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SUMMARY

We discuss the focusing inversion of potential field data for the recovery of sparse subsurface
structures from surface measurement data on a uniform grid. For the uniform grid, the model
sensitivity matrices have a block Toeplitz Toeplitz block structure for each block of columns
related to a fixed depth layer of the subsurface. Then, all forward operations with the sensitivity
matrix, or its transpose, are performed using the 2-D fast Fourier transform. Simulations are
provided to show that the implementation of the focusing inversion algorithm using the fast
Fourier transform is efficient, and that the algorithm can be realized on standard desktop
computers with sufficient memory for storage of volumes up to size n ~ 10°. The linear
systems of equations arising in the focusing inversion algorithm are solved using either Golub—
Kahan bidiagonalization or randomized singular value decomposition algorithms. These two
algorithms are contrasted for their efficiency when used to solve large-scale problems with
respect to the sizes of the projected subspaces adopted for the solutions of the linear systems.
The results confirm earlier studies that the randomized algorithms are to be preferred for the
inversion of gravity data, and for data sets of size m it is sufficient to use projected spaces of size
approximately m2/8. For the inversion of magnetic data sets, we show that it is more efficient to
use the Golub—Kahan bidiagonalization, and that it is again sufficient to use projected spaces
of size approximately 7/8. Simulations support the presented conclusions and are verified for
the inversion of a magnetic data set obtained over the Wuskwatim Lake region in Manitoba,
Canada.

Key words: Gravity anomalies and Earth structure; Inverse theory; Numerical approxima-
tions and analysis.

et al. 2019). Other directions include application of wavelet and
compression techniques (Portniaguine & Zhdanov 2002; Li & Old-
enburg 2003; Voronin ef al. 2015), or the use of the structure of

1 INTRODUCTION

The determination of subsurface structures from the inversion of

measured potential field data is important for many practical ap-
plications concerned with oil and gas exploration, mining and re-
gional investigations (Blakely 1995; Nabighian et al. 2005). For
gravity and magnetic potential field data, there are many techniques
for the reconstruction of the subsurface structures from the data.
These include the direct inversion of a forward model described by
a sensitivity matrix for gravity and magnetic potential field data,
(Li & Oldenburg 1996; Pilkington 1997; Li & Oldenburg 1998;
Portniaguine & Zhdanov 1999; Boulanger & Chouteau 2001; Silva
& Barbosa 2006; Lelievre & Oldenburg 2006; Farquharson 2008).
When the problem is large-scale, it is important to consider alter-
native algorithms that avoid the generation and storage of the sen-
sitivity matrix (Cox et al. 2010; Uieda & Barbosa 2012; Vatankhah

the sensitivity matrix for the design of efficient algorithms based on
the 2-D fast Fourier transform (2DFFT, Pilkington 1997; Bruun &
Nielsen 2007; Zhang &Wong 2015; Chen & Liu 2018).

While the use of the fast Fourier transform (FFT) has been applied
in a number of contexts in relation to forward modeling for geo-
physics kernels (Li et al. 2018; Zhao et al. 2018; Hogue et al. 2019),
it appears that Bruun & Nielsen (2007) provided the first discussion
of the use of the structure of the sensitivity matrix in relation to
the use of the 2DFFT for the inversion of 2-D potential field data.
They observed that the sensitivity matrix exhibits a block Toeplitz
Toeplitz block (BTTB) structure provided that the data are measured
on uniform grid. It is the BTTB structure that facilitates the use of the
2DFFT, and the associated reduction in memory requirements, via
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an embedding in a block Circulant Circulant block (BCCB) matrix
(Li & Chouteau 1998; Vogel 2002; Chan & Jin 2007).

It is well-known, that an inversion algorithm for the reconstruc-
tion of subsurface structures will not provide suitable compact and
reliable estimates of the structures using a smoothing regularization.
Instead, state-of-the-art approaches for resolving complex struc-
tures require stabilization with a general L, norm regularizer (0
< p < 2) (Last & Kubik 1983; Portniaguine & Zhdanov 1999,
2002; Vatankhah et al. 2020b). Although the BTTB structure has
been applied in inversion algorithms for gravity data using standard
Tikhonov smoothers (Bruun & Nielsen 2007; Zhang &Wong 2015),
it has not been applied for focusing inversion. Moreover, while the
singular value decomposition (SVD) is useful for the solution of lin-
ear systems for small scale problems (Vatankhah et al. 2014, 2015),
focusing algorithms for large-scale problems rely on alternatives to
the SVD for improved efficiency. On the other hand, a reasonable
approximation of the dominant terms of the SVD can be useful in
enabling automatic determination of regularization parameters (Re-
naut et al. 2017). Two algorithms that are both more efficient than
the SVD and provide useful approximations to the dominant terms of
the SVD, are the randomized singular value decomposition (RSVD)
(Halko ez al. 2011) and the iterative Krylov method based on the
Golub-Kahan bidiagonalization (GKB) algorithm (Paige & Saunders
1982; Renaut et al. 2017). Both of these algorithms provide an ap-
proximation to the SVD dependent on the number of terms required
to provide a good approximation of the dominant space, which is
model and size dependent (Vatankhah er al. 2017, 2018, 2020a).
Recommendations for the application of the RSVD with power it-
eration, and the sizes of the projected spaces to be used for both
GKB and RSVD algorithms, are available for problems of moderate
scale that can be solved without the use of the 2DFFT (Vatankhah
etal 2017,2018,2020a; Luiken & van Leeuwen 2020). These rec-
ommendations need to be extended for the solution of large-scale
problems.

The consideration of memory demand, computing efficiency and
effective determination of rank for the focusing inversion of po-
tential field data is the focus of this paper. Of interest, is the de-
velopment of an approach that allows domain padding and takes
advantage of the structure of the sensitivity matrix, for both gravity
and magnetic problems, to enable the use of the 2DFFT for matrix
operations with the sensitivity matrix. The use of the structure also
significantly reduces the storage requirements by eliminating the
need to store the sensitivity matrix. An efficient implementation
provides the opportunity to solve large-scale problems and make
recommendations for the sizes (ranks) of the projected spaces for
the solutions. Thus, a complete validation and study of the RSVD and
GKB algorithms for the solution of the large-scale focusing inversion
problem is important.

1.1 Overview of main scientific contributions

In this paper, we examine the impact of the application of the 2DFFT,
and the sizes of projected spaces for solutions, in focusing inversion
algorithms for the large-scale inversion of gravity and magnetic po-
tential field data sets. There are three main contributions of this
paper that expand on related work in the literature. First, we analyse
the efficiency, in terms of memory and computational cost, of the
use of the 2DFFT for all operations with the sensitivity matrix, or its
transpose, within the iteratively regularized least squares algorithm
for focusing inversion, where the systems of equations are solved
using GKB or RSVD algorithms. Secondly, we examine and contrast
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the sizes of the projected spaces that are required by the GKB or RSVD
algorithms for gravity and magnetic data sets. Finally, we conclude
that the GKB algorithm is to be preferred for the solution of the mag-
netic inversion problem, but that the RSVD algorithm is suggested
for the inversion of the gravity data sets, and that the recommended
size of the projected space is approximately m/8 for data sets with
m measurements. We demonstrate that the methodology is suitable
for focusing inversion of large-scale data sets and can provide volu-
metric parameter reconstructions with more than 1 million variables
using a laptop computer.

The paper is organized as follows. In Section 2, we present a gen-
eral methodology for the inversion of gravity and magnetic potential
field data, including the derivation of the forward model with uni-
form placement of measurement stations (Section 2.1), overviews
of the focusing inversion methodology (Section 2.2), numerical
solvers (Section 2.3), algorithms (Section 2.4), and computational
costs (Section 2.5). Numerical results applying the presented algo-
rithms to synthetic and practical data are described in Section 3. We
discuss the parameter choices for the algorithms that apply to all
computational implementations in Section 3.1, and the generation of
the simulation data in Section 3.2. The computational costs for one
iteration of the iterative algorithm are contrasted for implementa-
tions with, and without, the 2DFFT (Section 3.3.1) The comparative
costs of using either the GKB, or the RSVD, solver within the itera-
tive focusing algorithm are examined in Section 3.3.2. We provide
validating results for the inversion of magnetic data obtained over
a portion of the Wuskwatim Lake region in Manitoba, Canada in
Section 3.4 and conclusions in Section 4. Appendix A gives brief
details on the use of the 2DFFT for matrices with BTTB structure.
The supporting numerical evidence for the figures illustrating the
results is provided in a number of tables in Appendix B.

