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Abstract Analyzing real-world software is challenging due to complexity of
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component, PROMPT symbolically executes the component while enforcing
the specified API model. PROMPT has been implemented on top of the KLEE
symbolic execution engine and has been applied to Linux device drivers from
the video, sound, and network subsystems and to some vulnerable components
of BlueZ, the implementation of the Bluetooth protocol stack for the Linux
kernel. PROMPT detected two new and four known memory vulnerabilities
in some of the analyzed system software components.
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1 Introduction

Analyzing real-world applications requires modeling of the environment includ-
ing the Application Programming Interface (API) of the underlying software
framework. While software frameworks are designed to enable faster develop-
ment, modularity, and extensibility, incorrect use of their APIs creates relia-
bility issues. Recent studies on API usability [7,19,20,23,27,28] report various
difficulties faced by the developers when using APIs and how API misuses may
lead to vulnerabilities. Although the focus in these studies has been mostly on
the misuse of cryptographic APIs, API misuse is a potential problem for any
complex framework.

Due to the complexity of software frameworks, precise analysis of software
components along with the framework code is not feasible. A typical solution
is to analyze components using an environment model. However, manually
generating environment models is error-prone. Depending on the goal of the
analysis, it may require an extensive engineering effort. This challenge has
recently inspired researchers to automatically synthesize API models in the
form of implementations or usage rules [22, 29, 30, 34]. Although the results
of these studies are promising, they rely on the existence of run-time data or
sample user-space applications that can be executed to exercise the APIs of
interest. However, setting up the right execution environment is challenging
for systems that interact with hardware, e.g. device drivers, and those that
involve complex API, e.g., cryptographic libraries.

Symbolic execution [25] has emerged as a test generation technique and
has also become an important program analysis technique for finding bugs
and vulnerabilities. Dynamic symbolic execution [15] can mix concrete and
symbolic execution. Therefore, it provides a precise memory model and is
effective in detecting memory related errors. However, symbolic execution is
not scalable due to the well-known path explosion problem and so it cannot be
applied to the analysis of a software framework. Therefore, effective symbolic
execution of application components requires a precise model of the software
framework.

In this paper, we present a modeling language, PROSE, for specifying API
models and a symbolic execution based tool, PROMPT, that performs sym-
bolic execution on a software component while enforcing the specified PROSE
API model. Users can also implement API function models in the C language
and leverage the metadata handling interface provided by PROMPT. Addi-
tionally, PROSE enables modeling of programming idioms, e.g., container of

macro in the Linux kernel, that are common in systems code, which can be
used to guide PROMPT for a more precise analysis at the component level.
Our approach facilitates analysis of system software components by avoid-
ing the need for developing a test harness or changing and recompiling the
underlying code base.
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We have modeled the registration, setup, and cleanup APIs of the video,
sound, and network subsystems of the Linux kernel. We have applied PROMPT
to 57 Linux device drivers and devised API models to enable precise symbolic
execution of these drivers. We were able to cover success as well as failure
paths of the setup and teardown functions of the drivers in our evaluation
set. We also analyzed some of the vulnerable components in BlueZ, an imple-
mentation of the Bluetooth protocol stack for the Linux kernel, and detected
some vulnerabilities that require considerable testing effort. We also detected
several real memory bugs in some of the device drivers.

Our contributions can be summarized as follows:

– We present a modeling language, PROSE, that can be used to specify API
models, which incorporate the life-cycle of an event-based system and the
data constraints.

– We present an open-source analysis tool1, PROMPT, that is developed
on top of the KLEE execution engine. PROMPT features model guided
lazy initialization, precise simulation of life-cycle models, and metadata
tracking.

– We have modeled the registration, teardown, and setup API of three dif-
ferent subsystems, video, sound, and network, in the Linux kernel and
validated them using PROMPT.

– We have applied PROMPT to various components in the Linux kernel.
The first case study reports on the analysis of 57 Linux device drivers
using the PROSE API models for the three subsystems. The second case
study reproduces some known vulnerabilities in BlueZ including one of the
BlueBorne [1] vulnerabilities: CVE-2017-1000251. We detected a total of
six memory related bugs, two new and four known.

The rest of the paper is organized as follows. Section 2 discusses related
work. Section 3 provides an overview of PROSE and PROMPT on a real
use-after-free vulnerability. Section 4 introduces the PROSE API modeling
language. Section 5 explains the API model guided symbolic execution as
implemented in the PROMPT tool. Section 6 presents the details of our case
studies. Section 7 presents an evaluation of our approach. Finally, Section 8
concludes with directions for future work.

2 Related Work

Environment modeling Analysis of real-world applications requires the ex-
istence of an environment model. In the context of symbolic execution, mod-
eling of low-level system call API [13] and modeling of POSIX API [12] have
been considered to enable analysis of code that uses these API. However, these

1 PROMPT will be released as an open source project and the github link will be provided
in the camera-ready version. We will also publicly release the device driver benchmarks and
their models.
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efforts provide predefined models and do not provide the users with mecha-
nisms to use custom defined models. DART [21] analyzes the component under
test to automatically extract external function models that return random val-
ues of the correct return type, which get combined with the component for
concolic execution. In the context of model checking, environment models of
Windows Framework Drivers [9], Linux device drivers [37], the Java Swing
Library [26], and the Android OS [8] have been used. In [9] the API functions
were modeled through stubs that nondeterministically return possible return
values or allocate memory and return the address. However, semantics of the
API functions were also specified using rules written in the SLIC specification
language [10]. In [37], the environment models are encoded in the C code and
enriched with nondeterministic choice directives. In [26], event sequences are
specified in a user script, which get simulated by model Java implementations
of some of the framework classes. In [8], mock-ups of OS functionalities are
implemented in Java by leveraging the original Android implementation. The
LDV toolset [41] enables specification of environment models by weaving the
correctness rules and the API models expressed in the C language to the source
code of the component under analysis and uses a reachability checker under
the hood such as [11] to detect violations and memory errors. PROMPT al-
lows users to specify custom API models and enables symbolic execution of the
component under analysis within the context of these models while simulating
the custom data constraints and control-flow rules specified as part of the API
model.

Symbolic Execution for System Code S2E [18] uses selective symbolic
execution to analyze binaries. S2E can be directed to restrict symbolic exe-
cution to the specific parts of the code and manage the transitions between
symbolic and concrete execution modes. While S2E targets errors that may
get manifested in any layers of the software stack, PROMPT targets errors
inside the component under analysis while using a model for the environment.
Since S2E mixes concrete and symbolic execution, it needs hardware emula-
tion to analyze device drivers or any component that directly interacts with
the hardware. However, PROMPT is based on symbolic execution only and,
therefore, does not require hardware emulation. SymDrive [33] uses S2E and
symbolic hardware models and analyzes driver code that is instrumented with
checkers. SymDrive is specialized for driver analysis whereas PROMPT pro-
vides a generic modeling framework for analyzing components of system code.
Apisan [40] detects bugs that are due to incorrect usage of APIs in large code
bases. It uses relaxed symbolic execution to infer semantic beliefs for API us-
age and reports bugs when a deviation from the inferred beliefs is detected.
Due to the precise memory model used by the underlying symbolic execution
engine, PROMPT can check whether such deviating behaviors are correct or
not without a belief model as long as it is provided with sufficiently precise API
models.
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Lazy Initialization Lazy initialization for symbolic execution has been pre-
sented in [24] and was implemented as an extension to the Java Path Finder
model checking tool [35]. In this work, the motivation for lazy initialization
was to represent unbounded data structures symbolically and to check con-
current data structure implementations in an exhaustive way. Therefore, when
a symbolic field needed to be concretized all possible candidates among the
existing compatible memory objects and the null value would be considered
non-deterministically. Lazy initialization capability was added to the KLEE
symbolic execution engine in UC-KLEE [31] to reach deep parts of the system
code and libraries. The modeling constructs provided by UC-KLEE get weaved
into the analyzed code with the goal of filtering out some of the false posi-
tives. PROMPT enables customization of the analysis environment through
API model guided lazy initialization and symbolic execution, which achieves
scalability in addition to achieving a lower false positive rate.

3 Overview

In this section, we present an overview of our API modeling approach and
introduce its salient features. The overall goal is to be able to analyze imple-
mentations of software components independently from the implementations
of the APIs they interact with. However, users should also be able to specify
a model of such API based on their analysis goals. This would have the ben-
efit of reducing the footprint of the analyzed code and the number of paths
explored. The users can design the models based on domain expertise and a
specific goal, e.g., detecting memory related errors.

Another goal is usability of the approach. We would like to minimize the
manual effort that would be needed for API modeling, which needs to be done
once for every version of the software framework 2. We achieve this by elim-
inating the need to write a test harness for the component to be analyzed
using the lazy initialization approach [24, 31]. Lazy initialization eliminates
the need for creating and initializing dynamic data structures. Plain lazy ini-
tialization has been shown to be effective for the analysis of abstract data
type implementations [24]. However, it leads to a high false positive rate for
software frameworks, such as the Linux kernel [31]. This is due to the inability
to capture the rules of the underlying API.

We have designed PROMPT to perform API model guided symbolic execu-
tion on a software component and the API models it interacts with. PROMPT
gets the code for the software component under analysis and an API model
specified in the PROSE modeling language. A PROSE model consists of the
C implementation of the modeled API functions and the API models, which
fall into one or more of the three categories: data models, function models,
and life-cycle models.

2 Models of the API functions can be reused across different versions as long as the
modeled aspects do not change.
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3.1 A Motivating Example

Fig. 1: The usbtv driver (the component under analysis, on the left and on
the middle) and the summarized PROSE API models (on the right). The use-
after-free vulnerability can be detected as PROMPT precisely simulates the
environment for the usbtv driver using the video API models and other rules
of the API modeling.

