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A potential motion of ideal incompressible fluid with

a free surface and infinite depth is considered in two-

dimensional geometry. A time-dependent conformal

mapping of the lower complex half-plane of the

auxiliary complex variable w into the area filled with

fluid is performed with the real line of w mapped

into the free fluid’s surface. The fluid dynamics can

be fully characterized by the motion of the complex

singularities in the analytical continuation of both

the conformal mapping and the complex velocity.

We consider the short branch cut approximation

of the dynamics with the small parameter being

the ratio of the length of the branch cut to the

distance between its centre and the real line of w. We

found that the fluid dynamics in that approximation

is reduced to the complex Hopf equation for the

complex velocity coupled with the complex transport

equation for the conformal mapping. These equations

are fully integrable by characteristics producing

the infinite family of solutions, including moving

square root branch points and poles. These solutions

involve practical initial conditions resulting in jets
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and overturning waves. The solutions are compared with the simulations of the fully nonlinear

Eulerian dynamics giving excellent agreement even when the small parameter approaches

about one.

1. Introduction and basic equations
We consider a two-dimensional potential motion of ideal incompressible fluid with the free

surface of infinite depth in the gravity field g as schematically shown in figure 1a. Fluid occupies

the infinite region −∞ < x < ∞ in the horizontal direction x and extends down to y → −∞ in the

vertical direction y. We assume that there is no dependence on the third spatial dimension, i.e. the

fluid motion is exactly two dimensional. The bulk of fluid is at rest, i.e. there is no motion of fluid

both at |x| → ±∞ and y → −∞.

We use a time-dependent conformal mapping

z(w, t) = x(w, t) + iy(w, t) (1.1)

of the lower complex half-plane C
− of the auxiliary complex variable

w ≡ u + iv, −∞ < u < ∞, (1.2)

into the area in (x, y) plane occupied by the fluid. Here, the real line v = 0 is mapped into the fluid

free surface (figure 1) and C
− is defined by the condition −∞ < v ≤ 0. Then the time-dependent

fluid free surface is represented in the parametric form as

x = x(u, t), and y = y(u, t). (1.3)

We assume a decay of perturbation of fluid beyond a flat surface y ≡ 0 at x(u, t) → ±∞ which

requires that

z(w, t) → w + o(1) for |w| → ∞, w ∈ C
−, (1.4)

where o(1) means a vanishing contribution in that limit |w| → ∞. The conformal mapping (1.1)

implies that z(w, t) is the analytic function of w ∈ C
− and

zw �= 0 for any w ∈ C
−, (1.5)

where subscripts here and below means partial derivatives, zw ≡ ∂z(w, t)/∂w etc.

Potential fluid motion means that a velocity v of fluid is determined by a velocity potential

Φ(r, t) as v = ∇Φ with ∇ ≡ (∂/∂x, ∂/∂y). The incompressibility condition ∇ · v = 0 results in the

Laplace equation

∇2Φ = 0 (1.6)

inside fluid, i.e. Φ is the harmonic function inside fluid. Equation (1.6) is supplemented with a

decaying boundary condition (BC) at infinity,

∇Φ → 0 for |x| → ∞ or y → −∞, (1.7)

which can be replaced without loss of generality by a zero Dirichlet BC

Φ → 0 for |x| → ∞ or y → −∞. (1.8)

The harmonic conjugate of Φ is a stream function Θ defined by

Θx = −Φy and Θy = Φx. (1.9)

Similar to equation (1.8), we set without loss of generality a zero Dirichlet BC for Θ as

Θ → 0 for |x| → ∞ or y → −∞. (1.10)

We define a complex velocity potential Π (z, t) as

Π = Φ + iΘ , (1.11)
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Figure 1. Shaded area represents the domain occupied by fluid both in the physical plane z = x + iy (a) and in the plane

w = u + iv (b). Thick solid lines correspond to the fluid’s free surface. Gravity is pointing downwards, i.e. in the direction−y

on (a). (Online version in colour.)

where z = x + iy is the complex coordinate. Then equation (1.9) turn into Cauchy–Riemann

equations resulting in the analyticity of Π (z, t) in the domain of z plane occupied by the fluid.

A physical velocity with the components vx and vy (in x and y directions, respectively) is obtained

from Π as dΠ/dz = vx − ivy. The conformal mapping (1.1) ensures that the function Π (z, t) (1.11)

transforms into Π (w, t) which is the analytic function of w for w ∈ C
− (in the bulk of fluid). Here

and below, we abuse the notation and use the same symbols for functions of either w or z (in other

words, we assume that e.g. Π̃ (w, t) = Π (z(w, t), t) and remove˜sign). The conformal transformation

(1.1) also results in Cauchy–Riemann equations Θu = −Φv , Θv = Φu in w plane.

BCs at the free surface are time-dependent and consist of kinematic and dynamic BCs. A

kinematic BC states that the free surface moves together with fluid particles located at that surface,

i.e. there is no separation of fluid particles from the free surface. For mathematical formulation,

we look at the normal component of velocity vn (normal to the free surface) of such fluid particles.

Motion of the free surface is determined by a time derivative of the parametrization (1.3) so the

kinematic BC is given by a projection into the normal direction as

n · (xt, yt) = vn ≡ n · ∇Φ|x=x(u,t),y=y(u,t), (1.12)

where n = (−yu, xu)/(x2
u + y2

u)1/2 is the outward unit normal vector to the free surface and

subscripts here and below means partial derivatives, xt ≡ ∂x(u, t)/∂t, etc.

A dynamic BC is given by the time-dependent Bernoulli equation (e.g. [1]) at the free surface,

(

Φt + 1

2
(∇Φ)2 + gy

)
∣

∣

∣

∣

x=x(u,t),y=y(u,t)

= 0, (1.13)

where g is the acceleration due to gravity. Here without loss of generality we assumed that

pressure is zero above the free surface (i.e. in vacuum), which is ensured by the zero at the left-

hand side (l.h.s.) of equation (1.13). All results below apply both to the surface gravity wave case

(g > 0) and the Rayleigh–Taylor problem (g < 0). We also consider a particular case g = 0 when

inertia forces well exceed gravity force.

Equations (1.12) and (1.13) together with the analyticity (with respect to the independent

variable w) of both z(w, t) and Π (w, t) inside fluid as well as the decaying BCs (1.4), (1.8) and (1.10)

form a closed set of equations which is equivalent to Euler equations for dynamics of ideal fluid

with free surface. The approach of using time-dependent conformal transformation like (1.1) to

address free surface dynamics of ideal fluid was exploited by several authors including [2–10].

We follow the approach of [6,11,12] to transform from the unknowns z(w, t) and Π (w, t) into the

equivalent ‘Tanveer–Dyachenko’ variables

R = 1

zw
(1.14)
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and

V = i
∂Π

∂z
= iRΠw. (1.15)

These variables were introduced by Tanveer in [4] for the periodic BC and later independently

obtained by Dyachenko in [13] for the decaying BCs (1.4), (1.8) and (1.10) so we refer to these

variables as ‘Tanveer–Dyachenko variables’. Both

R(w, t) and V(w, t) are the analytic functions for w ∈ C
− (1.16)

as follows from equation (1.5) and the analyticity of both z and Π for w ∈ C
−. Then the dynamical

equations at the real line w = u take the following complex form [13]:

∂R

∂t
= i(URu − RUu), (1.17)

U = P̂−(RV̄ + R̄V), B = P̂−(VV̄) (1.18)

and
∂V

∂t
= i[UVu − RBu] + g(R − 1), (1.19)

where

P̂− = 1

2
(1 + iĤ) and P̂+ = 1

2
(1 − iĤ) (1.20)

are the projector operators of any function q(u) (defined at the real line w = u) into functions q+(u)

and q−(u) analytic in w ∈ C
− and w ∈ C

+, respectively, such that q = q+ + q−, i.e. P̂+(q+ + q−) = q+

and P̂−(q+ + q−) = q−. Here, we assume that q(u) → 0 for u → ±∞. Also the bar means complex

conjugation and

Ĥf (u) = 1

π
p.v.