2 METHODOLOGY

2.1 Forward model and BTTB structure

We consider the inversion of measured potential field data dps that
describes the response at the surface due to unknown subsurface
model parameters m. The data and model parameters are connected
via the forward model

dops = Gm, (1)

where G is the sensitivity, or model, matrix. This linear relationship
is obtained via the discretization of a Fredholm integral equation of
the first kind,

d(a,b,c)=///h(a,b,c,x,y,z){(x,y,z)dx dy dz, (2)

where exact values d and m are the discretizations of continuous
functions d and ¢, respectively, and G in (1) provides the discrete
approximation of the integrals of the kernel function / over the
volume cells. For the specific kernels associated with gravity and
magnetic data, assuming for magnetic data that there is no remanent
magnetization or self-demagnetization, 4 is spatially invariant in all
dimensions, A(a, b, ¢, x, y, z) = h(x — a,y — b, z — ¢) and (2)
describes a convolution operation.

Using the formulation of the integral of the kernel as derived by
Haaz (1953) and Li & Chouteau (1998) for the gravity kernel, and
by Rao & Babu (1991) for the magnetic kernel, sensitivity matrix
G decomposes by column blocks as

G=[G",...,G"], (3)
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Figure 1. The configuration of prism cpgr, 1 < p < sy + pxy + Pxg =12, 1 < q <8y + py, + pyy = ny, 1 < r < n, in the volume relative to a station on
the surface at location s;; = (ajj, b)), 1 <i <sx, 1 <j <s,. Here the stations are shown as located at the centres of the cells on the surface of the domain and

that there are no measurements taken in the padded portion of the domain.

where block G is for the rth depth layer, and there are n. depth
layers. The individual entries in G correspond to the projections of
the contributions from prisms ¢, in the volume to measurement
stations, denoted by s, at or near the surface. The configurations
of the volume and measurement domains are illustrated in Fig. 1.
We assume that the measurement stations are all on the surface
with coordinates (a;, b;, 0) in (x, y, z). Prism ¢, of the domain has
dimensions A, A, and A; in x, y and z directions with coordinates
that are integer multiples of A,, A, and A., and is indexed by
l<p<si+tputpa=n,1<qg=<s,+p,+py=n, and
1 <r < n,. This indexing assumes that there is padding around the
domain in x and y directions by additional borders of py,, px., Py
and p,, cells. The distinction between the padded and unpadded
portions of the domain is that there are no measurement stations in
the padded regions. This yields G € R"*" where m = s,s,, and n
= nynyn., and each G" € R™*" | where n, = nyn,.

In (3), m < n, < n and the system is drastically underdetermined
for any reasonable discretization of the depth (z) dimension of the
volume. Moreover, when 7 is large the use of the matrix G requires
both significant computational cost for evaluation of matrix-matrix
operations and significant storage. Without taking account of struc-
ture in G, and assuming that a dot product of real vectors of length
n requires 2n floating point operations (flops), calculating GH,
for H € R"*?, takes O(2nmp) £1ops and storage of matrix G uses
approximately 8mn x 1e~*GB.! For example, suppose p = m =
n/8 and n = 10°, then storage of G requires approximately 1000
GB, and the single matrix multiplication uses ~ 10'3/32 f1lops or
107 Gflops, without any consideration of additional software and
system overheads. These observations limit the ability to do large-
scale stabilized inversion of potential field data in real time using
current desktop computers, or laptops, without taking into account
any further information on the structure of G.

Boulanger & Chouteau (2001) observed that the configuration
of the locations of the stations in relation to the domain discretiza-
tion is significant in generating G with a symmetric structure and
reduces the storage requirements. Then, Bruun & Nielsen (2007)
recognized that the structure can be effectively utilized to improve

'We assume one double floating point number requires 8 bytes and note 1
byte is 10~°GB.

the efficiency of operations with G and to further reduce the memory
demands. Assuming that the stations are always placed uniformly
with respect to the domain prisms, and provided that the distances
between stations are fixed in x and y, then matrix G for the gravity
kernel has symmetric BTTB structure. Then, it is possible to em-
bed G in a BCCB matrix and matrix operations can be efficiently
performed using the 2DFFT, as explained by Vogel (2002). This
structure was also discussed and then utilized for efficient forward
operations with G by Chen & Liu (2018). They assumed that the
stations are placed symmetrically with respect to the domain co-
ordinates, as illustrated for the staggered configuration in Fig. 1
with the stations at the centre of the cells on the surface. Bruun
& Nielsen (2007) demonstrated that G for the magnetic kernel
can also exhibit BTTB structure, but they did not use the standard
computation of the magnetic kernel integral (Rao & Babu 1991).
Hogue et al. (2019) provided a thorough derivation of the BTTB
structure for G using the approach of Rao & Babu (1991), for
which the sensitivity matrix has blocks that are unsymmetric. The
use of padding for the domain, and the modifications required in the
generation of the required entries in the matrix G, was discussed.
Regardless of whether operations with G are implemented using the
2DFFT or by direct multiplication, it is far faster to generate G tak-
ing advantage of the BTTB structure (Hogue ez al. 2019). Here, we
are concerned with efficient stabilized inversion of potential field
data using this BTTB structure. We refer to Appendix A for a brief
discussion of the implementation of the needed operations using G
when implemented using the 2DFFT (Hogue et al. 2019).

2.2 Stabilized inversion

The determination of the solution of (1) is an ill-posed problem; even
if G is well-conditioned the problem is underdetermined because
m <« n. There is a considerable literature on the solution of this
ill-posed problem and we refer in particular to Vatankhah et al.
(2020b) for a relevant overview, and specifically the use of the
unifying framework for determining an acceptable solution of (1)
by stabilization. Solution m* is estimated as the minimizer of the
nonlinear objective function ®,(m) subject to bound constraints
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m* = argmin {®,(m)}
= argmin {®yq(m)+ o> Dg(m))}. )

Mpjn <M =<Mmax

Regularization parameter « trades off the relative weighting of the
weighted data misfit ®4(m), and stabilizer ®s(m), which are given

by
®g(m) = [Wa(Gm — dg)|3, and
q)S(In) = ”WthWLD(m - mapr)”%- (5)

The weighting matrices Wy, W, and W, are all diagonal, with
dimensions that depend on the size of D. We assume throughout
that D = I,,..,,> and refer to (Vatankhah ef al. 2020b, eq. 5) for the
modification in the weighting matrices that is required for deriva-
tive approximations using D. We also use m,,, = 0. When initial
estimates for the parameter are available, perhaps from physical
measurements, these can be incorporated into m,, as an initial
estimate for m. The diagonal weighting matrix Wy has entries
(Wq)i; = 1/0; where we suppose that the measured data can be
given by dops = dexaet + 1, Where degaer 1 the exact but unknown
data, and 7 is a noise vector drawn from uncorrelated Gaussian data
with variance components 2.

In W=W,W,W,, W, and W, are constant hard constraint
and constant depth weighting matrices. The hard constraint ma-
trix can be used to impose specific known values for entries
of m (Boulanger & Chouteau 2001; Vatankhah et al. 2018).
Here we do not impose any known values and use Wy = L,,,,.
Depth weighting W, is routinely used in the context of poten-
tial field inversion and is imposed to counteract the natural de-
cay of the kernel with depth. With the same column structure
as for G, W, = blockdiag(W,", ..., W,"=)) where W, =
0.5z +2,-1)) PLy,xn.» 0.5(z, + z,_ 1) is the average depth for
depth level r, and B is a parameter that depends on the data set,
Li & Oldenburg (1996). The focusing matrix Wy depends on the
parameter vector m via

A=2

(Wi = ((m; — (myp))* +€°) ©, i=1...n, (6)
for the ith entry. Parameter A determines the form of the stabi-
lization, and focusing parameter 0 < ¢ < 1 is chosen to avoid
division by zero. Our choice A = 1 yields an approximation to the
L, norm (Wohlberg & Rodriguez 2007; Vatankhah et al. 2017) and
is preferred for inversion of potential field data. The implementa-
tion makes it easy to switch to A = 0, yielding a solution which is
compact, or A = 2 for a smooth solution. Based on prior studies we
use €2 = le — 9, Vatankhah et al. (2017).

2.3 Numerical solution

We first reiterate that (4) is only nonlinear in m through the defini-
tion of W_. Supposing that Wy is constant and that null(W4G) N
null(W) = 0, then the solution m* of (4) without the bound con-
straints is given analytically by
m = m,, + (G"Wy WG + o> W W)~

X GTWdTWd(dobs - Gmapr)~ (7)
Equivalently, assuming that W is invertible, and defining G =
WiGW ! = Wy(dops — Gmyy,) andy = m — my,,, then y solves

2We use I,x, to denote the identity matrix of size n x n.
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the normal equations
y=W GG +*1)'G T, (®)

and m* can be found by restricting y + myy, to lie within the bound
constraints.

The solution y of (8) can be used to obtain the iterative solution for
(4) using the iteratively reweighted least squares algorithm (IRLS,
Vatankhah et al. 2020b). Superscript £ is used to indicate a variable
at an iteration k. Then, « is replaced by «®, Wy by matrix W(Lk)

2
with entries (W"),; = ((ml(.kfl) —my 4 Ez) " andm — My,
by m — m*~V initialized with W) = I, and m© = m,, respec-

tively. Update y® is the solution of the normal eq. (8), and m® is
the restriction of y% + m%~Y to the bound constraints.