API DATA MODELS

Singletons                                        Type Embeddings         …
     struct usb_interface                        struct usb_device embeds                
     struct vb2_queue                            struct device  
     struct v4l2_device
     struct usb_device

API FUNCTION MODELS
 C/C++ models of the 

registration/deregistration APIs 
of the Linux video subsystem

API LIFE-CYCLE MODELS
entry point driver_probe followed 

by driver_disconnect if 
driver_probe returns 0

Fig. 2: The components of a PROSE API model specification as defined for
the Linux drivers from the video subsystem.

In this section, we motivate the need for modeling the environment of a
software component for a precise and scalable analysis using symbolic execu-
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1 int v4l2_device_register_PROSE(struct device *dev,

2 struct v4l2_device *v4l2_dev)

3 {

4 int dev_refcount;

5 int return_value;

6

7 klee_make_symbolic(&return_value,

8 sizeof(return_value),

9 "v4l2_device_register_return_value");

10

11 if (return_value >=0 ) {

12

13 // kref_init(&v4l2_dev->ref);

14 klee_set_metadata(v4l2_dev, 1);

15

16 // get_device(dev);

17 dev_refcount = klee_get_metadata(dev);

18 klee_set_metadata(dev, ++dev_refcount);

19

20 v4l2_dev->dev = dev;

21

22 // if (!dev_get_drvdata(dev))

23 if (!dev->driver_data)

24 // dev_set_drvdata(dev, v4l2_dev);

25 dev->driver_data = v4l2_dev;

26 }

27 return return_value;

28 }

Fig. 3: The C implementation of the PROSE model for the
v4l2 device register function. Commented lines denote the original
program statements that are modeled. The metadata handling functions
klee set metadata and klee get metadata are PROSE extensions to
KLEE.

tion. Although our approach can be applied to a variety of kernel components,
e.g., protocol stack implementations, and to other software frameworks, we use
a Linux device driver with a known use-after-free vulnerability as a running
example. Figure 1 shows a function from the usbtv driver, a Linux driver for
a USB tuner, which is used as the entry point for symbolic execution.

Figure 2 shows some of the components of the API model specification
for the usbtv driver. A Linux device driver that supports the hot-plug events
implements a function, probe, to be called when the device gets plugged in and
implements another function, disconnect, to be called when the device gets
unplugged. According to the life-cycle rules, the disconnect function executes
after the probe function and only if the probe function returns a success value.
According to the data constraint rules, some of the data structures, such as
struct usb interface, have only one instance. As an example, for USB
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drivers the single instance of the struct usb interface type gets passed as
a parameter to both the probe and the disconnect functions. 3

Another data constraint rule involves specifying embedding of one data
structure type in another one. In the Linux kernel, polymorphism is achieved
by embedding generic data structures, e.g., struct device, within specialized
data structures, e.g., usb device. Also, the address of the generic data struc-
ture instance is used to compute the address of the specialized data structure.
This is implemented by the container of macro and involves pointer arith-
metic. Basically, the address of a specialized data structure instance is com-
puted by subtracting the static offset of an embedded data structure from the
address of an embedded data structure instance. Note that this type of pointer
arithmetic that goes outside the boundaries of a data object is not supported
by standard points-to analyses [39], which led to the design of specialized tech-
niques such as [17, 36]. Symbolic execution has a precise memory model and
can deal with such non-standard pointer arithmetic as long as it is provided
with sufficient context, e.g., the embedding object has also been created. How-
ever, in component-level analysis such context may not be available. PROSE
allows specification of such data structure dependencies and PROMPT applies
them during lazy initialization to provide proper context during component-
level analysis. Such pointer arithmetic exists in low-level system software, e.g.,
in dynamic data structure implementations [17], and, hence, we expect the
embedding rule to be effective in the analysis of system code other than the
Linux kernel as well.

In Figure 1, the boxes on the right-hand side show summarized PROSE
models of the API functions that called from the driver code, e.g.,
usbtv video init calls the v4l2 device register and the
video register device API functions. Figure 3 shows the C implementa-
tion of the PROSE model for v4l2 device register. This driver interacts
with the video subsystem of the Linux kernel. The usbtv probe function is
the entry function and it gets executed when the USB device gets plugged in.
The driver calls some video API functions inside the usbtv video init func-
tion of the driver to setup video related data structures and to register them
with the kernel. Among other things, some of these API functions keep track of
the reference counts of video data structures. In the Linux kernel, two different
APIs are used for reference counting: kref and kobject. These APIs differ in
how they specify the cleanup function. We abstract away the details of these
two different APIs by providing a metadata tracking and update mechanism
in PROMPT. Basically, we implemented two handlers: klee set metadata

and klee get metadata. The former function sets the metadata for the first
argument, which represents an address in the analyzed component, and the
latter returns the existing metadata. The metadata API keeps the mapping
between the address and the metadata specific to the current symbolic execu-
tion state in which the call gets executed. Currently, we support int as a type
for the metadata and we will extend it with additional types in the future.

3 This singleton rule applies to other bus types including the PCI and I2C.
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Using the metadata interface we mention above, we could abstract the
reference counting APIs for the v4l2 device register PROSE model. For
instance, as shown in Figure 3, the v4l2 device register function sets the
reference count of a v4l2 device type object to 1 at line 14. Line 13 shows
the commented out original program statement that achieves this operation
using the kref API. Lines 17-18 show the reference count increment operation
for the device type object. Line 16 shows the commented out original program
statement that achieves this operation using the kobject API.

PROMPT detected this known use-after-free vulnerability, CVE-2017-17975,
in the usbtv driver. The bug gets manifested on an error path and the use-
after-free happens due to accessing the driver data structure pointed by the
usbtv variable, denoted by the rectangle shown in Figure 1, after freeing of
the object. The error path is executed due to the usbtv audio init function
returning an error value. So, the usbtv video free function gets executed
next. Inside this function, the reference count of the v4l2 device object is
decremented as indicated by the PROSE models of the video unregister

device and v4l2 device put functions. When the reference count becomes
zero, a callback function gets called according to the model. The address of this
callback function is represented by the expression arg0->release and it turns
out to be the usbtv release function of the driver, which gets registered/set
inside the usbtv video init function of the driver. The callback frees the
driver data structure, usbtv, using the kfree function. Eventually, the control-
flow on the error path moves to the usb put dev callsite, at which point the
use-after-free is detected by PROMPT.

We note that the actual PROSE model we used for the video API to detect
this vulnerability is more detailed than the one shown in Figure 14. Without
modeling, i.e., using the full kernel code, initialization of the global state took
approximately two hours while using a 32GB of memory on an Ubuntu 16.04
machine with 256GB of RAM (see Section 7.2). However, using the PROSE
models and the driver code as system under analysis, PROMPT could detect
the use-after-free vulnerability shown in Figure 1 within 6 seconds as reported
in Section 7.6.

4 The PROSE API Modeling Language

Figure 4 shows the grammar of the PROSE API modeling language. One
of the goals of PROSE is to minimize modeling effort by providing a way
to specify rules that can be applied globally. However, this may lead to an
imprecise analysis. So, users can also specify rules that involve specific data
types and functions. In that case, type and function specific modeling rules
take precedence over the globally specified modeling rules. Below, we explain
major components of the PROSE API modeling language.

4 The PROSE models of our benchmarks will be released along with the PROMPT tool.
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〈API model〉 ::= ’Global Settings:’ 〈global settings〉 ’Data Models:’ 〈data models〉
| ’Function Models:’ 〈function models〉 ’Life-cycle Model:’
〈life-cycle models〉

〈global settings〉 ::= 〈global setting〉 ; 〈global settings〉 | 〈global setting〉

〈global setting〉 ::= ’array size’ 〈number〉 | ’NULL return’ 〈choice〉 | ’init funcptrs to
NULL’ 〈choice〉 | ’symbolize inline asm’ 〈choice〉 | ’model funcs
with asm’ 〈choice〉 [’except’ 〈regexpList〉] | ’skip havocing single-
tons’ 〈choice〉

〈choice〉 ::= ’ON’ | ’OFF’

〈data models〉 ::= 〈data model〉 ; 〈data models〉 | 〈data model〉

〈data model〉 ::= 〈type embedding〉 | ’singleton’ 〈ident〉 | 〈bound constraint〉

〈bound constraint〉 ::= 〈expression〉 ’where’ 〈bindings〉

〈expression〉 ::= constant | 〈expression〉 binaryOp 〈expression〉 | 〈unaryOp〉
〈expression〉

〈bindings〉 ::= 〈binding〉 , 〈bindings〉 | 〈binding〉

〈binding〉 ::= 〈ident〉 ’is’ 〈entity〉

〈entity〉 ::= 〈ident〉 ’field’ 〈number〉 | ’size of’ 〈ident〉 ’field’ 〈number〉 |
〈ident〉 ’arg’ 〈number〉 | ’return of’ 〈ident〉

〈type embedding〉 ::= 〈ident 1 〉 ’embeds’ 〈ident 2 〉 [’field’ 〈number〉]

〈function models〉 ::= 〈function model〉 ; 〈function models〉 | 〈function model〉

〈function model〉 ::= 〈ident 1 〉 ’modeled by’ 〈ident 2 〉 | ’returnOnly’ 〈ident〉
| 〈bound constraint〉 | ’havoc args’ 〈number list〉 ’of’ 〈ident〉
| ’alloc’ 〈ident〉 〈alloc mem pos〉 ’size arg’ 〈number〉 ’init zero’
〈bool〉 ’symbolize’ 〈bool〉 | ’free’ 〈ident〉 ’mem arg’ 〈number〉

〈alloc mem pos〉 ::= ’mem arg’ 〈number〉 | ’mem return’

〈life-cycle models〉 ::= 〈life-cycle sequence〉 | ’entry-point’ 〈ident〉

〈life-cycle sequence〉 ::= 〈life-cycle entry〉 ; 〈life-cycle sequence〉 | 〈life-cycle entry〉

〈life-cycle entry〉 ::= 〈ident〉 [ ’continue if ’ 〈bound constraint〉 ] | 〈ident〉 ’[’ 〈number〉
’]’ | 〈ident〉

Fig. 4: The grammar of the PROSE API modeling language that gets in-
terpreted by the PROMPT tool to simulate an environment model for the
component under analysis.
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4.1 Global Settings

In lazy initialization, an important modeling decision involves the size of mem-
ory region to be allocated for a pointer. It is possible that the pointer refers
to a single object or an array of objects. So, in general an array of the base
type with size greater than or equal to one needs to be allocated. If the array
size is too small, this would lead to false positives. On the other hand, if the
array size is too large, it would lead to false negatives and to high memory
overhead during symbolic execution. With these caveats, the user can specify
an array size to be applied to any pointer that gets lazily initialized using the
array size <number> rule, where <number> denotes a positive integer. Users
can overwrite this rule for a specific type as explained in Section 4.2.

