rank(U) = rK . Starting from the above initial
X0 and Y0, in each iteration, we alternatively optimize Xi and
Yi until convergence.

In particular, at the i-th iteration, given Xi−1 and Yi−1,
we first update Xi by solving the following regularized
least-squares problem

minimizeXi∈Rm×rK

∥∥U� − (XiYi−1)�
∥∥F + λ‖Xi‖F , (2)

and then update Yi by solving

minimizeYi∈RrK×nK ‖U� − (XiYi)�‖F + λ‖Yi‖F (3)

where ‖ · ‖F denotes the Frobenius norm and λ is a small
constant. The purpose of the regularization term is to avoid
singularity in solving the least-squares problems. The iteration
continues until it reaches convergence or until the algorithm
diverges. The solutions to (2) and (3) can be obtained row by
row and column by column, respectively. In particular, denote
E as an all-one m × nK matrix, then (2) can be solved as

Xi(j, :) = argmin
Xi(j,:)∈R1×rK∥∥U�(j, :) − Xi(j:)Yi−1Diag

[
E�(j, :)

]∥∥F + λ‖Xi(j, :)‖F ,

= U�(j, :)Diag
[
E�(j, :)

]
Y�

i−1(
Yi−1Diag

[
E�(j, :)

]
Y�

i−1 + λI
)−1

, j = 1, . . . , m, (4)

where Diag[v] denotes a diagonal matrix with the diagonal
entries being the entries of v. Similarly, (3) can be solved as

Yi(:, j) = argmin
Yi(:,j)∈RrK×1∥∥U�(:, j) − Diag

[
E�(:, j)

]
XiYi(:, j)

∥∥F + λ‖Yi(:, j)‖F ,

=
(

X�
i Diag

[
E�(:, j)

]
Xi + λI

)−1

X�
i Diag

[
E�(:, j)

]
U�(:, j), j = 1, . . . , nK . (5)

Note that the output of this simple approach, Û = XNYN

for some N, satisfies only the rank constraint rank(Û) = rK ,
but Û may not satisfy other K − 1 rank constraints.

b) Naive Approach 2: In this approach, we break the
original problem into K independent completion problems,
i.e., completing Mk ∈ R

m×(nk−nk−1) with rank(Mk) = rk.
This method may be fast as each subproblem has a smaller
dimension. However, it may result in a solution that does not
satisfy any of the rank constraints except for the first one
(for M1), since rank(Mk) = rk does not necessarily result
in rank(Uk) = rk (except for k = 1).

c) Naive Approach 3: In this approach, we first complete
U1 with constraint rank(U1) = r1 using the above alternating
minimization method. Then, we complete U2 = [U1|M2] with
the constraint rank(U2) = r2. Note that the U1 part of U2 is
already complete and all missing entries are in the M2 part of
U2. This is repeated and in the k-th step, we complete the Mk

part of Uk = [Uk−1|Mk] with the constraint rank(Uk) = rk.
One important issue with this method is the error propagation
when the sampling rate is low, i.e., the erroneously recovered

Fig. 2. A matrix Y that satisfies the properties of a structured decomposition
given in Definition 1.

entries at any step will lead to further errors in subsequent
steps. However, the output of this method satisfies all rank
constraints.

C. Structured Decomposition

In this article, we propose a structured alternating
minimization method for completing U such that: (1) all K
rank constraints are satisfied at each iteration and, (2) it con-
verges faster than the conventional alternating minimization
for matrix completion with a single constraint rank(U) = rK ,
by exploiting the additional K − 1 rank constraints. To this
end, we make use of a structured decomposition of U that is
determined by the K rank constraints.

Definition 1: Consider a decomposition U = XY such that
X ∈ R

m×rK , Y ∈ R
rK×nK , and Y(r1 + 1 : rK, 1 : n1) =

0(rK−r1)×n1 , Y(r2 + 1 : rK, n1 + 1 : n2) = 0(rK−r2)×(n2−n1),· · · and Y(rK−1 + 1 : rK, nK−2 + 1 : nK−1) =
0(rK−rK−1)×(nK−1−nK−2). This structure is shown in Fig. 2
and we call such decomposition U = XY a structured
decomposition.

Lemma 1: Consider a matrix U ∈ R
m×nK that has a struc-

tured decomposition U = XY. Then, rank(U(:, 1 : nk)) ≤ rk,
k = 1, . . . , K.

Proof: Note that U(:, 1‘: nk) = XY(:, 1 : nk). Hence, under
the structured decomposition, we conclude that U(:, 1 : nk) =
X(:, 1 : rk)Y(1 : rk, 1 : nk) (because Y(rk + 1 : rK, 1 : nk) =
0(rK−rk)×nk), k = 1, . . . , K. Then, U(:, 1 : nk) =
X(:, 1 : rk)Y(1 : rk, 1 : nk) results that rank(U(:, 1 : nk)) ≤ rk,
k = 1, . . . , K.

Lemma 2: If the matrix U ∈ R
m×nK has the union of

nested subspaces structure shown in Fig. 1, then there exists
a structured decomposition U = XY.

Proof: We need to show that there exists a basis X for U
such that the first nk columns of U belong to the subspace
span of the first rk columns of X, k = 1, . . . , K. Note that
it is easily verified that this statement is equivalent with the
existence of a decomposition U = XY such that Y satisfies the
structure given in Definition 1. We show the mentioned state-
ment by induction on k. In the k-th step, we construct Xk such
that Uk′ belongs to the column span of the first rk′ columns
of Xk, k′ = 1, . . . , k. Note that for k = 1 it is straightforward
to construct X1, which is simply a basis for U1. Induction
hypothesis results in the matrix Xk with the mentioned prop-
erties and in order to complete the induction, we need to show

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

ASHRAPHIJUO AND WANG: STRUCTURED ALTERNATING MINIMIZATION FOR UNION OF NESTED LOW-RANK SUBSPACES DATA COMPLETION 635

the existence of a matrix Xk+1 such that Uk′ belongs to the
column span of the first rk′ columns of Xk, k′ = 1, . . . , k + 1.

We first note that Xk belongs to the column span of Uk+1,
because according to the induction hypothesis, Xk is a basis for
Uk, and Uk is a subset of columns of Uk+1. Let Sk denote the
column span of Xk, which is an rk-dimensional space and S ′

k+1
denote the column span of Uk+1, which is an rk+1-dimensional
space. As a result of our earlier claim, Sk is a subspace of
S ′

k+1. Let S ′′
k denote the (rk+1 − rk)-dimensional subspace of

S ′
k+1 such that the union of Sk and S ′′

k is S ′
k+1.

Consider an arbitrary basis Xk′ ∈ R
m×(rk+1−rk) for the space

S ′′
k . Observe that by putting together the columns of Xk and

Xk′
, i.e., Xk+1 = [Xk Xk′

], the new matrix Xk+1 ∈ R
m×rk+1

is a basis for the space S ′
k+1. Therefore, Uk+1 belongs to

the column span of the first rk+1 columns of Xk+1 since Xk

has exactly rk+1 columns. Given the induction hypothesis, the
proof is complete as Uk′ belongs to the column span of the
first rk′ columns of Xk+1, k′ = 1, . . . , k + 1.