2.4 Algorithmic details

The IRLS algorithm relies on the use of an appropriate solver for
finding y* as the solution of the normal equations (8) for each
update £, and a method for estimating the regularization parameter
a®. We consider two solvers for the solution of the normal equations
at each iteration; one based on the RSVD, and the second using the
GKB. With an appropriate implementation, both solvers can also
provide an approximate truncated SVD of G.

The GKB Algorithm 1 uses the factorization GA,F =H,,+1B,,,
where A, € R and H, . € R+ Steps 6 and 11 of Al-
gorithm 1 apply the modified Gram-Schmidt re-orthogonalization
to the columns of A,, and H,, 1, as is required to avoid the loss
of column orthogonality. Step 15 provides the terms that give the
rank f, approximate SVD, (H, U, )%, (A, V,)", of G (Renaut
et al. 2017). The quality of this approximation depends on the
conditioning of G, Paige & Saunders (1982). In particular, the pro-
jected system of the GKB algorithm inherits the ill-conditioning of
the original system, rather than just the dominant terms of the full
SVD expansion. Thus, the approximate singular values include dom-
inant terms that are good approximations to the dominant singular
values of the original system, as well as very small singular values
that approximate the tail of the singular spectrum of the original
system. The accuracy of the dominant terms increases quickly with
increasing #,, Paige & Saunders (1982) and the effectiveness of the
algorithm depends on both 7 and ¢,.

The RSVD Algorithm 2 includes a single power iteration in
Steps 3—6. Without the use of the power iteration in the RSVD it
is necessary to use larger projected systems in order to obtain a
good approximation of the singular space of the original system,
Halko ef al. (2011). When using the RSVD for potential field inver-
sion it is better to apply a power iteration but the gain from taking
more than one power iteration is insignificant as compared to the
increased computational time required (Vatankhah et al. 2020a).
The RSVD, with and without power iteration, also depends on two
parameters ¢ and ¢,, where here ¢ is the target rank and ¢, is size of
the oversampled system, ¢, > . For given ¢ and ¢, the algorithm uses
an eigendecomposition with #, terms to find the SVD approximation
of G with 1, terms. Hence, the total projected space is of size #,
which is then restricted to size ¢ for estimating the approximation
of G

3We note that using (Y 4+ Y7)/2 in Step 10 of Algorithm 2, rather than Y,
assures that the matrix is symmetric which is important for the efficiency
of eig.
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Given an approximate SVD, there are many efficient techniques
that can be used to automatically estimate o', and there is extensive
literature on the subject, for example, Hansen (2010). Consistent
with earlier studies on stabilized inversion, we find «®, for k > 1,
using the unbiased predictive risk estimator (UPRE) for the RSVD
but the truncated version TUPRE for the GKB, Renaut et al. (2017);
Vatankhah et al. (2018, 2017, 2020a). For UPRE and TUPRE, ' is
found using the approximate SVD of size < #,. Whereas the solution
y® (™) is then calculated using all £, terms of the approximate SVD
when using TUPRE, y®(a®) is obtained using just the first  terms
when applying the UPRE algorithm. The matrix I'(e, X) in each
algorithm is the diagonal matrix with entries o; /(0 + o).

Algorithm 1: The GKB algorithm to obtain solution y of (8).

Input: ¥ € R™, GeR™", a target rank ¢ and size of
oversampled projected problem ,, t < t, K< m.
Output: vy.
1 Seta = zeros(n, 1), B = sparse(zeros(t, + 1,1,)),
H = zeros(m, t, + 1), A = zeros(n, t,,);

2 Set = [[Fl, h = /6, H(: 1) = b

sfori=1:¢,do

s | b=G"'h—Ba;

5 forj=1:i—1do

6 b =b — (A(:, ))Tb)A(:, j) (modified Gram-Schmidt
(MGS))

7 end

8 | v =Ibl,a=b/y,BGi)=y,AC i) =a

9 c=Ga— yh;

10 for j=1:ido

1 | e=c—(H(, ) OH(, j) (MGS)

12 end

13 B=lcl,h=¢/B,B(i+1,i)=p8,H(:i+1)=h;
14 end

15 SVD for sparse matrix: U,pE,thZ = svds(B, #,);

16 Apply UPRE to find « using U, (:, 1 : £) and X, (1 : 7,1 : 2);
17 Solution y = [[F[.A,,V,, T'(e, Z,)U;, (1, 9)";

2.5 Computational costs

The computational cost of practical implementations of the GKB or
RSVD algorithms for finding the parameter vector y* is of interest
when operations with matrix G are implemented using the 2DFFT.
The associated impact of #, on the comparative costs of these al-
gorithms with increasing m and # is also relevant. In the estimates,
we focus on the dominant costs in terms of £lops, recalling that
the underlying cost of a dot product of two vectors of length m is
assumed to be 2m. Further, the costs ignore any overheads of data
movement and data access.

First, we address the evaluation of matrix products with G or G”
required at Steps 4 and 9 of Algorithm 1 and Steps 2, 4, 6 and 8
of Algorithm 2. Matrix operations with G, rather than G, use the
2DFFT, as described in Appendix A for Gx, G’y and y” G, based on
the discussion in Vogel (2002). The dominant cost of a single matrix
vector operation in each case is 4n.n,n-log(4nn,) = 4nlog,(4n,).
Thus, multiplication with a matrix of size n x t, has dominant cost

4nt, log,(4n,), 9)

Algorithm 2: The RSVD algorithm with one power iteration to
obtain solution y of (8)

Input: i € R",G € R"*", a target matrix rank 7 and size of
oversampled projected problem 7, t < t, K< m.

Output: y.

Generate a Gaussian random matrix € R'»*" ;

2 Y = G e RY ;

3 [Q, ~] = qr(Y”,0), Q € R"*». (economic QR
decomposition) ;

4 Y=GQeR"™;

5 [Q.~]=aqr(Y,0),Q e R"*";

Y=Q'G,Y e R ";

[Q, ~]=qr(Y",0),Q e R ;

B=GQ e R™ W ;

Compute Y = B'B € R»*" ;

10 Eigen-decomposition of BB: [V, D] = eig((Y + Y7)/2) ;

u S =diag(y/|real(D)|), [S, indsort] = sort(S, 'descend’);

12 ¥, = diag(S(1 : 1)), V = V(, indsort(l : 1)),
U=V./(S(:0");

13 Apply UPRE to find « using U, ¥,, and B”;

14 Solution y = QVI'(a, ,)UT(BT§);

1s Note if we form V, = QV; and U, = BU i;l, then U, %,V is
a t-rank approximation of matrix G ;

—

Table 1. Computational costs for standard operations. Matrix G € R"*",
X e R"™ Y € R"*!, sparse bidiagonal B € R/ ATA ¢ R and
Z € R™*!. The modified Gram-Schmidt for C € R™*! is repeated for i =
1: ¢, yielding the given estimate. These costs use the basic unit that the inner
product x” x for x of length n requires 2n operations.

GX GTY svds(B) MGS(C) eig(ATA) [Q,~]=qr(Z)

42 (m — 1/3)

2mnt 2mnt  6t(m + 1) 2mi? 97

in place of 2mnt,. In the IRLS algorithm we need to use operations
with G = WqGW! rather than G. Specifically, we need

Gx = Wy(G(W™'x)), (10)

where multiplications with diagonal matrices are insignificant and
the 2DFFT is applied for the evaluation of Gw where w = W~ !x.
Matrix—matrix operations are also required but, clearly, operations
GOX, (GPM)TZ, ZTG® are just loops over the relevant columns
(or rows) of the matrices X and Z, with the appropriate weighting
matrices provided before and after application of the 2DFFT. The
details are provided in Appendix A.

To determine the impact of 7 (and #,) we estimate the major cost
of the IRLS algorithm by assessing the dominant costs of using
the GKB and RSVD algorithms for finding the solution of (8). The
assumptions for the dominant costs of standard algorithms, given
in Table 2, are quoted from Golub & Van Loan (2013). The cost
for eig depends significantly on problem size and symmetry. Here
t can be quite large, when m is large, but the matrix is symmetric,
hence we use the estimate 9 (Golub & Van Loan 2013, Algorithm
8.3.3). For a sparse bidiagonal matrix B the cost of using function
svds is at most quadratic in the variables. A comment on the cost
of the qr operation is also required. Generally, in forming the QR
factorization of a matrix we would maintain the information on the
Householder reflectors that are used in the reduction of the matrix to
upper triangular form, rather than accumulating the matrix Q. The
cost is reduced significantly if Q is not accumulated. In Steps 2, 4, 6
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Figure 2. The basic volume structure within the domain of size 2000 x 1200 x 400. The extent of each structure is shown by the shadow on the base of the

volume. The same structure is used for the results using the padded domain.