In PROSE, a function can be modeled either via another function that
matches the signature and is implemented in C or by specifying how to handle
the arguments and the return value, which we call the generic approach. If the
function is modeled using the generic approach, the return value is automat-
ically symbolized. However, if a modeled function returns a pointer-type, the
users can specify whether the NULL value should be considered as a possible
return value by using the NULL return <choice> rule, where <choice> can
be ON or OFF. Users can overwrite this rule for specific functions as explained
in Section 4.2.

Another important aspect of lazy initialization of data structures is how to
deal with the function pointers. In some cases, the user needs to specify which
function to use for a specific field of a type. However, in some cases setting a
function pointer field to NULL works if it is about an optional functionality that
can be abstracted away. So, users can specify whether the function pointers in
lazily initialized data structures can be set to NULL using the init funcptrs

to NULL rule. Users can overwrite this rule for a specific type as explained in
Section 4.2.

System code often come with inline assembly code. Although users can
deal with inline assembly via automated assembly lifters such as [32], PROSE
provides two ways to model inline assembly, if needed. The first way is to
model the assembly instruction as a side-effect free operation and symbolizing
the return value, if any, using the symbolize inline asm ON rule. The other
way is to automatically modeling functions that have inline assembly using the
model funcs with asm <choice> rule. The optional except <regexpList>

specifies exceptions to this setting for functions with names matching the list
of regular expressions <regexpList>. The details of modeling such functions
are subject to other global and type and function specific rules as specified in
the PROSE API model.

Users can also specify a global approach to dealing with the pointer argu-
ments of functions that are modeled using the generic approach. As mentioned
above and detailed in Section 4.3, such arguments can be chosen to be hav-
oced (symbolized) to model the side-effect of the function in the most abstract
sense. Havocing process marks the object pointed by the argument as sym-
bolic. However, users can choose to skip or turn on this havocing operation
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for functions modeled using the generic approach with the skip havocing

singletons <choice> rule, which can be overwritten for specific functions
and specific arguments as explained in Section 4.3.

4.2 Data Modeling

An important aspect of providing a precise context for a component under
analysis is describing the embedding relationship between data structures.
System software utilizes the embedding of one struct in another one to achieve
polymorphism and code reuse [17]. This assumption may be leveraged to use
the address of an embedded object to derive a pointer for the embedding
object, e.g., the container of macro in the Linux kernel. If a proper context is
not provided, analysis of such code may lead to false positives and low coverage
of the code. PROSE allows users to specify such embedding relationship using
the <ident 1> embeds <ident 2> rule, where <ident 1> denotes the name
of the embedding type and <ident 2> denotes the name of the embedded
type. Optionally, users can specify the index of the field of <ident 1> at
which <ident 2> is embedded using the extension field <number>. When
the field index is not specified and if there are multiple fields of <ident 1>

of type <ident 2> then the one with the lowest index is assumed for lazy
initialization purposes.

Another type of data modeling has to do with whether the lazy initialized
struct type has a single instance within the context of the analyzed com-
ponents. If so, using the same instance instead of creating a new instance
improves the precision of the analysis. Users can specify whether a data type
should be treated as a singleton using the singleton <ident> rule, where
<ident> is the type name.

Finally, users can specify constraints about the fields of struct types. Such
constraints consist of two parts: the expression and the binding. In the expres-
sion part, users can use model variables in constraints that involve arithmetic
(+, -, *,/), boolean (!), and relational operators (>,≥, <,≤,=, ! =). These
model variables need to be bound to some entities in the code using comma
separated <ident> is <entity> clauses. The types of entities include the
fields of struct types (<ident> field <number>), the arguments (<ident>
arg <number>) or the return values (return of <ident>) of functions, and
the sizes of arrays or pointer fields (size of <ident> field <number>). The
field and argument numbers start at 0 and consecutive numbers are used based
on the order of their declaration in the function signature or in the type def-
inition. These constraints get enforced on the relevant objects during lazy
initialization, handling of callsites for functions modeled using the generic ap-
proach, or handling of return instructions that cause transitioning from one
life-cycle entry to another.
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4.3 Function Modeling

When a software component is analyzed, it is important to capture the key
interactions with some of the API functions that are critical for achieving the
analysis goal. Some of the API functions, on the other hand, will not be that
critical. So, PROSE provides various ways of modeling an API function with
different levels of detail.

One way is to implement the model as a C function and specify the mod-
eling relationship with the original one using the <ident 1> modeled by

<ident 2> rule, where <ident 1> and <ident 2> denote the names of the
original function and the model function, respectively.

Another way of function modeling in PROSE is by specifying the side
effects of the function in terms of its return value and the pointer type argu-
ments, which we call the generic approach. Return values of functions modeled
in this way are always symbolized. However, the return value can be con-
strained as explained in Section 4.2. The pointer arguments can be explicitly
specified to be havoced by providing the indices of the arguments using the
rule havoc args <number list> of <ident>. Another option in the generic
approach is to symbolize the return value only and skip havocing of all pointer
arguments, which can be specified using the ’returnOnly’ <ident>.

An important class of API functions involve memory allocation and deal-
location. Such API can be modeled in PROSE to abstract away framework
specific details. An allocation function may either return a pointer to the al-
located memory or store the address in a pointer argument. Users can use the
alloc <ident> <alloc mem pos> size arg <number> init zero <boo

l> symbolize <bool> to specify how the address of the allocated memory
is returned (<alloc mem pos>), the argument index (<number>) that spec-
ifies the size of the memory allocation, whether the allocated memory would
be initialized with zeros, and whether the memory would be symbolized. To
model a deallocation function, one needs to specify the argument that holds
the address of the memory region to be deallocated using the free <ident>

mem arg <number> rule, where <number> denotes the argument index.

4.4 Life-cycle Modeling

In a PROSE model, the components under analysis can be specified using a
life-cycle model. If there is only one component to be analyzed then this can
be specified using the entry-point <ident> rule, where <ident> denotes the
name of the function to analyze. If there are multiple functions to analyze
in a sequential order then the sequential composition can be specified as a
semicolon separated list of life-cycle entries. A life-cycle entry can be just a
function name, which means that either the return type of the function is void
or that regardless of the return value the execution will continue with the
next function in the sequence. If the execution should continue only for cer-
tain cases of return values, e.g., success cases, then the continue if <bound
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constraint> clause should be specified after the function name. The bound
constraints that are valid in this context are those that involve the return
values of the functions (return of <ident>) in the life-cycle sequence. Al-
ternatively, users can choose to use the <ident> [ <number> ] rule to specify
the specific return value, <number>, for which the execution continues. Finally,
just specifying the name of the function <ident> indicates that the execution
must continue with the next life-cycle step regardless of the return value, if
any, as long as the path has not terminated.

5 API Model Guided Symbolic Execution

In this section, we explain the details of our approach for API model guided
symbolic execution as implemented in the PROMPT tool. PROMPT extends
the KLEE symbolic execution engine, which follows an Execution-Generated
Testing (EGT) approach to dynamic symbolic execution [14]. Algorithm 1
shows how the basic EGT approach to symbolic execution works. Starting
from an initial state that consists of the dynamic and static memory, Mem,
the stack, Stack , the path condition, PC , the next instruction to execute,
nextInst , and the termination status, term, it generates a tree of states as
the component under analysis, C, gets executed symbolically. By designating
some of the inputs as symbolic, which is invisible in Algorithm 1, the pro-
gram instructions get executed by computing symbolic expressions when the
operands involve symbolic values. So, both Mem and Stack have a combi-
nation of memory locations with concrete values and memory locations with
symbolic expressions. The PC , known as the path condition, represents the
constraints on the symbolic inputs on a given execution path. Computation of
the PC in Algorithm 1 is implicitly handled by line 8. Each branch instruc-
tion generates the children of the current state such that the path condition of
each child, PCi , restricts the path condition of the parent with the symbolic
branch condition, cond , that is true on that path, i.e., PCi ≡ PC ∧ cond .
For non-branching instructions, the set succs is empty if inst is the last in-
struction of C, in which case the state gets terminated. For non-terminating
non-branching instructions, the set succs is a singleton and the PC is an exact
copy of that of state, i.e., the predecessor.

