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A potential motion of ideal incompressible fluid with
a free surface and infinite depth is considered in two-
dimensional geometry. A time-dependent conformal
mapping of the lower complex half-plane of the
auxiliary complex variable w into the area filled with
fluid is performed with the real line of w mapped
into the free fluid’s surface. The fluid dynamics can
be fully characterized by the motion of the complex
singularities in the analytical continuation of both
the conformal mapping and the complex velocity.
We consider the short branch cut approximation
of the dynamics with the small parameter being
the ratio of the length of the branch cut to the
distance between its centre and the real line of w. We
found that the fluid dynamics in that approximation
is reduced to the complex Hopf equation for the
complex velocity coupled with the complex transport
equation for the conformal mapping. These equations
are fully integrable by characteristics producing
the infinite family of solutions, including moving
square root branch points and poles. These solutions
involve practical initial conditions resulting in jets
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and overturning waves. The solutions are compared with the simulations of the fully nonlinear
Eulerian dynamics giving excellent agreement even when the small parameter approaches
about one.

1. Introduction and basic equations

We consider a two-dimensional potential motion of ideal incompressible fluid with the free
surface of infinite depth in the gravity field g as schematically shown in figure 1a. Fluid occupies
the infinite region —oo < x < oo in the horizontal direction x and extends down to y — —oo in the
vertical direction y. We assume that there is no dependence on the third spatial dimension, i.e. the
fluid motion is exactly two dimensional. The bulk of fluid is at rest, i.e. there is no motion of fluid
both at |x] - £o0 and y - —o0.

We use a time-dependent conformal mapping

z(w, t) = x(w, t) + iy(w, t) (1.1)
of the lower complex half-plane C™ of the auxiliary complex variable
w=u-+iv, —00<U <0, (1.2)

into the area in (x, y) plane occupied by the fluid. Here, the real line v = 0 is mapped into the fluid
free surface (figure 1) and C~ is defined by the condition —oo < v <0. Then the time-dependent
fluid free surface is represented in the parametric form as

x=x(u,t), and y=y(u,t). (1.3)

We assume a decay of perturbation of fluid beyond a flat surface y =0 at x(u,t) - Fo0o which
requires that
z(w, t) = w+o(1) for |w| — o0, weC™, (1.4)

where 0(1) means a vanishing contribution in that limit |w| — co. The conformal mapping (1.1)
implies that z(w, t) is the analytic function of w € C~ and

zZw#0 foranyweC™, (1.5)

where subscripts here and below means partial derivatives, z,, = dz(w, t)/dw etc.

Potential fluid motion means that a velocity v of fluid is determined by a velocity potential
@(r,t) as v=V® with V=(3/9x,3/9y). The incompressibility condition V - v=0 results in the
Laplace equation

V2o =0 (1.6)

inside fluid, i.e. @ is the harmonic function inside fluid. Equation (1.6) is supplemented with a
decaying boundary condition (BC) at infinity,

V& — 0 for |x]| - oo ory— —oo, (1.7)
which can be replaced without loss of generality by a zero Dirichlet BC
® — 0 for|x| — ooory— —oo. (1.8)
The harmonic conjugate of @ is a stream function ® defined by
Orx=—Py and Oy=o,. (1.9)
Similar to equation (1.8), we set without loss of generality a zero Dirichlet BC for © as
® — 0 for x| - coory— —oo. (1.10)
We define a complex velocity potential I1(z, t) as

= +io, (1.11)
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Figure 1. Shaded area represents the domain occupied by fluid both in the physical plane z = x + iy (a) and in the plane
w = u + iv (b). Thick solid lines correspond to the fluid’s free surface. Gravity is pointing downwards, i.e. in the direction —y
on (a). (Online version in colour.)

where z=x+iy is the complex coordinate. Then equation (1.9) turn into Cauchy-Riemann
equations resulting in the analyticity of I7(z,t) in the domain of z plane occupied by the fluid.
A physical velocity with the components vy and vy, (in x and y directions, respectively) is obtained
from IT as dIT/dz = vy — iv,. The conformal mapping (1.1) ensures that the function I7(z, t) (1.11)
transforms into I7(w, t) which is the analytic function of w for w € C™ (in the bulk of fluid). Here
and below, we abuse the notation and use the same symbols for functions of either w or z (in other
words, we assume thate.g. I1(w, t) = M (z(w, £), ) and remove sign). The conformal transformation
(1.1) also results in Cauchy—Riemann equations &, = —®,, ©, = @, in w plane.

BCs at the free surface are time-dependent and consist of kinematic and dynamic BCs. A
kinematic BC states that the free surface moves together with fluid particles located at that surface,
i.e. there is no separation of fluid particles from the free surface. For mathematical formulation,
we look at the normal component of velocity v, (normal to the free surface) of such fluid particles.
Motion of the free surface is determined by a time derivative of the parametrization (1.3) so the
kinematic BC is given by a projection into the normal direction as

n-(x,y)=vy=n-vVe |x=x(u,t),y=y(u,t)r (1.12)

where n = (—y,,x,)/(x> +y2)"/? is the outward unit normal vector to the free surface and
subscripts here and below means partial derivatives, x; = dx(u, t)/dt, etc.
A dynamic BC is given by the time-dependent Bernoulli equation (e.g. [1]) at the free surface,

(cbt b5V +gy> —o, (113)

x=x(u,t),y=y(u,t)

where g is the acceleration due to gravity. Here without loss of generality we assumed that
pressure is zero above the free surface (i.e. in vacuum), which is ensured by the zero at the left-
hand side (Lh.s.) of equation (1.13). All results below apply both to the surface gravity wave case
(g > 0) and the Rayleigh-Taylor problem (g < 0). We also consider a particular case g =0 when
inertia forces well exceed gravity force.

Equations (1.12) and (1.13) together with the analyticity (with respect to the independent
variable w) of both z(w, t) and IT(w, t) inside fluid as well as the decaying BCs (1.4), (1.8) and (1.10)
form a closed set of equations which is equivalent to Euler equations for dynamics of ideal fluid
with free surface. The approach of using time-dependent conformal transformation like (1.1) to
address free surface dynamics of ideal fluid was exploited by several authors including [2-10].
We follow the approach of [6,11,12] to transform from the unknowns z(w, t) and I1(w, t) into the
equivalent ‘“Tanveer-Dyachenko’ variables

R=— (1.14)
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and -
V =i— =iRITy. (1.15)
0z

These variables were introduced by Tanveer in [4] for the periodic BC and later independently
obtained by Dyachenko in [13] for the decaying BCs (1.4), (1.8) and (1.10) so we refer to these
variables as ‘“Tanveer—Dyachenko variables’. Both

R(w, t) and V(w, t) are the analytic functions for w € C™ (1.16)

as follows from equation (1.5) and the analyticity of both z and IT for w € C™. Then the dynamical
equations at the real line w = u take the following complex form [13]:

R
5= i(UR,, — RU,), (1.17)
U=P~(RV+RV), B=DP"(VV) (1.18)
wv
and <7 =iUViu—RB] +g(R 1), (1.19)
where 1 1
P = S0+ i) and Pt= S0 - iFT) (1.20)

are the projector operators of any function q(u) (defined at the real line w = u) into functions g ()
and g~ () analytic inw € C~ and w € C*, respectively, such thatg =g+ + ¢, i.e. P*(g* +47) =¢"
and P~(q" 4 q7) =g~ . Here, we assume that g(i) — 0 for u — 4oc. Also the bar means complex
conjugation and

3 1 oo fw)
Hf (u) = - p-v. J_Do T udu (1.21)
is the Hilbert transform with p.v. meaning a Cauchy principal value of the integral. See also
more discussion of the operators (1.20) in [12]. We refer to equations (1.17)—(1.19) as ‘Dyachenko
equations’ for Tanveer-Dyachenko variables (1.14) and (1.15). Note that [4] also provided the
dynamic equations for these variables for the particular case of the periodic BC. These dynamic
equations are written in terms of contour integrals with non-polynomial nonlinearities. Although
in the periodic case these dynamics equations are equivalent to Dyachenko equations (1.17)—
(1.19), we prefer to use the formulation (1.17)—(1.19) because it has only cubic nonlinearity and
avoid contour integrals by the projectors (1.20). That formulation is valid both for the periodic BC
and decaying BCs (1.4), (1.8) and (1.10).

A complex conjugation f(w) of f(w) in equations (1.17)~(1.19) and throughout this paper is
understood as applied with the assumption that f(w) is the complex-valued function of the real
argument w even if w takes the complex values so that

fw) =f(@). (1.22)

That definition ensures the analytical continuation of f(w) from the real axis w=u into the
complex plane of w € C. Following [14], we consider an analytical continuation of the functions R
and V into the Riemann surfaces which we call by I'r(w) and I'y(w), respectively.

The decaying BCs (1.4), (1.8) and (1.10) imply that

R(w,t) -1, V(w,t) - 0 for |[Re(w)| — oo or Im(w) — —o0. (1.23)
Also in §3, we consider the periodic BCs which are still decaying deep inside the fluid as
R(w + A, t)=R(w,t), V(w+ xrt)=V(w,t)
(1.24)

and Rw,t)—1, V(w,t)—0 forIm(w)— —oo,

where the spatial period A can be set to 27 without the loss of generality.
The variables R and V (1.14) and (1.15) include only a derivative of the conformal mapping
(1.1) and the complex potential IT over w while z(w, t) and I1(w, t) are recovered from solution of
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these equations as z= [(1/R) dw and IT = —i [(V/R) dw. It provides a freedom of adding arbitrary
functions of time to both z(w, t) and I1(w, t). Such addition is not physically important for I7(w, t)
because it does not change fluid velocity while the addition to z(w, t) changes the location of the
free surface. The freedom in the real part x is removed if one notices that generally for the decaying
BCs (1.23) x(u,t) - u + xo for |u| — oo and we choose the constant xo to be zero according to
equation (1.4). The freedom in the imaginary part y is removed from equation (1.4) by setting that
y(u, t) — 0 for |u| — oo.
For the periodic BCs (1.24), we remove the freedom in x by setting that

x(w, t)y=m. (1.25)

The freedom in the imaginary part y is removed by ensuring the conservation of the total mass of
the fluid. That conservation is expressed through the time independence of the following integral

(e.g. [12])

M= Jn y(u, t)xy(u, t) du. (1.26)

Without loss of generality, we set M =0, which corresponds to the zero mean level of the fluid
in the vertical direction. E.g. the flat free surface would correspond to y = 0. Respectively, while
recovering z(w, t) from R(w, t) for the periodic BCs we use that M =0.

Reference [14] found that the system (1.14)—(1.19) has an arbitrary number of pole solutions
for z;, and ITy,. These poles are located for w € C7, i.e. in the analytical continuation of z;, and IT,,
to the area outside of the fluid domain. These pole solutions allowed us to identify the existence
of multiple nontrivial integrals of motion (beyond the natural integrals like the Hamiltonian and
the horizontal momentum), see [12] for details. Many of these integrals commute with respect to
the non-canonical Poisson bracket found in [11,12]. It was suggested in [14] that the existence of
such commuting integrals of motion might be a sign of the Hamiltonian integrability of the free
surface hydrodynamics. It is well established (e.g. [12,15-32]) that the system of the type (1.17)-
(1.19) and its different generalizations also have solutions with branch points located for w € C.
Generally, we expect coexistence of poles and branch points at different locations of w € C*, see
[14] for numerical examples. Also [15] demonstrated that purely rational solutions of the system
(1.17)-(1.19) are not very likely for the decaying BCs (1.23). In particular, it was proven in [15]
that the rational solutions with the second and/or first-order poles are impossible to survive with
dynamics for any finite time duration, i.e. they are not persistent with time evolution.

The plethora of possible analytic solution makes it very important to find a tool to construct
analytical solutions involving both branch points and poles. In this paper, we develop such a
tool in the approximation of a short branch cut. Such approximations assume that the distance
between the most remote branch points is much smaller than the distances from these points to
the real line. Then the fluid dynamics is shown to be reduced to the complex Hopf equation for
the complex velocity coupled with the complex transport equation for the conformal mapping.
These equations are fully integrable by characteristics producing the infinite family of solutions
including the pairs of moving square root branch points. We also provide an example of
the excellent performance of the solution obtained in that approximation in comparison with
numerical solutions of the system (1.17)-(1.19) even when the length of the branch cut becomes
comparable with its distance to the real line.

The plan of the paper is the following. In §2, we derive the equations of the short branch cut
approximation from the system (1.17)—(1.19). The applicability condition of that approximation
is also established. After that we show that these equations in the moving complex frame are
reduced to the fully integrable complex Hopf equation for the complex velocity V(w,t) and the
transport equation for z(w, t). Section 3 develops the short branch cut approximation for the
spatially periodic case of BCs (1.24). Section 4 provides a comparison of the analytical solutions of
§3 with the full numerical solution of equations (1.17)—(1.19) and (1.24). Section 5 gives a summary
of obtained results and discussion of future directions.
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2. Short branch cut approximation and square root singularity solutions

In this section, we derive the dynamical equations of the short branch cut approximation and
establish their integrability in characteristics in §2a as well as provide particular solutions in §2b.