D. Proposed Structured Alternating Minimization Algorithm

We are interested in imposing the structured decomposi-
tion in the alternating minimization procedure for two reasons:
(i) we know that according to Lemma 2 there exists such a
decomposition and also, according to Lemma 1 the K rank
constraints on the original data will hold in such decomposi-
tion and therefore, it is more likely that such decomposition
results in the recovery of the original data. (ii) A structured
decomposition has many zeros and convergence may be much
faster than an unstructured decomposition.

There are two main challenges to impose a structured
decomposition in alternating minimization: (i) an efficient
initialization, and (ii) an efficient update of Y at each iteration.

1) Structured Initialization Methods:
SVD-Based Structured Initialization: We first discuss the

SVD-based method.
Note that Mk� represents the matrix obtained from sampling

Mk according to column number nk−1 + 1 to column number
nk of �, i.e.,

Mk�(i, j) =
{

Mk(i, j) if (i, j + nk−1) ∈ �,

0 if (i, j + nk−1) /∈ �.
(6)

In order to obtain an initialization X0 ∈ R
m×rK and

Y0 ∈ R
rK×nK , we will obtain Xk ∈ R

m×(rk−rk−1) and Yk ∈
R

rK×(nk−nk−1) for k = 1, . . . , K, where n0 = r0 = 0. Then
X0 = [X1 · · · XK] and Y0 = [Y1 · · · YK].

In other words, in the k-th step, we obtain rk −rk−1 columns
of the basis, i.e., Xk, and the corresponding coefficients of
these rk − rk−1 columns of the basis in Mk′ ’s, i.e., Yk. Note
that we set the coefficients corresponding to Xk in Mk′ for
k′ ≥ k as zeros to meet the structured decomposition.

As the first step, we compute the SVD of M1� ∈ R
m×n1 and

pick the r1 largest eigenvalues and their corresponding eigen-
vectors to construct matrices X1 ∈ R

m×r1 and Z1 ∈ R
r1×n1 ,

similar to the initialization explained in Section II-A for the
naive approaches. Then, we define Y1 = [Z1�

0n1×(rK−r1)]
� ∈

R
rK×n1 , as shown in Fig. 3.

Fig. 3. Structure of Y0 in the SVD-based structured initialization.

In the second step, we first obtain the SVD of M2� ∈ R
m×n2

and pick the r2 − r1 largest eigenvalues and their corre-
sponding eigenvectors to construct matrices X2 ∈ R

m×(r2−r1)

and Z2 ∈ R
(r2−r1)×(n2−n1). Next, we want to obtain Y2 =

[K2�
Z2�

0(n2−n1)×(rK−r2)]
� ∈ R

rK×(n2−n1), as shown in Fig. 3,
where K2 ∈ R

r1×(n2−n1) represents the coefficients of X2 in
M1, which is based on the projection of matrix (M2 −X2Z2)�
on X1. Specifically, we have

K2 = argmin
K2∈Rr1×(n2−n1)∥∥∥((

M2 − X2Z2
)

− X1K2
)

�
‖F + λ‖K2

∥∥∥F , (7)

which can be solved column by column similar to (5)

K2(:, j) =
(

X1�
Diag

[
E�(:, j)

]
X1 + λI

)−1

X1�
Diag

[
E�(:, j)

]
T2

�(:, j), j = 1, . . . , n2 − n1, (8)

where T2 = M2 − X2Z2.
Similarly, in the k-th step, we first obtain Xk ∈ R

m×(rk−rk−1)

and Zk ∈ R
(rk−rk−1)×(nk−nk−1) from the SVD of Mk� ∈ R

m×nk .
Then, we construct

Yk =
[
Kk�

Zk�
0(nk−nk−1)×(rK−rk)

]� ∈ R
rK×(nk−nk−1), (9)

as shown in Fig. 3, where Kk ∈ R
rk−1×(nk−nk−1) is the coeffi-

cient of X̄k−1 = [X1 · · · Xk−1] in Mk, which is obtained based
on the projection of (Mk − XkZk)� on X̄k, i.e.,

Kk = argmin
Kk∈Rrk−1×(nk−nk−1)∥∥∥((

Mk − XkZk
)

− X̄k−1Kk
)

�
‖F + λ‖Kk

∥∥∥F . (10)

The solution is given by

Kk(:, j) =
(

X̄k−1�
Diag

[
E�(:, j)

]
X̄k−1 + λI

)−1

X̄k−1�
Diag

[
E�(:, j)

]
Tk

�(:, j), j = 1, . . . , nk − nk−1, (11)

where Tk = Mk − XkZk.
Remark 1: In the above SVD-based structured initialization

the choice of Kk in (10) plays a critical role. In particu-
lar, numerical experiments show that simply setting Kk =
0rK×(nk−nk−1), for k = 2, . . . , K, will result in a poor initial-
ization which significantly reduces the convergence speed of
the algorithm.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

636 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

Algorithm 1 Structured Alternating Minimization—Matrix
Case

1: Input U�, r1, . . . , rK and n1, . . . , nK .
2: Initializing X0 ∈ R

m×rK and Y0 ∈ R
rK×nK using either

the SVD-based or random structured initialization.
3: repeat
4: for j = 1:m do
5: Compute Eq. (4).
6: end for
7: for k = 1:K do
8: for j = nk−1 + 1:nk do
9: Compute Eq. (12).

10: end for
11: end for
12: until convergence/divergence

Random Structured Initialization: We also consider ran-
dom initialization for the proposed structured alternating
minimization where X0 contains i.i.d. N (0, 1) samples and the
non-zero entries of Y0 in Definition 1 are also i.i.d. N (0, 1)

samples.
2) Structured Alternating Minimization: Note that the ini-

tialization satisfies the structured decomposition. Now, we
need to make sure that at each iteration of the algorithm this
property still holds. In particular, in the i-th iteration of the
structured alternating minimization procedure, given Xi−1 and
Yi−1, we first update Xi according to (4). Then, in (5) we only
need to update the non-zero entries of Yi(:, j) in the structured
decomposition. That is, for 1 ≤ k ≤ K and nk−1 + 1 ≤ j ≤ nk

we have

Yi(1:rk, j) =
(

Xi(:, 1:rk)
�Diag

[
E�(:, j)

]
Xi(:, 1:rk) + λI

)−1

Xi(:, 1:rk)
�Diag

[
E�(:, j)

]
U�(:, j). (12)

Finally, we summarize the proposed structured alternating
minimization algorithm for union of nested low-rank matri-
ces completion in Algorithm 1. Note that at each iteration
of this algorithm, including the initialization, the structured
decomposition holds and therefore all K rank constraints hold.

III. COMPLETION OF UNION OF NESTED

LOW-RANK TENSORS

In this section, we generalize the structured alternating
minimization approach to a union of nested low-rank tensor
spaces.