Algorithm 1 Basic symbolic execution.
1: BSE(C: Component, τ : time out)
2: Let (Mem,Stack ,PC ,nextInst , term) represent a symbolic execution state
3: Let S0 represent the initial state
4: Let states ← {S0}
5: while states not empty and timeout τ not reached do
6: state ← Choose(states)
7: inst ← state.nextInst
8: succs ← ExecuteInstruction(state, inst)
9: states ← states ∪ succs

10: end while
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Basic symbolic execution (BSE) does not scale when the component under
analysis is large. So, we present an API Model Guided Symbolic Execution
(PMGSE) to enable the analysis of software components of large frameworks.
The challenge in analyzing a software component is to come up with a precise
model of the environment it interacts with so that symbolic execution can
be performed on the software component and the model only, which would
scale better than analyzing the component in the context of the large software
framework.

We assume that depending on the goal of the analysis the framework API
models have been implemented in C and get linked with the component. How-
ever, replacing the API functions with their model implementations does not
provide a precise analysis. The rules of the API also need to be enforced. Oth-
erwise, either some of the important paths will not get explored or too many
false positives will be generated. In Section 4, we have presented the API mod-
eling rules as defined in the PROSE language. In this section, we explain how
the rules that are specified in a PROSE model get enforced by PMGSE as
implemented in the PROMPT tool.

Algorithm 2 shows how PMGSE extends the basic symbolic execution given
in Figure 1 to enforce a given API model, M , which consists of the global
settings, the singleton types, SG , the type embedding relations, EM , the data
constraints, DC , to be used during lazy initialization, the function argument,
FAC , and return value, FRC , constraints to be used to simulate the life-cycle
rules, LC , the modeled allocation, AF , and deallocation, DF , functions, the
functions that are modeled by other functions, FM , the exceptional cases, AE ,
for modeling functions with inline assembly, and the rules about havocing
arguments, HV . We refer to the relevant elements of the API model M in
Algorithms 2-8 to explain how PROMPT implements PMGSE.

PMGSE extends the symbolic execution state with metadata, MT , that
gets manipulated by the API models. The main extensions of Algorithm 2
to Algorithm 1 are 1) extending the state representation with metadata, 2)
collecting type embedding information by traversing all the types in the com-
ponent under analysis, 3) keeping track of a type to address mapping, TA,
and 4) extending the handling of several instruction types to enforce the API
model. We skipped some details about keeping track of TA such as including
static allocations and bitcast instructions that cast void pointers to a specific
type. In what follows, we use executeInstruction and allocate to represent the
algorithms for symbolically executing an instruction and allocating memory
for a given type, respectively, as performed in BSE. We mark all struct types
and all primitive types that are used as pointer fields in the struct types to
be lazily initialized and do so if a pointer to one of these types actually take
a symbolic address.

Algorithm 3 handles the load and store instructions. Since KLEE executes
LLVM bitcode, we would like to provide some details in the context of LLVM.
In LLVM, a load/store instruction may have a pointer type or a double pointer
type address operand. Those with the latter refer to the memory locations that
store memory addresses. So, if a symbolic expression is stored in the address
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Algorithm 2 API model guided symbolic execution as implemented in the
PROMPT tool.
1: PMGSE(C: Component, M : API Model, τ : time out)
2: Let M = (SG,EM ,DC ,FAC ,FRC ,LC ,AF ,DF ,FM ,AE ,HV )
3: Let (Mem,Stack ,PC ,nextInst ,MT ,TA) represent an extended symbolic execution

state
4: Let S0 represent the initial state
5: Let entry denote a function in C specified as the first life-cycle entry in M.LC
6: S0.Stack .push(entry)
7: ApplyFunctionConstraint(st , f , arg, false, entry.firstInst , M)
8: if s.term = false then . Consistent data constraints on arguments
9: S0.nextInst ← entry.firstInst . Start the execution from the first function in M.LC

10: Make entry.args symbolic in S0

11: Collect embedding info into global ER s.t. (t1, t2) ∈ ER iff t1 embeds t2
12: Let states ← {S0}
13: while states not empty and timeout τ not reached do
14: state ← Choose(states)
15: inst ← state.nextInst
16: if inst is a load or store then
17: succs ← HandleLoadStore(state, inst ,M)
18: else if inst ≡ call f () then
19: succs ← HandleCall(C, state, inst ,M)
20: else if inst ≡ return value then
21: succs ← HandleReturn(state, inst ,M)
22: else
23: succs ← ExecuteInstruction(state, inst)
24: end if
25: states ← states ∪ succs
26: end while
27: end if

provided in a load/store instruction and the operand is a double pointer type,
we allocate the memory object of that type and store the address of that al-
located memory into the relevant memory location. We represent an allocated
memory region with a memory object mo = (A, T,C), where A denotes the
base address, T denotes the base type, and C denotes the number of T objects
stored in mo, i.e., size of mo is C×sizeof (T ). So, given a state st and a possibly
symbolic address A, Resolve(st, A) returns the set of memory objects that A
may fall into by forking at the instruction i and generating a copy of state st in
each st ′. For each memory object mo, the algorithm checks if the address value
stored at address A is a symbolic value. If so, it calls Algorithm 4 to lazily
create an object and copies the address of the object, address2 , to address
A. The size of the lazily initialized memory region is inferred from the API
model; if there is a type specific rule then the specified constant is retrieved
from the data constraint, M.DC , or from the singletons M.SG , otherwise, the
global setting on the array size is used.

After the memory gets created, PROMPT applies any data constraint that
is related to the size of the generated memory object by executing the Ap-
plyDataConstraint algorithm, which is explained below. If the applied con-
straints contradict the path condition then the path gets terminated. Other-
wise, the load/store instruction is executed as in regular basic symbolic ex-
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ecution, which would now use a concrete address, address2, to execute the
load/store instruction. Memory allocation is shown in Algorithm 4 and per-
forms additional tracking for lazy initialization.

Algorithm 3 Special handling of the load and store instructions. Symbolic
addresses trigger lazy initialization.
1: HandleLoadStore(st : State, i: Instruction, M : API Model): P(State)
2: result← ∅
3: Address A← AddressOperand(i)
4: P(MemoryObject ,State) set ← Resolve(st , A), where MemoryObject =

(Address,Type,N )
5: for each (mo, st ′) ∈ set s.t. mo = (address1 , T1, size) do
6: if A is within bounds of mo then
7: lazyinit ← false
8: if i has a double pointer address operand then
9: value ← st ′.Mem[A] ; lazyinit ← true

10: Let T2 denote the non-pointer base type of i’s address operand
11: if value is a symbolic expression then . Lazy initialize the symbolic address
12: count ← InferArraySize(T1, T2,M)
13: (address2 ,mo′)← HandleAllocate(st ′, T2, true, count ,M) . Allocate

memory of base type
14: Let k s.t. k ∗ size(T1) ≤ A− address1 < (k + 1) ∗ size(T1)
15: ApplyDataConstraint(st ′, T1, address1 + k ∗ size(T1), true, A,

M.arraySize, M)
16: if st ′.term = false then
17: st ′.Mem[A]← address2 . Initialize the pointer
18: PerformLoadStore(st ′, i) . Now do the actual load/store
19: result ← result ∪ {st ′}
20: end if
21: end if
22: end if
23: if lazyinit = false then
24: PerformLoadStore(st ′, i)
25: result ← result ∪ {st ′}
26: end if
27: end if
28: end for
29: if set = ∅ then
30: st .term ← true . Report memory error
31: return ∅
32: else
33: for each st ′ ∈ set \ result do
34: st ′.term ← true . Report memory error
35: end for
36: end if
37: return result

Algorithm 4 performs some extra steps if it is called as part of the lazy
initialization process, e..g, from the load/store instructions. Since it needs to
enforce the embedding rules, it executes recursively to make sure that the
outermost embedding object gets created as part of the allocation of the given
type T . One side effect of this algorithm is to infer new singletons; if a type
is specified to be a singleton then so must be its embedding type. When we
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reach the base case of this recursive algorithm, i.e., there is no embedding
type to consider according to the specified API rule, M.EM , we check if this
is a singleton. If so, we should use the existing instance, if any. Otherwise, a
new instance gets created. In our implementation, we create an array instead
of a single cell when we lazily initialize pointers to primitive or non-singleton
types. The size of the array can be tuned. We have used 20 for our evaluation.

Algorithm 4 Special handling of memory allocation.
1: HandleAllocate(st : State, T : Type, lazy: bool, count : N , M : API Model) :

(Address,MemoryObject)
2: if lazy = true then . to be lazily initialized
3: if exists some T ′ s.t. (T ′, T ) ∈ ER and (T ′, f, T ) ∈M.EM then
4: if T ∈M.SG then
5: M.SG ←M.SG ∪ {T ′} . Infer embedding type being a singleton
6: end if
7: (ea,mo)← HandleAllocate(st , T ′, true, count ,M)
8: return (ea + StaticOffset(T ′, f),mo);
9: else

10: if T 6∈M.SG or st .TA[T ] = ⊥ then
11: address ← allocate(size(T )× count)
12: mo ← (address, T, count)
13: st .TA[T ]← mo
14: makeSymbolic(address, size(T )× count)
15: for i 0 to count− 1 do
16: ApplyDataConstraint(st, T , address + i×size(T ), false, undef , undef ,

M)
17: end for
18: return (address,mo)
19: else
20: Let st .TA[T ] = mo
21: return (mo.baseAddress,mo)
22: end if
23: end if
24: else
25: address ← allocate(size(T )× count)
26: st .TA[T ]← (address, T, count)
27: return (address,mo)
28: end if

Algorithm 5 applies data constraints in the API model, M.DC . If sizeof
parameter is set to true then this algorithm gets called from Algorithm 3 to
apply constraints on the size of a dynamic array, e.g., x < y, where x is

A field 0, y is size of A field 1, where field 0 represents the length
and field 1 represents the dynamic array in struct A = {int length; int

*data}. The algorithm finds the relevant constraint by locating the relevant
field based on the base address b of the object of type T and the address a of
the dynamic array field. If sizeof parameter is set to false then this algorithm
gets called from Algorithm 4 to make sure that primitive fields of the lazy
initialized object of type T gets constrained as specified. In both cases, the
abstract syntax trees that corresponds to the specified constraints get trans-
lated into expressions on the symbolic names of the relevant memory regions.