(a) Short branch cut approximation

Consider the branch cut y connecting branch points atw =a(t) € C* and w = b(t) € C*. The branch
cut is called short one if its distance to the real axis, min(|Im(a)|, [Im(b)|), is large compared with
|a — b|. It allows to define a small parameter € as follows:

€ =|a — b|/ min(|]Im(a)|, Im(b)|) < 1. (2.1)

We neglect other singularities/branch cuts in R and V by assuming that they either identically
zero or give small contribution at the real axis w = u. Then we define

bR/, t) dw’
R —1= | S0
, o (2.2)
V(' t) dw
and V(w, t):J L)/w,
. w—w

where R(w/, t) and V(w', t) are densities along branch cut such that the jump of R across branch cut
at w=w' is 27iR(w’, t) and similar the jump for V is 27iV(w/, t) as follows from the Sokhotskii—
Plemelj theorem (e.g. [33,34]). Integration in equations (2.2) is taken over any contour which is a
simple arc in C* connecting w = a and w = b. This contour defines a branch cut. There is a freedom
in choice of that branch cut connecting two branch points w =a and w = b. We however assume
that the arclength of the branch cut is of the same order of magnitude as |z — b|, i.e. that arclength
is not very much different from the length of the segment of the straight line connecting w = a2 and
w=>h. Also R(w', t) and V(w/, t) are assumed to be the continuous functions of w’. Also R(w/, t) and
V(w', t) can be zero at some parts of the contour. The functions R and V are given by

b By oy
R(w,t)—l:J 7R(w’t)_d/w
a w—w
- (2.3)
b Y7(7/ ~7
and I_/(w,t):J M
a w—=w

with the contour y connecting w =i and w = b being the reflection of the contour of equation (2.2)
with respect to the real axis w = Re(w).
Functions U(w, t) and B(w, t) can be rewritten as

U=RV + RV — P*(RV +RV)
(2.4)

and B=VV —DPt(vV),

where we used the definition (1.20) to represent P~ as P~ =1 — P*. Because P*f is analytic for
we C* for any function f, as well as both R and V are analytic for w e C* according to the
definition (1.22), we conclude from equation (2.4) that both U and B have a branch cut y
connecting w = a and w = b inherited from branch cut of R and V. Then similar to equations (2.2),
we represent U(w, t) and B(w, t) through the integrals of the densities l:I(w’ , 1) and E(w’ ,1) along
the branch cut as

Utew, ) Jb U, t) dw’

. w—uw
(2.5)

b Dy ’
and B(w,t):J M
g W—w
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Using equations (2.2) and (2.3), a calculation of the projectors in the definitions (1.18) is performed
through the partial fractions as follows:

PTIR-1)V]=

b P R@”, HV(@, ) dw d@!
L L (w —w")(w — )

B J J bR R@w”, t)V(w t) dw”daw’ 11
- —w w—w' w-—w

Jb JE R, hyV@, tydw'dw 1

2 Ja w’ —w w —w"’

Jb R@”, V", ) dw”

, 2.6
o (2.6)

where at the last line we used the definition (2.3). Similar to equation (2.6), one obtains that

Prik -y = [ VDR ! @)
and
B(w, ) = P [VV] = L v, ZV_(“;, fdw” 2.8)
Equations (1.18), (2.5)~(2.8) result in
U(w, t) = V(w, )R(w, t) + R(w, ) V(w, 1) (2.9)
and
B(w, ) = V(w, HV(w, 1), (2.10)
where we y.

The functions R(w,t) and V(w,t) are analytic for w¢ 7 including we C* and they are
represented by the convergent Taylor series in the open disc |w — wp| < ry with wg € y. The radius
of convergence r; is given by distance from wy to y. For the short branch cut r; ~2|a| > |b — a|.
Without the loss of generality we assume that the centre of branch cut is located at the imaginary
axis, i.e. Re(a + b) =0 and choose wy € y to be also at the imaginary axis, Re(w) =0. E.g. for the
simplest choice of branch cut y to be the segment of straight line connecting w=a and w =b, we
then obtain that

(@+Db)
.

wy = (2.11)

In the short branch cut approximation (2.1), we keep only zeroth order terms in Taylor series for
R(w,t) and V(w, t) and denote

Re(t) =R(wo(t),t) and V() = V(wy(t), b). (2.12)
Using equations (2.5), (2.9)—(2.12), we then obtain in that approximation that
U=RV:+RV -V, and B=V.V. (2.13)

More accurate approximation for U and B can be obtained from equations (2.5), (2.9)-(2.12)
by taking into account more terms in Taylor series of R(w,t) and V(w,t) at w=wy beyond
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equation (2.12). For instance, by keeping linear terms,

R(w, t) = Re(t) + (w — wo(t))R., R. = %R(w, £)

) = (2.14)
and V(w, t) = Ve(t) + (w — wot)V., V.=—V(w,t) ,
Jw w=w,
we obtain a modification of equation (2.13) as U — U + AU and B — B + AB, where
AU =—(R)V; + (V)R; + (W — wo)[V(w, HR; + (R(w, 1) = YV{] 015
and AB=—(V)V. + (w — w)V(w, V. '

Here, (R) = fs R(w)dw and (V) = [ ,l; V(w) dw. The short branch cut approximation requires that
both

IAU| < |U| and |AB| < |BI. (2.16)

Qualitatively it implies that singularities in R and V must not be too strong. For example, if
a singularity in R is stronger than in V, as studied in [14], then these conditions require that
|Im(a)VéI~2| < |R:V|. We note that the limit of infinitely short branch cut recovers pole solutions of
[14].

Any approximation of R(w, ) and V(w, t) in equations (2.9), (2.10) by polynomials in powers
of w—wp turns Dyachenko equations (1.17)—(1.19) into hyperbolic-type PDEs with variable
coefficients both in t and w. In the simplest case of zeroth order polynomials, equations (1.17)—
(1.19), (2.13) and conditions (2.16) result in the dynamical equations of the short branch cut
approximation,

Rt +1iVeRy =iR(VRy, — VyR)
(2.17)
and Vi +iV:Vy, =iR.VV, +g(R - 1),
which have variable coefficients R.(t) and V() in t only. A more general case of the higher order
polynomials, i.e. going beyond the short branch cut approximation implying variable coefficients
in w (as exemplified in equation (2.14)), will be considered in the separate paper.