A. Background

Recall that the CP-rank of a tensor U ∈ R
m1×m2×···md−1×md

is the minimum number r such that there exist al
j ∈ R

mj for
1 ≤ j ≤ d and 1 ≤ l ≤ r and

U =
r∑

l=1

al
1 ⊗ al

2 ⊗ · · · ⊗ al
d, (13)

or equivalently,

U(x1, x2, . . . , xd) =
r∑

l=1

al
1(x1)al

2(x2) · · · al
d(xd), (14)

where ⊗ denotes the tensor product (outer product) and
U(x1, x2, . . . , xd) denotes the entry of tensor U with coordi-
nate �x = (x1, x2, . . . , xd) and al

j(xj) denotes the xj-th entry
of vector al

j. In other words, the CP-rank of a tensor U
is the minimum number of rank-1 tensors that U can be
decomposed to.

For notational convenience, define Md−1 � m1m2 · · · md−1.
Moreover, define the matrix Ũ ∈ R

Md−1×md as
the (d − 1)-th unfolding of tensor U , such that
U(�x) = Ũ(v(x1, . . . , xd−1), xd), where v:(x1, . . . , xd−1) →
{1, 2, . . . , Md−1} is a bijective mapping. Note that this is a
vectorization mapping that merges the first (d − 1) dimen-
sions and therefore, there is a corresponding inverse
mapping v−1 : {1, 2, . . . , Md−1} → (x1, . . . , xd−1).
Moreover, for a (d − 1)-dimensional tensor
V ∈ R

m1×···×md−1 we can define a vectorization operator
vec : Rm1×...×md−1 → R

Md−1 using the mapping v(·) such that
V(x1, . . . , xd−1) = vec(V)(v(x1, . . . , xd−1)). We call a vector
u ∈ R

Md−1 a “structured column” if vec−1(u) ∈ R
m1×···×md−1

is a rank-1 tensor, i.e., there exist uj ∈ R
mj for j = 1, . . . , d−1,

such that u = vec(u1 ⊗ · · · ⊗ ud−1).
Lemma 3: The CP-rank of a tensor U is equal to the min-

imum number of structured columns that span all columns
of Ũ.

Proof: First we show that there exist bl
1 ∈ R

Md−1 and bl
2 ∈

R
md for 1 ≤ l ≤ r such that

Ũ =
r∑

l=1

bl
1 ⊗ bl

2. (15)

Recall the CP decomposition in (13). Then, we define Al
1 =

al
1 ⊗ · · · ⊗ al

d−1 and bl
2 = al

d for 1 ≤ l ≤ l and define bl
1 =

vec(Al
1). Hence, there exist bl

1 ∈ R
Md−1 and bl

2 ∈ R
md for 1 ≤

l ≤ r such that (15) holds. Therefore, there exist r structured
columns that span all columns of Ũ. Similarly, if there exists
(r − 1) structured columns that span all columns of Ũ we
can use vec−1 and obtain a CP-decomposition of rank (r − 1)

for U . Therefore, rank(U) = r means that r is the minimum
number of structured columns that span all columns of Ũ.

Definition 2: According to the above lemma, rank(U) = r
concludes that there exists a set S consisting of r structured
columns whose column span (denoted by T) includes any
column of Ũ. In other words, the column span of these r struc-
tured columns, i.e., T , is an unfolded tensor space of rank r.
We call such r structured columns a tensor basis for U .

B. Problem Statement

Consider a fixed number K ≥ 2 and partially sampled
d-way tensors Mk ∈ R

m1×m2×···md−1×ck , k = 1, 2, . . . , K.
Define nk = c1 + · · · + ck for k = 1, . . . , K, and c0 =
n0 = 0. Let Uk ∈ R

m1×m2×··· ,md−1×nk , be the concatenation
of M1, . . . ,Mk along the d-th dimension, and rk denote the
CP-rank of Uk, k = 1, 2, . . . , K. Let � denote the sampled
index set, i.e., � = {�x = (x1, . . . , xd) : U(�x) is sampled}.
Moreover, define U� as the tensor obtained from sampling
U = UK according to �, i.e.,

U�(�x) =
{
U(�x) if �x ∈ �,

0 if �x /∈ �.
(16)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

ASHRAPHIJUO AND WANG: STRUCTURED ALTERNATING MINIMIZATION FOR UNION OF NESTED LOW-RANK SUBSPACES DATA COMPLETION 637

Moreover, we assume a union of nested tensor subspaces struc-
ture similar to the matrix case. Specifically, assume that there
exist structured columns ul ∈ R

Md−1 , l = 1, . . . , rK , such that
Sk = {u1, . . . , urk } is a tensor basis for Uk, k = 1, . . . , K. Note
that we have rank(Uk) = rank(Mk) = rk, k = 1, . . . , K. The
problem then is to complete the tensor U� given the above
mentioned union of nested tensor subspaces structure, and the
rank values r1, . . . , rK .

C. Alternating Minimization for Tensor Completion

Recall the CP decomposition U = ∑rK
l=1 al

1 ⊗ al
2 ⊗· · ·⊗ al

d,
where al

j ∈ R
mj for 1 ≤ j ≤ d and 1 ≤ l ≤ rK . Define

Aj = [a1
j | · · · |arK

j] ∈ R
mj×rK , j = 1, . . . , d. In alternat-

ing minimization, given the result of the (i − 1)-th iteration
A(i−1)

j ∈ R
mj×rK , j = 1, . . . , d, at the i-th iteration, we update

all Aj’s one by one in d steps. In particular, in the j-th step,
we solve for A(i)

j using the latest values A(i)
1 , . . . A(i)

j−1, and

A(i−1)
j+1 , . . . A(i−1)

d by solving the following regularized least
squares problem

min
A(i)

j ∈Rmj×rK

×
∥∥∥∥∥U� −

(
rK∑

l=1

A(i)
1 (:, l) ⊗ · · · ⊗ A(i)

j−1(:, �)⊗

A(i)
j (:, l) ⊗ A(i−1)

j+1 (:, l) ⊗ · · · ⊗ A(i−1)
d (:, l)

)

�

∥∥∥∥∥
F

+ λ

∥∥∥A(i)
j

∥∥∥F , j = 1, . . . , d. (17)

To solve (17), we first write it in matrix form. To do this,
we define an operator that reorders the dimensions of a tensor.
Consider the tensor in (13) and another tensor

U ′ =
rK∑

l=1

al
1 ⊗ · · · ⊗ al

j−1 ⊗ al
j+1 ⊗ · · · ⊗ al

d ⊗ al
j. (18)

Then, it is clear that the only difference between these
two tensors is that the order of dimensions has changed from
1, 2, . . . , d in U to 1, 2, . . . , j−1, j+1, . . . , d, j in U ′. Denote
such a dimension reordering operation by U ′ = σj(U) ∈
R

m1×···×mj−1×mj+1×···×md×mj such that

U(x1, x2, . . . , xd)

= σj(U)
(
x1, x2, . . . , xj−1, xj+1, . . . , xd, xj

)
. (19)

Then, (17) can be rewritten as

min
A(i)

j ∈Rmj×rK

×
∥∥∥∥∥σj(U)σj(�) −

(
rK∑

l=1

A(i)
1 (:, l) ⊗ · · · ⊗ A(i)

j−1(:, l)