∫+∞

−∞

f (u′)
u′ − u

du′ (1.21)

is the Hilbert transform with p.v. meaning a Cauchy principal value of the integral. See also

more discussion of the operators (1.20) in [12]. We refer to equations (1.17)–(1.19) as ‘Dyachenko

equations’ for Tanveer–Dyachenko variables (1.14) and (1.15). Note that [4] also provided the

dynamic equations for these variables for the particular case of the periodic BC. These dynamic

equations are written in terms of contour integrals with non-polynomial nonlinearities. Although

in the periodic case these dynamics equations are equivalent to Dyachenko equations (1.17)–

(1.19), we prefer to use the formulation (1.17)–(1.19) because it has only cubic nonlinearity and

avoid contour integrals by the projectors (1.20). That formulation is valid both for the periodic BC

and decaying BCs (1.4), (1.8) and (1.10).

A complex conjugation f̄ (w) of f (w) in equations (1.17)–(1.19) and throughout this paper is

understood as applied with the assumption that f (w) is the complex-valued function of the real

argument w even if w takes the complex values so that

f̄ (w) ≡ f (w̄). (1.22)

That definition ensures the analytical continuation of f (w) from the real axis w = u into the

complex plane of w ∈ C. Following [14], we consider an analytical continuation of the functions R

and V into the Riemann surfaces which we call by ΓR(w) and ΓV(w), respectively.

The decaying BCs (1.4), (1.8) and (1.10) imply that

R(w, t) → 1, V(w, t) → 0 for |Re(w)| → ∞ or Im(w) → −∞. (1.23)

Also in §3, we consider the periodic BCs which are still decaying deep inside the fluid as

R(w + λ, t) = R(w, t), V(w + λ, t) = V(w, t)

and R(w, t) → 1, V(w, t) → 0 for Im(w) → −∞,

}

(1.24)

where the spatial period λ can be set to 2π without the loss of generality.

The variables R and V (1.14) and (1.15) include only a derivative of the conformal mapping

(1.1) and the complex potential Π over w while z(w, t) and Π (w, t) are recovered from solution of
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these equations as z =
∫

(1/R) dw and Π = −i
∫

(V/R) dw. It provides a freedom of adding arbitrary

functions of time to both z(w, t) and Π (w, t). Such addition is not physically important for Π (w, t)

because it does not change fluid velocity while the addition to z(w, t) changes the location of the

free surface. The freedom in the real part x is removed if one notices that generally for the decaying

BCs (1.23) x(u, t) → u + x0 for |u| → ∞ and we choose the constant x0 to be zero according to

equation (1.4). The freedom in the imaginary part y is removed from equation (1.4) by setting that

y(u, t) → 0 for |u| → ∞.

For the periodic BCs (1.24), we remove the freedom in x by setting that

x(π , t) = π . (1.25)

The freedom in the imaginary part y is removed by ensuring the conservation of the total mass of

the fluid. That conservation is expressed through the time independence of the following integral

(e.g. [12])

M =
∫π

−π

y(u, t)xu(u, t) du. (1.26)

Without loss of generality, we set M = 0, which corresponds to the zero mean level of the fluid

in the vertical direction. E.g. the flat free surface would correspond to y ≡ 0. Respectively, while

recovering z(w, t) from R(w, t) for the periodic BCs we use that M = 0.

Reference [14] found that the system (1.14)–(1.19) has an arbitrary number of pole solutions

for zw and Πw. These poles are located for w ∈ C
+, i.e. in the analytical continuation of zw and Πw

to the area outside of the fluid domain. These pole solutions allowed us to identify the existence

of multiple nontrivial integrals of motion (beyond the natural integrals like the Hamiltonian and

the horizontal momentum), see [12] for details. Many of these integrals commute with respect to

the non-canonical Poisson bracket found in [11,12]. It was suggested in [14] that the existence of

such commuting integrals of motion might be a sign of the Hamiltonian integrability of the free

surface hydrodynamics. It is well established (e.g. [12,15–32]) that the system of the type (1.17)–

(1.19) and its different generalizations also have solutions with branch points located for w ∈ C
+.

Generally, we expect coexistence of poles and branch points at different locations of w ∈ C
+, see

[14] for numerical examples. Also [15] demonstrated that purely rational solutions of the system

(1.17)–(1.19) are not very likely for the decaying BCs (1.23). In particular, it was proven in [15]

that the rational solutions with the second and/or first-order poles are impossible to survive with

dynamics for any finite time duration, i.e. they are not persistent with time evolution.

The plethora of possible analytic solution makes it very important to find a tool to construct

analytical solutions involving both branch points and poles. In this paper, we develop such a

tool in the approximation of a short branch cut. Such approximations assume that the distance

between the most remote branch points is much smaller than the distances from these points to

the real line. Then the fluid dynamics is shown to be reduced to the complex Hopf equation for

the complex velocity coupled with the complex transport equation for the conformal mapping.

These equations are fully integrable by characteristics producing the infinite family of solutions

including the pairs of moving square root branch points. We also provide an example of

the excellent performance of the solution obtained in that approximation in comparison with

numerical solutions of the system (1.17)–(1.19) even when the length of the branch cut becomes

comparable with its distance to the real line.

The plan of the paper is the following. In §2, we derive the equations of the short branch cut

approximation from the system (1.17)–(1.19). The applicability condition of that approximation

is also established. After that we show that these equations in the moving complex frame are

reduced to the fully integrable complex Hopf equation for the complex velocity V(w, t) and the

transport equation for z(w, t). Section 3 develops the short branch cut approximation for the

spatially periodic case of BCs (1.24). Section 4 provides a comparison of the analytical solutions of

§3 with the full numerical solution of equations (1.17)–(1.19) and (1.24). Section 5 gives a summary

of obtained results and discussion of future directions.
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2. Short branch cut approximation and square root singularity solutions
In this section, we derive the dynamical equations of the short branch cut approximation and

establish their integrability in characteristics in §2a as well as provide particular solutions in §2b.