In the complex moving frame,

t
X=w— iJ V(t)dt, (2.18)
0

we obtain from equation (2.17), that

Rt =iR(VRy — VR)
(2.19)
and Vi=iRVV, +g(R—-1),
where the space derivative is over a new independent variable x.
We now neglect the term with ¢ in equation (2.19), resulting in
Rt =1iR(VRy — VR) (2.20)
and
Vi=1iR:VVy, (2.21)

which is justified either if g =0 or |R — 1| « 1. This second condition implies that the free surface
is initially nearly flat (this approximation applies only for small enough time while the condition
IR — 1| « 1 remains valid).
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Equation (2.21) is decoupled from equation (2.20) and turns into the complex Hopf equation
Ve=VVy (2.22)

under the transformation to the new complex time
t
T(t) = iJ Rc(t)dt (2.23)
0

and the, respectively, redefined equation (2.18) as

V)
X=w JO Ro(H() dr’. (2.24)

Under the same transformation (2.23) and (2.24), equation (2.20) turns into

R =VR, — VR, (2.25)
which is convenient to transform back from R (1.14) to z which gives
zr = Vzy + c(7). (2.26)

Equation (2.26) ensures that equation (2.25) is valid for the arbitrary function c(r) of 7. To fix that
freedom in the choice of c(r), we have, similar to the discussion after equation (1.24) in §1, to take
into account the decaying BCs (1.4) and (1.23). Using the definitions (2.23) and (2.24), we obtain
that a change of independent variables from (x, ) to (w, t) in equation (2.29) results in

z V
ﬁ + szw = Vzy + c(z(t)). (2.27)
Taking the limit w = 1, u — 400, one obtains from equation (2.27) and BCs (1.4), (1.23) that
Ve
=, 2.28
)= 228)

Respectively, equation (2.26) is reduced to
2e = Vz, + 5. (2.29)

Equations (2.22) and (2.29) are easily integrable. Assume that F(w) and G(w) are arbitrary
functions analytic for w e C~ such that F(w) — 0 as w — oo and G(w) — w as w — oo. Then a
general solution of system (2.22) and (2.29) is given by

V =F(xo) (2.30)
and .
z=G(xo) + J c(«'ydr’, (2.31)
0
where the function xo(x, t) is determined by the solution of the implicit equation
x =xo0 — F(xo)t (2.32)
and )
T T V T
c’d’:J Cde 2.33
Jyore=] wm e @)

as follows from equation (2.28).

Equations (2.30) and (2.32) define a parametric representation of a Riemann surface I'y(w).
If F(xo) is the rational function then I'y(w) has genus zero at the initial time ¢t =0 (e.g. [35] for
definition of genus of surface). For ¢ > 0, branch points emerge in I'y(w) thus making genus non-
zero. Branch points on the surface I'y are zeros of the derivative dx /dxo =1 — F'(xo)t. Generally,
these zeros are simple. Assume such zero to be located at xo = xc. Then one can write that x =
(X0 — xc)*h(x0), implying a square root branch point on I'y (one can solve that implicit equation
for xo(x) to see that). Here, h(xo) is the analytic function of x¢ at xo = xc such that h(x:) #0. A
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number of such branch points (and, respectively, the number of sheets of I'/(w)) can be arbitrary
large depending on the rational function F(xg).

A pair of equations (2.30) and (2.31) give a parametric representation of the ‘physical’ Riemann
surface G(z). This surface is not changing with time meaning that a velocity field of the fantom
fluid defined in [14] is time independent. This fact additionally shows that the short branch cut
approximation has only a limited range of applicability.

(b) Particular solutions

According to [14,15], equation (2.30) does not allow decaying at w — oo solution in terms of
rational functions for t > 0 because any Nth-order pole in V immediately results in the 2N + 1
order pole term in the right-hand side (r.h.s.) of equation (2.30) which cannot be balanced by the
maximum N + 1 pole order term in Lh.s. of equation (2.30). Assume that

A
F(w) = T V=0, (2.34)

where A and ag are the complex constants such that ay € C*. This initial condition has a pole at
w = ag. Then solving equations (2.32) and (2.34) for xo, we obtain that

—an)2
o= X0 J w0, (2.35)
2 4
which has two square root branch points at
X =ap £ V4Az. (2.36)

We choose a branch cut to be the straight line segment of length |2v/4At| connecting two branch
points (2.36).
Equations (2.23), (2.24), (2.30), (2.32)—(2.35) result in

1 X — a0
— 2.37
0=t i P Ar 27
and
Ve —2A _x—ao—\/(x—a0)2—4Ar’ (2.39)

X — a0+ —a0)? —4At 2e

where the branch of the square root , /.-~ is chosen to have /(x — ag)? = x — ag thus satisfying the
initial condition (2.34).

The length of the branch cut according to (2.36) is increasing with time as 2+/4At and the
solution (2.38) remains valid while the short cut approximation (2.1) is valid, i.e.

[2v4A7| <« [Im(ag)|. (2.39)

That condition can be generalized by taking into account equations (2.23) and (2.24).
Equation (2.31) for z depends on the arbitrary function G(xg) so we can immediately construct
the infinite set of solutions for z; e.g., choosing

G(¢E)=¢ foranyéeC, (2.40)

we obtain from equations (2.31) and (2.35) that

_x+a | [ (x —ao)?
=Tyt 4

t VC(T/)
—Ar +Jo Re(¥)

with the same choice of the branch of square root as in equation (2.38). Below in this section,
we always assume the same choice of the root. Using the definition (1.14), we obtain from

dr/, (2.41)
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equation (2.35) that

1
=— 2.42
(00 G0 242
Equations (2.40)—(2.42) result in
Ro_ 2O wt 4T o w) At —a S wP A

o —a0+V(x — P —4Ar 247

This case corresponds to R|;—o = 1, which is the initially flat free surface evolving from the initial
velocity distribution (2.34). A solution with such initial condition was first studied in [36,37] in
the approximation of weak nonlinearity. It follows from equation (2.36) that one of two branch
points reaches the real line w = Re(w) in a finite time for a general complex value of the complex
constant A (the only exception is A > 0 when both branch cuts move horizontally parallel to the
real line). It means a formation of singularity on the free surface. However, well before that the
condition (2.1) of the applicability of the short branch cut approximation is violated as the lower
branch point approaches the real line. In §4 we discuss such type of solution in details for the
periodic BCs and compare it with the full numerical solution of Euler equations indicating that
the singularity in full equations does reach the real line in a finite time.

We now convert the solution (2.36) for the location of branch points into w plane and the
physical time ¢. The location of wy(t) (2.11) is determined by taking the midpoint

Xmid = 40 (2.44)

between the two branch points (2.36) and after that using the definitions (2.23) and (2.24) to shift
x by fé (Ve(t(x')))/(Re(t(7))) dt’ to return from the independent variable x to w. It gives that

V)

wo(t) =ap + T 2.45
=00+ | 2 o
For z, we use the initial condition (2.40) so that

R(w, t)li=0 =1. (2.46)

In the simplest approximation of equations (2.23) and (2.24), we set
At
x>w—iV.O)t=w+1i — (2.47)
ap —ap

and

T ~ iR (0)t =it, (2.48)

where we used equations (2.23), (2.34), (2.36), (2.45) and (2.46).
Using equations (2.12), (2.36), (2.47) and (2.48), we obtain the approximate positions of branch
points in w as follows
At
w=wy ~ay £ V4Ait —i —. (2.49)
apg — ap

It is shown in §4 that the periodic BCs version of equation (2.49) is accurate for the values
of t well below the applicability condition (2.39) of the short branch cut approximation. Thus it
might be sufficient in many practical calculations to use equation (2.49) instead of more accurate
evaluations of integrals in equations (2.23) and (2.24).