Table 2. Dimensions of the volume used in the experiments with scaling of the small problem size
(25,15,2) by scale factor ¢ in each dimension. m and » are the dimensions of the measurement
vector and the model parameters, respectively, G € R"*". Without padding m = sys, = 375¢% and
n = mn;, where n, = sy and ny, = sy. npag = nenyn; is the volume dimension with padding, using
ny = sy +2round(pads,) and n,, = s, + 2 round(pads,) where pad = 5 per cent on each side of
the domain so that p,, = py, = round(pads, ), and similarly for s,.

4 (Sx, 8y, 1z) m n Tpad 7:2g 7" SNRE  SNR™
4 (100, 60, 8) 6000 48000 58080 .0138  .0081 24.0 24.0
5 (125,75, 10) 9375 93750 113710  .0147  .0083 24.0 24.0
6 (150, 90, 12) 13500 162000 199200  .0133  .0074  24.0 24.0
7 (175,105, 14) 18375 257250 310730  .0133  .0070  24.0 24.0
8 (200, 120, 16) 24000 384000 464640  .0133  .0071 24.0 24.1
9 (225,135, 18) 30375 546750 662450  .0133  .0069  24.0 24.0
10 (250, 150, 20) 37500 750000 916320  .0132  .0070  24.0 24.0
11 (275, 165, 22) 45375 998250 1206500  .0135 .0075 24.0 24.0
12 (300, 180, 24) 54000 1296000 1568160 .0135 .0075  24.0 24.0

and 8 of Algorithm 2, however, we will need to evaluate products of
Q with G or its transpose. To take advantage of the 2DFFT we then
need to first evaluate a product of Q with a diagonal scaling matrix,
which amounts to accumulation of matrix Q. Experiments, that are
not reported here, show that it is more efficient to accumulate Q
as given in Algorithm 2, rather than to first evaluate the product of
Q with a diagonal scaling matrix without pre accumulation. The
cost for accumulating Q is 2¢%(m — #/3) for a matrix of size m x t,
(Golub & Van Loan 2013, p. 255) yielding a total cost for the qr
step of 42(m — 1/3), as also reported by Xiang & Zou (2013).
Using the results in Table 1 we can estimate the dominant costs of
Algorithms 1 and 2. In the estimates we do not distinguish between
costs based on ¢, or t. It is reasonable to assume t < <m and #, ~ ¢,
when m is large. We also ignore the distinction between m and n,,
where 1, > m for padded domains. The cost of finding «® and then
evaluating y® is of lower order than the dominant costs involved
with finding the needed factorizations. Using L OT to indicate the
lower order terms that are ignored, and assuming the calculation
without the use of the 2DFFT, the most significant terms yield

CostGexs = 4nmt + 2t2(n +m)+ LOT (11)

CostGrgyp = 8nmt + 4t°(2n +m —t) + 2mt*> + 9> + LOT
= 8nmt + 4t*(2n +3/2m) + 562 + LOT. (12)

When using the 2DFFT, the first two entries 2mnt in Table 1 are
replaced by 4nflog,(4n,). Then, using m ~ n,, it is just the first term
in each estimate that is replaced leading to the costs with the 2DFFT
as

Cost2DFFTgy = 8nt logy(4m) + 2t*(n +m)+ LOT (13)

Cost2DFFTreyp = 16nt log,(4m) + 422n +3/2m)
+562 4+ LOT. (14)

Egs (11) and (12) and (13) and (14) suggest, just in terms of £1lop
count, that it is generally more than two times as expensive to use the
RSVD in place of the GKB. Hence, to obtain a solution at a comparable
cost we would hope to use a smaller 7 for the RSVD than for the GKB.
This expectation contradicts earlier experiments contrasting these
algorithms for the inversion of gravity data, using the RSVD without
power iteration (Vatankhah et al. 2018). Alternatively, it would be
desired that the RSVD should converge in the IRLS far faster than the
GKB. Further, theoretically, the gain of using the 2DFFT is that the
major terms are 8/ n and 2#2n for the RSVD and GKB, respectively,
as compared to 8nmt > 82 n and 4mnt > 2£*n, noting ¢ < m. Even
though the costs should go up with order n#* eventually with the
2DFFT, this is still far slower than the increase mnt that arises without
taking advantage of the structure.

Measuring the computational cost just in terms of the £1op count
can be misleading (Xiang & Zou 2013). It was noted by Xiang &
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Figure 3. The calculated true and noisy anomalies for the volume structure given in Fig. 2(a), where the units are mGal and nT for gravity and magnetic data,
respectively. The anomalies used for the inversion using the padded domain are exactly the same as given here.

Zou (2013) that a distinction between the GKB and RSVD algorithms,
where the latter is without the power iteration, is that the operations
required in the GKB involve many BLAS2 (matrix—vector) opera-
tions, requiring repeated access to the matrix or its transpose, as
compared to BLAS3 (matrix—matrix) operations for RSVD imple-
mentations. The Householder operations within the qr algorithm
also involve BLAS2 operations. Hence, when using MATLAB, the
major distinction should be between the use of functions that are
builtin and compiled, or are not compiled. The functions qr and
eig are builtin and hence optimized, but all other operations
that are used in the two algorithms do not use any compiled code.
There is no compiled option for the MGS used in steps 6 and 11 of
Algorithm 1. Almost all operations in Algorithm 2 use builtin
functions or BLAS3 operations for matrix products that do not in-
volve the matrices with BTTB structure. Thus, in the evaluation of
the two algorithms in the MATLAB environment, we will consider
computational costs directly, rather than just the estimates given by
(13) and (14). The estimates of the £1op counts are more broadly-
relevant for higher-level programming environments. In all the im-
plementations none of the results quoted will use multiple cores or
GPUs.

3 NUMERICAL EXPERIMENTS

We now validate the fast and efficient methods for inversion of
potential field data using the BTTB structure of the gravity and
magnetic kernel matrices.

3.1 Implementation parameter choices

Diagonal depth weighting matrix W, uses g = 0.8 for the gravity
problem, and B = 1.4 for the magnetic problem, consistent with
recommendations by Li & Oldenburg (1998) and Pilkington (1997),
respectively. Diagonal Wy is determined by the noise in the data,
and hard constraint matrix Wy, is taken to be the identity. No prior
information is imposed on the parameters and we use my, = 0.
Regularization parameter «® is found using the UPRE method for &
> 1, but initialized with appropriately large "’ given by

oo () o
* _(m) mean(o;)’ (1)

Here o; are the estimates of the ordered singular values for
W.GW™! given by the use of the RSVD or GKB algorithm, and
the mean value is taken only over o; > 0. This follows the practice

0202 JaquianoN €1 uo 1senb Aq 0/G2685/8.€ 1/Z/gz/ane/IB/wod dno-oiwspesey/:sdjy Wouj papeojumMoq



1385

Fast focusing inversion

I I T T 25 I I
—Q—-GKBm = 6000 ||
-O-GKB m = 9375 —- GKB/RSVDQ m = 6000
—FGKBm=13500 | O -@- GKB/RSVDQ m = 9375
= ~-RSVDQ m =6000 [| S —B- GKB/RSVDQ m = 13500
b -@-RSVDQm=9375 || @ 2[|-ge-GKB/RSVDQ m = 18375
Q —-RSVDQ m =13500| | CC —¥— GKB/RSVDQ m = 24000
o 10'F = g —- GKB/RSVDQ m = 30375
O] B X
» o O151
2 T a
s T 3
(0] L o
= )
T =
T 1= 1 1
o ©
o
10°G
05 | | | | |
1/40 1/25 1/20 1/8 1/6 1/4 1/3 1/40 1/25 1/20 1/8 1/6 1/4 1/3
The fraction 1/s yielding projected size t = m/s The fraction 1/s yielding projected size t = m/s
(a) Costg/Costoprrr. (b) Cost2DFFTeks/Cost2DFF Trsyp.
| | 3 l T
GKB m = 6000 2.5
-O-GKB m = 9375 g
T —}GKB m = 13500 1T > 2 ]
o _
i —9-RSVDQ m = 6000 2 ]
Y —@-RSVDQ m = 9375 15 ]
i) —l-RSVDQ m = 13500 o15 —
o < ]
s o .
o 8 1
(9] o
2 o 4
© L 4 2
© © N
o | 1l o —- GKB/RSVDQ m = 6000 ||
o —@-GKB/RSVDQ m = 9375
—- GKB/RSVDQ m = 13500 H
0 - - E -2~ GKB/RSVDQ m = 18375
10 1 1 M 0sl 1 1 1 RSVDQ - 1
1/40 1/25 1/20 1/8 1/6 1/4 1/3 1/40 1/25 1/20 1/8 1/6 1/4 1/3

The fraction 1/s yielding projected size t = m/s

(C) COStG/COStQDFFT (Padded) .

The fraction 1/s yielding projected size t = m/s

(d) Cost2DFFTcks/Cost2DFFTrsyp (Padded).