(a) Short branch cut approximation

Consider the branch cut γ connecting branch points at w = a(t) ∈ C
+ and w = b(t) ∈ C

+. The branch

cut is called short one if its distance to the real axis, min(|Im(a)|, |Im(b)|), is large compared with

|a − b|. It allows to define a small parameter ǫ as follows:

ǫ ≡ |a − b|/ min(|Im(a)|, |Im(b)|) ≪ 1. (2.1)

We neglect other singularities/branch cuts in R and V by assuming that they either identically

zero or give small contribution at the real axis w = u. Then we define

R(w, t) − 1 =
∫ b

a

R̃(w′, t) dw′

w − w′

and V(w, t) =
∫ b

a

Ṽ(w′, t) dw′

w − w′ ,



















(2.2)

where R̃(w′, t) and Ṽ(w′, t) are densities along branch cut such that the jump of R across branch cut

at w = w′ is 2π iR̃(w′, t) and similar the jump for V is 2π iṼ(w′, t) as follows from the Sokhotskii–

Plemelj theorem (e.g. [33,34]). Integration in equations (2.2) is taken over any contour which is a

simple arc in C
+ connecting w = a and w = b. This contour defines a branch cut. There is a freedom

in choice of that branch cut connecting two branch points w = a and w = b. We however assume

that the arclength of the branch cut is of the same order of magnitude as |a − b|, i.e. that arclength

is not very much different from the length of the segment of the straight line connecting w = a and

w = b. Also R̃(w′, t) and Ṽ(w′, t) are assumed to be the continuous functions of w′. Also R̃(w′, t) and

Ṽ(w′, t) can be zero at some parts of the contour. The functions R̄ and V̄ are given by

R̄(w, t) − 1 =
∫ b̄

ā

¯̃R(w̄′, t) dw̄′

w − w̄′

and V̄(w, t) =
∫ b̄

ā

¯̃V(w̄′, t) dw̄′

w − w̄′ ,























(2.3)

with the contour γ̄ connecting w = ā and w = b̄ being the reflection of the contour of equation (2.2)

with respect to the real axis w = Re(w).

Functions U(w, t) and B(w, t) can be rewritten as

U = RV̄ + R̄V − P̂+(RV̄ + R̄V)

and B = VV̄ − P̂+(VV̄),







(2.4)

where we used the definition (1.20) to represent P̂− as P̂− = 1 − P̂+. Because P̂+f is analytic for

w ∈ C
+ for any function f , as well as both R̄ and V̄ are analytic for w ∈ C

+ according to the

definition (1.22), we conclude from equation (2.4) that both U and B have a branch cut γ

connecting w = a and w = b inherited from branch cut of R and V. Then similar to equations (2.2),

we represent U(w, t) and B(w, t) through the integrals of the densities Ũ(w′, t) and B̃(w′, t) along

the branch cut as

U(w, t) =
∫ b

a

Ũ(w′, t) dw′

w − w′

and B(w, t) =
∫ b

a

B̃(w′, t) dw′

w − w′ .



















(2.5)
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Using equations (2.2) and (2.3), a calculation of the projectors in the definitions (1.18) is performed

through the partial fractions as follows:

P̂−[(R − 1)V̄] = P̂−
∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

(w − w′′)(w − w̄′)

= P̂−
∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

w′′ − w̄′

(

1

w − w′′ − 1

w − w̄′

)

=
∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

w′′ − w̄′
1

w − w′′

=
∫ b

a

R̃(w′′, t)V̄(w′′, t) dw′′

w − w′′ , (2.6)

where at the last line we used the definition (2.3). Similar to equation (2.6), one obtains that

P̂−[(R̄ − 1)V] =
∫ b

a

Ṽ(w′′, t)[R̄(w′′, t) − 1]dw′′

w − w′′ (2.7)

and

B(w, t) = P̂−[VV̄] =
∫ b

a

Ṽ(w′′, t)V̄(w′′, t) dw′′

w − w′′ . (2.8)

Equations (1.18), (2.5)–(2.8) result in

Ũ(w, t) = Ṽ(w, t)R̄(w, t) + R̃(w, t)V̄(w, t) (2.9)

and

B̃(w, t) = Ṽ(w, t)V̄(w, t), (2.10)

where w ∈ γ .

The functions R̄(w, t) and V̄(w, t) are analytic for w /∈ γ̄ including w ∈ C
+ and they are

represented by the convergent Taylor series in the open disc |w − w0| < rd with w0 ∈ γ . The radius

of convergence rd is given by distance from w0 to γ̄ . For the short branch cut rd ≃ 2|a| ≫ |b − a|.
Without the loss of generality we assume that the centre of branch cut is located at the imaginary

axis, i.e. Re(a + b) = 0 and choose w0 ∈ γ to be also at the imaginary axis, Re(w0) = 0. E.g. for the

simplest choice of branch cut γ to be the segment of straight line connecting w = a and w = b, we

then obtain that

w0 = (a + b)

2
. (2.11)

In the short branch cut approximation (2.1), we keep only zeroth order terms in Taylor series for

R̄(w, t) and V̄(w, t) and denote

Rc(t) ≡ R̄(w0(t), t) and Vc(t) ≡ V̄(w0(t), t). (2.12)

Using equations (2.5), (2.9)–(2.12), we then obtain in that approximation that

U = RVc + RcV − Vc and B = VcV. (2.13)

More accurate approximation for U and B can be obtained from equations (2.5), (2.9)–(2.12)

by taking into account more terms in Taylor series of R̄(w, t) and V̄(w, t) at w = w0 beyond
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equation (2.12). For instance, by keeping linear terms,

R̄(w, t) ≃ Rc(t) + (w − w0(t))R′
c, R′

c ≡ ∂

∂w
R(w, t)

∣

∣

∣

∣

w=w0

and V̄(w, t) ≃ Vc(t) + (w − w0(t))V′
c, V′

c ≡ ∂

∂w
V(w, t)

∣

∣

∣

∣

w=w0

,



















(2.14)

we obtain a modification of equation (2.13) as U → U + �U and B → B + �B, where

�U = −〈R̃〉V′
c + 〈Ṽ〉R′

c + (w − w0)[V(w, t)R′
c + (R(ω, t) − 1)V′

c]

and �B = −〈Ṽ〉V′
c + (w − w0)V(w, t)V′

c.







(2.15)

Here, 〈R̃〉 ≡
∫b

a R̃(w) dw and 〈Ṽ〉 ≡
∫b

a Ṽ(w) dw. The short branch cut approximation requires that

both

|�U| ≪ |U| and |�B| ≪ |B|. (2.16)

Qualitatively it implies that singularities in R and V must not be too strong. For example, if

a singularity in R is stronger than in V, as studied in [14], then these conditions require that

|Im(a)V′
cR̃| ≪ |RcṼ|. We note that the limit of infinitely short branch cut recovers pole solutions of

[14].

Any approximation of R̄(w, t) and V̄(w, t) in equations (2.9), (2.10) by polynomials in powers

of w − w0 turns Dyachenko equations (1.17)–(1.19) into hyperbolic-type PDEs with variable

coefficients both in t and w. In the simplest case of zeroth order polynomials, equations (1.17)–

(1.19), (2.13) and conditions (2.16) result in the dynamical equations of the short branch cut

approximation,

Rt + iVcRu = iRc(VRu − VuR)

and Vt + iVcVu = iRcVVu + g(R − 1),

}

(2.17)

which have variable coefficients Rc(t) and Vc(t) in t only. A more general case of the higher order

polynomials, i.e. going beyond the short branch cut approximation implying variable coefficients

in w (as exemplified in equation (2.14)), will be considered in the separate paper.

In the complex moving frame,

χ = w − i

∫ t

0
Vc(t′) dt′, (2.18)

we obtain from equation (2.17), that

Rt = iRc(VRχ − Vχ R)

and Vt = iRcVVχ + g(R − 1),

}

(2.19)

where the space derivative is over a new independent variable χ .