Title Suppressed Due to Excessive Length 19

usb_devstruct 
device

struct usb_device

off
se

t

(1) 
lazy

struct usb_interface

driver_data

struct usbtv

struct 
v4l2_device

dev

struct 
video_device

v4l2_dev

(2)
explicit

(3)
API

(4)
explicit

model guided 
lazy initialization

lazy initialization
(argument)

explicit
(kmalloc)

Fig. 5: Major data structures manipulated by the usbtv driver. The region
with a bold border shows an example of an embedded region, where the em-
bedding type is usb device (with the dashed border), which gets created to
enforce the modeling rule on type embedding. The labels on the arrows rep-
resent the source of the updates and those under the objects show how they
get created.

The symbolic expressions are checked against the path condition and the state
gets terminated if a contradiction is detected. The algorithm is executed re-
cursively to handle the struct type fields of T to apply the constraints that
involve any of the embedded types.

Figure 5 illustrates some of the data structures used by the usbtv driver
given in Figure 1 and how they get created. We use the explicit label (posi-
tioned below the objects) to represent memory allocation due to an allocation
callsite such as calling kmalloc or kzalloc and we use lazy to denote that
the object gets created as part of the lazy initialization. As an example, the
usbtv driver creates a struct usbtv object inside the usbtv probe function
by calling kzalloc and, therefore, this objects get created explicitly during
symbolic execution. However, both the struct usb interface type and the
struct usb device type objects get lazily initialized. The lazy initializa-
tion of the former is due to being a parameter of some entry function, e.g.,
usbtv probe or usbtv disconnect, whereas that of the latter is due to an
access of the usb dev field on the lazily initialized struct usb interface

object, denoted by the lazy label on arrow (1) from the usb dev field to the
usb device object.

The reason for the device object being created as embedded inside a
usb device object instead of as being a standalone object is that the API rule
on embedding was specified as usb device embeds device. It is possible that
some symbolic pointers get later in the execution set to concrete values, ex-
amples of which are shown in Figure 5 and are denoted by the arrows labelled
with either explicit or API. The explicit label indicates that the pointer
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Algorithm 5 Application of data constraints to lazily created objects.
1: ApplyDataConstraint(st : State, t: Type, b: Address, sizeof : bool, a: Address, size:

N, M : API Model)
2: for each (exp, binding) ∈ M.DC s.t. ∃ v.f. s.t. binding[v] = (t, f) or binding[v] =

size of (t, f) do
3: if sizeof is true then
4: if binding does not have a size of clause then
5: continue
6: else if there exists a size of clause (t, f) in binding s.t. StaticOffset(t, f) 6= a− b

then
7: continue
8: end if
9: else if binding has a size of clause then

10: continue
11: end if
12: if exp ≡ v = constant , where binding[v] = (t, f) then
13: st .Mem[b+ StaticOffset(t, f)]← constant
14: else
15: Let V denote the variables v1, v2, ..., vn in exp
16: Let V ′ = v′1, v

′
2, ..., v

′
n

17: for each vi do
18: if binding[vi] ≡ (t, f) then
19: v′i ← st .Mem[b+ StaticOffset(t, f)]
20: else if binding[vi] ≡ size of (t, f) then
21: v′i ← size
22: end if
23: Let exp′ ← exp[V/V ′]
24: if st .PC ∧ exp′ is SAT then . Is the data constraint consistent with the

path constraint?
25: st .PC ← st .PC ∧ exp′ . Apply the data constraint to the state
26: else
27: st .term ← true . Terminate the state
28: return
29: end if
30: end for
31: end if
32: end for
33: for each field f of t that is a struct type do . Handle embedded types
34: b′ ← b+ StaticOffset(t, f)
35: ApplyDataConstraint(st , Type(t, f), b′,sizeof ,a,size,M)
36: end for

has been set due to an assignment instruction in the component whereas the
API label indicates the pointer having been set inside the API model. As an
example, the link denoted by arrow (3) in Figure 5 is generated due to line 25
of the v4l2 device register function model shown in Figure 3.

In Algorithm 6, we handle certain callsites in a special way to 1) track
and check consistency of declared and inferred singleton types (line 3-13), 2)
perform metadata handling (lines 14-17), and 3) to handle the API functions
in a special way. PROMPT consults the API model M to determine how
to handle a callsite, i.e., to execute the original function or perform some
modeling. If the function is modeled by another function then we execute that
model function instead of the original function (lines 19-20). Otherwise, we
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check if the function can be modeled in a generic way, i.e., by symbolizing its
arguments and the return value, if any. External functions are handled in a
generic way. A function that has a definition may also be modeled in a generic
way if it has inline assembly and the global setting on modeling functions
with inline assembly, M.modelwithassembly , is set and the function name does
not match any of the exceptional cases, M.AE . The significance of assembly-
level instructions is due to the inability of the underlying symbolic execution
engine, KLEE, to handle them, which leads to the immediate termination of
the path, and, hence, prevents coverage of the symbolic execution tree beyond
that instruction. In general, PROMPT models a function in a generic way by
havocing (symbolizing) its arguments and the return value, if any, (lines 22-44)
However, havocing of an argument would still be skipped if the global setting
on skipping havocing singletons is set, the argument type is a singleton, and
havocing of the argument is not specified in M.HV . Otherwise, the argument
gets havoced. The return value is symbolized and if the global setting for NULL
return is set then that case is also considered. Algorithm 7 gets executed to
apply any constraint on the return value on the original state and, if applicable,
on the cloned one in which the return value is set to NULL. For the API
functions for which PROSE models are available, the return values can be
explicitly made symbolic inside the models as shown in Figure 3 in lines 7-9.
So, for the v4l2 device register function, the side-effects specified on lines
13-25 are are only modeled for the success cases, i.e., return value ≥ 0. This
is because on failure cases, the API functions typically revert back the side
effects that they may have performed, e.g., allocated memory gets deallocated
and the reference count operations get reverted.

Functions that have inline assembly would end up being executed like other
unmodeled functions if they correspond to some exceptional cases (line 46).
If the global setting on symbolize inline assembly is set to true then such
instructions would be abstracted away by symbolizing their return values,
which is not explicitly shown in the algorithms. This would avoid an error on
such a path and enable further exploration.

Algorithm 7 applies constraints on the function arguments or function re-
turn values to the given state by transforming the abstract syntax trees of the
constraints into symbolic expressions similar to Algorithm 5, which applies
type-specific data constraints. For return values, there are two types of con-
straints depending on whether they relate to the life-cycle or not. Those that
relate to the life-cycle determine whether the execution can continue with the
next life-cycle entry or terminates. Algorithm 8 calls Algorithm 7 on line 6 for
such cases. Those that do not relate to the life-cycle just constrain the return
value for that path. Algorithm 6 calls Algorithm 7 line 34 for such cases. The
argument constraints are always related to the life-cycle model, i.e., they de-
termine how the arguments should be constrained when a life-cyle entry gets
executed. This algorithm gets called by Algorithm 2 (line 7) when the life-cycle
starts and by Algorithm 8 (line 13), which we explain next.

Finally, we handle the return instructions to enforce the life-cycle rules as
shown in Algorithm 8. Recall that in Algorithm 2, we start the execution from
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Algorithm 6 Special handling of callsites.
1: HandleCall(C: Component, st : State, i: Instruction, M : API Model) : P(State)
2: Let i ≡ f(args)
3: if (f,mem arg) ∈M.AF then
4: (address,mo)← HandleAllocate(st ,Type(args[mem arg]), false,M)
5: if T ∈M.SG and st .TA[T ] 6= ⊥ then
6: print(error: T is not a singleton)
7: st .term ← true
8: return ∅
9: end if

10: st .TA[T ]← address . Record type to address mapping
11: else if (f, arg no) ∈M.DF then
12: st .TA[Type(args[arg no])]← ⊥ . Record type to address mapping
13: return executeInstruction(st , i′), where i′ ≡ free(args[arg no])
14: else if f = klee set metadata then
15: st .MT [args[0]]← args[1]
16: else if f = klee get metadata then
17: i.result ← st .MT [args[0]]
18: else if (f, pf ) ∈M.FM then . Use the model function, if exists
19: Let i′ = pf (args)
20: return executeInstruction(st , i′)
21: else
22: if f has assembly and M.modelwithassembly is set and f does not match any of the

exception cases in M.AE or f 6∈ C.DefinedFunctions then
23: for each arg in args do
24: if arg is a pointer then
25: if M.skiphavocsingletons is ON and arg is or reachable from a singleton

type and (f, arg) 6∈M.HV then
26: Keep object pointed by arg unchanged
27: else
28: Make object pointed by arg symbolic
29: end if
30: end if
31: end for
32: if return type of f is not void then
33: Make the return value in i symbolic
34: set ← {st}
35: if M.nullReturn is ON then
36: st ′ ← st , where the return value in i is set to NULL in st ′

37: set ← set ∪ {st ′}
38: end if
39: result ← ∅
40: for st ′′ ∈ set do
41: result ← result ∪ ApplyFunctionConstraint(st ′′, f , return, false, i,