Figure 4. The x-axis in these plots is the size 7 used for the projected problem in terms of a fraction 1/s of m with rounding = floor(m/s). It is not on a
linear or log scale. The size of m is given in the legends and corresponds to the problem sizes indicated in Table 2. Panel (a) shows the relative computational
costs for one iteration of the IRLS algorithm using G directly as compared to the 2DFFT, as indicated by Costg/Costaprrr. No result is given for m = 13 500
because the direct implementation using matrix G requires too much memory for the specific computing environment. The lines with solid blue symbols are
for results using the RSVD algorithm, and the open black symbols are for the GKB algorithm. Panel (b) shows the relative computational cost for one iteration of
the IRLS algorithm for inversion using the GKB as compared to the RSVD algorithm (Cost2DFFTgkg/Cost2DFFTggyp). Here, the results include problem sizes
m = 24000 and m = 30375, the asterisk and the right pointing triangle, respectively. Because m is larger the relative costs are only calculated up to m/4 and
m/8 for m = 24 000 and m = 30 375, respectively. Panels (¢)—(d) provide the equivalent data as panels (a) and (b) with padding, and without the larger problems
for m. In all cases the green horizontal line is at y = 1 for the measured quantity. Values below the horizontal line indicate that the numerator is less than the
denominator, corresponding to the greater efficiency of the quantity in the numerator.

implemented in Vatankhah et al. (2018) and Renaut ez al. (2017) for
studies using the RSVD and GKB, and which was based on the recom-
mendation to use a large value for o"), Farquharson & Oldenburg
(2004).

For all simulations, the IRLS algorithm is iterated to convergence
as determined by the x? test for the predicted data,

[Wa(Gm® — dgp)lI5 < m + ~/2m, (16)
or

Wq(G (")—dos 2

[Wq(Gm Wl _ (7

m+/2m B

If this is not attained for £ < K, the iteration is terminated. Noisy
data are generated for observed data dops = dexact + 1 USING

n = (Tl |(dexact)i| + 0 “dexact ”oo)eia (18)
where e is drawn from a Gaussian normal distribution with mean 0
and variance 1. The pairs (7, 7,) are chosen to provide a signal-to-
noise ratio (SNR), as calculated by

”dexact “2

SNR = 20log), T
obs T

(19)

dexact ” 2 '

that is approximately constant across the increasing resolutions of
the problem. Recorded for all simulations are (i) the values of the
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algorithm for inversion using the GKB as compared to the RSVD algorithm,

Cost2DFFTgkp/Cost2DFFTggyp, for the gravity and magnetic problems respectively, in panels (a) and (b). The x-axis in these plots is the size 7 used
for the projected problem in terms of a fraction 1/s of m with rounding # = floor(m/s). The legends indicate the problem size m, as in Fig. 4. In all cases
the green horizontal line is at y = 1 for the measured quantity. Values below the horizontal line indicate that the numerator is less than the denominator,

corresponding to the greater efficiency of the quantity in the numerator.
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Figure 6. The predicted anomalies obtained using GKB in Figs 6(a)—(b) and RSVD in Figs 6(c)—(d) for gravity data. In the captions are m, t = £loor(m/8),

and the pairs (K, Costs). The units for the anomalies are mGal.

relative error RE®, as defined by

_ m(/f)”2

” mexact , (20)

”mcxact ”2
(i1) the number of iterations to convergence K which is limited to
25 in all cases, (iii) the scaled x? estimate given by (17) at the final
iteration and (iv) the time to convergence measured in seconds, or
to iteration K = 25 when convergence is not achieved.

RE® =

3.1.1 The sizes of the projected and enlarged spaces: t and t,

The RSVD and GKB algorithms provide approximations for the spec-
tral expansion of G, with the quality of these approximations depen-
dent on both 7and #,. The GKB algorithm inherits the ill-conditioning
of G but the RSVD approach provides the dominant terms, and is not
impacted by the tail of the spectrum. A typical recommendation
for the RSVD algorithm is to enlarge # by a fixed amount, 7, =7+ p
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Figure 7. The reconstructed volumes corresponding to the gravity anomalies in Figs 6(a)—(d). Parameters # = 750 and # = 2296 are for t = floor(m/8). In

the captions are m, t = floor(m/8), and the pairs [RE, x2/(m + +/2m)].

for some p generally smaller than 7, for example p = 10 (Halko ez al.
2011). This will not be robust for finding a good approximation of
the dominant space of size ¢ for the GKB algorithm. In our simula-
tions we enlarge the space by 5 per cent using 7, = floor(1.057).
This will include terms from the tail of the spectrum for the GKB but
the top # terms from the projected space of size , > ¢ will be more
accurate estimates of the true dominant ¢ terms than if obtained
with #, = ¢ (Paige & Saunders 1982). This enlargement of the space
also provides a suitable oversampling for the RSVD algorithm. Ef-
fectively, by using a 5 per cent enlargement of 7, we assume that
the first # terms from the #, approximation provide good approxima-
tions of the dominant 7 spectral components of the original matrix
G for both algorithms. For the GKB this uniform choice for f,is a
suitable compromise between taking #, too small and contaminating
the solutions by components from the less accurate approximations
of the small components, and a reliable, but larger, choice for 7,
that provides a good approximation of the dominant terms without
major increase in computational costs.

The size of zin relation to m is also crucial. For the RSVD algorithm
with a single power iteration a suitable choice for 7, when 7, = ¢ 4
10, is t & m/s, where s ~ 8 for the gravity problem and s ~ 4 for
magnetic data inversion (Vatankhah et al. 2020a). These problem

sizes are smaller, s is larger, from the requirements that s =~ 6
and s & 2, respectively, when no power iteration is included. For the
inversion of gravity data using the GKB algorithm #, ~ m/20 has been
suggested (Vatankhah ez al. 2017). To provide a viable comparison
of the costs and accuracies using the GKB and RSVD algorithms, we
pick a range of ¢ as a fraction of m given by ¢t = £1loor(m/s), where
s =40, 25, 20, 8, 6, 4 and 3.

3.2 Synthetic data

For the validation of the algorithms, we pick a volume structure with
a number of boxes of different dimensions, and a six-layer dipping
dike. The same structure is used for generation of the gravity and
magnetic potential field data. For gravity data the densities of all
aspects of the structure are set to 1 gecm™, with the homogeneous
background set to 0 gcm™>. For the magnetic data, the susceptibili-
ties in SI units are 0.06 for the dipping dike, one extended well and
the very small well. The three other structures have susceptibilities
set to 0.04. The distinction between these structures with different
susceptibilities is illustrated in the illustration of the iso-structure in
Fig. 2(a) and the cross-section in Fig. 2(b).
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Figure 8. For magnetic data the predicted anomalies obtained using GKB in Figs 8(a)—(b) and RSVD in Figs 8(c)—(d). In the captions are m, t = £loor(m/8),

and the pairs (K, Costs). The units for the anomalies are nT.

The domain volume is discretized in x, y and z into the number of
blocks as indicated by triples (sy, s,, #.) with increasing resolution
for increasing values of these triples. They are generated by taking
(S, 8y, n-) = (25, 15, 2), and then scaling each dimension by scaling
factor £ > 4 for the test cases, correspondingly, s.s, = 375 is scaled
by ¢? with increasing £, yielding a minimum problem size with m =
6000 and n = 48 000. The grid sizes are given by the triples (A, A,,
A;) = (2000/s,, 1200/s,, 400/n.). The problem sizes considered for
each simulation are detailed in Table 2. For padding we compare the
case with pad =0 and 5 per cent across x and y dimensions. These are
rounded to the nearest integer yielding p,, = p,, = round(pads,),
and n, = s, + 2round(padsy). n, is calculated in the same way,
yielding n = (s, 4+ 2 round(pad sy ))(s, + 2 round(pad s, ))n.. Cer-
tainly, the decision to use pad = 5 per cent is quite large, but is
chosen to demonstrate that the solutions obtained using the 2DFFT
are robust to boundary conditions, and thus not impacted by the
restriction due to lack of padding or very small padding.

For these structures and resolutions, noisy data are generated as
given in (18) to yield an SNR of approximately 24 across all scales as
calculated using (19). This results in different choices of ; and 7,
for each problem size and dependent on the gravity or magnetic data
case, denoted by (¢f, t5) and (z[, Ti"), respectively. In all cases we
use T¥ = ™ = 0.02 and adjust 7,. The parameter choices of 75 and
7" used for the simulations are detailed in Table 1. As an example,
we illustrate the true and noisy data for gravity and magnetic data,
when m = 54000, in Fig. 3.

3.3 Numerical results

The validation and analysis of the algorithms for the inversion of the
potential field data is presented in terms of (i) the cost per iteration

of the algorithm (Section 3.3.1), (ii) the total cost to convergence
of the algorithm (Section 3.3.2) and (iii) the quality of the obtained
solutions, (Section 3.3.3). Supporting quantitative data that summa-
rize the illustrated results are presented as Tables in Appendix B.