We now neglect the term with g in equation (2.19), resulting in

Rt = iRc(VRχ − Vχ R) (2.20)

and

Vt = iRcVVχ , (2.21)

which is justified either if g = 0 or |R − 1| ≪ 1. This second condition implies that the free surface

is initially nearly flat (this approximation applies only for small enough time while the condition

|R − 1| ≪ 1 remains valid).
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Equation (2.21) is decoupled from equation (2.20) and turns into the complex Hopf equation

Vτ = VVχ (2.22)

under the transformation to the new complex time

τ (t) = i

∫ t

0
Rc(t′) dt′ (2.23)

and the, respectively, redefined equation (2.18) as

χ = w −
∫ τ

0

Vc(t(τ ′))
Rc(t(τ ′))

dτ ′. (2.24)

Under the same transformation (2.23) and (2.24), equation (2.20) turns into

Rτ = VRχ − Vχ R, (2.25)

which is convenient to transform back from R (1.14) to z which gives

zτ = Vzχ + c(τ ). (2.26)

Equation (2.26) ensures that equation (2.25) is valid for the arbitrary function c(τ ) of τ . To fix that

freedom in the choice of c(τ ), we have, similar to the discussion after equation (1.24) in §1, to take

into account the decaying BCs (1.4) and (1.23). Using the definitions (2.23) and (2.24), we obtain

that a change of independent variables from (χ , τ ) to (w, t) in equation (2.29) results in

zt

iRc
+ Vc

Rc
zw = Vzw + c(τ (t)). (2.27)

Taking the limit w = u, u → ±∞, one obtains from equation (2.27) and BCs (1.4), (1.23) that

c(τ ) = Vc

Rc
. (2.28)

Respectively, equation (2.26) is reduced to

zτ = Vzχ + Vc

Rc
. (2.29)

Equations (2.22) and (2.29) are easily integrable. Assume that F(w) and G(w) are arbitrary

functions analytic for w ∈ C
− such that F(w) → 0 as w → ∞ and G(w) → w as w → ∞. Then a

general solution of system (2.22) and (2.29) is given by

V = F(χ0) (2.30)

and

z = G(χ0) +
∫ τ

0
c(τ ′) dτ ′, (2.31)

where the function χ0(χ , τ ) is determined by the solution of the implicit equation

χ = χ0 − F(χ0)τ (2.32)

and ∫ τ

0
c(τ ′) dτ ′ =

∫ τ

0

Vc(τ ′)
Rc(τ ′)

dτ ′ (2.33)

as follows from equation (2.28).

Equations (2.30) and (2.32) define a parametric representation of a Riemann surface ΓV(w).

If F(χ0) is the rational function then ΓV(w) has genus zero at the initial time t = 0 (e.g. [35] for

definition of genus of surface). For t > 0, branch points emerge in ΓV(w) thus making genus non-

zero. Branch points on the surface ΓV are zeros of the derivative dχ/dχ0 = 1 − F′(χ0)τ . Generally,

these zeros are simple. Assume such zero to be located at χ0 = χc. Then one can write that χ =
(χ0 − χc)2h(χ0), implying a square root branch point on ΓV (one can solve that implicit equation

for χ0(χ ) to see that). Here, h(χ0) is the analytic function of χ0 at χ0 = χc such that h(χc) �= 0. A
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number of such branch points (and, respectively, the number of sheets of ΓV(w)) can be arbitrary

large depending on the rational function F(χ0).

A pair of equations (2.30) and (2.31) give a parametric representation of the ‘physical’ Riemann

surface G(z). This surface is not changing with time meaning that a velocity field of the fantom

fluid defined in [14] is time independent. This fact additionally shows that the short branch cut

approximation has only a limited range of applicability.

(b) Particular solutions

According to [14,15], equation (2.30) does not allow decaying at w → ∞ solution in terms of

rational functions for t > 0 because any Nth-order pole in V immediately results in the 2N + 1

order pole term in the right-hand side (r.h.s.) of equation (2.30) which cannot be balanced by the

maximum N + 1 pole order term in l.h.s. of equation (2.30). Assume that

F(w) = − A

w − a0
= V|τ=0, (2.34)

where A and a0 are the complex constants such that a0 ∈ C
+. This initial condition has a pole at

w = a0. Then solving equations (2.32) and (2.34) for χ0, we obtain that

χ0 = χ + a0

2
±

√

(χ − a0)2

4
− Aτ , (2.35)

which has two square root branch points at

χ = a0 ±
√

4Aτ . (2.36)

We choose a branch cut to be the straight line segment of length |2
√

4Aτ | connecting two branch

points (2.36).

Equations (2.23), (2.24), (2.30), (2.32)–(2.35) result in

(χ0)χ = 1

2
+ χ − a0

4
√

((χ − a0)2/4) − Aτ
(2.37)

and

V = −2A

χ − a0 +
√

(χ − a0)2 − 4Aτ
= −χ − a0 −

√

(χ − a0)2 − 4Aτ

2τ
, (2.38)

where the branch of the square root
√

. . . is chosen to have
√

(χ − a0)2 = χ − a0 thus satisfying the

initial condition (2.34).

The length of the branch cut according to (2.36) is increasing with time as 2
√

4Aτ and the

solution (2.38) remains valid while the short cut approximation (2.1) is valid, i.e.

|2
√

4Aτ | ≪ |Im(a0)|. (2.39)

That condition can be generalized by taking into account equations (2.23) and (2.24).

Equation (2.31) for z depends on the arbitrary function G(χ0) so we can immediately construct

the infinite set of solutions for z; e.g., choosing

G(ξ ) = ξ for any ξ ∈ C, (2.40)

we obtain from equations (2.31) and (2.35) that

z = χ + a0

2
+

√

(χ − a0)2

4
− Aτ +

∫ τ

0

Vc(τ ′)
Rc(τ ′)

dτ ′, (2.41)

with the same choice of the branch of square root as in equation (2.38). Below in this section,

we always assume the same choice of the root. Using the definition (1.14), we obtain from
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equation (2.35) that

R = 1

(χ0)χ Gχ0 (χ0)
. (2.42)

Equations (2.40)–(2.42) result in

R = 2
√

(χ − a0)2 − 4Aτ

χ − a0 +
√

(χ − a0)2 − 4Aτ
=

√

(χ − a0)2 − 4Aτ (χ − a0 −
√

(χ − a0)2 − 4Aτ )

2Aτ
. (2.43)

This case corresponds to R|t=0 ≡ 1, which is the initially flat free surface evolving from the initial

velocity distribution (2.34). A solution with such initial condition was first studied in [36,37] in

the approximation of weak nonlinearity. It follows from equation (2.36) that one of two branch

points reaches the real line w = Re(w) in a finite time for a general complex value of the complex

constant A (the only exception is A > 0 when both branch cuts move horizontally parallel to the

real line). It means a formation of singularity on the free surface. However, well before that the

condition (2.1) of the applicability of the short branch cut approximation is violated as the lower

branch point approaches the real line. In §4 we discuss such type of solution in details for the

periodic BCs and compare it with the full numerical solution of Euler equations indicating that

the singularity in full equations does reach the real line in a finite time.

We now convert the solution (2.36) for the location of branch points into w plane and the

physical time t. The location of w0(t) (2.11) is determined by taking the midpoint

χmid ≡ a0 (2.44)

between the two branch points (2.36) and after that using the definitions (2.23) and (2.24) to shift

χ by
∫τ

0 (Vc(t(τ ′)))/(Rc(t(τ ′))) dτ ′ to return from the independent variable χ to w. It gives that

w0(t) = a0 +
∫ τ

0

Vc(t(τ ′))
Rc(t(τ ′))

dτ ′. (2.45)

For z, we use the initial condition (2.40) so that

R(w, t)|t=0 ≡ 1. (2.46)

In the simplest approximation of equations (2.23) and (2.24), we set

χ ≃ w − iVc(0)t = w + i
Āt

a0 − ā0
(2.47)

and

τ ≃ iRc(0)t = it, (2.48)

where we used equations (2.23), (2.34), (2.36), (2.45) and (2.46).