M)
42: end for
43: return result
44: end if
45: else
46: return executeInstruction(st , i)
47: end if
48: end if
49: return {st}

the first entry point specified in the life-cycle rule, M.LC , which includes a
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Algorithm 7 Application of function constraints on arguments and return
values.
1: ApplyFunctionConstraint(st : State, f : Function, mtype: {arg, return}, lifecycle:

boolean, i: Instruction, M : API Model)
2: exp ← true
3: if mtype = arg then
4: for each (aexp, abinding) ∈M.FAC [f ] do
5: for each v s.t. abinding[v] = (f, argi ) do
6: aexp′ ← aexp′[v/st .Mem[Address(argi )]]
7: end for
8: exp ← exp ∧ aexp′

9: end for
10: else
11: if lifecycle = true then (rexp, rbinding)←M.LC .FRC [f ]
12: else (rexp, rbinding)←M.FRC [f ]
13: end if
14: Let v s.t. rbinding[v] = (f, return)
15: exp ← rexp[v/st .Mem[Address(i.return)]]
16: end if
17: if st .PC ∧ exp is SAT then
18: st .PC ← st .PC ∧ exp
19: return {st}
20: else st .term ← true return ∅
21: end if

list of function/entry point names along with the constraints on the return
values for continuing with the next step. When we return from a function, f ,
that happens to be one of the life-cycle entries in M.LC , we check if the return
value satisfies the constraints for continuation of the life-cycle sequence as long
as it is not the very last life-cycle entry. If so, the execution continues with the
next entry point from the life-cycle sequence by updating the execution stack.
Otherwise, the path gets terminated.

6 Case Studies

6.1 Linux Device Drivers

We have used PROSE to model memory related API of three subsystems in
the Linux kernel: video, sound, and network. Below, we briefly describe our
modeling experience for each subsystem.

The video subsystem This subsystem creates and manages two main data
structures, video device and v4l2 device. Typically both objects get em-
bedded in the custom driver data structure and reference counts are kept
for each object. Either one of the object types get assigned a release call-
back, which gets called when the reference count of the respective object gets
to zero. The release callback gets assigned inside the device driver. The
v4l2 device register function also sets some pointer fields of the parame-
ters (if not already set) to be used later to drive a pointer to the v4l2 device
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Algorithm 8 Special handling of return instructions to enforce life-cycle rules.
1: HandleReturn(st : State, i: Instruction, M : API Model) : P(State)
2: Let i ≡ return exp
3: Let f ← Function(i)
4: if f ∈M.LC .F then . A life-cyle element
5: if ReturnType(i) 6= void then
6: ApplyFunctionConstraint(st , f , return, true, i, M)
7: if st .term = false and f is not the last life-cycle entry function then
8: Let fs ←M.LC .Succ(f)
9: st .nextInst ← fs.firstInst

10: st .Stack .pop(f)
11: st .Stack .push(fs)
12: Make fs.args symbolic . Make the arguments symbolic and apply

constraints on them
13: return ApplyFunctionConstraint(st , f , arg, false, i, M)
14: else
15: st .term ← true . Terminate life-cycle sequence
16: return ∅
17: end if
18: end if
19: end if
20: return executeInstruction(st , i)

object from a given device object. We modeled 11 API functions for the video
subsystem. The model consist of 150 SLOC.

The sound subsystem This subsystem creates a snd card data structure and
some auxiliary data structures such as rawmidi and pcm. Some drivers create
a snd device object. Unlike the video subsystem, the private/custom data
structure of the driver may get allocated by the snd card new function if a
non-zero size for the private data structure is provided as the 5th argument. If
so, the snd card object and the private data structure is created as a single
blob. The private data field of the snd card object is set to the private data
by the snd card new function. This enables the driver to access the created
private data structure via this field. Drivers free sound subsystem related data
structures using the snd card free function and are not supposed to free
the card object or the private data structure explicitly. Other other hand, if
the private data structure has not been created via snd card new then it
is the driver’s responsibility to free it. We modeled 17 API functions for the
sound subsystem. The model consists of 342 SLOC.

The network subsystem In this subsystem, net device is the core data struc-
ture. However, as in the sound subsystem, it may get allocated as a single blob
with the private data structure by the allocation API functions alloc netdev

and alloc etherdev. Both of these functions use the first parameter as the
size of the private data structure. However, they differ in terms of the setup

callback they use. The alloc netdev function gets the setup callback from
the driver whereas the alloc etherdev function uses a specific callback func-
tion, ether setup, defined by the ethernet subsystem.
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The significance of the setup callback and how it initializes the fields
of the net device object comes into play at cleanup time. The cleanup is
generally performed by the free netdev function, which checks a flag field,
reg state, of the net device object to check for the registration status. If
the object is not registered, it performs an explicit free of the blob. Otherwise,
it decrements a reference count, which triggers a generic callback function
that frees the object containing the reference count. However, if the setup

callback sets the destructor function pointer, that callback gets executed in-
side the unregister netdev API function. We modeled 13 API functions for
the network subsystem. The model consists of 215 SLOC.

We have studied the drivers for each subsystem and reviewed the imple-
mentations of the API functions to summarize their side effect in terms of
reference counting of the subsystem specific data structures and their regis-
tration/deregistration logic. Each subsystem took 1 person day to do the mod-
eling and its validation using PROMPT. In some cases, we got false positives
that helped us understand what part of the model was not precise enough.
We think that it may take less time to develop precise models for domain ex-
perts. As we report in Section 7, with these models we could analyze the setup
and teardown entry points of 57 device drivers with considerable coverage and
found some real bugs.

6.2 BlueZ: A Bluetooth Stack

In this section, we show how to detect some of the recent vulnerabilities in
BlueZ [4] using PROMPT. BlueZ is the implementation of the Bluetooth pro-
tocol [2] for the Linux kernel. The implementations of the Bluetooth protocol
form an important part of the attack surface for the Internet of Things (IoT)
due to its critical role for short-range communications. Researchers have found
a set of vulnerabilities, called BlueBorne [1], in various Bluetooth stack im-
plementations. One of these is a stack overflow in the L2CAP layer of BlueZ.
Figure 6 shows an excerpt from the l2cap config rsp function that is vul-
nerable to a stack overflow. The vulnerability is due to not checking the size of
the buffer buf (line 16) while copying configuration data from the rsp->data

buffer inside the l2cap parse conf rsp function (line 18).
To analyze the l2cap config rsp function and to reproduce the Blue-

borne vulnerability, we needed to specify the type embedding relationship
between the list head struct and the l2cap chan struct as shown in Fig-
ure 7. This is because before the configuration options get copied to the local
buffer, the l2cap config rsp function retrieves a handle to the communi-
cation channel using the l2cap get chan by scid function, which gets a
pointer to a l2cap conn object and a channel no scid and performs a lin-
ear search on a linked list. Failing to specify the type embedding relationship
causes a memory error due to a pointer arithmetic that tries to compute the
address of the l2cap chan object that encloses the list head object shown
with a rectangle with a bold border in Figure 7. This false positive also pre-
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1 static inline int l2cap_config_rsp(struct l2cap_conn *conn,

2 struct l2cap_cmd_hdr *cmd, u16 cmd_len,

3 u8 *data) {

4 struct l2cap_conf_rsp *rsp = (struct l2cap_conf_rsp *)data;

5 struct l2cap_chan *chan;

6

7 int len = cmd_len - sizeof(*rsp);

8 chan = l2cap_get_chan_by_scid(conn, scid);

9 if (!chan)

10 return 0;

11

12 switch (result) {

13 case L2CAP_CONF_SUCCESS: ...

14 case L2CAP_CONF_PENDING: ...

15 if (test_bit(CONF_LOC_CONF_PEND, &chan->conf_state)) {

16 char buf[64];

17

18 len = l2cap_parse_conf_rsp(chan, rsp->data, len,

19 buf, &result);

20 ...

21 }

Fig. 6: A code excerpt from the l2cap config rsp function that hosts the
Blueborne vulnerability, CVE-2017-1000251, on line 18.

vents symbolic execution from covering code after line 8 in Figure 6 and, hence,
prevents component-level symbolic execution from detecting the vulnerability.
Embedded linked lists are another source of non-standard pointer arithmetic
that is known to exist in system code [17]. PROSE enables us to model this
programming idiom through the type embedding relationship and PROMPT
incorporates this type of modeling to its lazy initialization process.

Another vulnerability in BlueZ is a memory out of bounds read [3] that
was recently found in the HCI layer. Figure 8 shows a code excerpt from
the hci extended inquiry result evt function. The number of responses
stored in num rsp is read from the event packet. In a malformed event packet
this field may be larger than the socket buffer length skb->len, which leads
to a memory out of bounds error at line 16. For reproducing this vulnerability,
our modeling efforts involved taming the path explosion through modeling all
functions inside the hci extended inquiry result evt function except
bacpy using the generic modeling approach.

7 Experiments

We have implemented our approach in a tool, called PROMPT, by extend-
ing the KLEE symbolic execution engine [13]. We have applied PROMPT to
two case studies: Linux device drivers and BlueZ as explained in Sections 6.1
and 6.2, respectively. We have analyzed a total of 57 Linux device drivers: 18
video drivers, 19 sound drivers, and 20 network drivers. We chose the drivers
that were developed for the x86 architecture and those that do not use the
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Fig. 7: Model guided lazy initialization of an embedded linked list in the
L2CAP layer of BlueZ. The region with a bold border shows an example of an
embedded region, where the embedding type is l2cap chan, (with the dashed
border), which gets created to enforce the modeling rule on type embedding.
The labels on the arrows represent the source of the updates and those under
the objects show how they get created.