⊗A(i−1)
j+1 (:, l) ⊗ · · · ⊗ A(i−1)

d (:, l)

⊗A(i)
j (:, l)

)

σj(�)

∥∥∥∥∥∥
F

+ λ

∥∥∥A(i)
j

∥∥∥F , j = 1, . . . , d. (20)

Now we define �
(i)
j ∈ R

m1···mj−1mj+1···md×rK such that

�
(i)
j (:, �) � vec

(
A(i)

1 (:, �) ⊗ ... ⊗ A(i)
j−1(:, �) ⊗ A(i−1)

j+1 (:, �)

⊗ · · · ⊗ A(i−1)
d (:, �)

)

∈ R
m1···mj−1mj+1···md , � = 1, . . . , rK . (21)

Then, we can rewrite (20) using its (d − 1)-th unfolding as

min
A(i)

j ∈Rmj×rK

∥∥∥∥σ̃j(U)
σ̃j(�)

−
(
�

(i)
j A(i)�

j

)
σ̃j(�)

∥∥∥∥F + λ

∥∥∥A(i)
j

∥∥∥F ,

(22)

where σ̃j(U) and σ̃j(�) denote the (d − 1)-th unfolding of
σj(U) and σj(�), respectively. Note that (22) is of the same
form as (3) and hence similar to (5), we can write

A(i)
j (l, :) = σ̃j(U)

�
σ̃j(�)

�(l, :)Diag
[
E

σ̃j(�)
(:, l)

]

�
(i)
j

(
(�

(i)
j)�Diag

[
E

σ̃j(�)
(:, l)

]
�

(i)
j + λI

)−1
, l = 1, . . . , mj,

(23)

where E denotes an all-one (m1 · · · mj−1mj+1 · · · md) × mj

matrix.

D. Naive Approaches

We can generalize the three naive approaches for the matrix
case to the tensor case as follows.

(i) Naive Approach 1: We apply the alternating minimization
procedure described in Section III-C to tensor U with the only
constraint rank(U) = rK .

(ii) Naive Approach 2: We break the original problem into
K independent completion problems, i.e., completing Mk ∈
R

m1×···×md−1×(nk−nk−1) with rank(Mk) = rk, k = 1, . . . , K.
(iii) Naive Approach 3: We first complete U1 with con-

straint rank(U1) = r1 using the above alternating minimization
method. Then, we complete U2 with the constraint rank(U2) =
r2. Note that the U1 part of U2 is already complete and all
missing entries are in the M2 part of U2. This is repeated
and in the k-th step, we complete the Mk part of Uk with the
constraint rank(Uk) = rk, k = 1, . . . , K.

Similarly to the matrix case, for each of the above naive
methods, either CP-based or random initialization can be
employed. Specifically, for CP-based initialization, we first
calculate the CP decomposition of U�. Then, we normalize
each vector al

j in (13) to have unit norm so that the l-th
out-product has a weight of ‖al

1‖ · · · ‖al
d‖. Then, we choose

the leading rK rank-1 components, sorted according to the
weights, to obtain a rank-rK initialization. And for random
initialization, we simply set entries of A(0)

j , j = 1, . . . , d as
i.i.d N (0, 1) samples.

E. Structured Decomposition

Similar to the matrix case, we develop a tensor comple-
tion method based on alternating minimization that takes into
account all K rank constraints. First, similar to Definition 1 and
Lemma 2 for the matrix case, we have the following lemma

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

638 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

Fig. 4. A matrix Ad that satisfies the properties of a structured decomposition
given in Lemma 4.

on the existence of a structured CP decomposition for tensor
U that has a union of nested subspaces structure defined in
Section III-B. Recall that nk = c1 + · · · + ck.

Lemma 4: If the tensor U ∈ R
m1×···×md−1×md has the union

of nested tensor subspaces structure, then there exist al
d ∈ R

md

for l = 1, . . . , rK such that U = ∑rK
l=1 al

1 ⊗ · · · ⊗ al
d−1 ⊗ al

d
and for any k = 1, . . . , K, x = nk−1 + 1, . . . , nk and l =
rk + 1, . . . , rK we have al

d(x) = 0. In other words, Ad(nk−1 +
1:nk, 1:rK − rk) = 0ck×(rK−rk), k = 1, . . . , K. We call such
CP-decomposition of U a structured decomposition (shown in
Fig. 4).

Proof: Note that since each column of M̃k (the (d − 1)-
th unfolding of Mk) is chosen from the column span of Sk,
there exist Bk ∈ R

rk×ck such that M̃k = [u1 · · · urk]Bk, k =
1, . . . , K. Recall that Ũ = [M̃1 · · · M̃K]. Therefore, we can
write

Ũ = [
u1 · · · urK

]
[C1 · · · CK]︸ ︷︷ ︸[

a1
d ···arK

d

]�

, (24)

where Ck = [B�
k 0ck×(rK−rk)]

� ∈ R
rK×ck and [a1

d · · · arK
d]� =

[C1 · · · CK]. Hence, for any k = 1, . . . , K and l = rk +
1, . . . , rK we have al

d(x) = 0 if nk−1 + 1 ≤ x ≤ nk.
Since ul = vec(al

1 ⊗· · ·⊗ al
d−1) for l = 1, . . . , rK , (24) can

be written as

U =
rK∑

l=1

al
1 ⊗ · · · ⊗ al

d−1 ⊗ al
d, (25)

and hence, the proof is complete.
Remark 2: Note that the structure in Fig. 4 is the transposed

structure in Fig. 3.

F. Proposed Structured Alternating Minimization for Union
of Nested Tensor Subspaces

1) Structured Initialization Methods: CP-Based Structured
Initialization: We obtain such structured initialization in K

steps: in the k-th step, k = 1, . . . , K, we obtain Bk
j ∈

R
mj×(rk−rk−1) for j = 1, . . . , d − 1, and Bk

d ∈ R
ck×rK , and

the initialization is A(0)
j = [B1

j · · · BK
j], j = 1, . . . , d − 1 and

A(0)
d = [B1�

d · · · BK�
j]�. Note that here A(0)

j for j = 1, . . . , d−1

and A(0)
d correspond to X0 and Y0 in Section II-D, respectively.

We first perform the CP-decomposition of M1� ∈
R

m1×···md−1×c1 and retain the r1 leading rank-1 components,
to obtain B1

j ∈ R
mj×r1 for j = 1, . . . , d − 1, and C1

d ∈ R
c1×r1 ,

i.e.,

M1� ≈
r1∑

l=1

B1
1(:, l) ⊗ · · · ⊗ B1

d−1(:, l) ⊗ C1
d(:, l). (26)

Then we define B1
d = [C1

d 0c1×(rK−r1)] ∈ R
c1×rK that meets

the structure of the top block row in Fig. 4.
In the k-th step, k = 2, . . . , K, we perform the CP-

decomposition of Mk� ∈ R
m1×···md−1×ck and retain the

rk − rk−1 leading rank-1 components denoted by Bk
j ∈

R
mj×(rk−rk−1) for j = 1, . . . , d − 1, and Ck

d ∈ R
ck×(rk−rk−1).