Using equations (2.12), (2.36), (2.47) and (2.48), we obtain the approximate positions of branch

points in w as follows

w = w± ≃ a0 ±
√

4Ait − i
Āt

a0 − ā0
. (2.49)

It is shown in §4 that the periodic BCs version of equation (2.49) is accurate for the values

of t well below the applicability condition (2.39) of the short branch cut approximation. Thus it

might be sufficient in many practical calculations to use equation (2.49) instead of more accurate

evaluations of integrals in equations (2.23) and (2.24).

As another particular initial shape of surface we choose that

G(ξ ) = ξ + B log[ξ − C] for any ξ ∈ C with C �= a0 and Im(C) > 0, (2.50)

where B and C are complex constants. We note that equation (2.50) does not satisfy BC (1.4). That

asymptotic deficiency can be fixed if we add the extra term −B log[ξ − C1], Im(C1) > 0 in r.h.s. of

equation (2.50), which is however beyond the scope of that paper. By ignoring such a fix we also
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neglect the last term in r.h.s. of equation (2.31). Then equations (2.31) and (2.50) imply that at any

moment of time τ ,

z = χ0(χ , τ ) + B log[χ0(χ , τ ) − C], (2.51)

where χ0(χ , τ ) is given by equation (2.35).

Using, equation (2.42), we obtain from equation (2.51) that

R = 1

(χ0)χ

χ0 − C

χ0 − C + B
= 1

(χ0)χ

(

1 − B

χ0 − C + B

)

(2.52)

and

zχ = (χ0)χ

(

1 + B

χ0 − C

)

. (2.53)

We note that equation (2.50) has the branch cut which extends to the complex infinity. However,

the corresponding R at t = 0 has only the pose singularity, see equation (2.52). Thus the short

branch cut approximation remains valid for the initial condition (2.50) at least for small enough t.

If C �= a0 then it follows from equation (2.50) that the function zχ has a simple pole at χ0 = C.

Using equation (2.35), we then obtain that a trajectory of motion of that pole in χ plane is given

by

χ = C − Aτ

a0 − C
. (2.54)

It follows from equation (2.53) that the residue of zχ at that point is the integral of motion in χ

plane, which is exactly equal to the constant B.

In a similar way, the function R in equation (2.52) has a simple pole at χ0 = C − B provided

C − B �= a0. A trajectory of motion of that pole in χ plane is given by

χ = C − B − Aτ

a0 − C + B
. (2.55)

However, the residue of that pole is not a constant of motion. We note V is regular at χ0 = C − B

(because we assumed C − B �= a0) at least for small enough time. Such local solution (with the pole

in R and no pole in V) is compatible with the analysis of [14,15] of the system (1.17)–(1.19), where

solutions with the pole in both R and V was excluded while a solution with the pole in R only

was allowed.

Another particular case is to set

R(w, t = 0) = B1

w − a0
= R|τ=0, (2.56)

where B1 is the complex constant. This initial condition has a pole at the same w = a0 as the initial

pole in V defined in equation (2.34). Then equations (2.40)–(2.42) result in

R = 4B1

√

(χ − a0)2 − 4Aτ

(χ − a0 +
√

(χ − a0)2 − 4Aτ )2

= B1

√

(χ − a0)2 − 4Aτ (χ − a0 −
√

(χ − a0)2 − 4Aτ )2

4A2τ 2
. (2.57)

The particular solution (2.38), (2.57) recovers the asymptotic result of [5] (Case (a) of §4 of [5])

obtained in that Ref. by the matched asymptotic expansions at t → 0.

Equation (2.57) makes sense locally near the pole position but cannot be valid globally because

R must approach 1 as w → ∞. So we provided that case only for the exact comparison with [5].
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We however can easily fix that deficiency through the replacement of equation (2.56) by

R(w, t = 0) = 1 + B1

w − a0
= R|τ=0. (2.58)

Using equation (1.14), we then obtain that

z(w, t = 0) = w − B1 log(w − a0 + B1) (2.59)

and, using equations (2.31), (2.35), that

z = χ + a0

2
+

√

(χ − a0)2

4
− Aτ − B1 log





χ − a0

2
+

√

(χ − a0)2

4
− Aτ + B1



 . (2.60)

Differentiating equation (2.60) over w and using equation (1.14) results in

R = 2
√

(χ − a0)2 − 4Aτ (2B1 + χ − a0 +
√

(χ − a0)2 − 4Aτ )

(χ − a0 +
√

(χ − a0)2 − 4Aτ )2

=
√

(χ − a0)2 − 4Aτ (2B1 + χ − a0 +
√

(χ − a0)2 − 4Aτ )(χ − a0 −
√

(χ − a0)2 − 4Aτ )2

8A2τ 2
. (2.61)

Equation (2.57) is recovered from equation (2.61) in the limit B1 → ∞.

We note that in all particular cases (2.43), (2.57) and (2.61), the series expansion at any of two

branch points (2.36) shows that R = 0 at these points, which is in the perfect agreement with the

analytical results of [15]. We also remind that all these particular cases share the same V from

equation (2.38).

To express V and R in all these cases in terms of w and t requires to find expression of χ and

τ through w and t using equations (2.23) and (2.24). For that one can use definitions (2.12) with

χ0 determined in terms of χ through equation (2.36). After that a general condition (2.1) can be

also verified. We note that all particular examples above correspond to the moving branch points

according to equation (2.36). It implies that the condition (2.1) is violated at large times so the

short branch cut approximation is valid in all these particular cases only for a finite duration of

time.

The second sheet of Riemann surface ΓV corresponds to the opposite choice of sign in

equation (2.35). It means that we have to change the sign in front of each square root in

equations (2.38), (2.43), (2.57) and equation (2.61). It immediately implies that V → ∞ and

R → ∞ as χ → ∞ in all these equations for the second (non-physical) sheet of Riemann

surface.

In all particular examples in this section, the functions V and R are analytic functions of
√

(χ − a0)2 − 4Aτ , i.e. they are analytic in two sheets of Riemann surface of w. This fact is the

result of the approximation (2.17) effectively assuming that both Ṽ and R̃ are constant on the

branch cut. Going beyond that short cut approximation, we expect that V and R can be analytically

continued into a much more complicated Riemann surfaces ΓV(w) and ΓR(w) with the unknown

total number of sheets. Our experience with the Stokes wave in [38] suggests that generally

the number of sheets is infinite. Some exceptional cases like found in [29,30] have only a finite

number of sheets of Riemann surface (these solutions however have diverging values of V and

R at w → ∞). We suggest that the detailed study of such many- and infinite-sheet Riemann

surfaces is one of the most important goal in free-surface hydrodynamics. This topic is however

beyond the scope of this paper. We also note that even in the simplest considered case (2.34), the

function R can have the arbitrary number of additional poles and branch points depending on

the choice of the function G(χ0) in equation (2.30) instead of particular cases considered in this

Section.
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3. Short branch cut approximation and square root singularity solutions for the
periodic case

In this section, we extend the results of §2 into the 2π -periodic BCs (1.24) instead of the decaying

BCs (1.23) used in §2. In that periodic case, instead of a single branch cut connecting branch points

at w = a(t) ∈ C
+ and w = b(t) ∈ C

+ of §2, we consider the periodic sum of branch cuts and use the

identity

∞
∑

n=−∞

1

n + a
= π cot πa. (3.1)

Then taking the sum over branch cuts amounts to replacing w − w′ by (1/2) tan [(w − w′)/2] in the

denominators of equation (2.2) and all other similar expressions. In particular, equation (2.2) is

replaced by

R(w, t) − 1 = 1

2

∫ b

a

R̃(w′, t) dw′

tan[(w − w′)/2]

and V(w, t) = 1

2

∫ b

a

Ṽ(w′, t) dw′

tan[(w − w′)/2]
.



