1 static void hci_extended_inquiry_result_evt(struct hci_dev *hdev,

2 struct sk_buff *skb) {

3 struct inquiry_data data;

4 struct extended_inquiry_info *info = (void *) (skb->data + 1);

5 int num_rsp = *((__u8 *) skb->data);

6

7 if (!num_rsp)

8 return;

9 ...

10

11 for (; num_rsp; num_rsp--, info++) {

12 u32 flags;

13 bool name_known;

14

15 bacpy(&data.bdaddr, &info->bdaddr);

16 ...

17 }

Fig. 8: A code excerpt from the HCI layer of BlueZ that hosts a memory out
of bounds read at line 15.

firmware upload feature as we lacked the domain knowledge5 needed to model
the relevant API functions. For BlueZ, we focused on reproducing two vul-
nerabilities: one on the L2CAP layer and the other one on the HCI layer. We
have used version v4.11-rc2 of the Linux kernel. Our experiments have been
performed on an Ubuntu 16.04 rack server that features 4 processors with 16

5 Note that the developers of such drivers typically have such domain knowledge and
by modeling the relevant API functions they can analyze such drivers with the help of
PROMPT.
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cores, and 256GB memory. Section 7.1 presents statistics about the bench-
marks and their models. Sections 7.2-7.6 present the experimental results to
evaluate PROMPT w.r.t. five important research questions.

7.1 Benchmarks

The benchmarks we have used for our experiments are shown in Tables 1-3,
which list the driver and vendor names, bus types, and bitcode sizes of the
drivers along with the sizes of the models in terms of the number of functions
specified as return only (RO), the number of singletons (ST), the number of
modeled alloc/dealloc functions (AL), the number of embedding pairs (EM),
and the number of data constraints (DC). The models mentioned in Tables
1-3 are in addition to the PROSE models of subsystems that are explained
in Section 6.1. As shown in Algorithm 6, the functions that are specified as
return value only are modeled by symbolizing the return value and inter-
preting them as side-effect free. Such functions constitute an important part
of the modeling effort as they are identified in an iterative manner and as
a response to various issues encountered during API model guided symbolic
execution of the component under analysis. These issues include the follow-
ing: 1) the underlying symbolic execution engine, KLEE, terminating a path
upon encountering an assembly-level instruction, 2) a memory out-of-bounds
error due to an under-constrained symbolic value that gets used as an array
index, and 3) a symbolized object pointed by a pointer argument leading to
a false positive as a result of imprecise data-flow in subsequent instructions.
The return value only model helps achieve more coverage in cases 1) and 2) by
modeling the function in which the error occurs and avoiding the error cases
and in case 3) by avoiding symbolization of the arguments. We talk more
about this modeling overhead and how PROMPT manages to eliminate it in
Section 7.3. The majority of singleton types (ST) are the same for the drivers
in the same subsystem. The number of unique singleton types from various
subsystems and the number of unique driver specific singleton types within the
benchmark set of each subsystem are as follows: video: (12,18), sound: (9,19),
network: (11,20). The number of unique (de)alloc functions modeled within
the benchmark set of each subsystem is as follows: video: 7, sound: 4, network:
5. The number of unique embedding types within the benchmark set of each
subsystem is as follows: video: 3, sound: 2, network: 4. The number of unique
data initializations within the benchmark set of each subsystem is as follows:
video: 2, sound: 0, network: 2.

7.2 RQ1: What is the advantage of modeling and API Model Guided
Symbolic Execution?

An obvious question is whether we could do the analysis on the whole frame-
work and avoid modeling. We created the full bitcode for the Linux kernel to
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Table 1: Drivers from the Linux video subsystem. RO, ST, AL, EM , and
DC denote the number of functions specified as return only, the number of sin-
gletons, the number of modeled (de)alloc functions, the number of embedding
pairs, and the number of data constraints, respectively.

Driver Device Bus Size Model Size

Vendor Type (KB) RO ST AL EM DC

airspy AirSpy USB 58 18 5 5 1 1

dsbr100 D-Link USB 33 11 5 5 1 0

go7007 Micronas USB 242 11 5 5 1 0

hackrf SparkFun USB 69 20 5 5 1 1

hdpvr Hauppauge USB 92 12 5 5 1 1

radio-keene Keene USB 34 13 5 5 1 0

radio-ma901 MasterKit USB 33 13 5 5 1 0

radio-maxiradio Guillemot PCI 26 22 5 5 1 1

radio-mr800 Avervideo USB 38 13 5 5 1 1

radio-raremono Cisco USB 32 14 5 7 1 1

radio-shark2 Griffin USB 33 13 5 5 1 0

radio-shark Griffin USB 34 13 5 5 1 0

radio-tea5764 NXP I2C 35 13 5 5 1 0

saa7706h Philips I2C 27 15 7 5 1 0

stkwebcam Syntek. USB 80 11 5 5 1 0

tef6862 Philips I2C 25 16 5 5 1 0

usbtv Fushicai USB 68 11 5 5 0 0

zr364xx Zoran USB 74 12 5 5 1 0

analyze each driver without any models. On an Ubuntu 16.04 machine with
256GB of RAM, running PROMPT on the full kernel bitcode without any
modeling took 2 hours to initialize the global state with around 86K global
object allocations and a total memory usage around of 32GB virtual memory.

Another relevant question is how easy it would be to detect the vulnerabil-
ities using testing instead of API model guided symbolic execution. To answer
this question we focus on the two vulnerabilities found in BlueZ from Section
6.2 as we have some evidence about the difficulty of detecting these vulnera-
bilities. The first vulnerability we consider is the stack overflow vulnerability
in BlueZ and is part of the BlueBorne family of vulnerabilities [1]. We quote
from the report [1] that comments on the difficulty of detecting this stack over-
flow vulnerability: ‘ ‘It should be mentioned that testing and triggering this
vulnerability was not an easy task, and required direct use of the ACL layer
to send malformed L2CAP packets. Since no Bluetooth stack provides this to
the user a minimal stack implementing the HCI, ACL and L2CAP layers had
to be created. The high barrier of entry for testing highly exposed kernel code
paths is also detrimental to security”. We were able to reproduce this stack
overflow vulnerability with PROMPT within 5 minutes. Modeling the embed-
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Table 2: Drivers from the Linux sound subsystem. RO, ST, AL, EM , and
DC denote the number of functions specified as return only, the number of sin-
gletons, the number of modeled (de)alloc functions, the number of embedding
pairs, and the number of data constraints, respectively.

Driver Device Bus Size Model Size

Vendor Type (KB) RO ST AL EM DC

6fire TerraTec USB 85 26 7 4 1 0

ad1889 A.D. PCI 48 31 6 3 1 0

ali5451 ALi PCI 75 33 6 3 1 0

aw2 Emagic PCI 42 33 6 3 1 0

bcd2000 Behringer USB 31 27 8 4 1 0

ca0106 S.B. PCI 118 38 6 3 1 0

caiaq Caiaq USB 118 24 7 4 1 0

card - USB 88 23 7 4 1 0

cs46xx Cirrus L. PCI 218 41 6 3 1 0

cs5535audio - PCI 50 33 6 3 1 0

hiface M2Tech USB 44 27 8 4 1 0

lx6464es Digigram PCI 73 34 6 3 1 0

misc Edirol USB 28 27 8 3 1 0

nm256 NeoMagic PCI 113 35 6 3 1 0

oxygen C-video PCI 240 39 6 3 1 0

riptide Conexant PCI 79 35 6 3 1 0

usx2y Tascam USB 28 27 8 4 1 0

vx222 Digigram PCI 45 33 6 3 1 0

ymfpci Yamaha PCI 107 36 6 3 1 0

ding relationship mentioned in Section 6.2 enabled component-level symbolic
execution to move beyond the callsite for the l2cap get chan by scid at
line 8 in Figure 6 and to reach the location of the memory error. We also
needed to restrict the type of configuration option to MTU by implementing a
model function for the l2cap get conf opt option to deal with the state
explosion.

The other vulnerability we consider has been detected recently in the HCI
layer of BlueZ [3] using a coverage based fuzzing tool, Syzkaller [6]. Analyzing
the stack trace [5] indicates the difficulty of preparing a test environment.
There are a total of 29 kernel functions listed in the stack trace excluding those
functions from KASAN, the kernel sanitizer. Only five of these functions are
from BlueZ. We have detected this memory out of bounds vulnerability within
a minute by modeling all functions inside the loop in Figure 8 except bacpy

using the generic approach.

As we present in the following subsections, modeling reduces the memory
footprint and the analysis time of the system under analysis. It also helps detect
deep vulnerabilities that may require considerable testing effort.
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Table 3: Drivers from the Linux network subsystem. RO, ST, AL, EM , and
DC denote the number of functions specified as return only, the number of sin-
gletons, the number of modeled (de)alloc functions, the number of embedding
pairs, and the number of data constraints, respectively.