Then, we define Bk
d = [Kk Ck

d 0ck×(rK−rk)] ∈ R
ck×rK that

meets the structure of the k-th block row in Fig. 4, where
Kk ∈ R

ck×rk−1 represents the coefficients of the structured
columns 1 to rk−1 in Mk, that is calculated as follows.

Let M̄k ∈ R
m1×···md−1×ck denote the rank-(rk − rk−1)

approximation of Mk� , i.e.,

M̄k �
rk−rk−1∑

l=1

Bk
1(:, l) ⊗ · · · ⊗ Bk

d−1(:, l) ⊗ Ck
d(:, l). (27)

Define B̄k−1
j = [B1

j · · · Bk−1
j] ∈ R

mj×rk−1 , j = 1, . . . , d − 1.
Then Kk is the projection of tensor (Mk − M̄k) on the
structured columns 1 to rk−1, i.e.,

Kk = argmin
Kk∈Rck×rk−1

∥∥∥∥∥
(
Mk − M̄k

)
�

−
(rk−1∑

l=1

B̄k−1
1 (:, l)

⊗ · · · ⊗ B̄k−1
d−1(:, l) ⊗ Kk(:, l)

)

�

∥∥∥∥∥
F

+ λ

∥∥∥Kk
∥∥∥F , (28)

which is similar to (20) and can be rewritten using the (d −
1)-th unfoldings of the corresponding tensors as

Kk = argmin
Kk∈Rck×rk−1

∥∥∥(
M̃k − ˜̄Mk

)
�̃

−
(

B̃kKk�)
�̃

∥∥∥F
+ λ

∥∥∥Kk
∥∥∥F , (29)

where B̃k ∈ R
m1···md−1×rk−1 is defined as

B̃k(:, �) � vec
(

B̄k−1
1 (:, �) ⊗ · · · ⊗ B̄k−1

d−1(:, �)
)

∈ R
m1···md−1 , � = 1, . . . , rk−1. (30)

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

ASHRAPHIJUO AND WANG: STRUCTURED ALTERNATING MINIMIZATION FOR UNION OF NESTED LOW-RANK SUBSPACES DATA COMPLETION 639

Algorithm 2 Structured Alternating Minimization—Tensor
Case

1: Input U�, r1, . . . , rK and n1, . . . , nK .
2: Initializing A(0)

j ∈ R
mj×rK for j = 1, . . . , d using either

the CP-based or random structured initialization.
3: repeat
4: for j = 1:d − 1 do
5: for l = 1:mj do
6: Compute Eq. (23).
7: end for
8: end for
9: for k = 1:K do

10: for l = nk−1 + 1:nk do
11: Compute Eq. (32).
12: end for
13: end for
14: until convergence/divergence

And the solution is

Kk(l, :) =
(

M̃k − ˜̄Mk

)�
�̃�(l, :)Diag

[
E�̃(:, l)

]

B̃k

(
B̃�

k Diag
[
E�̃(:, l)

]
B̃k + λI

)−1
, l = 1, . . . , ck, (31)

where E denotes an all-one (m1 · · · md−1) × md matrix.
Random Structured Initialization: We also consider the

random initialization for the proposed structured alternating
minimization where A(0)

j contains i.i.d. N (0, 1) samples for

j = 1, . . . , d −1, and the non-zero entries of A(0)
d in Lemma 4

are also i.i.d. N (0, 1) samples.
2) Structured Alternating Minimization: Note that the ini-

tialization satisfies the structured decomposition. Now, we
need to make sure that at each iteration of the algorithm
this property still holds. In particular, in the i-th iteration
of the structured alternating minimization procedure, given
A(i−1)

j ∈ R
mj×rK for j = 1, . . . , d, we first update A(i)

j ∈
R

mj×rK for j = 1, . . . , d−1 according to (23). Then, to update
A(i)

d ∈ R
md×rK we only need to update the non-zero entries in

the structured decomposition. That is in (23), for 1 ≤ k ≤ K
and nk−1 + 1 ≤ l ≤ nk we have

A(i)
d (l, 1:rk) = Ũ�

�̃
�(l, :)Diag

[
E�̃(:, l)

]˜̄A(i)

d (:, 1:rk)((˜̄A(i)

d

)�
(1:rk, :)Diag

[
E�̃(:, l)

]˜̄A(i)

d (:, 1:rk) + λI

)−1

, (32)

where ˜̄A(i)

d ∈ R
m1···md−1×rK denotes the (d − 1)-th unfolding

of Ā(i)
d = A(i)

1 ⊗ · · · ⊗ A(i)
d−1 ∈ R

m1×···×md−1×rK and E denotes
an all-one (m1 · · · md−1) × md matrix.

Finally, we summarize the proposed structured alternat-
ing minimization algorithm for union of nested low-rank
tensor subspaces completion in Algorithm 2. Note that at
each iteration of this algorithm, including the initialization,
the structured decomposition holds and therefore all K rank
constraints hold.

Fig. 5. Convergence comparison for noiseless matrices with K = 4 and
p = 0.3.

IV. SIMULATION RESULTS

A. Matrix Case

We consider an example where K = 4, m = 1000,
n1 = 300, n2 = 500, n3 = 700, n4 = 900, r1 = 50,
r2 = 60, r3 = 70 and r4 = 80. In order to generate a matrix
that is randomly chosen from the manifold corresponding to
the given rank constraints, we first generate X ∈ R

1000×80

(r4 = 80 basis columns) with entries being i.i.d. N (0, 1)

samples. Then, we generate Y ∈ R
80×900 such that it satis-

fies the structured decomposition given in Definition 1, i.e.,
Y(51:80, 1:300) = 030×300, Y(61:80, 301:500) = 020×200 and
Y(71:80, 501:700) = 010×200 and the rest of the entries are
i.i.d. N (0, 1) samples. Then, the matrix U = XY satisfies
all the rank constraints. We sample the entries of U inde-
pendently with probability 0 < p < 1. The regularization
weight is set as λ = 0.01. We define the convergence met-
ric as εi = ‖XiYi‖F−‖Xi−1Yi−1‖F

‖XiYi‖F and convergence is reached
if εi < 10−3. On the other hand, divergence is declared if
‖Xi‖F > 106‖X0‖F or ‖Yi‖F > 106‖Y0‖F .

1) Noiseless Matrix: We say the sampled matrix U is recov-
ered if the algorithm converges and the normalized error

satisfies ‖Û−U‖F‖U‖F < 0.01, where Û denotes the completed
matrix. We consider different number of rank constraints: for
K = 4, we include all rank constraints r1, r2, r3 and r4; for
K = 3, we include rank constraints r2, r3 and r4; and for
K = 2, we include rank constraints r3 and r4. For each
case, we generate 100 random matrices from the correspond-
ing manifold. Then for each value of the sampling probability
p, we run different completion algorithms on these sampled
matrices and calculate the recovery rates.