(3.2)

Equation (2.3) is replaced by

R̄(w, t) − 1 = 1

2

∫ b̄

ā

¯̃R(w̄′, t) dw̄′

tan[(w − w̄′)/2]

and V̄(w, t) = 1

2

∫ b̄

ā

¯̃V(w̄′, t) dw̄′

tan[(w − w̄′)/2]























(3.3)

and equation (2.5) is replaced by

U(w, t) = 1

2

∫ b

a

Ũ(w′, t) dw′

tan[(w − w′)/2]

and B(w, t) = 1

2

∫ b

a

B̃(w′, t) dw′

tan[(w − w′)/2]
.



















(3.4)

Instead of the partial fractions used in equation (2.6), it is more convenient to use the integral

representation of the projector P̂− (1.20) for the periodic functions (e.g. [39]) which follows from

equation (1.21) and the Sokhotskii–Plemelj theorem (e.g. [33,34]) giving that

P̂−f = − 1

2π i

∞
∑

n=−∞

∫π

−π

f (u′) du′

u′ − u + i0 + 2πn
= − 1

4π i

∫π

−π

f (u′) du′

tan [(u′ − u + i0)/2]
, (3.5)

where i0 means iǫ, ǫ → 0+ and we used the identity (3.1).

Using equations (3.2), (3.3) and (3.4), a calculation of the projectors in the definitions (1.18) is

performed through moving the integration contour from (−π , π ) to (−π − i∞, π − i∞) together

with the identity tan(−i∞) = −i which give that

P̂−[(R − 1)V̄] = 1

4
P̂−

∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

tan[(w − w′′)/2] tan[(w − w̄′)/2]

= − 1

16π i

∫π

−π

∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′du′

tan[(u′ − w′′)/2] tan[(u′ − w̄′)/2] tan[(u′ − w + i0)/2]
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= −1

4

∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

1

×
(−1

2
− 1

tan[(w − w′′)/2] tan[(w − w̄′)/2]
+ 1

tan[(w̄′ − w′′)/2] tan[(w − w̄′)/2]

)

= −1

4

∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

1

×
(−1

2
− 1

tan[(w − w̄′)/2]

[

tan[(w̄′ − w′′)/2] − tan[(w − w′′)/2]

tan[(w − w′′)/2] tan[(w̄′ − w′′)/2]

])

= −1

4

∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

1

(

1

2
+

[

1

tan[(w − w′′)/2] tan[(w̄′ − w′′)/2]

])

= −1

8

∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

1
+ 1

4

∫ b

a

∫ b̄

ā

R̃(w′′, t) ¯̃V(w̄′, t) dw′′dw̄′

tan[(w − w′′)/2] tan[(w′′ − w̄′)/2]
, (3.6)

where we used the following trigonometric identity

cot (a − b) = 1 + tan a tan b

tan a − tan b
,

with a = (w̄′ − w′′)/2, b = (w − w′′)/2 and a − b = (w̄′ − w)/2.

Now using the definitions (3.2) and (3.3) in equation (3.6), we obtain that

P̂−[(R − 1)V̄] = −1

2
[R(−i∞, t) − 1]V̄(i∞, t) + 1

2

∫ b

a

R̃(w′′, t)V̄(w′′, t) dw′′

tan[(w − w′′)/2]
, (3.7)

where at the first term in r.h.s. of equation (3.6), we take appropriate limits to use the

analyticity of R and V̄ as follows: tan[(w − w′)/2] → −i∞ as w → −i∞ in the first equation (3.2)

tan[(w − w̄′)/2] → i∞ as w → i∞ in the second equation (3.3).

Similar to equation (3.7), one obtains that

P̂−[(R̄ − 1)V] = −1

2
[R̄(i∞, t) − 1]V(−i∞, t) + 1

2

∫ b

a

Ṽ(w′′, t)[R̄(w′′, t) − 1]dw′′

tan[(w − w′′/2)]
(3.8)

and

B̂(w, t) = P̂−[VV̄] = −1

2
[V̄(i∞, t)]V(−i∞, t) + 1

2

∫ b

a

Ṽ(w′′, t)V̄(w′′, t) dw′′

tan[(w − w′′/2)]
. (3.9)

We obtain from equations (1.22) and (1.24) that

R(−i∞, t) − 1 = R̄(i∞, t) − 1 = V̄(i∞, t)] = V(−i∞, t) = 0. (3.10)

Then equations (1.18), (3.4)–(2.8) and (3.10) result in the same equations (2.9) and (2.10) as for the

decaying BCs case (1.23) considered in §2.

Similar to §2, we consider the short branch cut approximation for the periodic case recovering

exactly the same equations as (2.12)–(2.27). The only difference in addressing these equations in

comparison with §2 is to use the periodic BC (1.24). Respectively, instead of equation (2.28), we

have to use the conditions (1.25) and (1.26) to determine c(τ ).

As a particular example, we assume a periodic initial condition

F(w) = − A

2 tan [(w − a0)/2]
+ iA

2
= V|τ=0, (3.11)

where A and a0 are complex constants such that a0 ∈ C
+. This initial condition is the periodic

analogue of equation (2.34) with the extra constant term iA/2 added to make sure that V → 0

at Im(w) → −i∞, i.e. the decay of the velocity deep inside fluid. This initial condition has poles

at w = a0 + 2πn, n = 0, ±1, ±2, . . .. In contrast with equations (2.32) and (2.34), equations (2.32)

and (3.11) cannot be explicitly solved for χ0. Thus equations (2.30)–(2.32) provide only the implicit

form of the solution for the initial condition (3.11). Note that c(τ ) in this section is generally not

given by equation (2.28) but is determined the conditions (1.25) and (1.26).
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We can still explicitly obtain that the locations of square root branch points if we differentiate

equation (2.32) over χ resulting in

1 = (χ0)χ

[

1 + dF(χ0)

dχ0
τ

]

(3.12)

and note (χ0)χ is singular at the square root branch points (e.g. equation (2.37) in the non-periodic

case). It implies from equation (3.12) that

1 + dF(χ0)

dχ0
τ = 0 (3.13)

at each branch point. Solving equation (3.13), we obtain the location of branch point in χ0 variable

as follows

χ0 = χ0,± ≡ a0 ± 2 arcsin

(√
Aτ

2

)

+ 2πn, n = 0, ±1, ±2, . . . . (3.14)

Then using equations (3.11), (3.13) and (3.14), we obtain that the square root branch points are

located at

χ = χ± = a0 − iAτ

2
±

[

1

2

√
Aτ

√
4 − Aτ + 2 arcsin

(√
Aτ

2

)]

+ 2πn, n = 0, ±1, ±2, . . . . (3.15)

Equation (2.36) is recovered from equation (3.15) at the leading order O(τ 1/2) for Aτ → 0 and

n = 0. Similar to equation (2.36), we choose a branch cut to be the straight line segment of length

|
√

Aτ
√

4 − Aτ + 4 arcsin(
√

Aτ/2)| connecting the two branch points (3.15). The location of w0(t)