Driver Device Bus Size Model Size

Vendor Type (KB) RO ST AL EM DC

amazon Amazon PCI 298 21 5 5 1 0

amd Amd PCI 85 27 3 5 1 0

axnet cs - PCI 67 28 4 3 1 0

catc CATC USB 56 30 4 3 1 0

cdc-phonet Nokia USB 43 27 4 3 1 0

cisco Cisco PCI 320 21 3 5 1 0

dlink DLink PCI 90 21 3 5 1 0

e100 Intel PCI 126 22 3 5 1 0

fujitsu Fujitsu PCI 55 42 3 5 1 0

hso Option USB 119 25 7 3 1 1

ipheth Apple USB 49 24 4 3 1 0

kaweth - USB 61 25 4 3 1 0

lan78xx Microchip USB 159 25 4 3 1 0

forcedeth Nvidia PCI 206 21 3 5 1 0

qlogic QLogic PCI 143 28 3 5 1 0

qmi wwan Huawei USB 70 26 6 3 1 0

r8152 Realtek PCI 175 24 4 3 2 0

r8169 Realtek PCI 249 24 4 5 2 1

typhoon 3Com PCI 24 3 3 1 0

usbnet - USB 109 24 3 3 1 0

7.3 RQ2: How does PROMPT perform when some of the modeling effort is
reduced through automation?

As mentioned in Section 7.1, it is important to identify the functions to be
modeled as the return value to be symbolized only to improve coverage during
API model guided symbolic execution. However, the manual effort in the iden-
tification of such functions dominates the modeling effort for each benchmark.
We have implemented two features that are shown in Algorithm 6 to eliminate
this manual overhead: 1) automatically identifying functions with assembly-
level instructions and handling them by symbolizing the return value only
and 2) not symbolizing the arguments of external functions that point to sin-
gleton type objects or point to objects reachable by singleton type objects.
To evaluate the effectiveness of these two automated modeling heuristics, we
compared PROMPT with a manually identified set of functions that are han-
dled by symbolizing the return value only , which we call PMGSE-FULL, with
PROMPT not using any such manually identified set of functions, i.e., the RO
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Fig. 9: Comparison of lazy initialization only (LAZY INIT) and program-
ming model guided symbolic execution with full (PMGSE-FULL) and reduced
(PMGSE-RED models.) models.

column in Tables 1-3 being 0 for each benchmark, which we call PMGSE-RED.
We based our comparison in terms of the effectiveness of each configuration
with respect to instruction coverage and branch coverage. As Figures 9a and
9b show PMGSE-RED achieves comparable coverage while having less manual
effort for modeling.

7.4 RQ3: Is programming model guided symbolic execution more effective
than symbolic execution with lazy initialization?

We would have liked to compare PROMPT with the lazy initialization im-
plementation in [31]. However, due to the unavailability of this code, we ran
PROMPT in a mode without an API model and used lazy initialization only
(LAZY INIT). Our goal was to understand in what ways programming model
guided symbolic execution improves over pure lazy initialization. We have an-
alyzed the probe functions of the drivers using both modes. Figures 9a and
9b compare lazy initialization only with the two modes of PMGSE in terms
of instruction coverage and branch coverage, respectively. We also measured
the percentage of error paths and present it in Table 4. API model guided
execution, both PMGSE-FULL and PMGSE-RED, significantly improves lazy ini-
tialization both in terms of coverage and in terms of false positives as all the
errors generated by the LAZY INIT mode were false positives and in that mode
PROMPT could not detect any of the six real bugs that it could detect when
executed in API model guided mode.
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Table 4: Comparison of lazy initialization with programming model guided
symbolic execution (PMGSE-FULL and PMGSE-RED) in terms of error rate.

%
PMGSE-FULL PMGSE-RED LAZY INIT

MIN MAX AVG MIN MAX AVG MIN MAX AVG

video 0 5.88 0.33 0 100 11.44 0 100 .00 78.70

sound 0 16.67 4.44 0 25.00 7.92 0 50.00 23.69

net 0 1.27 0.08 0 1.33 0.17 0 100.00 61.47
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Fig. 10: Comparison of analysis of individual functions with the life-cycle model
of probe;disconnect.

7.5 RQ4: Is simulation of the life-cycle more effective than the individual
analysis of life-cycle functions?

Finally, we wanted to check whether simulation of the life-cycle as a sequence
of function executions have any benefit over analyzing the life-cycle functions
individually. We ran PROMPT in API model guided mode in three configu-
rations: 1) executes the probe function only, 2) executes the disconnect func-
tion only, and 3) executes probe followed by disconnect, denoted by probe ;

disconnect. As shown in Figure 10, life-cycle model does not improve cover-
age as the sum of coverage of individual cases is almost equal to the coverage
of the life-cycle model. This is because the disconnect functions are typically
small in size and mostly without any branch instructions. However, as Tables
5 and 6 show, the percentage of error paths for the disconnect case is sig-
nificantly higher than the probe ; disconnect case. This is because when
disconnect is executed without the proper setup that is normally performed
by the probe function, errors that are due to improper setup get manifested.
This also prevents the detection of real errors, e.g., a memory leak when the
device gets unplugged.
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Table 5: Comparison of enforcing the life-cycle model probe ; disconnect

vs executing probe and disconnect alone in terms of the error rate for
PMGSE-FULL.

%
DISCONNECT PROBE PROBE;DISC.

MIN MAX AVG MIN MAX AVG MIN MAX AVG

video 0.00 100.00 88.89 0.00 5.88 0.33 0.00 3.23 0.18

sound 0.19 100.00 47.90 0.00 16.67 4.41 0.00 16.67 4.43

net 0.00 100.00 81.58 0.00 1.27 0.09 0.00 1.28 0.09

Table 6: Comparison of enforcing the life-cycle model probe ; disconnect

vs executing probe and disconnect alone in terms of the error rate for
PMGSE-RED.

%
DISCONNECT PROBE PROBE;DISC.

MIN MAX AVG MIN MAX AVG MIN MAX AVG

video 0.00 100.00 80.56 0.00 100.00 11.43 0.00 100.00 11.29

sound 0.19 100.00 47.09 0.00 25.00 7.92 0.00 25.00 7.92

net 0.00 100.00 81.58 0.00 1.33 0.17 0.00 2.13 0.29

7.6 RQ5: How effective is PROMPT in detecting memory errors?

In addition to the two BlueZ vulnerabilities presented in Section 6.2, PROMPT
was able to detect four vulnerabilities in the Linux device drivers. Two of
them were previously known use-after-free vulnerabilities in the usbtv (also
shown in Section 3) and the stkwebcam drivers from the video subsystem. The
new bugs discovered by PROMPT consist of a double-free in the hso driver
(network subsystem) and a NULL pointer error in the cs46xx driver (sound
subsystem). Table 7 presents the time and maximum amount of memory6

usage of PROMPT for both PMGSE-FULL and PMGSE-RED modes as reported
by the klee-stats tool. In terms of the bug detection capability, PMGSE-RED
was able to detect four out of six bugs. The X∗ in stkwebcam and cs46xx refers
to the fact that we needed to enforce usage of the original implementations
for the functions of the driver even if they may have inline-assembly (see the
formal condition on line 22 in Algorithm 6), which required a simple pattern
for such functions to be defined: *stk* and *cs46xx* for the stkwebcam and
the cs46xx drivers, respectively. So, as a result any function in the stkwebcam

(cs46xx) driver that includes the string stk (cs46xx) in its name would not
be modeled as return only and the original implementation would be used in
the analysis even if it has inline assembly.

PMGSE-RED took much longer to detect the stack overflow in BlueZ com-
pared to PMGSE-FULL as not all functions that contributed to path explosion
included inline assembly. This is because of the path explosion problem ob-

6 klee-stats reports the amount of heap memory created via malloc.
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served in these components. In the case of memory out of bounds in the HCI
layer, PMGSE-RED could not detect the vulnerability within 12 hours. For the
hso case, PMGSE-RED could not detect the bug because it gets masked by a
memory error due to an under-constrained symbolic value that gets used as
an array index in the hso get config data function. However, specifying
this function to be modeled as symbolizing the return value only, enables
PMGSE-RED also detect this bug, which is still an improvement in terms of
modeling effort as the size of RO is 1 compared to the RO size of 25 for
the PMGSE-FULL mode. The bug in the cs46xx driver got fixed [16] after we
reported it and we provided a patch for the bug in the hsobug driver [38].

Table 7: Time and memory usage of PROMPT for finding various bugs with
full (PMGSE-FULL) and reduced (PMGSE-RED) models. X (X∗ ) means the bug
could be detected (while enforcing originals of certain functions with inline
assembly), and - denotes the bug could not be detected.

COMPONENT BUG PMGSE-FULL PMGSE-RED

Time Mem. Det.? Time Mem. Det.?

(secs) (MB) (secs) (MB)

L2CAP (BlueZ) stack overflow 259.93 155.65 X 9480.00 1250.97 X∗

HCI (BlueZ) out of bounds 41.42 133.20 X - - 7

usbtv use-after-free 5.93 7.78 X 6.67 8.42 X

stkwebcam double-free 7.64 6.68 X 7.74 6.68 X∗

cs46xx null pointer 10.68 22.12 X 10.68 22.08 X∗

hso double-free 305.10 132.53 X - - 7

8 Conclusions

We have presented an API model guided symbolic execution tool, PROMPT,
to detect memory related bugs in system code. Our work identifies the major
aspects of API modeling and provides an API modeling language, PROSE,
and presents PROMPT, a component-level symbolic execution algorithm that
enforces the specified API model on top of the KLEE symbolic execution
engine. PROSE facilitates analysis of system components by eliminating the
need for developing a test harness, recompilation of the underlying code base,
and changing the underlying symbolic execution engine. Additionally, PROSE
enables modeling of programming idioms that are common in systems code,
which can be used to guide PROMPT for a more precise analysis at the com-
ponent level. We demonstrated the effectiveness of our approach by modeling
the registration and cleanup APIs of the video, sound, and network subsys-
tems of the Linux kernel and by analyzing 57 device drivers. We also applied
our approach to reproduce some critical vulnerabilities in BlueZ. PROMPT
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could detect two new and four known memory vulnerabilities in the Linux
kernel. PROMPT can also be used to validate models of API functions and to
infer various rules on their usages. In future work, we are planning to extend
PROMPT with automated API model synthesis capability.
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