As another particular initial shape of surface we choose that

G(¢)=¢& + Blog[¢ — C]forany &£ e C  with C#4ap and Im(C) > 0, (2.50)

where B and C are complex constants. We note that equation (2.50) does not satisfy BC (1.4). That
asymptotic deficiency can be fixed if we add the extra term —Blog[é — C1],Im(C;) > 0 in r.h.s. of
equation (2.50), which is however beyond the scope of that paper. By ignoring such a fix we also
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neglect the last term in r.h.s. of equation (2.31). Then equations (2.31) and (2.50) imply that at any
moment of time 7,

z=xo(x,7) + Blog[xo(x,7) — Cl, (2.51)

where xo(x, 7) is given by equation (2.35).
Using, equation (2.42), we obtain from equation (2.51) that

1 x-C 1 ( B )
= = 1-— 2.52
(x0)x xo—C+B  (xo)y x0—C+B (2:52)

and

2, = (x0)y (1 + XO%) . (2.53)

We note that equation (2.50) has the branch cut which extends to the complex infinity. However,
the corresponding R at t =0 has only the pose singularity, see equation (2.52). Thus the short
branch cut approximation remains valid for the initial condition (2.50) at least for small enough ¢.

If C #ag then it follows from equation (2.50) that the function z, has a simple pole at yo=C.
Using equation (2.35), we then obtain that a trajectory of motion of that pole in x plane is given
by

At

apg — C

y=C— (2.54)

It follows from equation (2.53) that the residue of z, at that point is the integral of motion in x
plane, which is exactly equal to the constant B.

In a similar way, the function R in equation (2.52) has a simple pole at o =C — B provided
C — B#uag. A trajectory of motion of that pole in x plane is given by

At

=C—-B— ——.
X apg—C+B

(2.55)
However, the residue of that pole is not a constant of motion. We note V is regular at xo=C — B
(because we assumed C — B # ag) at least for small enough time. Such local solution (with the pole
in R and no pole in V) is compatible with the analysis of [14,15] of the system (1.17)—(1.19), where
solutions with the pole in both R and V was excluded while a solution with the pole in R only
was allowed.

Another particular case is to set

By
R(w/ t = O) = w— aO = R|I=0/ (256)

where By is the complex constant. This initial condition has a pole at the same w = a9 as the initial
pole in V defined in equation (2.34). Then equations (2.40)—(2.42) result in

R— 4B1y/(x — ap)* — 4At
(x — a0 + v/ (x — a9)> — 4At)?
(x —a0)* — 4At(x —ao — /(x —a0)* — 4AT)2.

4A272

(2.57)

The particular solution (2.38), (2.57) recovers the asymptotic result of [5] (Case (a) of §4 of [5])
obtained in that Ref. by the matched asymptotic expansions at t — 0.

Equation (2.57) makes sense locally near the pole position but cannot be valid globally because
R must approach 1 as w — oco. So we provided that case only for the exact comparison with [5].
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We however can easily fix that deficiency through the replacement of equation (2.56) by

B
Rw,t=0)=1+ —— = R|,o. (2.58)
w — ag
Using equation (1.14), we then obtain that
z(w, t =0) =w — By log(w — ap + B1) (2.59)

and, using equations (2.31), (2.35), that

_ 2 _ _ 2
z:X—;uO+ I(X 4“0) _A‘E—Bllog(x 2a0+ l(X 4‘10) _Ar+B1). (2.60)

Differentiating equation (2.60) over w and using equation (1.14) results in

_ 2y (x —ag)? —4AT(2B1 + x —ag + +/(x — ap)? — 4A7)
(x — a0+ v/ (x —ag)> — 4A1)?
a0 HAREBy + a0 + 0P AT — n0 — k0P~ BT

8A272

R

(2.61)

Equation (2.57) is recovered from equation (2.61) in the limit By — oo.

We note that in all particular cases (2.43), (2.57) and (2.61), the series expansion at any of two
branch points (2.36) shows that R =0 at these points, which is in the perfect agreement with the
analytical results of [15]. We also remind that all these particular cases share the same V from
equation (2.38).

To express V and R in all these cases in terms of w and ¢ requires to find expression of x and
t through w and t using equations (2.23) and (2.24). For that one can use definitions (2.12) with
xo determined in terms of x through equation (2.36). After that a general condition (2.1) can be
also verified. We note that all particular examples above correspond to the moving branch points
according to equation (2.36). It implies that the condition (2.1) is violated at large times so the
short branch cut approximation is valid in all these particular cases only for a finite duration of
time.

The second sheet of Riemann surface I'y corresponds to the opposite choice of sign in
equation (2.35). It means that we have to change the sign in front of each square root in
equations (2.38), (2.43), (2.57) and equation (2.61). It immediately implies that V' — oo and
R— 00 as x — oo in all these equations for the second (non-physical) sheet of Riemann
surface.

In all particular examples in this section, the functions V and R are analytic functions of
V(x —ag)? — 4At, i.e. they are analytic in two sheets of Riemann surface of w. This fact is the
result of the approximation (2.17) effectively assuming that both V and R are constant on the
branch cut. Going beyond that short cut approximation, we expect that V and R can be analytically
continued into a much more complicated Riemann surfaces I'y(w) and I'gr(w) with the unknown
total number of sheets. Our experience with the Stokes wave in [38] suggests that generally
the number of sheets is infinite. Some exceptional cases like found in [29,30] have only a finite
number of sheets of Riemann surface (these solutions however have diverging values of V and
R at w— o00). We suggest that the detailed study of such many- and infinite-sheet Riemann
surfaces is one of the most important goal in free-surface hydrodynamics. This topic is however
beyond the scope of this paper. We also note that even in the simplest considered case (2.34), the
function R can have the arbitrary number of additional poles and branch points depending on
the choice of the function G(xp) in equation (2.30) instead of particular cases considered in this
Section.
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3. Short branch cut approximation and square root singularity solutions for the
periodic case

In this section, we extend the results of §2 into the 2rr-periodic BCs (1.24) instead of the decaying
BCs (1.23) used in §2. In that periodic case, instead of a single branch cut connecting branch points
atw=a(t) € C* and w = b(t) € C* of §2, we consider the periodic sum of branch cuts and use the
identity

o0

1
Z = cotrma. (3.1)
n+a

n=—00

Then taking the sum over branch cuts amounts to replacing w — w’ by (1/2) tan [(w — w’)/2] in the
denominators of equation (2.2) and all other similar expressions. In particular, equation (2.2) is
replaced by