(2.11) is determined by taking the midpoint

χmid ≡ a0 − iAτ

2
(3.16)

between the two branch points (3.15) and after that using the definitions (2.23) and (2.24) to shift

χ by
∫τ

0
Vc(t(τ ′))
Rc(t(τ ′)) dτ ′ to return from the independent variable χ to w. It gives that

w0(t) = a0 − iAτ

2
+

∫ τ

0

Vc(t(τ ′))
Rc(t(τ ′))

dτ ′. (3.17)

For z, we use the initial condition (2.40) so that

R(w, t)|t=0 ≡ 1. (3.18)

The length of the branch cut is increasing with time as ∝ √
τ at

√
Aτ according to (3.15) and

the solution (2.38) remains valid at least while the short cut approximation (2.1) is valid, i.e.

|2
√

4Aτ | ≪ |Im(a0)|. (3.19)

For comparison with simulations one has to return from the independent variables τ and χ to

the original variables t and w using equations (2.23) and (2.24). In the simplest approximation of

equations (2.23) and (2.24), we set

χ ≃ w − iVc(0)t = w − i

[

− Ā

2 tan [(w − ā0)/2]
− iĀ

2

]∣

∣

∣

∣

∣

w=a0,t=0

× t = w − i

[

− Ā

2 tan [(a0 − ā0)/2]
− iĀ

2

]

t (3.20)
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and

τ ≃ iRc(0)t = i t, (3.21)

where we used equations (2.23), (2.36), (3.11), (3.17) and (3.18).

Using equations (2.12), (3.15), (3.20) and (3.21), we obtain the approximate positions of branch

points in w as follows

w = w± ≃ a0 + i

[

− Ā

2 tan [(a0 − ā0)/2]
− iĀ

2

]

t + At

2

±
[

1

2

√
Ait

√
4 − Ait + 2 arcsin

(√
Ait

2

)]

+ 2πn, n = 0, ±1, ±2, . . . . (3.22)

For the precise location of branch points instead of the approximation (3.22), we have to find

the dependence of τ on t and χ on w and t using equations (2.23) and (2.24) together with the

definitions (2.12) and equation (3.17). These equations are implicit ones. Also one has to find

χ0(χ , τ ) from the implicit equations (2.32) and (3.11) to be able to use equations (2.30) and (2.31)

for finding Vc and Rc from the definitions (2.12).

Similar to the solutions of §2, the particular solutions considered in this section also have the

moving branch points according to equation (3.15). It follows from equation (2.36) that one of two

branch points reaches the real line w = Re(w) in a finite time for a general complex value of the

complex constant A. It means a formation of singularity on the free surface. However, well before

that the condition (2.1) of the applicability of the short branch cut approximation is violated as

the lower branch point approaches the real line.

Similar to the discussion in §2, one can find a wide range of particular solutions for the periodic

case of this section based on the general solutions (2.30) and (2.31).

4. Comparison of short branch cut approximation with full numerical solution
In this section, we compare the short branch cut approximation described in the §3 with the full

numerical solution of the system (1.17)–(1.19) satisfying the initial conditions (3.11) and (3.18). We

assume that there is no gravity (g = 0). Both functions z(w, t) and Π (w, t) are recovered from the

variables R and V by means of the relations (1.14) and (1.15) as discussed in §1, where we assume

zero mean fluid (1.26) is at zero.

These initial conditions result in a pair of branch points that move according to equation (3.15).

The direction of motion depends on the argument of the complex constant A. In the simulations,

we chose three values A = 1, A = i and A = −i. The initial pole of the complex velocity, V, is

located at a0 = i. Generally, A can be the arbitrary complex number and a0 can be the arbitrary

complex number from C
+. Figures 2–5 show the spatial profiles (right panel), and the location of

branch points (left panel) for both the branch cut approximation of the §3, and the full numerical

solutions. The branch points are located at w = w±(t) ≡ w±,r(t) + iw±,i(t), where w±,r(t) and w±,i(t)

are real-valued. At each time step, the location is recovered from the numerical simulations by the

rational approximation procedure outlined in appendix A. Additionally, vc = Im(w−,r(t)) can be

also determined from the asymptotic of the exponential decay rate of the Fourier coefficients ẑk ∼
e−vc|k| of z(w) for |k| → ∞, e.g. [39–41] for more details of that Fourier technique. Equation (3.15)

provides the analytic formula for the location of branch points in terms of the τ and χ in the

branch cut approximation. However, the dependencies of τ (t) and χ (w, t) are given by an implicit

relation that follows from equation (3.11). For the sake of convenience, we use the approximate

equations (3.20) and (3.21), which result in the explicit expression (3.22) for branch point locations

in terms of w and t.

We solve the implicit equations (2.30) and (2.32) for χ0(w, τ ) at every instant of time τ to

determine the shape of the free surface x(u, t) + iy(u, t). The extra conditions (1.25) and (1.26) are

used to find c(τ ), and a subsequent substitution in equations (2.30), (2.31) and (3.11) gives the

shape of the surface z(u, t).
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Figure 2. (a) The vertical position v = Im(w−(t))= w−,i(t) of the lower branch point versus time t in the simulation with

initial conditions (3.11) and (3.18) with A= i and a0 = i. The lower branch point location w−(t) is recovered from the full

numerical simulations of equations (1.17)–(1.19) by means of a numerical rational approximation (solid line) compared with

its location from the short branch cut approximation (3.15) (dashed line). See appendix A about the rational approximation. The

relative error of the theoretic prediction versus numerics is 1.93% at short time t = 0.05, about 3.93% at t = 0.1, and 15.2%

at t = 0.2. At t = 0.05 and t = 0.2, the value of the parameter ǫ introduced in equation (2.1) is 0.61 and 0.89, respectively.

These values arewell outside the asymptotic condition ǫ ≪ 1 when the short branch cut theory is guaranteed to be applicable.

(b) The spatial profiles of the fluid surface at different times: the result of numerical simulation (solid lines), and the short branch

cut approximation (dashed lines). (c) The timedependence of themaximumof the error for the surface elevation y(x, t) between

the numerical solution and the short branch cut approximation. Themaximumof error occurs at x = 0 as seen from the surface

profiles in (b). The error is normalized to the values of y(0, x) from the numerical solution. (Online version in colour.)

The summary of a comparison of the short branch cut approximation and the numerical

solutions is given below:

(a) For A = i, both branch points move along the imaginary axis as follows from

equation (3.15). The lower branch point, w− = iw−,i(t) moves downward from w = a0,

and the upper branch point w+ = iw+,i(t) is moves upward from w = a0. Figure 2a

illustrates a dependence of the vertical coordinate of w−,i(t) on time, as determined from

the equation (3.15) and the numerical simulations. The positions of branch points are

recovered from numerical simulations by the procedure based on a least-squares rational

approximation of complex functions and is described in details in [14,39,40]. The vertical

coordinate of the lower branch point is also estimated from the asymptotics of the decay

rate of the Fourier spectrum giving the same result. Figure 2b shows the spatial profiles

of the free surface and a comparison of the short branch cut approximation and full
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line) and b= 4/3 (red solid line). It is seen that b= 4/3 is much better fit that b= 1. Here, a= 0.39795 ± 0.01406 and

k = 6.40096 ± 0.03348 are the fitting constants. (Online version in colour.)
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Figure4. (a) The location of thebranch cut in the analytical continuation of the complex velocityV (1.15) in the complex plane at

several instants of time. The initial conditions are given by (3.11) and (3.18) with A= −i and a0 = i. The branch cuts recovered

from thenumerical simulations of equations (1.17)–(1.19). Thefilled circles show thepositions of poles of rational approximation,

and the open circles correspond to the branch point locations given by the analytic formula for w±,i(t) from equation (3.15) at

the respective time. The solid black lines are the trajectories of w±,i(t) from the short cut approximation. The difference in

the position of the branch points estimated from the numerical simulation and the short branch cut theory is 2.89% at time

t = 0.05 (ǫ = 0.92), and is 6.45% at time t = 0.50 (ǫ = 4.12). Thew±,i(t) from equation (3.15) give an excellent estimate for

the branch points even for ǫ > 1. (b) The spatial profiles of the fluid surface from numerical simulation (solid lines), and short

cut approximation (dashed lines). (Online version in colour.)

numerics. It is seen that the spatial profile has a form of jet. Also figure 2b shows the time

dependence of the maximum error in the surface elevation y(x, t) between the numerical

solution and short branch cut approximation.