3.3.1 Comparative cost of RSVD and GKB algorithms per IRLS
iteration

We investigate the computational cost, as measured in seconds, for
one iteration of the inversion algorithm using both the direct multi-
plications using matrix G (and G”), and the circulant embedding,
for the problem sizes m as indicated in Table 2, using both the
RSVD and GKB algorithms for the inversion of magnetic data. For
fair comparison, the timing results that are reported use MATLAB
release (2019b) implemented on the same iMac 4.2 GHz Quad-
Core Intel Core i7 with 32 GB RAM, unless otherwise stated. In
this environment, the size of the matrix G is too large for effective
memory usage when £ > 6. The comparative timing results for one
step of the IRLS algorithm are illustrated in Fig. 4. The specific
values for problem sizes m = 6000—18 375 are given in Table B1.
Results for the inversion of gravity data are qualitatively the same
and are reported in Renaut et al. (2020).

It is not beneficial to use the 2DFFT in place of the matrix G for the
smaller scale implementation of the RSVD algorithm, when m = 6000
or 9375, all the ratios of the relative costs are below the horizontal
line (Fig. 4a). For m > 13 500 the situation is reversed and the use
of the 2DFFT with the RSVD is more efficient. All of the simulations
using the GKB with the 2DFFT in place of the matrix G are more
efficient. The relative gain in reduced computational cost by using
the 2DFFT depends on the algorithm used within the ITRLS inversion
algorithm. The decrease in efficiency for a given problem size,
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Figure 9. The reconstructed volumes corresponding to the magnetic anomalies in Figs 8(a)—(d). Parameters = 750 and r = 2296 are for t = £loor(m/8). In

the captions are m, t = floor(m/8), and the pairs [RE, x2/(m + +/2m)].

fixed m but increasing ¢, is explained by the theoretical discussion
relating to equations (13) and (14). As ¢ increases the impact of the
efficient matrix multiplication using the 2DFFT is reduced. Fig. 4(b)
demonstrates that the relative costs comparing GKB to RSVD are not
constant across all #. The GKB is generally cheaper for smaller #, and
the RSVD cheaper for larger 7. These results confirm the analysis of
the computational cost in terms of £1ops provided in (13) and (14)
for small 7. The relative computational costs increase from roughly
0.6-2.5, increasing with both m and ¢ (Fig. 4b). This improved
relative performance of RSVD with increasing m and ¢ appears to
violate the £lop count analysis in (13) and (14). As discussed in
Section 2.5, this is a feature of the implementation. While RSVD is
implemented using the MATLAB builtin function qr which uses
compiled code for faster implementation, GKB only uses builtin
operations for performing the MGS re-orthogonalization of the basis
matrices A,, and H,,. The conclusions from Figs 4(a) and (b) are
confirmed for padded domains (Figs 4c and d). Here the relative
efficiency of using the 2DFFT for the RSVD algorithm approximately
holds for all m, with the relative values approaching y = 1 as
t increases (Fig. 4c). Moreover, the higher efficiency of the GKB
breaks down at a smaller ¢ than occurs without padding in place
(Fig. 4d). In general, as m and ¢ increase these results demonstrate
the benefit of using the 2DFFT and the RSVD solver.

3.3.2 Comparative cost of RSVD and GKB algorithms to
convergence

The computational cost of the IRLS algorithm for solving the in-
version problem to convergence depends on ¢, the use of GKB or
RSVD algorithms, and is problem specific. The relative total compu-
tational costs to convergence, Cost2DFFTgyp/Cost2DFFTrgyp, are
illustrated via Figs 5(a) and (b), for the gravity and magnetic results,
respectively. The specific timing results are provided in Table B2.
The number of iterations to convergence, and the achieved RE, for
the volumes with and without padding, are given in Tables B3 and
B4 for the gravity and magnetic problems, respectively.

The RSVD algorithm is always most efficient for the solution of the
gravity problem (Fig. 5b), which is consistent with the conclusion
presented by Vatankhah et al. (2018) for the RSVD without power
iteration. The RSVD algorithm generally converges more quickly
and yields a smaller relative error (Table B3). Good results can be
achieved for relatively small 7 as compared to m, and ¢ ~ m/8 leads
to acceptable errors. For comparable choices of ¢ the errors using
the GKB are generally larger (Table B3).

There is a distinct benefit to the use of the GKB algorithm, except
for large ¢, for the magnetic problem (Fig. 5a). The RSVD algorithm
generally requires more iterations than the GKB algorithm, and the
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(d) RSVD: m = 54000, t = 2700, (16, 41981s).

Figure 10. The magnetic anomalies using the GKB and RSVD algorithms in Figs 10(a)—(b) and (c)—(d), respectively. In the captions are m, t = £loor(m/8) and

the pairs (K, Costs). The units for the anomalies are nT.

obtained relative errors are then comparable, or slightly larger (Ta-
ble B4). For the smaller problems the RSVD algorithm often reaches
Knax without convergence. In these cases it does not mean that
RSVD blows up, but that the noise level is not achieved within K,
iterations due to the limited size of 7. On the other hand, for these
same cases GKB converges in less than half the number of iterations.
The slow convergence of RSVD occurs when ¢ is small relative to m,
t = floor(m/s) with s = 40, 25 and 20. This verifies that the RSVD
needs to take a large projected subspace ¢ for smaller m in order
to capture the required dominant spectral space, and confirms the
conclusions presented in Vatankhah ez al. (2020a).

Our results lead to a new conclusion concerning these two algo-
rithms for solving the magnetic data inversion problem. In particu-
lar, the GKB algorithm should be adopted for inversion of magnetic
data. Further, the relative error obtained using the GKB generally de-
creases with increasing ¢, and it is sufficient to use subspaces with
t ~ floor(m/8). It remains to verify these assertions by illustrat-
ing the results of the inversions and the predicted anomalies for a
selection of cases.

3.3.3 Illustrating solutions with increasing m and t

We first examine a set of solutions for which the timing results were
compared in Section 3.3.2. The predicted gravity anomalies with m
= 6000 are generally less accurate than with m = 18375 (Fig. 6).
The reconstructed volumes show that the RSVD algorithm provides
better results in all cases, and the high resolution, m = 18375,
results are very good, (Figs 7a—d). For the high resolution solution
obtained for m = 18375 the reduced cost of the RSVD algorithm
as compared to the GKB algorithm is significant. Good results are
also obtained at the coarser resolution, m = 6000, with the RSVD
algorithm. There is a significant reduction in computational cost
from about 55 min to less than 5 min.

The GKB algorithm provides predicted magnetic anomalies that
are in good agreement with the true data (Figs 8a-b). For m =
6000 the RSVD algorithm has not converged to the tolerance at Ky,
iterations; the scaled x2 estimate is 1.11. The predicted magnetic
anomaly obtained in this case is less acceptable and the structures
of the reconstructed volume are not as well-resolved as with m =
18375 (Figs 9c—d). The small well near the surface is almost not
identified in Fig. 9(c) but is clear at the higher resolution. The other
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Figure 11. The reconstructed volumes corresponding to the magnetic anomalies in Figs 10(a)—(d). Parameters r = 2268 and r = 2700 are for t = £loor(m/20).

In the captions are m, t = f1oor(m/8) and the pairs [RE, x2/(m + ~/2m)].

Table 3. Inversion of magnetic data as illustrated in Fig. 12 for m = 3844 on a grid of
62 x 62 stations, with Ax = Ay = 100 m and padding of five cells in both x and y-
directions, yielding blocks of size n, = 5184. The inversion uses the GKB algorithm with #
= 480 [floor(m/8)] and #, = 504. The noise in the algorithm uses (18) as given for the
simulations with 71 = 0.02 and 7, = 0.018. These results are obtained using a MacBook
Pro laptop with 2.5 GHz Dual-Core Intel Core i7 chip and 16GB memory.

n n. Az K a®  ¥2/(m 4+ /2m)  Cost(s)
103680 20 100 17 4.60e +05 8558 0.87 334
207360 40 50 18 5.36e 406 5887 0.90 754
305856 59 33 19 2.07e +07 4930 0.70 1126
414720 80 25 18 6.09¢ 4+ 07 4116 0.95 1513
518400 100 20 18 1.33e+08 3701 0.94 2018
616896 119 16 18 2.43e 408 3386 0.90 2095
829440 160 12 18 6.90e 4+ 08 2933 0.95 3091
1036800 200 10 18 1.5le4+09 2627 0.95 3690
1238976 239 8 18 2.80e +09 2396 0.96 4389

structures in the domain are also resolved better with m = 18375
(Fig. 9d). If there is a large amount of data and a high resolution
volume is required, then it is important to use the GKB algorithm in
order to limit the computational cost, with the cost decreasing from
about 110 min to about 63 min. For m = 6000 good solutions are
obtained using the GKB algorithm in just over 2 min.