1 R@,t)dw
R(w,t)—1=§Lm (32)
1P V@, hdw |
and V(w, t)= 5 L tan[(w — w’)/2]
Equation (2.3) is replaced by
) 1 R@,pda
Rt —1=3 | red e (33)
1 U@, hdw |
and V(w, = L tan[(w — @)/2]
and equation (2.5) is replaced by
1 b, ¢ duw’
U, t) =3 L tan[(w — w')/2] (3.4)

b D (1o /
and B( ,t)_lj B(w', t) dw

2, tan[(w — w)/2]

Instead of the partial fractions used in equation (2.6), it is more convenient to use the integral
representation of the projector P~ (1.20) for the periodic functions (e.g. [39]) which follows from
equation (1.21) and the Sokhotskii—-Plemelj theorem (e.g. [33,34]) giving that

15—f= 1 J” f@')ydu 1 J” f')ydu (3.5)

2 e w —uti0+ 27 4ri |y tan [(W — u +i0)/2]
where i0 means i€, € — 0" and we used the identity (3.1).
Using equations (3.2), (3.3) and (3.4), a calculation of the projectors in the definitions (1.18) is
performed through moving the integration contour from (—m, ) to (—m — ico, 7 — ico) together
with the identity tan(—ioo) = —i which give that

b JE R, V@', t) dw’ diw’

o R P
PR =1V]= 4 ,[ a tan[(w — w”)/2]tan[(w — @')/2]

a

1 Jn b (b R(w”, V@', t) dw' div' du’
 16mi - L L tan[(1/ — w")/2] tan[(v' — w')/2] tan[(u’ — w + i0)/2]
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J J R(@”, t)V(w t) dw” dw’

1
4
1 1
( tan[(w w”)/2] tan[(w — w') /2] tan[(z'u’—w”)/Z]tan[(w—z'u/)/Z])
J J R(@”, t)V(w t)dw”da’

1
4

tan[(@' — w")/2] — tan[(w — w")/2]
( ~ tan[(w — w’)/Z][ tan[(w w")/2] tan[(w" — w")/2] D

1 b Rw”, t)V(w t) dw”da’ 1
T4 L L 1 (2 " [tan[(w —w")/2] tan[(@" — w”)/Z]D

10 (P R, hV@, Hydw'd@w 1 (P (P R@’, V@, t)dw’da’
J L 1 1,[ L tan[(w — w")/2] tan[(w” — @')/2]’

where we used the following trigonometric identity

(3.6)

a

cot(a—b) = 1+ tanatanb’
tana — tanb
witha= (@' —w")/2,b=(w—w")/2anda — b= (W —w)/2.
Now using the definitions (3.2) and (3.3) in equation (3.6), we obtain that

R@”, HV(@w’, t) dw”
tan[(w — w”)/2] '
where at the first term in rh.s. of equation (3.6), we take appropriate limits to use the
analyticity of R and V as follows: tan[(w — w')/2] — —ioco as w — —ico in the first equation (3.2)
tan[(w — @')/2] — ico as w — ioco in the second equation (3.3).
Similar to equation (3.7), one obtains that

P[(R-1)V]= —7[R( ico, t) — 1]V (ico, t) + = J (3.7)

R _ V /! R /! _ 1 d /!
PR - 1)V] = [R(loo £) — 1]V(—ioo, ) + = J @’ ta?& (u(Jw u? /2)]] @ (3.8)
and
A ISP | V@', )V, t) dw”
B(w, ) =P~ [VV] = 2[ (ico, )]V (—ioo, t) + = > L tan[(w — " /2)] (3.9)
We obtain from equations (1.22) and (1.24) that
R(—ioo, t) —1=R(ico, t) — 1 = V(ico, t)] = V(—ioo, t) = 0. (3.10)

Then equations (1.18), (3.4)—(2.8) and (3.10) result in the same equations (2.9) and (2.10) as for the
decaying BCs case (1.23) considered in §2.

Similar to §2, we consider the short branch cut approximation for the periodic case recovering
exactly the same equations as (2.12)—(2.27). The only difference in addressing these equations in
comparison with §2 is to use the periodic BC (1.24). Respectively, instead of equation (2.28), we
have to use the conditions (1.25) and (1.26) to determine ¢(z).

As a particular example, we assume a periodic initial condition

A iA

F(w) = " Ytan (@ —a0)/2] + 5 = V=0, (3.11)
where A and 4 are complex constants such that ay € C*. This initial condition is the periodic
analogue of equation (2.34) with the extra constant term iA/2 added to make sure that V — 0
at Im(w) — —ioo, i.e. the decay of the velocity deep inside fluid. This initial condition has poles
at w=ag +2nn, n=0,£1,%2,.... In contrast with equations (2.32) and (2.34), equations (2.32)
and (3.11) cannot be explicitly solved for xq. Thus equations (2.30)—(2.32) provide only the implicit
form of the solution for the initial condition (3.11). Note that c(r) in this section is generally not
given by equation (2.28) but is determined the conditions (1.25) and (1.26).
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We can still explicitly obtain that the locations of square root branch points if we differentiate
equation (2.32) over x resulting in

1=y [ 1+ T2 |

3.12
a0 (3.12)

and note (xo), is singular at the square root branch points (e.g. equation (2.37) in the non-periodic
case). It implies from equation (3.12) that

14 00 (3.13)
dxo

at each branch point. Solving equation (3.13), we obtain the location of branch point in xq variable
as follows

VA
X0 = X0,+ =40 % 2arcsin (;) +2rn, n=0,41,42,. ... (3.14)

Then using equations (3.11), (3.13) and (3.14), we obtain that the square root branch points are
located at

iAr VA
X:)(i_ao—i|: VATE At+2arcsm< Zt)i|+27'm, n=0,41,42,.... (3.15)

Equation (2.36) is recovered from equation (3.15) at the leading order O(z1/?) for At — 0 and
n = 0. Similar to equation (2.36), we choose a branch cut to be the straight line segment of length
[VATN/4 — At + 4arcsin(v At /2)| connecting the two branch points (3.15). The location of wy(t)
(2.11) is determined by taking the midpoint
iAt

Xmid =40 — o (3.16)
between the two branch points (3.15) and after that using the definitions (2.23) and (2.24) to shift
x by [ Xcg(r ) dr’ to return from the independent variable x to w. It gives that

iAt T V() .,
t)y=a9— — +J dr 3.17
W=7 ) R G147
For z, we use the initial condition (2.40) so that
R(w, t)|i=0=1. (3.18)

The length of the branch cut is increasing with time as « /7 at v/At according to (3.15) and
the solution (2.38) remains valid at least while the short cut approximation (2.1) is valid, i.e.