First, to see the impact of multiple rank constraints on the
convergence, in Fig. 5 we illustrate the convergence behaviors
of the Naive method 1 and the structured approach, for K = 4,
p = 0.3 and a particular sampled matrix. It is seen that it takes
8 and 10 iterations for the structured approach and the Naive
1 method, respectively, to reach the convergence condition
εi < 10−3.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

640 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

Fig. 6. Recovery rate performances for noiseless matrices with K = 2, 3, 4.
(a) K = 2. (b) K = 3. (c) K = 4.

Next the recovery rate performances of different algorithms
are compared in Figs. 6(a), 6(b), and 6(c) for K = 2, 3, and
4, respectively. A number of observations are in order. First,
for all three values of K, for both Naive methods 2 and 3,
the recovery rate is 1 for p ≥ 0.28 and it is 0 when p ≤
0.24; for both Naive method 1 and the structured approach, the
recovery rate is 1 for p ≥ 0.25; and the recovery rate is 0 for
p ≤ 0.23 for Naive 1. Hence among the three naive methods,

Fig. 7. Running time comparisons for noiseless matrices with K = 4 and
p = 0.3.

Naive 1 has the best recovery performance even though it
ignores all additional rank constraints. Second, the structured
approach mainly improves the region where the recovery rate
is below 1. In particular, the recovery rate is 0 for p ≤ 0.22
when K = 2, 3, whereas it becomes p ≤ 0.21 when K = 4.
Moreover, in the region where the recovery rate is below 1, i.e.,
p ∈ (0.22, 0.25), its recovery rate is higher than that of Naive
1. Thirdly, for all three naive methods, random initialization
leads to better performance than the SVD-based initialization;
whereas for the structured approach, SVD-based initialization
performs better.

Finally, we show the average running time comparisons
among different algorithms in Fig. 7 for K = 4 and p = 0.3. It
is seen that the Naive method 3 is much slower than the other
methods, since the matrix it processes has more and more sam-
ples over the later stages. Moreover, the Naive method 2 is the
fastest due to the smaller sizes of the matrices it processes.
The structured approach takes only slightly longer than the
Naive method 1.

2) Noisy Matrix: We now consider the case that the
matrix to be completed is noisy, i.e., Z = U + N =
XY + N, where X and Y are generated the same way as
described in Section IV-A; and the entries of N are i.i.d.
N (0, σ 2) samples. We define the signal-to-noise-ratio as

SNR = 10 log10(
1

mnK

∑m
i=1

∑nK
j=1 U(i,j)2

σ 2). Moreover, we define

the signal-to-error-ratio for the recovered matrix Û as SER =
10 log10(

1
mnK

∑m
i=1

∑nK
j=1 U(i,j)2

1
mnK

∑m
i=1

∑nK
j=1(Û(i,j)−U(i,j))2

). Each result of (SNR,

SER) is the average of 100 realizations of Z.
First, for K = 4, p = 0.3, SNR = 10dB and a particular

sampled matrix, we show the convergence behaviors of the
structured approach and the Naive method 1 in Fig. 8. By
comparing Fig. 8 and Fig. 5, we observe that for all methods, it
takes more iterations to converge in the noisy case, but still the
structured approach converges faster than the Naive method 1.
Moreover, for the structured approach, the SVD initialization
leads to faster convergence, whereas for the Naive method 1,
random initialization converges faster.

Next, the SER performance results are shown in Figs. 9(a)
and 9(b), for p = 0.15 and p = 0.25, respectively. It is seen

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

ASHRAPHIJUO AND WANG: STRUCTURED ALTERNATING MINIMIZATION FOR UNION OF NESTED LOW-RANK SUBSPACES DATA COMPLETION 641

Fig. 8. Convergence comparison for noisy matrices with K = 4, p = 0.15,
and SNR = 10dB.

that among the naive methods, the Naive method 1 still per-
forms the best in the noisy case. But now there is a significant
gain in SER by the proposed structured approach over the
naive methods. For example, at SNR = 12dB, for p = 0.15
and p = 0.25, the SER gains over the Naive 1 method is
3.8dB and 1.9dB, respectively. Moreover, similar to the noise-
less case, the SVD-based initialization performs better for the
structured approach whereas random initialization performs
better for the naive methods.

B. Tensor Case

For the tensor case, we consider an example where d = 4,
K = 4, m1 = m2 = m3 = 40, n1 = 25, n2 = 30, n3 = 35,
n4 = 40, r1 = 50, r2 = 60, r3 = 70 and r4 = 80. In order to
generate a tensor that is randomly chosen from the manifold
corresponding to the given rank constraints, we first gener-
ate al

j ∈ R
40 (structured columns) with entries being i.i.d.

N (0, 1) samples for 1 ≤ j ≤ (d − 1) and 1 ≤ l ≤ rK .
Then, we generate al

d ∈ R
40 such that it satisfies the structured

decomposition given in Lemma 4, i.e., for any k = 1, . . . , K,
x = nk−1+1, . . . , nk and l = rk+1, . . . , rK we have al

d(x) = 0,
and the rest of the entries are i.i.d. N (0, 1) samples. Therefore,
the tensor U = ∑r

l=1 al
1⊗al

2⊗· · ·⊗al
d satisfies all the rank con-

straints. Then, we sample the entries of U independently with
probability 0 < p < 1. The regularization weight is set as λ =
0.01. We define the convergence metric as εi = ‖Ui‖F−‖Ui−1‖F

‖Ui‖F
(where Ui = ∑rK

l=1 A(i)
1 (:, l)⊗· · ·⊗ A(i)

d (:, l)) and convergence
is reached if εi < 10−3. On the other hand, divergence is
declared if ‖A(i)

j ‖F > 106‖A(0)
j ‖F , for any j ∈ {1, . . . , d}.

1) Noiseless Tensor: We say the sampled tensor U is recov-
ered if the algorithm converges and the normalized error

satisfies ‖Û−U‖F‖U‖F < 0.01, where Û denotes the completed ten-
sor. Similar to the matrix case, we consider different number
of rank constraints: K = 2, 3 and 4. For each case and a given
sampling probability p, we run different completion algorithms
on 100 random tensors from the corresponding manifold and
calculate the recovery rates.

Fig. 9. SER performances for noisy matrices with K = 4.

Fig. 10. Convergence comparison for noiseless tensors with K = 4 and
p = 0.2.

In Fig. 10 we illustrate the convergence behaviors of the
Naive method 1 and the structured approach, for K = 4,
p = 0.2 and a particular sampled tensor. It is seen that the

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

642 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

Fig. 11. Recovery rate performances for noiseless tensors with K = 2, 3, 4.

convergence condition εi < 10−3 is reached after 17 and 21
iterations for the structured approach and the Naive 1 method,
respectively.

Fig. 12. Running time comparisons for noiseless tensors with K = 4 and
p = 0.2.

Figs. 11(a), 11(b), and 11(c) show the recovery rate per-
formances of different algorithms for K = 2, 3, and 4,
respectively. Similarly as in the matrix case, Naive 1 has
the best recovery performance among the three naive meth-
ods. Compared with Naive 1, the structured approach mainly
improves the region where the recovery rate is below 1, i.e.,
p ∈ (0.12, 0.15). And, for all three naive methods, random
initialization perform better than the CP-based initialization;
whereas for the structured approach, CP-based initialization is
better.