‘We now investigate the quality of solutions obtained for magnetic
data using higher resolution data sets to verify the conclusion based
on small data sets that GKB is preferred over RSVD. Problem sizes
(m,n) = (45375,998250) and (54 000, 1296 000) are solved using
t = floor(m/20), yielding t = 2268 and t = 2700, respectively.
The largest matrix required by both algorithms is of size n x #, and
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Figure 12. The given magnetic anomaly in Fig. 12(a) and the obtained predicted anomalies for the inversion using the parameters for the first and last lines of

data in Table 3 in Figs 12(b)—(c), respectively.
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Figure 13. The plot of the regularization function U(«) for the UPRE algorithm, at the final iteration K for increasing values of » as indicated in Table 3 in
Fig. 13(a) and the progression of the scaled x? estimate as a function of iteration & and for increasing » in Fig. 13(b).
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Figure 14. The reconstructed volumes showing parameters « > 0.05 and depth from 0 to 1000, corresponding to the predicted anomalies in Fig. 13.

requires 17.7 and 27.4 GB, in each case. This memory demand is
too large for implementation on the environment with just 32 GB
RAM. A desktop computer with the Intel(R) Xeon (R) Gold 6138
CPU 2.00 GHz chip and with MATLAB release 2019b is used for
these experiments.

The predicted magnetic anomalies are always better for the larger
problem (Fig. 10). There are significant artefacts at the coarser
resolution when using the RSVD (Fig. 10c) but the reconstructed
volume is acceptable (Fig. 11c). The cost of achieving this solution is
about 5.9 hr, close to the 6 hr required for solution of the m = 54 000
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Figure 15. Slices through the volumes illustrated in Fig. 14 for depths 300, 600 and 900.

problem using GKB. For GKB there seems little gain in using m =
54 000. Acceptable results are achieved in 227 min (approximately
3.7 hror m = 45375 (Fig. 10a). These results demonstrate that the
requirement ¢ &~ floor(m/8) can be relaxed for larger problems
that are too large for the computing environment when using this
choice of #. Here it is sufficient to use a relatively smaller projected
space, t ~ floor(m/20).

Numerical experiments for the inversion of gravity data that are
reported in Renaut ez al. (2020), similar to the testing for the mag-
netic data, confirm that the RSVD algorithm with power iteration is
to be preferred for the inversion of gravity data, yielding acceptable
solutions at lower cost than when using the GKB algorithm.

3.4 Real data

For validation of the simulated results on a practical data set we apply
the GKB algorithm for the inversion of a magnetic field anomaly
that was collected over a portion of the Wuskwatim Lake region in
Manitoba, Canada. This data set was discussed by Pilkington (2009)
and also used by Vatankhah et al. (2020a) for inversion using the
RSVD algorithm with a single power iteration. Further details of the
geological relevance of this data set is given in these references.
The use of this data set allows direct comparison with the existing
results. Here we use a grid of 62 x 62 = 3184 measurements at
100 m intervals in the eastnorth direction with padding of five cells
yielding a horizontal cross section of size 72 x 72 in the eastnorth
directions. The depth dimension is discretized with Az = 100 m,
yielding a regular cube, to Az = 8 m for rectangular prisms with a
smaller edge length in the depth dimension for a total depth of 2000

m, and providing increasing values of n from 103 680 to 1238976
(Table 3). The given magnetic anomaly is illustrated in Fig. 13(a).

In each inversion the GKB algorithm is run with my, =0, f =
480 = floor(m/8), and t, = 504. A noise distribution based on
(18) is used using 7; = 0.02 and 7, = 0.018. The computations are
performed on a MacBook Pro laptop with 2.5 GHz Dual-Core Intel
Core i7 chip and 16GB memory.

All inversions converge to the tolerance x2/(m + +/2m)) < 1 in
no more than 19 iterations for all problem sizes (Table 3). The mea-
sured computational costs show that it is feasible to invert for large
parameter volumes, in times ranging from just under 5 min for the
coarsest resolution, to just over 73 min for the volume with the high-
est resolution (Table 3). The UPRE function, U(), has a well-defined
minimum at the final iteration for all resolutions, including those
not shown (Fig. 13a). Thus, «® minimizes the unbiased predictive
risk of the solution and indicates that the solution is neither over nor
under regularized. Qualitatively, the scaled x? convergence curve
is independent of n (Fig. 13b), suggesting that the noise level in the
measured data has been met independent of the depth resolution of
the reconstruction.

The predicted anomalies provide better agreement to the mea-
sured anomaly, as compared to (Vatankhah ef al. 2020a, fig. 15b),
with respect to structure and the given values (Figs 12b—c). More
structure is seen in the volumes presented in Figs 14(a) and (b) as
compared to (Vatankhah er al. 2020a, fig. 19), and the increased
resolution provides greater detail in Fig. 14(b) as compared to
Fig. 14(a). The volume reconstructions are presented for the depth
from 0 to 1000 m only, but there is little structure evident at greater
depth, not shown here. Slices at 300, 600 and 900 m contrast the
detail at these depths for the lower and higher resolutions (Figs
15a-f). Inversion for higher resolution leads to more structure at
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increased depth (Fig. 14). The results using the GKB with ¢ = 480
are consistent with those using the RSVD with # = 1100 (Vatankhah
et al. 2020a). The RSVD algorithm using one power iteration did not
converge within 50 steps, under the same configurations for m, n
and ¢.

4 CONCLUSIONS AND FUTURE WORK

Two algorithms for the focused inversion of potential field data
measured on a uniform grid have been examined and validated for
the independent inversion of gravity and magnetic data sets. Due
to the uniform grid, the sensitivity matrix G has a BTTB structure
for each depth level of the model space, and all operations with G
can be accomplished efficiently using 2-D fast Fourier transforms.
The storage requirements for G are significantly reduced. With the
decreases in computational cost and memory, it becomes feasible to
solve large-scale focusing inversion problems on a standard desktop
computer.

The two solvers, GKB and RSVD, that are used within the focusing
inversion algorithm for the solution of linear systems are parameter
dependent. For a system matrix of size m by n, the algorithms
proceed by finding approximate matrices of size m by ¢, where ¢ <
m. The size of ¢ in relation to m impacts the efficiency and accuracy
of the focusing inversion. The presented results demonstrate that it
is sufficient to use ¢ ~ floor(m/8) for the focusing inversion of
large-scale problems. It is more efficient, however, to use the GKB to
invert the magnetic data sets and the RSVD for the gravity data sets.
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APPENDIX A: MULTIPLICATION
USING BTTB STRUCTURE

The multiplication Gx, where x € R", uses the column block struc-
ture of G which was given in (3). Then, Gx = Y7 | G"x") where
x is blocked consistently with G. Each G has BTTB structure and
can be embedded in a circulant matrix in order to evaluate G")x®
using the 2DFFT (Vogel 2002). The first column of the circulant
extension is reshaped into T € R +=Dx(+m=D and x*) is re-
shaped and embedded into W g R +x=Dx(r+n= (Hogue et al.
2019). Assume that the 2DFFT of T is precomputed and that - *
represents element-wise multiplication. Then, G")x") is extracted
from ifft2(££t2(T) - x££t2(W)), with cost

Costgrxr = Costerraw) + Cost., + Costiesra). (A1)

The 2DFFT of W is computed as 1DFFT((1DFFT(W))")”, where the
1DFFT is applied to each column of the array independently. Using
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the cost of a 1DFFT as (n/2)log,(n) for an n-length vector, Vogel
(2002), this gives, using n, ~ m except when the padding is large,

Costsseaw) ~ 2ny(ny log,(2ny)) + 2n,(n, log,(2n,))
= 2m(log,(2n,)) + log,(2n,)) = 2m log,(4m).

The element-wise complex multiplication in (A1) is for a reshaped
vector of size (s, + n, — 1)(s, + n, — 1) ~ 4m, and each complex
multiplication requires 6 flops. The inverse 2DFFT requires ap-
proximately the same number of operations as the forward 2DFFT.
Hence

Costgmyrn = 4m log,(4m) + 24m, (A2)
and

Costgy ~ 4mn; log,(4m) + 24mn, + (m — D)n.
A 4nlog,(4m) +25n + LOT, (A3)

where the first term is for the multiplication and the second for
the summation over the n, vectors of length m. Immediately, the
dominant cost for obtaining GX, for X € R"*'», ignoring all but
third order terms is

Costgx ~ 4t,nlog,(4m)+ LOT. (A4)

The derivation of the computation, and the cost, for ob-
taining GTy for y € R follows similarly, noting that Gy =
[GD, G?, .. .Gy requires the computation of (G")"y for
each » and that no summation is required as in (A3). Hence
Costgry A 4nlogy(4m) and Costgy ~ 4t,n log,(4m). Noting that
X'GT = (GX)T and Y’ G = (GTY)?, the computations and com-
putational costs are immediately obtained from those of GX and
GTY, respectively.