[2v4At| < [Im(ag)]- (3.19)

For comparison with simulations one has to return from the independent variables z and y to
the original variables t and w using equations (2.23) and (2.24). In the simplest approximation of
equations (2.23) and (2.24), we set

. . A iA
x~w—iV.(O)t=w — 1|:_2tan[(w—c_zo)/2] — 2}

w=ay,t=0

. A iA
Xt:w_1|:_2tan[(a0_ﬁo)/2]_2j|t (3.20)
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and
T ~iR(0)t=1it, (3.21)

where we used equations (2.23), (2.36), (3.11), (3.17) and (3.18).
Using equations (2.12), (3.15), (3.20) and (3.21), we obtain the approximate positions of branch
points in w as follows

0w~ a4 A iA N At
=Wy > | — = -
== 2tan[(a — d)/2] 2 2
1 W Ait
+ |:2«/Ait\/4 — Ait + 2 arcsin <21):| +27n, n=0,+£1,£2,.... (3.22)

For the precise location of branch points instead of the approximation (3.22), we have to find
the dependence of v on t and x on w and t using equations (2.23) and (2.24) together with the
definitions (2.12) and equation (3.17). These equations are implicit ones. Also one has to find
xo(x, 7) from the implicit equations (2.32) and (3.11) to be able to use equations (2.30) and (2.31)
for finding V. and R, from the definitions (2.12).

Similar to the solutions of §2, the particular solutions considered in this section also have the
moving branch points according to equation (3.15). It follows from equation (2.36) that one of two
branch points reaches the real line w = Re(w) in a finite time for a general complex value of the
complex constant A. It means a formation of singularity on the free surface. However, well before
that the condition (2.1) of the applicability of the short branch cut approximation is violated as
the lower branch point approaches the real line.

Similar to the discussion in §2, one can find a wide range of particular solutions for the periodic
case of this section based on the general solutions (2.30) and (2.31).

4. Comparison of short branch cut approximation with full numerical solution

In this section, we compare the short branch cut approximation described in the §3 with the full
numerical solution of the system (1.17)-(1.19) satisfying the initial conditions (3.11) and (3.18). We
assume that there is no gravity (¢ =0). Both functions z(w, t) and I1(w, t) are recovered from the
variables R and V by means of the relations (1.14) and (1.15) as discussed in §1, where we assume
zero mean fluid (1.26) is at zero.

These initial conditions result in a pair of branch points that move according to equation (3.15).
The direction of motion depends on the argument of the complex constant A. In the simulations,
we chose three values A=1, A=i and A = —i. The initial pole of the complex velocity, V, is
located at ap =i. Generally, A can be the arbitrary complex number and gy can be the arbitrary
complex number from C*. Figures 2-5 show the spatial profiles (right panel), and the location of
branch points (left panel) for both the branch cut approximation of the §3, and the full numerical
solutions. The branch points are located at w = w (t) = w- ,(t) + iw ;(t), where w4 ,(t) and w ;(t)
are real-valued. At each time step, the location is recovered from the numerical simulations by the
rational approximation procedure outlined in appendix A. Additionally, v. =Im(w_ ,(t)) can be
also determined from the asymptotic of the exponential decay rate of the Fourier coefficients zj ~
eVl of z(w) for k| — oo, e.g. [39—41] for more details of that Fourier technique. Equation (3.15)
provides the analytic formula for the location of branch points in terms of the r and x in the
branch cut approximation. However, the dependencies of t(t) and x (w, t) are given by an implicit
relation that follows from equation (3.11). For the sake of convenience, we use the approximate
equations (3.20) and (3.21), which result in the explicit expression (3.22) for branch point locations
in terms of w and ¢.

We solve the implicit equations (2.30) and (2.32) for xo(w,t) at every instant of time 7 to
determine the shape of the free surface x(u, t) + iy(u, t). The extra conditions (1.25) and (1.26) are
used to find ¢(r), and a subsequent substitution in equations (2.30), (2.31) and (3.11) gives the
shape of the surface z(u, t).
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Figure 2. (a) The vertical position v = Im(w_(f)) = w_(t) of the lower branch point versus time  in the simulation with
initial conditions (3.11) and (3.18) with A =i and @y = i. The lower branch point location w_(t) is recovered from the full
numerical simulations of equations (1.17)—(1.19) by means of a numerical rational approximation (solid line) compared with
its location from the short branch cut approximation (3.15) (dashed line). See appendix A about the rational approximation. The
relative error of the theoretic prediction versus numerics is 1.93% at short time t = 0.05, about 3.93% at t = 0.1, and 15.2%
att =102 Att =0.05and t = 0.2, the value of the parameter ¢ introduced in equation (2.1) is 0.61 and 0.89, respectively.
These values are well outside the asymptotic condition € << 1when the short branch cut theory is guaranteed to be applicable.
(b) The spatial profiles of the fluid surface at different times: the result of numerical simulation (solid lines), and the short branch
cutapproximation (dashed lines). (c) The time dependence of the maximum of the error for the surface elevation y(x, t) between
the numerical solution and the short branch cut approximation. The maximum of error occurs at x = 0 as seen from the surface
profiles in (b). The error is normalized to the values of y(0, x) from the numerical solution. (Online version in colour.)

The summary of a comparison of the short branch cut approximation and the numerical
solutions is given below:

(a) For A=i, both branch points move along the imaginary axis as follows from
equation (3.15). The lower branch point, w_ =iw_ ;(t) moves downward from w =ao,
and the upper branch point w, =iw, ;(t) is moves upward from w =ay. Figure 2a
illustrates a dependence of the vertical coordinate of w_ ;(t) on time, as determined from
the equation (3.15) and the numerical simulations. The positions of branch points are
recovered from numerical simulations by the procedure based on a least-squares rational
approximation of complex functions and is described in details in [14,39,40]. The vertical
coordinate of the lower branch point is also estimated from the asymptotics of the decay
rate of the Fourier spectrum giving the same result. Figure 2b shows the spatial profiles
of the free surface and a comparison of the short branch cut approximation and full
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Figure3. Afitof v = w_ ;(t) from figure 2a (shown by dots) into the stretched exponent v = a e~ with b =1 (black solid
line) and b = 4/3 (red solid line). It is seen that b = 4/3 is much better fit that b = 1. Here, a = 0.39795 + 0.01406 and
k = 6.40096 + 0.03348 are the fitting constants. (Online version in colour.)
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Figure 4. (a) The location of the branch cutin the analytical continuation of the complex velocity / (1.15) in the complex plane at
several instants of time. The initial conditions are given by (3.11) and (3.18) with A = —iand @, = i. The branch cuts recovered
from the numerical simulations of equations (1.17)—(1.19). The filled circles show the positions of poles of rational approximation,
and the open circles correspond to the branch point locations given by the analytic formula for w..;(t) from equation (3.15) at
the respective time. The solid black lines are the trajectories of w;(t) from the short cut approximation. The difference in
the position of the branch points estimated from the numerical simulation and the short branch cut theory is 2.89% at time
t=10.05(e = 0.92),and is 6.45% at time t = 0.50 (¢ = 4.12). The w_. ;(¢) from equation (3.15) give an excellent estimate for
the branch points even for € > 1. (b) The spatial profiles of the fluid surface from numerical simulation (solid lines), and short
cut approximation (dashed lines). (Online version in colour.)

numerics. It is seen that the spatial profile has a form of jet. Also figure 2b shows the time
dependence of the maximum error in the surface elevation y(x, t) between the numerical
solution and short branch cut approximation.