As discussed in all particular solutions of §§2 and 3, one of the branch points of the

analytical solution in the short branch cut reaches the real line w = Re(w) in a finite

time meaning a formation of the singularity of the free surface in a finite time. This is

exactly what is seen in figure 2a. However, we also see in figure 2a that the full numerical

solution seems does not produce a finite time singularity. Instead, the singularity appears

to occurs at the infinite time t → ∞. To quantify that statement, we performed a fit to the
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Figure 5. (a) The location of the branch cut in the analytical continuation of the complex velocity V (1.15) at different moments

of time in the complex plane for initial conditions given by (3.11) and (3.18) with A= 1 and a0 = i. The branch cuts recovered

from full numerical simulations of equations (1.17)–(1.19) is givenby solid line. Thefilled circles represent thepoles of the rational

approximation of the branch cut, and the open circles correspond to the branch point locationsw±,i(t) from equation (3.15). The

grey line passing through w = i is the trajectory of w±,i(t) as obtained from equation (3.15). It is observed that for small time

w±,i(t) from equation (3.15) approximates the branch points to 3.31% (relative error) at t = 0.05 with ǫ = 0.68, and 7.69%

(relative error) at t = 0.25 with ǫ = 1.18. (b) The shape of free surface of the fluid at different times: numerical simulation

(solid lines), and the short branch cut approximation (dashed lines). (Online version in colour.)

stretched exponential law v = a e−ktb
, where a, b and k are three real fitting constants. We

find that b = 1.333 ≃ 4/3 provides the best fit as seen in figure 3. Purely exponential fit

b = 1 is also shown providing not as good fit. Another not as good fit is e.g. b = 2, i.e. the

Gaussian exponent (not shown in figure 3). The detailed discussion of the topic of finite

time singularity is beyond the scope of this paper.

(b) For A = −i, both branch points start to move in the horizontal direction, but unlike the

problem on infinite line −∞ < x < ∞, the branch points in periodic problem develop

vertical speed and approach the real axis. At later times branch cut recovered from

numerics is not short thus violating b the short branch cut approximation. However, the

positions of branch points recovered from short branch cut approximation agree semi-

quantitatively with numerical simulations even at late times. Figure 4b shows the spatial

profiles of the free surface at different times.

(c) For A = 1, both branch points start moving in the complex plane from the initial position

at w = ia as illustrated in the figure 5a. Contrary to the other two cases, the positions of the

branch points are not symmetric with respect to the imaginary axis. Figure 5b shows how

the shape of the free surface moves in time with increasing of steepness thus promoting

overturning of the wave in a finite time.

We may conclude that the short branch cut approximation gives excellent results up to the

values of small parameter ǫ � 0.9, well-outside of the applicability region for the short branch cut

approximation (2.1).

5. Conclusion and discussion
The main result of this paper is the development of the short branch cut approximation both for

the decaying BC (1.23) and the periodic BC (1.24) for free surface hydrodynamics. These equations

in the moving complex frame are reduced to the fully integrable complex Hopf equation (2.22) for

the complex velocity V(w, t) and the transport equation (2.26) for the conformal map z(w, t). These

equations admit the infinite set of solutions easily constructed by the method of characteristics.
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Examples of such solutions are provided in §§2 and 3. Section 4 demonstrated the excellent

agreement between the analytical solutions of the short branch cut approximation and the full

numerical solution of equations (1.17)–(1.19) and (1.24). Examples of jets and overturning waves

are shown in these solutions.

The results of §4 appears quite striking because the analytical solutions of the short branch

cut approximation agree with relatively good precision in several percents with the solutions of

equations (1.17)–(1.19) even when the parameter ǫ introduced in equation (2.1) is not small while

the derivation of §§2 and 3 guarantees the applicability of the short branch approximation only for

ǫ ≪ 1. For future work, we plan to analyse that efficiency of the short branch cut approximation

for ǫ � 1 by addressing the corrections beyond that approximation outlined in equations (2.14)

and (2.13).

Appendix A. Rational approximation for recovery of singularities
In order to recover singularities of the functions R and V in the complex w-plane, we seek

a rational approximation of the target function by means of the Alpert–Greengard–Hagström

(AGH) originally published in [42], and adapted for the water wave problem in [40]. We outline

the general approach to rational approximation of complex functions, and refer the reader to the

aforemetioned works for more details. See also [14] for the numerical demonstration of the high

efficiency of that method.

AGH algorithm robustly recovers poles in solution while branch cuts are approximated by a

set of poles as follows

g(ζ ) = 1

2π

∫
C

ρ(ζ ′) dζ ′

ζ − ζ ′ ≃
N

∑

n=1

σn

ζ − ζn
, (A 1)

where the function g(ζ ) has s single branch cut along the contour C in the complex plane of ζ

with ρ(ζ ) being a jump of g(ζ ) at the branch cut. The r.h.s. of equation (A 1) approximates g(ζ ) by

simple poles located at ζ = ζn ∈ C, n = 1, . . . , N with the residues σn, n = 1, . . . , N.

Given a 2π -periodic function f (w) on a real periodic interval w ∈ [−π , π ], we may expand the

periodic interval to the real line, −∞ < ζ < ∞, by a coordinate transformation

ζ = tan
w

2
, (A 2)

which maps the stripe −π < Re(w) < π into the complex ζ plane. Also w ∈ C
+(C−) imply that

ζ ∈ C
+(C−), see also [40] on more details of the mapping (A 2). ζ variable is convenient to use in

AGH algorithm ([40]) which is assumed below.

In the ζ -variable, the function g(ζ ) = f (w(ζ )) − f (π ) is defined on the real line and decays to

zero as ξ → ±∞. The function g(ζ ) is suitable for rational approximation in the ζ -variable, and

we seek two polynomials P(ζ ) and Q(ζ ) of degrees N and N + 1, respectively, such that

ǫN ≡
∫+∞

−∞

∣

∣

∣

∣

g(ζ ) − P(ζ )

Q(ζ )

∣

∣

∣

∣

2

dζ → min, (A 3)

where minimization goes over the polynomial coefficients of P(ζ ) and Q(ζ ).

After the optimal polynomials P and Q have been determined, the resulting approximant

gives accurate approximation to g(ζ ) on the real line. However, the ratio P(ζ )/Q(ζ ) defines

a meromorphic function in the complex ζ–plane, and its singularities may be determined by

seeking the roots ζk of Q(ζ ) = 0. The residues at the poles are given by P(ζk)/Q′(ζk) and can be

used to recover an approximation to the Cauchy type integral as given by equation (A 1).
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