Fig. 12 shows the average running time comparisons among
different algorithms for K = 4 and p = 0.2. Similar to the
matrix case, the Naive method 3 is the slowest and the Naive
method 2 is the fastest. The structured approach is slightly
slower than the Naive method 1.

2) Noisy Tensor: We now consider the noisy case, i.e.,
Z = U + N , where U is generated the same way as
described in Section IV-B; and the entries of N are i.i.d.
N (0, σ 2) samples. We define the signal-to-noise-ratio as

SNR = 10 log10(
1

m1···nd

∑m1
x1=1···

∑nd
xd=1 U(x1,...,xd)2

σ 2). Moreover,

we define the signal-to-error-ratio for the recovered tensor Û
as SER = 10 log10(

1
m1···nd

∑m1
x1=1···

∑nd
xd=1 U(x1,...,xd)2

1
m1···nd

∑m1
x1=1···

∑nd
xd=1(Û(x1,...,xd)−U(x1,...,xd))2

).

Each result of (SNR, SER) is the average of 100 realizations
of Z .

Fig. 13 shows the convergence behaviors of the structured
approach and the Naive method 1 for K = 4, p = 0.2, SNR =
10dB and a particular sampled tensor. Similar to the matrix
case, it takes more iterations to converge in the noisy case
for all methods, and the structured approach converges faster.
Moreover, for the structured approach, the CP initialization
leads to faster convergence, whereas for the Naive method 1,
random initialization converges faster.

Figs. 14(a) and 14(b) show the SER performances for p =
0.05 and p = 0.15, respectively. It is seen that there is a
significant gain in SER by the proposed structured approach
over the naive methods. For example, at SNR = 12dB, for
p = 0.05 and p = 0.15, the SER gains over the Naive (which
performs the best among naive methods) method 1 is 2.9dB
and 2dB, respectively. Moreover, similar to the noiseless case,

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

ASHRAPHIJUO AND WANG: STRUCTURED ALTERNATING MINIMIZATION FOR UNION OF NESTED LOW-RANK SUBSPACES DATA COMPLETION 643

Fig. 13. Convergence comparison for noisy tensors with K = 4, p = 0.15,
and SNR = 10dB.

Fig. 14. SER performances for noisy tensors with K = 4.

the CP-based initialization performs better for the structured
approach whereas random initialization performs better for the
naive methods.

V. CONCLUSION

In this article, we have developed a structured alternating
minimization approach to data completion where the data has
a union of nested subspaces structure with multiple known
rank constraints. Both matrix and tensor cases are studied. Our
key observation is that the union of nested subspaces struc-
ture leads to a structured decomposition where some factors
(Y for matrix case and Ad for tensor case) contain blocks of
zeros determined by the rank values. The proposed structured
alternating minimization algorithms for both matrix and tensor
completion enforce such structures in each iteration including
the initialization. Simulation results show that compared with
naive methods, the proposed structured approaches achieve
faster convergence and higher recovery accuracy, especially
for noisy data completion.

REFERENCES

[1] L. T. Nguyen, J. Kim, and B. Shim, “Low-rank matrix completion: A
contemporary survey,” IEEE Access, vol. 7, pp. 94215–94237, 2019.

[2] L.-H. Lim and P. Comon, “Multiarray signal processing: Tensor decom-
position meets compressed sensing,” Comptes Rendus Mecanique,
vol. 338, no. 6, pp. 311–320, Feb. 2010.

[3] N. D. Sidiropoulos and A. Kyrillidis, “Multi-way compressed sensing
for sparse low-rank tensors,” IEEE Signal Process. Lett., vol. 19, no. 11,
pp. 757–760, Nov. 2012.

[4] S. Gandy, B. Recht, and I. Yamada, “Tensor completion and low-n-rank
tensor recovery via convex optimization,” Inverse Problems, vol. 27,
no. 2, pp. 1–19, Jan. 2011.

[5] Y. Yu, J. Peng, and S. Yue, “A new nonconvex approach to
low-rank matrix completion with application to image inpainting,”
Multidimensional Syst. Signal Process., vol. 30, no. 1, pp. 145–174,
Jan. 2019.

[6] N. J. Harvey, D. R. Karger, and K. Murota, “Deterministic network
coding by matrix completion,” in Proc. 16th Annu. ACM-SIAM Symp.
Discr. Algorithms, Jan. 2005, pp. 489–498.

[7] E. Candès, Y. C. Eldar, T. Strohmer, and V. Voroninski, “Phase retrieval
via matrix completion,” SIAM J. Imag. Sci., vol. 6, no. 1, pp. 199–225,
Feb. 2013.

[8] H. Ji, C. Liu, Z. Shen, and Y. Xu, “Robust video denoising using
low rank matrix completion,” in Proc. Comput. Vis. Pattern Recognit.
(CVPR), 2010, pp. 1791–1798.

[9] L. Eldén, Matrix Methods in Data Mining and Pattern Recognition,
vol. 4. New Delhi, India: SIAM, 2007.

[10] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank tensor
completion by Riemannian optimization,” BIT Numer. Math., vol. 54,
no. 2, pp. 447–468, Jun. 2014.

[11] C. Zhang, H. Fu, S. Liu, G. Liu, and X. Cao, “Low-rank tensor
constrained multiview subspace clustering,” in Proc. IEEE Int. Conf.
Comput. Vis., 2015, pp. 1582–1590.

[12] A. C. Sauve, A. O. Hero, W. L. Rogers, S. J. Wilderman, and
N. H. Clinthorne, “3D image reconstruction for a Compton SPECT
camera model,” IEEE Trans. Nucl. Sci., vol. 46, no. 6, pp. 2075–2084,
Dec. 1999.

[13] R. Madbhavi, H. S. Karimi, B. Natarajan, and B. Srinivasan, “Tensor
completion based state estimation in distribution systems,” in Proc.
ISGT, 2020, pp. 1–5.

[14] M. Qin, Z. Li, S. Chen, Q. Guan, and J. Zheng, “Low-rank tensor com-
pletion and total variation minimization for color image inpainting,”
IEEE Access, vol. 8, pp. 53049–53061, 2020.

[15] K. A. Patwardhan, G. Sapiro, and M. Bertalmío, “Video inpainting under
constrained camera motion,” IEEE Trans. Image Process., vol. 16, no. 2,
pp. 545–553, Feb. 2007.

[16] N. Li and B. Li, “Tensor completion for on-board compression of
hyperspectral images,” in Proc. IEEE Int. Conf. Image Process., 2010,
pp. 517–520.

[17] T. G. Kolda, B. W. Bader, and J. P. Kenny, “Higher-order Web link
analysis using multilinear algebra,” in Proc. 5th IEEE Int. Conf. Data
Min. (ICDM), 2005, pp. 242–249.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

644 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 3, NOVEMBER 2020

[18] Q. Song, H. Ge, J. Caverlee, and X. Hu, “Tensor completion algorithms
in big data analytics,” ACM Trans. Knowl. Disc. Data, vol. 13, no. 1,
pp. 1–48, Jan. 2019.