As discussed in all particular solutions of §§2 and 3, one of the branch points of the
analytical solution in the short branch cut reaches the real line w =Re(w) in a finite
time meaning a formation of the singularity of the free surface in a finite time. This is
exactly what is seen in figure 2a. However, we also see in figure 24 that the full numerical
solution seems does not produce a finite time singularity. Instead, the singularity appears
to occurs at the infinite time t — oo. To quantify that statement, we performed a fit to the
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Figure 5. (a) The location of the branch cut in the analytical continuation of the complex velocity I/ (1.15) at different moments
of time in the complex plane for initial conditions given by (3.11) and (3.18) with A = Tand a, = i. The branch cuts recovered
from full numerical simulations of equations (1.17)-(1.19) is given by solid line. The filled circles represent the poles of the rational
approximation of the branch cut, and the open circles correspond to the branch point locations w.. ;(f) from equation (3.15). The
grey line passing through w = iis the trajectory of w..;(t) as obtained from equation (3.15). It is observed that for small time
w. ;(t) from equation (3.15) approximates the branch points to 3.31% (relative error) at t = 0.05 with € = 0.68, and 7.69%
(relative error) at t = 0.25 with € =1.18. (b) The shape of free surface of the fluid at different times: numerical simulation
(solid lines), and the short branch cut approximation (dashed lines). (Online version in colour.)

stretched exponential law v =a e_ktb, where a,b and k are three real fitting constants. We
find that b=1.333 ~4/3 provides the best fit as seen in figure 3. Purely exponential fit
b =1 is also shown providing not as good fit. Another not as good fitis e.g. b =2, i.e. the
Gaussian exponent (not shown in figure 3). The detailed discussion of the topic of finite
time singularity is beyond the scope of this paper.

(b) For A = —i, both branch points start to move in the horizontal direction, but unlike the
problem on infinite line —oo < x < 0o, the branch points in periodic problem develop
vertical speed and approach the real axis. At later times branch cut recovered from
numerics is not short thus violating b the short branch cut approximation. However, the
positions of branch points recovered from short branch cut approximation agree semi-
quantitatively with numerical simulations even at late times. Figure 4b shows the spatial
profiles of the free surface at different times.

(c) For A =1, both branch points start moving in the complex plane from the initial position
at w =ia as illustrated in the figure 5a. Contrary to the other two cases, the positions of the
branch points are not symmetric with respect to the imaginary axis. Figure 5b shows how
the shape of the free surface moves in time with increasing of steepness thus promoting
overturning of the wave in a finite time.

We may conclude that the short branch cut approximation gives excellent results up to the
values of small parameter € 2> 0.9, well-outside of the applicability region for the short branch cut
approximation (2.1).

5. Conclusion and discussion

The main result of this paper is the development of the short branch cut approximation both for
the decaying BC (1.23) and the periodic BC (1.24) for free surface hydrodynamics. These equations
in the moving complex frame are reduced to the fully integrable complex Hopf equation (2.22) for
the complex velocity V(w, t) and the transport equation (2.26) for the conformal map z(w, t). These
equations admit the infinite set of solutions easily constructed by the method of characteristics.
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Examples of such solutions are provided in §§2 and 3. Section 4 demonstrated the excellent
agreement between the analytical solutions of the short branch cut approximation and the full
numerical solution of equations (1.17)—(1.19) and (1.24). Examples of jets and overturning waves
are shown in these solutions.

The results of §4 appears quite striking because the analytical solutions of the short branch
cut approximation agree with relatively good precision in several percents with the solutions of
equations (1.17)—(1.19) even when the parameter ¢ introduced in equation (2.1) is not small while
the derivation of §§2 and 3 guarantees the applicability of the short branch approximation only for
€ < 1. For future work, we plan to analyse that efficiency of the short branch cut approximation
for € 2 1 by addressing the corrections beyond that approximation outlined in equations (2.14)
and (2.13).

Appendix A. Rational approximation for recovery of singularities

In order to recover singularities of the functions R and V in the complex w-plane, we seek
a rational approximation of the target function by means of the Alpert-Greengard-Hagstrom
(AGH) originally published in [42], and adapted for the water wave problem in [40]. We outline
the general approach to rational approximation of complex functions, and refer the reader to the
aforemetioned works for more details. See also [14] for the numerical demonstration of the high
efficiency of that method.

AGH algorithm robustly recovers poles in solution while branch cuts are approximated by a
set of poles as follows

N

1 p(¢hdg’ On
= — —_— , Al
8¢) ZﬂJc —o “li-g (A1)

n=1

where the function g(¢) has s single branch cut along the contour C in the complex plane of ¢
with p(¢) being a jump of g(¢) at the branch cut. The r.h.s. of equation (A 1) approximates g(¢) by
simple poles located at { =¢, € C, n=1,...,N with the residues oy, n=1,...,N.

Given a 27 -periodic function f(w) on a real periodic interval w € [—x, 7], we may expand the
periodic interval to the real line, —0co < ¢ < 00, by a coordinate transformation

¢ =tan Q, (A2)
2

which maps the stripe —7 < Re(w) < 7 into the complex ¢ plane. Also w € C*(C™) imply that
¢ € CH(C), see also [40] on more details of the mapping (A 2). ¢ variable is convenient to use in
AGH algorithm ([40]) which is assumed below.

In the ¢-variable, the function g(¢) =f(w(¢)) — f(r) is defined on the real line and decays to
zero as & — +oo. The function g(¢) is suitable for rational approximation in the ¢-variable, and
we seek two polynomials P(¢) and Q(¢) of degrees N and N + 1, respectively, such that

e P(¢)
=] G
where minimization goes over the polynomial coefficients of P(¢) and Q(¢).

After the optimal polynomials P and Q have been determined, the resulting approximant
gives accurate approximation to g(¢) on the real line. However, the ratio P(¢)/Q(¢) defines
a meromorphic function in the complex ¢-plane, and its singularities may be determined by
seeking the roots ¢ of Q(¢) =0. The residues at the poles are given by P(&)/Q'(¢x) and can be
used to recover an approximation to the Cauchy type integral as given by equation (A 1).

2
d¢ — min, (A3)
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