APPENDIX B: SUPPORTING
NUMERICAL RESULTS OF
SIMULATIONS

Supporting results illustrated as figures in Sections 3.3.1-3.3.3 are
reported in a set of tables, with captions describing the details. Ta-
ble B1 reports the timing for one iteration of the inversion algorithm
using both GKB and RSVD algorithms for magnetic data inversion,
comparing timings using matrix G directly and the 2DFFT. The
time to convergence for the algorithms is given in Table B1 for both
gravity and magnetic data sets for domains without padding.
Tables B3 and B4 give the details of the number of iteration steps to
convergence K and the resulting relative errors, RE, for the timing
results of Table B2. Results for m = 6000 are provided in  Renaut
et al. (2020).
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Table B1. Timing results in seconds for one step of the inversion algorithm applied to magnetic potential field data
for the simulations described in Table 2 without padding and with padding (indicated by P), and for problem sizes up
to m = 18375, excluding m = 6000. 7, = £loor(1.05¢) is the size of the oversampled projected space for GKB and
RSVD implementations. The columns under Direct use of G do not use the 2DFFT. These results are illustrated

in Fig. 4.
magnetic WITH 2DFFT Direct use of G

m t 73 GKB RSVD PGKB PRSVD GKB RSVD PGKB PRSVD
9375 234 245 8 13 7 11 120 12 143 14
9375 375 393 14 20 14 18 193 18 232 22
9375 468 491 18 26 18 24 244 22 294 27
9375 1171 1229 72 70 77 68 633 55 765 66
9375 1562 1640 115 96 125 90 862 74 1044 89
9375 2343 2460 230 151 257 144 1347 118 1633 142
9375 3125 3281 389 215 435 208 1869 169 2278 211
13500 337 353 19 29 16 20 430 440 532 1597
13500 540 567 36 48 32 35 689 1996 831 2985
13500 675 708 49 60 46 45 867 977 1050 2821
13500 1687 1771 213 164 224 127 2255 465 2739 1301
13500 2250 2362 351 227 382 182 3068 1235 3738 2425
13500 3375 3543 733 376 818 315 4798 1279 5890 2834
13500 4500 4725 1259 542 1413 475 6666 2108 61661 3487
18375 459 481 41 56 54 72 NA NA NA NA
18375 735 771 84 94 104 117 NA NA NA NA
18375 918 963 117 121 145 150 NA NA NA NA
18375 2296 2410 554 346 674 433 NA NA NA NA
18375 3062 3215 944 496 1136 601 NA NA NA NA
18375 4593 4822 1999 854 2409 1061 NA NA NA NA
18375 5000 5250 2317 949 2868 1192 NA NA NA NA

Table B2. Timing results to convergence for inversion of gravity and magnetic potential field data for the
simulations described in Table 2 without padding, for problem sizes up to m = 18 375, excluding m = 6000.
Entries with s indicate that the algorithm did not converge to the required tolerance. In the last two columns the
relative costs of GKB as compared to RSVD. Relative errors and number of iterations are presented in Tables B3
and B4, for gravity and magnetic data, respectively.

gravity magnetic Cost2DFFTgkp/Cost2DFFTrsyp
m t t GKB RSVD GKB RSVD gravity magnetic
9375 234 245 265 166 152 509* 1.60 0.30
9375 375 393 411 259 174 811* 1.59 0.21
9375 468 491 342 325 199 1014* 1.05 0.20
9375 1171 1229 1064 835 626 2582* 1.27 0.24
9375 1562 1640 1235 997 948 2121 1.24 0.45
9375 2343 2460 1899 1492 1728 2126 1.27 0.81
9375 3125 3281 2918 2052 2915 2971 1.42 0.98
13500 337 353 595 296 246 923* 2.01 0.27
13500 540 567 671 424 347 1514* 1.58 0.23
13500 675 708 802 527 413 1877* 1.52 0.22
13500 1687 1771 2704 1385 1077 2581 1.95 0.42
13500 2250 2362 2518 1597 1608 2937 1.58 0.55
13500 3375 3543 4308 2483 3071 4142 1.73 0.74
13500 4500 4725 6925 3429 6699 5109 2.02 1.31
18375 459 481 1427 679 594 2157* 2.10 0.28
18375 735 771 1642 1104 1070 3524* 1.49 0.30
18375 918 963 2084 1218 1026 4413* 1.71 0.23
18375 2296 2410 5732 3311 3809 6618 1.73 0.58
18375 3062 3215 6959 4490 5639 8469 1.55 0.67
18375 4593 4822 12347 6979 10979 12949 1.77 0.85
18375 5000 5250 13975 7711 12544 13239 1.81 0.95
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Table B3. Results for inversion of gravity potential field data for the simulations described in Table 2 without
padding and with padding and for problem sizes up to m = 18 375, with Kiax = 25, excluding m = 6000. 1, is the size
of the projected space for GKB and RSVD implementations. Reported are the number of iterations to convergence, K,
for convergence as defined by (17) and the calculated relative errors RE(K). Entries with # indicate that the algorithm
did not converge to the required tolerance.

gravity GKB RSVD PGKB PRSVD
m t Iy K RE K RE K RE K RE
9375 234 245 21 1.05 8 0.49 21 1.05 9 0.51
9375 375 393 19 1.01 8 0.50 21 1.03 9 0.53
9375 468 491 12 0.82 8 0.50 13 0.84 8 0.53
9375 1171 1229 12 0.78 8 0.53 11 0.79 8 0.57
9375 1562 1640 9 0.66 7 0.53 9 0.68 8 0.58
9375 2343 2460 8 0.65 7 0.55 8 0.67 8 0.59
9375 3125 3281 8 0.64 7 0.57 8 0.66 7 0.60
13500 337 353 24 1.03 8 0.56 23 1.03 8 0.60
13500 540 567 15 0.90 7 0.58 15 0.93 7 0.61
13500 675 708 14 0.89 7 0.58 14 0.91 7 0.62
13500 1687 1771 13 0.85 7 0.61 12 0.85 6 0.64
13500 2250 2362 8 0.70 6 0.62 8 0.71 6 0.64
13500 3375 3543 7 0.69 6 0.63 8 0.71 6 0.64
13500 4500 4725 7 0.69 6 0.63 8 0.70 6 0.64
18375 459 481 24 1.07 8 0.56 * 1.08 8 0.59
18375 735 771 16 0.95 8 0.57 16 0.95 8 0.59
18375 918 963 15 0.93 7 0.58 15 0.94 7 0.60
18375 2296 2410 11 0.75 7 0.60 11 0.75 7 0.60
18375 3062 3215 9 0.72 7 0.60 10 0.73 7 0.61
18375 4593 4822 8 0.70 7 0.61 9 0.71 7 0.61
18375 5000 5250 8 0.70 7 0.61 9 0.71 7 0.61

Table B4. Results for inversion of magnetic potential field data for the simulations described in Table 2 without
padding and with padding and for problem sizes up to m = 18 375, excluding m = 6000, with Kinax = 25. 1, is the size
of the projected space for GKB and RSVD implementations. Reported are the number of iterations to convergence, K,
for convergence as defined by (17) and the calculated relative errors RE(K). Entries with # indicate that the algorithm
did not converge to the required tolerance.

magnetic GKB RSVD PGKB PRSVD
m t Iy K RE K RE K RE K RE
9375 234 245 12 0.81 * 0.82 6 0.71 * 0.89
9375 375 393 8 0.72 * 0.78 6 0.69 * 0.82
9375 468 491 7 0.70 * 0.77 6 0.69 * 0.80
9375 1171 1229 7 0.66 * 0.70 6 0.66 * 0.71
9375 1562 1640 7 0.66 15 0.70 6 0.66 12 0.71
9375 2343 2460 7 0.65 10 0.67 6 0.66 9 0.68
9375 3125 3281 8 0.65 10 0.67 8 0.66 9 0.68
13500 337 353 10 0.74 * 0.73 5 0.67 * 0.77
13500 540 567 8 0.69 * 0.69 5 0.67 * 0.73
13500 675 708 7 0.67 * 0.68 5 0.67 * 0.71
13500 1687 1771 5 0.64 13 0.66 5 0.65 10 0.68
13500 2250 2362 5 0.64 11 0.65 5 0.66 10 0.68
13500 3375 3543 5 0.64 10 0.64 5 0.67 9 0.66
13500 4500 4725 7 0.62 9 0.63 5 0.67 9 0.66
18375 459 481 11 0.78 * 0.80 6 0.69 * 0.80
18375 735 771 10 0.74 * 0.75 6 0.69 * 0.76
18375 918 963 7 0.69 * 0.73 6 0.69 * 0.75
18375 2296 2410 7 0.67 14 0.70 5 0.72 12 0.72
18375 3062 3215 7 0.68 13 0.70 6 0.69 11 0.71
18375 4593 4822 7 0.68 13 0.69 6 0.70 11 0.72
18375 5000 5250 7 0.68 12 0.68 6 0.70 11 0.72
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