[19] E. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Commun. ACM, vol. 55, no. 6, pp. 111–119, Jun. 2012.

[20] E. Candès and B. Recht, “Exact matrix completion via convex
optimization,” Found. Comput. Math., vol. 9, no. 6, pp. 717–772,
Apr. 2009.

[21] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proc. Annu. Symp. Theory Comput.,
Jun. 2013, pp. 665–674.

[22] R. Sun and Z.-Q. Luo, “Guaranteed matrix completion via non-convex
factorization,” IEEE Trans. Inf. Theory, vol. 62, no. 11, pp. 6535–6579,
Nov. 2016.

[23] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for esti-
mating missing values in visual data,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 1, pp. 208–220, Jan. 2013.

[24] Y. Song, J. Li, X. Chen, D. Zhang, Q. Tang, and K. Yang, “An efficient
tensor completion method via truncated nuclear norm,” J. Vis. Commun.
Image Represent., vol. 70, Jul. 2020, Art. no. 102791.

[25] C. Liu, H. Shan, and C. Chen, “Tensor p-shrinkage nuclear norm for
low-rank tensor completion,” Neurocomputing, vol. 387, pp. 255–267,
Apr. 2020.

[26] Z. Zhang and S. Aeron, “Exact tensor completion using t-SVD,” IEEE
Trans. Signal Process., vol. 65, no. 6, pp. 1511–1526, Mar. 2017.

[27] Y.-B. Zheng, T.-Z. Huang, T.-Y. Ji, X.-L. Zhao, T.-X. Jiang, and
T.-H. Ma, “Low-rank tensor completion via smooth matrix factoriza-
tion,” Appl. Math. Model., vol. 70, pp. 677–695, Jun. 2019.

[28] X.-Y. Liu, S. Aeron, V. Aggarwal, and X. Wang, “Low-tubal-rank tensor
completion using alternating minimization,” IEEE Trans. Inf. Theory,
vol. 66, no. 3, pp. 1714–1737, Mar. 2020.

[29] W. Wang, V. Aggarwal, and S. Aeron, “Tensor completion by alternating
minimization under the tensor train (TT) model,” Sep. 2016. [Online].
Available: arXiv:1609.05587.

[30] M. Ashraphijuo, X. Wang, and V. Aggarwal, “Rank determination
for low-rank data completion,” J. Mach. Learn. Res., vol. 18, no. 1,
pp. 1–29, 2017.

[31] G. Liu and S. Yan, “Latent low-rank representation for subspace seg-
mentation and feature extraction,” in Proc. IEEE Int. Conf. Comput. Vis.,
2011, pp. 1615–1622.

[32] S. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation in the
presence of outlying, incomplete, or corrupted trajectories,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 32, no. 10, pp. 1832–1845, Oct. 2010.

[33] Y. Ma, H. Derksen, W. Hong, and J. Wright, “Segmentation of multi-
variate mixed data via lossy data coding and compression,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, no. 9, pp. 1546–1562, Sep. 2007.

[34] C. Zhang and R. R. Bitmead, “Subspace system identification for
training-based MIMO channel estimation,” Automatica, vol. 41, no. 9,
pp. 1623–1632, Sep. 2005.

[35] B. Cheng, G. Liu, J. Wang, Z. Huang, and S. Yan, “Multi-task low-
rank affinity pursuit for image segmentation,” in Proc. IEEE Int. Conf.
Comput. Vis., 2011, pp. 2439–2446.

[36] S. R. Rao, R. Tron, R. Vidal, and Y. Ma, “Motion segmentation via
robust subspace separation in the presence of outlying, incomplete,
or corrupted trajectories,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2008, pp. 1–8.

[37] A. Y. Yang, S. R. Rao, and Y. Ma, “Robust statistical estimation and
segmentation of multiple subspaces,” in Proc. Conf. Comput. Vis. Pattern
Recognit. Workshop (CVPRW), 2006, p. 99.

[38] J. P. Costeira and T. Kanade, “A multibody factorization method for
independently moving objects,” Int. J. Comput. Vis., vol. 29, no. 3,
pp. 159–179, Sep. 1998.

[39] C. W. Gear, “Multibody grouping from motion images,” Int. J. Comput.
Vis., vol. 29, no. 2, pp. 133–150, Aug. 1998.

[40] Y. Wu, Z. Zhang, T. S. Huang, and J. Y. Lin, “Multibody grouping via
orthogonal subspace decomposition,” in Proc. IEEE Comput. Soc. Conf.
Comput. Vis. Pattern Recognit. (CVPR), vol. 2, 2001, pp. 252–257.

[41] T. Zhang, A. Szlam, and G. Lerman, “Median k-flats for hybrid linear
modeling with many outliers,” in Proc. IEEE 12th Int. Conf. Comput.
Vis. Workshops (ICCV Workshops), 2009, pp. 234–241.

[42] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank
representation,” in Proc. 27th Int. Conf. Mach. Learn. (ICML), 2010,
pp. 663–670.

[43] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component anal-
ysis (GPCA),” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 12,
pp. 1945–1959, Dec. 2005.

[44] M. Ashraphijuo and X. Wang, “Clustering a union of low-rank sub-
spaces of different dimensions with missing data,” Pattern Recognit.
Lett., vol. 120, pp. 31–35, Apr. 2019.

[45] M. Ashraphijuo and X. Wang, “Union of low-rank tensor spaces:
Clustering and completion,” J. Mach. Learn. Res., vol. 21, no. 69,
pp. 1–36, 2020.

[46] M. Ashraphijuo and X. Wang, “Fundamental conditions on the sampling
pattern for union of low-rank subspaces retrieval,” Ann. Math. Artif.
Intell., vol. 87, no. 4, pp. 373–393, Aug. 2019.

Morteza Ashraphijuo, photograph and biography not available at the time
of publication.

Xiaodong Wang (Fellow, IEEE) received the Ph.D. degree in electrical engi-
neering from Princeton University. He is a Professor of Electrical Engineering
with Columbia University, New York. His research interests fall in the gen-
eral areas of computing, signal processing and communications, and has
published extensively in these areas. Among his publications is a book enti-
tled “Wireless Communication Systems: Advanced Techniques for Signal
Reception” (Prentice Hall, 2003). His current research interests include
wireless communications, statistical signal processing, and genomic signal
processing. He received the 1999 NSF CAREER Award, the 2001 IEEE
Communications Society and Information Theory Society Joint Paper Award,
and the 2011 IEEE Communication Society Award for Outstanding Paper on
New Communication Topics. He has served as an Associate Editor for the
IEEE TRANSACTIONS ON COMMUNICATIONS, the IEEE TRANSACTIONS

ON WIRELESS COMMUNICATIONS, the IEEE TRANSACTIONS ON SIGNAL

PROCESSING, and the IEEE TRANSACTIONS ON INFORMATION THEORY.
He is listed as an ISI Highly Cited Author.

Authorized licensed use limited to: Columbia University Libraries. Downloaded on February 26,2021 at 00:02:21 UTC from IEEE Xplore. Restrictions apply.

